
Algebras for Program Correctness
in Isabelle/HOL

Alasdair Armstrong, Victor B. F. Gomes, and Georg Struth

Department of Computer Science, University of Sheffield
{a.armstrong, v.gomes, g.struth}@shefield.ac.uk

Abstract. We present a reference formalisation of Kleene algebra and
demonic refinement algebra with tests in Isabelle/HOL. It provides three
different formalisations of tests. Our structured comprehensive libraries
for these algebras extend an existing Kleene algebra library. It includes
an algebraic account of Hoare logic for partial correctness and several
refinement and concurrency control laws in a total correctness setting.
Formalisation examples include a complex refinement theorem, a generic
proof of a loop transformation theorem for partial and total correctness
and a simple prototypical verification tool for while programs, which is
itself formally verified.

1 Introduction

This article documents the formalisation of computationally important algebraic
concepts and structures within a larger project of making variants of Kleene al-
gebras and relation algebras available in the Isabelle proof assistant. It presents
variants of test semirings [17] in Isabelle together with their expansions to Kleene
algebras and demonic refinement algebras with tests [15, 22, 23]. The latter two
algebras have been applied in the verification and correctness of sequential pro-
grams; the first one in partial correctness, the second one in a total correctness
setting. Demonic refinement algebras have also been used for concurrency veri-
fication with action systems [7].

Implementing these algebras with their most important models—the binary
relation model for Kleene algebras with tests and the conjunctive predicate
transformer model for demonic refinement algebras—yields a basis for build-
ing lightweight tools for program verification and correctness in Isabelle. The
general approach is quite simple. The algebraic layer captures part of reasoning
about programs, in particular their control flow, abstractly and concisely. Other
aspects, such as data flow, however, are performed within more concrete models,
for example the relational model of program store. In addition, algebra helps at
the meta-level to derive inference, refinement or transformation rules and im-
plement tactics or decision procedures. Isabelle allows one to reason seamlessly
across these layers, for instance, by programming algebra-driven tactics which
automatically generate verification conditions for concrete models or data types
or by inferring abstract properties of assignment commands. All these features
are provided by our implementation and are illustrated in this article.

2 Alasdair Armstrong, Victor B. F. Gomes, and Georg Struth

More concretely, the main contributions of our formalisation are as follows.

First, based on a comprehensive reference library for variants of dioids and
Kleene algebras [4], we have implemented demonic refinements algebras [22, 23]
as an extension of a variant of Kleene algebra via Isabelle’s type class mecha-
nism, the standard tool for such formalisations. While Kleene algebras provide
operations for the programming concepts of abort, skip, sequential composition,
nondeterministic choice and finite iteration, demonic refinement algebras add
an operation of potentially infinite iteration. We have implemented a library for
equational reasoning in this algebra which contains more than 50 facts from the
literature.

Second, we have formalised three different approaches to tests for variants
of dioids (idempotent semirings) and developed comprehensive libraries for these.
The first one is one-sorted. It implements functions for tests and antitests (boolean
test complements) as in the standard approach to domain semirings [11]. The
second, two-sorted one follows the approach of embedding a boolean algebra
of tests into the dioid [17]. Both approaches are purely axiomatic; they do not
mention an underlying carrier set. While such axiomatic versions often suffice for
verification applications, a third variant with explicit carrier sets is provided as
a basis for mathematical investigations. From variants of test dioids, Kleene and
demonic refinement algebras with tests are obtained as straightforward expan-
sions. The libraries for these structures contain more than 350 facts. In particular
the third variant required implementing a range of background theories.

Third, we illustrate our formalisation through two classical examples from
the literature, which any formalisation of these structures should feature. We
have formalised proofs of three variants of Back’s atomicity refinement theorem
for action systems [22, 9, 13] in demonic refinement algebras with tests. We also
present a new generic proof of Kozen’s transformation theorem for while loops in
Kleene algebras with tests [15] and demonic refinement algebras [21]. It is based
on an axiomatisation of regular algebras by Conway [10] in which the iteration
axioms are too weak to distinguish finite from potentially infinite iteration.

Fourth, we demonstrate how simple prototypical tools for the verification, re-
finement and transformation of sequential programs can be obtained in a generic
way from the algebras considered. By developing the tool in Isabelle, it is itself
formally verified. We first derive the inference rules of Hoare logic except the as-
signment rule in Kleene algebras with tests. To capture assignment in concrete
models, we then formalise the relational model of Kleene algebra with tests and
the predicate transformer model of demonic refinement algebra and specialise
the first model further to program stores. We can then derive assignment laws
easily within this model. We have also implemented a tactic for automatically
generating the usual verification conditions for while programs and show the
approach at work on a simple verification example.

In sum, this formalisation spans the gulf between abstract algebras of pro-
grams and concrete tools for program correctness and verification in a simple,
coherent, principled way. We are using it as a template for developing more
sophisticated and applicable tools for sequential and concurrent programs.

Algebras for Program Correctness in Isabelle/HOL 3

2 Algebraic Preliminaries

A dioid, or idempotent semiring is a structure (S,+, ·, 0, 1) such that (S, ·, 1) is
a monoid, (S,+, 0) is a semilattice with least element 0, and the distributivity
laws x · (y+z) = x ·z+y ·z and (x+y) ·z = x ·z+y ·z as well as the annihilation
laws 0 · x = 0 and x · 0 = 0 hold. Addition and multiplication are isotone with
respect to the semilattice order defined by x ≤ y ←→ x + y = y, that is, x ≤ y
implies z + x = z + y, z · x ≤ z · y and x · z ≤ y · z.

A right Kleene algebra is a dioid expanded by a Kleene star which satisfies the
unfold axiom 1 +x∗ ·x ≤ x∗ and the iteration axiom z+ y ·x ≤ y −→ z ·x∗ ≤ y.
The dual unfold law 1 + x · x∗ ≤ x∗ is derivable. A right Kleene algebra is a
Kleene algebra if the left induction axiom z + x · y ≤ y −→ x∗ · z ≤ y holds too.
For an overview of variants of dioids and Kleene algebras, their most useful laws
and their most important models see [4].

In this context it is important to know that binary relations form Kleene
algebras. This relational model is discussed further in Section 7. Binary relations,
in turn, yield a standard semantics for sequential programs. Addition models
nondeterministic choice, multiplication models sequential composition, 1 models
skip, 0 models abort, ∗ models finite iteration.

For modelling conditionals and while loops according to the relational par-
tial correctness semantics, a notion of test needs to be added. In the relational
model a test is simply an element between the empty and the identity relation.
Abstractly, a test dioid [17] is a structure (S,B) such that S is a dioid and B
a boolean algebra which is embedded into the subalgebra of elements between 0
and 1 of the dioid. There are the following correspondences between operations
of the dioid and those of the boolean algebra: 0 corresponds to the least element
of the boolean algebra, 1 to its greatest element, + corresponds to join and · to
meet. Complementation − has no counterpart in the dioid, it exists only for the
subalgebra of tests. A Kleene algebra with tests is a test dioid which is also a
Kleene algebra. We write x, y, z for general Kleene algebra elements and p, q, r
for tests. A technical development can be found in Section 4. Using tests, an
abstract algebraic semantics for conditionals and while loops is given by

if p then x else y = p · x+ (−p) · y, while p do x = (p · x)∗ · (−p).

Multiplying a program x with a test p from the left means restricting the input
of the program to those states where the test holds; multiplying from the right
means an output restriction.

Total program semantics require another variant of Kleene algebra [22, 23].
A demonic refinement algebra is a Kleene algebra in which the right annihilation
axiom x ·0 = 0 is absent and which is expanded by an operation for possibly infi-
nite iterations which satisfies the unfold axiom 1 +x ·x∞ = x∞, the coinduction
axiom y ≤ x · y + z −→ y ≤ x∞ · z and the isolation axiom x∞ = x∗ + x∞ · 0.

This captures total correctness where an agent has no control over termina-
tion; (p · x)∞ · (−p), for instance, models a while loop which may not terminate.
For similar reasons, x · 0 = 0 is invalid due to potentially infinite processes. In

4 Alasdair Armstrong, Victor B. F. Gomes, and Georg Struth

the isolation axiom, x∗ ·0 annihilates if all processes in x are finite whereas x∞ ·0
projects on the strictly infinite processes in x∞.

Demonic refinement algebra can be expanded by tests in the obvious way.
The semantics of choice, in this case, is a predicate transformer algebra, which
we discuss in detail in Section 7.

The refinement community’s notation unfortunately deviates from the regu-
lar algebra notation. Their refinement order v is the converse of ≤; the symbols
>, u, ; and ω are used instead of 0, +, · and ∞. Finally tests are known as guards.

3 Demonic Refinement Algebra in Isabelle

We now sketch our formalisation of demonic refinement algebra in the theorem
proving environment Isabelle/HOL [18]. We introduce some basic features of
Isabelle while discussing our formalisation. For additional information about
Isabelle we refer to its excellent documentation1. The complete Isabelle code of
our implementation can be found online2. A reference formalisation is available
from the Archive of Formal Proofs [3]. We recommend reading these in parallel.

Isabelle is an interactive proof assistant with embedded automatic theorem
provers and counterexample generators. It is based on a small logical core to
guarantee correctness. It has been used to formalise a wide range of mathematical
theories and applied in numerous computing applications, including program
correctness and verification. Isabelle/HOL, in particular, is based on a typed
higher-order logic which supports reasoning with sets, polymorphic data types,
inductive definitions and recursive functions.

Algebraic hierarchies, like those in the previous section, are usually formalised
with Isabelle’s type class and locale infrastructure. Type classes typically suffice
for simple structures with one single type parameter. More advanced formalisa-
tions often require locales. Both mechanisms support theory expansion and the
formalisation of subclass relationships. Theorems proved for reducts or super-
classes thus become automatically available in expansions or subclasses. Within
this infrastructure, algebras can be linked formally with their models by instan-
tiation or interpretation statements.

We have integrated our formalisation of demonic refinement algebra into the
existing Kleene algebra hierarchy [4]. More precisely, we have formalised demonic
refinement algebra as an expansion of Kleene algebra with a left annihilator,
adding simply the unfold, coinduction and isolation axiom for ∞. By this ex-
pansion, all facts proved for this variant of Kleene algebra become automatically
available in demonic refinement algebra.

class dra = kleene-algebra-zerol + strong-iteration-op +
assumes iteration-unfoldl : 1 + x · x∞ = x∞

and coinduction: y ≤ z + x · y −→ y ≤ x∞ · z
and isolation: x∞ = x? + x∞·0

1 http://isabelle.in.tum.de
2 http://www.dcs.shef.ac.uk/∼victor/ramics2014

Algebras for Program Correctness in Isabelle/HOL 5

We have developed a comprehensive library of theorems of demonic refine-
ment algebra from the literature. Isabelle offers various ways of proving such
facts. First, there is a range of built-in tactics, provers and simplifiers. These
are generally insufficient for automating algebraic reasoning, but quite powerful
for higher-order reasoning with models. Second, Isabelle’s Sledgehammer tac-
tic calls external automated theorem provers and SMT solvers and reconstructs
their output internally to increase trustworthiness. In this way, many equational
algebraic theorems can be proved fully automatically, but the approach is limited
to first-order reasoning. Finally, Isabelle offers different modes of interactive rea-
soning, notably the proof scripting language Isar which supports human-readable
proofs, as in the following example.

lemma iteration-sim: z ·y ≤ x ·z −→ z ·y∞ ≤ x∞·z
proof

assume assms: z ·y ≤ x ·z
have z ·y∞ = z + z ·y ·y∞

by (metis distrib-left mult-assoc mult-oner iteration-unfoldl)
also have ... ≤ z + x ·z ·y∞

by (metis assms add-commute add-iso mult-isor)
finally show z ·y∞ ≤ x∞·z

by (metis mult-assoc coinduction)
qed

In this proof, individual proof steps have been proved automatically by Sledge-
hammer and internally verified by the metis prover. Isar links these steps into a
complete proof. In total we have proved 57 theorems about demonic refinement
algebra, 43 of which were fully automatic. The remaining 14 facts required user
intervention at the level of the previous example.

Isabelle also offers counterexample generators such as nitpick and quickcheck,
which is very important for exploring mathematical theories. The dual simulation
law y · z ≤ z · x −→ y∞ · z ≤ z · x∞, for instance, has been refuted by nitpick
with a three-element counterexample, whereas both simulation laws—with ∞

replaced by ∗—hold in Kleene algebra.
The most interesting and difficult theorems come from demonic refinement

algebra with tests. Before discussing these in Section 5 we present three alter-
native formalisations of test dioids in the following section.

4 Three Formalisations of Tests

The embedding of a boolean test algebras into a Kleene algebra can be formalised
in different ways in Isabelle. Our first implementation is based on an unpublished
manuscript by Jipsen and Struth. It is inspired by the axiomatisation of domain
semirings [11]. The main idea is to add a function t to a semiring or dioid S and
axiomatise it in such a way that the image t(S) forms a boolean subalgebra of
tests. The function t is assumed to be a retraction, that is, t ◦ t = t, since then

6 Alasdair Armstrong, Victor B. F. Gomes, and Georg Struth

p ∈ t(S) if and only if t(p) = p. We can use this fixpoint property for typing
tests or verifying closure conditions.

For encoding test complementation, however, it is more suitable to axiomatise
an antitest function n which satisfies t = n ◦ n:

class dioid-tests-zerol = dioid-one-zerol + comp-op +
assumes test-one: n n 1 = 1
and test-mult : n n (n n x · n n y) = n n y · n n x
and test-mult-comp: n x · n n x = 0
and test-de-morgan: n x + n y = n (n n x · n n y)

We then abbreviate t x ≡ n (n x) and define test p ≡ t p = p. In fact, if
these axioms are added to an arbitrary semiring, idempotence is enforced. It is
straightforward to verify that tests satisfy the boolean algebra axioms, but the
fact that t(S) forms a boolean algebra cannot be expressed explicitly in Isabelle
by a subclass or sublocale statement, simply because the carrier set S is not
explicit in an type class. Thus we cannot formally integrate Isabelle’s library
for boolean algebra and had to build up our own one with the most important
boolean theorems for tests. We provide an alternative implementation where this
problem can be circumvented.

The expansion of test dioids to Kleene algebras with tests is straightforward
and therefore not shown in this paper. We have also verified that our test axioms
are independent, using nitpick for finding counterexamples when trying to prove
each individual axiom from the remaining ones. Despite its limitations, this
formalisation is simple and yields a high degree of automation. Overall, 122
theorems about Kleene algebras with tests and boolean algebra were proved, all
of which fully automatically.

Our second formalisation of test dioids integrates Isabelle’s boolean algebra
type class. In contrast to the previous one-sorted implementation it is therefore
two-sorted. This requires locales instead of type classes.

locale dioid-tests-zerol =
fixes test :: ′a::boolean-algebra ⇒ ′b::dioid-one-zerol
and not :: ′b::dioid-one-zerol ⇒ ′b::dioid-one-zerol
assumes test-sup: test (sup p q) = ‘p + q‘
and test-inf : test (inf p q) = ‘p · q‘
and test-top: test top = 1
and test-bot : test bot = 0
and test-not : test (−p) = ‘−p‘
and test-iso-eq : p ≤ q ←→ ‘p ≤ q‘

Now the function test embeds the boolean algebra into the dioid as usual. A
boolean complementation is also defined on the dioid. The other axioms of this
locale link the boolean operations with the dioid ones, as described in Section 2.
To obtain the typical Kleene algebra with test notation, where the embedding is
implicit, we have implemented a syntax translation which automatically recog-
nises tests in formulas. Hence one can write ‘p+ q‘ for the join of two tests.

Algebras for Program Correctness in Isabelle/HOL 7

With this two-sorted approach, Isabelle’s libraries for boolean algebras be-
come automatically available. From an automation point of view, however, we
noted little difference between the two approaches. As before, we do not explicitly
show the expansion of test dioids to Kleene algebras with tests.

Our third implementation of test dioids provides explicit carrier sets. It fol-
lows the general Isabelle recipe for setting up such algebras.

record ′a test-dioid-structure = ′a dioid + test :: ′a ord

abbreviation tests A ≡ carrier (test A)

locale dioid-tests-zerol =
fixes A :: ′a test-dioid-structure (structure)
assumes is-dioid : dioid-tests-zerol A
and test-subset : tests A ⊆ carrier A
and test-le: le (test A) = dioid .nat-order A
and test-ba: boolean-algebra (test A)
and test-one: top (test A) = 1
and test-zero: bot (test A) = 0
and test-join: [[x ∈ tests A; y ∈ tests A]] =⇒ join (test A) x y = x + y
and test-meet : [[x ∈ tests A; y ∈ tests A]] =⇒ meet (test A) x y = x · y

This formalisation expands carrier-based formalisations of dioids and boolean
algebras. In this setting, algebraic signatures are specified in records. In this
case it is said that tests have a pre-defined order type. The axioms yield a dioid
without left annihilation where the carrier set of tests is a subset of the main
carrier and the operations are embedded as usual.

To support this approach we had to implement several background theories
from scratch with more than 250 theorems about lattices, dioids, Kleene algebra
and Kleene algebras with tests. Because of the additional constraints, Sledge-
hammer may struggle to automate simple proofs. Hence there is a trade-off
between mathematical precision and automation. This approach has previously
been used to implement schematic Kleene algebra with tests and derive flow
chart equivalence as well as simple program verification proofs in this setting [5].

In sum, our three formalisations all have their advantages and disadvantages.
The one-sorted and two-sorted implementation offer comparable proof automa-
tion and might be superior for program verification applications. Which one
is preferable in practice remains to be seen. The carrier-based implementation
leads to less automatic proofs, but for investigations in universal algebra, for
instance, this price needs to be paid.

5 A Program Refinement Example

All axiomatisations from the previous section have been given for dioids without
the axiom x ·0 = 0. This makes all three formalisations compatible with demonic
refinement algebra. The one-sorted formalisation of tests, for instance, is

8 Alasdair Armstrong, Victor B. F. Gomes, and Georg Struth

class dra-tests = dioid-tests-zerol + dra

An expansion to proper test dioids is, of course, given in our Isabelle theory files.
The addition of tests or guards make demonic refinement algebra suitable for

program development applications. We have also formalised the dual notion of
assertion. Assertions are used as context information for weakest precondition
reasoning [22, 23] in guarded command languages. We have formalised assertions
as po = (−p)·> + 1. The constant > denotes the greatest element of the demonic
refinement algebra, which exists in this class and is equal to 1∞. Intuitively, an
assertion po aborts when p is false and skips when p is true. We have verified that
guards and assertions are adjoints of Galois connections, p ·x ≤ y ←→ x ≤ po · y
and x · po ≤ y ←→ x ≤ y · p, as well as further properties from the literature.

Demonic refinement algebra is also interesting for modelling concurrency in
Back’s action system framework [7]. As a complex example we have verified three
algebraic versions of Back’s atomicity refinement theorem [6, 22, 23, 9, 13]. For
an explanation we refer to these articles. Here we only discuss algebraic aspects
and proof automation. Von Wright’s variant states that the identity

x · (y + z + v + w)∞ · p ≤ x · (yz∞p+ v + w)∞

can be derived from the 12 assumptions

t p = p, x = x · p, y = p · y, p · z = 0, v · z ≤ z · v,
v · w ≤ w · v, v · p ≤ p · v, y · w ≤ w · y, z · w ≤ w · z,

p · w ≤ w · p, z∞ = z∗, v∞ = v∗.

Note that z∞ = z∗ and w∞ = w∗ express that z and w are finite. Von Wright’s
original proof covers about 3 pages. Our Isabelle proof essentially translates
this proof at this level of granularity; a more coarse grained automation seems
difficult for metis. The main reason is that the terms appearing in this proof are
quite long and many rules can match. This combinatorics is difficult to handle
in particular for metis, which is inferior to Sledgehammer’s external provers. In
fact, a more general proof of this theorem with Prover9 [13] was much more
coarse grained but required excessive running times. Theorems like this provide
interesting benchmarks for Sledgehammer in particular and automated theorem
provers in general. This general version can also be found in our Isabelle files.

Finally, we have verified Cohen’s simplified version of the atomicity refine-
ment theorem [9] which derives the equation

(x+ y + z)∞ = (p · z)∞ · (x+ (−p) · z + y · (−p))∞ · (y · p)∞

from the assumptions t p = p, x · 0 = 0, y · 0 = 0, p · y · (−p) = 0, p · z · (−p) = 0,
y ·p ·x ≤ x ·y, x ·p ·z ≤ z ·x and y ·p ·z ≤ z ·y. Cohen assumes partial correctness,
so we must explicitly express that x and y must terminate: x ·0 = 0 and y ·0 = 0.
Our proof requires 10 particular steps with Isar.

The results in this section show that libraries that support program refine-
ment can be developed quite easily at the algebraic level with Isabelle. Demonic

Algebras for Program Correctness in Isabelle/HOL 9

refinement algebra is part of more powerful calculi which have been described,
for instance, in the book of Back and von Wright [8]. Their approach is based on
lattice and fixpoint theory. It can easily be obtained by theory expansion from
our formalisation of demonic refinement algebra. This is left for future work.

6 A Program Transformation Example

We now consider a classical program transformation example which has first
been considered in the partial correctness setting of Kleene algebra with tests.
We formalise Kozen’s loop transformation theorem in Kleene algebra with tests:
Every sequential while program, appropriately augmented with subprograms of
the form z · (p · q + (−p) · (−q)), can be viewed as a while program with at most
one loop under certain preservation assumptions [15]. Hence any while program,
suitably augmented with finitely many new dummy subprograms, is equivalent
to a simple while program of the form x; while p do y, where x and y do not
contain any nested loops.

A key ingredient of Kozen’s approach are commutativity conditions of the
form p · x = x · p. We use preservation conditions instead, which are of the form
p · x = p · x · p and (−p) · x = (−p) · x · (−p). In Kleene algebra with tests, these
two conditions are equivalent. However we prove the transformation theorem in
the weaker setting of pre-Conway algebras, where the former imply the latter,
but not vice versa (according to nitpick). Pre-Conway algebras are defined as

class pre-conway = pre-dioid-one-zerol + dagger-op +
assumes dagger-denest : (x + y)† = (x †·y)†·x †

and dagger-prod-unfold : (x ·y)† = 1 + x ·(y ·x)†·y
and dagger-simr : z ·x ≤ y ·z −→ z ·x † ≤ y†·z

As the first line shows, they are based on pre-dioids with only a left-annihilating
zero [4]. In these structures, the left distributivity law x · (y + z) = x · y + x · z
is weakened to sub-distributivity x · y + x · z ≤ x · (y + z) which is equivalent
to isotonicity x ≤ y −→ z · x ≤ z · y. Furthermore, the right annihilation law
x · 0 = 0 is absent. To avoid confusion we use the operator † instead of ∗. The
denest and product-unfold axioms are part of Conway’s classical axioms for
regular algebra [10], but several other axioms, including the idempotency axiom
x†† = x†, are absent. In particular, Conway’s classical axioms are based on a full
dioid. In fact, the dioid-based version plus dagger idempotence is equivalent to
the axioms of right Kleene algebra; and complete with respect to the equational
theory of regular expressions (see [12] for an overview).

In preparation to the proof of the loop transformation theorem we have
verified a number of laws about the dagger in pre-Conway algebra, for instance
isotonicity of dagger, x ≤ y −→ x† ≤ y†, a slide rule, x · (y · x)† = (x · y)† · x,
unfold laws for the dagger, x† = 1 + x · x† and x† = 1 + x† · x, along with some
preservation properties, such as that p · x · p = p · x implies p · x† = (p · x)† · p
and p · (p · x+ (−p) · y)† = (p · x)† · p.

10 Alasdair Armstrong, Victor B. F. Gomes, and Georg Struth

The proof itself is by structural induction on while programs. This can be
formalised in Isabelle by defining a grammar for programs and imposing the
quotient of pre-Conway algebra identities, using Isabelle’s quotient package. We
only discuss the individual cases of this inductive argument. For each program
construct, an inner loop is moved to the outside of a program and these program
transformations are verified in pre-Conway algebra with tests. Programs can be
augmented by dummy subprograms under preservation assumptions. We follow
Kozen’s case analysis, but proofs for individual cases are different due to our
more general assumptions and the weaker axioms of pre-Conway algebras. To
save space we write xy instead of x · y and x instead of −x. Following Kozen,
we take the sequential composition operator to be of lower precedence than the
other program constructs.

For conditionals, Kozen shows that the following programs are equivalent:

pq + pq; if p then (x1; while r1 do y1) else (x2; while r2 do y2),

pq + pq; if q then x1 else x2; while qr1 + qr2 do (if q then y1 else y2).

Translated into pre-Conway algebra we must prove that

(pq + pq)(px1(r1y1)†r1 + px2(r2y2)†r2) =

(pq + pq)(qx1 + qx2)((qr1 + qr2)(qy1 + qy2))†qr1 + qr2.

This consists of two phases. First, the two terms are simplified by right dis-
tributivity, yielding two subterms each. Second, we proved this by verifying the
following two equations between these subterms, using preservation:

pqx1(r1y1)†r1 = pqx1(qr1y1 + qr2y2)†(qr1 + qr2)

pqx2(r2y2)†r2 = pqx2(qr1y1 + qr2y2)†(qr1 + qr2)

For nested loops, Kozen proves the following two programs equivalent:

while p do (x; while q do y)

if p then (x; while p+ q do (if q then y else x))

The corresponding proof in pre-Conway algebra was fully automatic.

(px(qy)†q)†q = px((p+ q)(qy + qx))†(p+ q + p)

The case of sequential composition has two subcases. The first one—called
postcomputation—composes a while loop with a loop-free program:

(while p do x); y

if p then y else (while p do (x; if p then y))

The corresponding identity in Conway algebra is

(px)†py = py + p(px(py + p))†p.

Algebras for Program Correctness in Isabelle/HOL 11

Due to the weaker setting, our proof differs from Kozen’s.

p(px(py + p))†p = pp+ ppx((py + p)px)†(py + p)p

= px(pypx+ px)†pyp

= px(py0 + px)†py

= px(px)†(py0)†py

= px(px)†py(0py)†

= px(px)†py.

The first step uses the product unfold law. The second step uses right distribu-
tivity and boolean algebra. The third step uses the preservation assumption
py = pyp. The forth step uses denesting and right annihilation. The fifth step
uses the sliding rule. The last step uses right annihilation and the rule 0† = 1,
which can be derived from the left unfold law. Finally, adding the term py to
both sides and applying unfold yields the desired identity.

The second subcase is the composition of two while loops, which leads to the
equivalence of

while p do x; while q do y

if p then (while q do y) else (while p do (x; if p then (while q do y)))

and the identity (px)†p(qy)†q = p(qy)†q + p(px(p(qy)†q + p))†p.
Its proof has two steps. We first prove that (qy)†q preserves p, that is,

p(qy)†q = p(qy)†qp and q(qy)†q = p(qy)†qp. Then we prove the identity by
applying the previous subcase. This finishes the case analysis.

We have formally shown that every Kleene algebra with tests is a pre-Conway
algebra where we interpret † as ∗.

sublocale kat ⊆ pre-conway star 〈proof〉

Thus our proof generalises Kozen’s result; and Isabelle makes our theorem auto-
matically available in Kleene algebra with tests. We have also shown that every
demonic refinement algebra is a pre-Conway algebra when interpreting † as ∞.

sublocale dra-tests ⊆ pre-conway strong-iteration 〈proof〉

Hence our result holds in demonic refinement algebra as well; our proof gener-
alises a previous result by Solin [21].

Finally, Rabehaja and Sanders [20] have further generalised the loop refine-
ment theorem to a probabilistic demonic refinement algebra in which the star
and the isolation axiom are absent and the left distributivity axiom is weak-
ened to general left sub-distributivity and to a special left distributivity axiom
p · (x+y) = p ·x+p ·y for tests p. We have adapted our proof so that it covers all
three cases. We do not display this most generic result here since probabilistic
variants are not the subject of this article. Our Isabelle file contains all relevant

12 Alasdair Armstrong, Victor B. F. Gomes, and Georg Struth

details. Note that left distributivity does not hold in pre-Conway algebras and
that the product unfold axiom and simulation axiom cannot be derived from
Rabehaja and Sanders’ axioms. The decision whether the Conway-style axiom
set is appropriate for probabilistc reasoning depends on probabilistic semantics.

In pre-Conway algebras, the dagger axioms are too weak to distinguish be-
tween finite and potentially infinite iteration. Conway’s axiom x†† = x†, which
we have dropped, holds of ∗, but not of ∞, since x∞∞ = >. Conway has anal-
ysed the relevance of this axiom for regular algebras and remarked that it is
equivalent to 1† = 1. In demonic refinement algebra, however, 1∞ = >.

7 Relational and Predicate Transformer Semantics

This section presents the formalisation of the two most important models of
Kleene algebra with tests and demonic refinement algebra: the relational model
for the first and the predicate transformer model for the second. We restrict our
attention to the one-sorted formalisation.

It is well known that, for each set A, the structure (2A×A,∪, ; , ∅, Id ,∗) forms
a Kleene algebra; the full relation Kleene algebra over A. Here, ∪ corresponds
to +, relational composition ; to ·, ∅ to 0, the identity relation Id to 1 and
the reflexive transitive closure operation to ∗. In addition, every subalgebra of
a full relation Kleene algebra forms a relation Kleene algebra. In the one-sorted
approach to the relational model, tests are subidentities and, for each relation x,
n x is the complement of x intersected with the identity relation: n x = Id∩(−x).
In Isabelle we have formalised the fact that binary relations form Kleene algebras
with tests by an interpretation statement:

interpretation rel-kat : kat
“op ∪” “op O” “Id” “op ⊆” “op ⊂” “rtrancl” “λx. Id ∩ (−x)”
〈proof〉

The proof is fully automatic because binary relations have already been shown
to form Kleene algebras [4], hence only the axioms for n need to be checked.
Moreover, Isabelle’s libraries for binary relations are very well developed.

The formalisation of Kleene algebra in Isabelle contains additional models,
including formal languages and regular languages, sets of paths in digraphs,
sets of traces and matrices. For languages there are only two tests: the empty
language and the empty word language. Linking these structures with Kleene
algebra with tests is therefore uninteresting. The other models have a richer test
structures. Interpretation statements with respect to Kleene algebra with tests
seem straightforward. This is left for future work.

The intended model of demonic refinement algebras is formed by conjunctive
predicate transformers [23]. Abstractly speaking these are functions f : B → B
over boolean algebras that distribute over arbitrary meets. Boolean algebras
with such functions are also known as boolean algebras with operators [14]. We
have formalised the isomorphic case where B is a field of sets and functions are

Algebras for Program Correctness in Isabelle/HOL 13

strict and additive. In this model, multiplication is function composition and 1
is the identity function; the other dioid operations are

definition f + g ≡ λσ. f σ ∪ g σ

definition 0 ≡ λσ. {}

definition f ≤ g ≡ ∀σ. f σ ⊆ g σ

The iterations ∗ and ∞ correspond to least and greatest fixpoints of the function
λσ. 1+ρ ·σ. To characterise the boolean subalgebra, we have defined the adjoint
of a function f , following Jónsson and Tarski, as adjoint f ≡ (λσ. − f (−σ)).
We could then define the operation n in this model as

definition n f ≡ (adjoint f · 0) + 1

Finally, we have created an Isabelle type for the set of strict additive functions—
or boolean operators—and proved that, along with the operators defined above,
these functions form a demonic refinement algebra with tests.

typedef ′a bool-op = {f :: ′a set ⇒ ′a set . (∀ g h. f ·(g + h) = f ·g + f ·h ∧ 0 ·f = 0)}

instantiation bool-op :: (type) dioid-tests-zerol 〈proof〉

instantiation bool-op :: (dioid-tests-zerol) dra-tests 〈proof〉

A dual statement for multiplicative functions or conjunctive predicate transform-
ers could be obtained similarly. The characterisation of more general function
spaces can also be achieved along these lines. We have not pursued this any
further since Preoteasa [19] has already formalised an isotone predicate trans-
former model for demonic refinement algebra. Hence our main contribution lies
in the formalisation of the function n. An integration of Preoteasa’s model into
the Kleene algebra hierarchy is certainly desirable for applications.

8 A Prototypical Verification Tool

We have already explained that Kleene algebras with tests provide an alge-
braic semantics of while programs in a partial correctness setting. It is also
well known [16] that validity of Hoare triples ` {|p|}x{|q|} can be encoded as
p · x · (−q) = 0. This formula states that there are no successful executions of
program x from states in p into the complement of q. In other words, if x is
executed from precondition p, then its output will satisfy postcondition q upon
termination. We have formalised validity of Hoare triples in Kleene algebras
with tests. We have also derived all inference rules of propositional Hoare logic
without the assignment rule. The derivations were fully automatic.

We now demonstrate how the relational model can be used to derive as-
signment rules in Isabelle and how the algebraic layer can be extended to a

14 Alasdair Armstrong, Victor B. F. Gomes, and Georg Struth

simple, formally verified tool prototype for program verification and correct-
ness. This semantic approach is in contrast to a previous axiomatic treatment
of assignment [5] with schematic Kleene algebra with tests [1]. Within this tool,
Kleene algebra with tests also allows us to automatically generate verification
conditions which completely eliminate the control structure of programs. By our
formal linkage of the relation model with abstract Kleene algebra with tests, we
can of course use all abstract theorems in this particular model. Although this
is not needed for verification, it is important for program transformation.

In the standard relational semantics of imperative programs, a command
is a relation between states and a state is a function from variables to values.
We provide a prototypical implementation of states as functions from strings to
natural numbers and have defined an Isabelle type for this:

type-synonym state = string ⇒ nat

We have also defined assignment commands as functions from variable names,
update functions and states. They return a new state in which the value of the
variable has been updated. This is defined in Isabelle as follows, where lift-fn
lifts the assignment function into the relational model.

definition lift-fn f ≡ Abs-relation {(x , f x) | x . True}

definition assign-fn x f σ ≡ (λy . if x = y then f σ else σ y)

definition x := e ≡ lift-fn (assign-fn x e)

Subsets of the identity relation represent tests.

definition assert P ≡ Abs-relation (Id-on P)

This set-up allows us to derive assignment axioms, for instance,

P [x|e] ⊆ Q −→ {|assert P |} x := e {|assert Q|},

where P [x|e] is the set of states in P in which the variable x has value e.
For convenience we have added a notion of loop invariant for while loops,

while p inv i do x = (p · x)∗ · (−p).

Invariants are tests or assertions. They are used for generating verification con-
ditions according to the rule

(p ≤ i) ∧ (i · (−b) ≤ q) ∧ {|i · b|}x{|i|} −→ {|p|} while b inv i do x {|q|},

which can be derived easily from the original Hoare rule for the while loop.
Finally, we have adapted the simple proof tactic hoare-auto from [5] for gen-

erating verification conditions in Isabelle. It applies Isabelle’s simplifiers together
with the rules of Hoare logic. This works in practice since Hoare logic provides

Algebras for Program Correctness in Isabelle/HOL 15

precisely one rule per programming construct. Resolving verification conditions
then depends on Isabelle’s libraries for the underlying data domains; algebra is
no longer needed at this level. We verify Euclid’s algorithm as an illustration.

lemma euclids-algorithm:
{|{σ. σ ′′x ′′ = x ∧ σ ′′y ′′ = y}|} -- states σ where ′′x ′′ = x and ′′y ′′ = y

while {σ. σ ′′y ′′ 6= 0} -- while the state has ′′y ′′ 6= 0
inv {σ. gcd (σ ′′x ′′) (σ ′′y ′′) = gcd x y}
do (

′′z ′′ := ′′y ′′; ′′y ′′ := ′′x ′′ mod ′′y ′′; ′′x ′′ := ′′z ′′

)
{|{σ. σ ′′x ′′ = gcd x y}|} -- states σ where ′′x ′′ = gcd x y

by hoare-auto (metis gcd-red-nat)

In this simple case, hoare-auto presents only gcd x y = gcd y (x mod y) as a single
verification condition; the other ones have been discharged by simplification.
Invoking Sledgehammer discharges this condition automatically, using the fact
gcd-red-nat which been drawn from Isabelle’s library for natural numbers.

This simple prototype of a verification tool yields a general template for
algebra-based program analysis systems. It can readily be adapted and extended
for complex applications. Refinement and transformation tools using the predi-
cate transformer semantics can be built along the same lines.

9 Conclusion

We have extended a reference formalisation for variants of Kleene algebras in
Isabelle by two algebras that are important for program verification and correct-
ness applications: Kleene algebras with tests and demonic refinement algebras.
We provide more than 10 algebraic structures, hundreds of theorems and two
important models. We have demonstrated the applicability of the implementa-
tion by two main examples, and have shown how trustworthy tools for program
construction and verification can be implemented from such algebras. A coherent
integration of algebraic methods into program analysis tools has thereby been
achieved. The associated Isabelle theories in the Archive of Formal Proofs [3]
serve as a reference for extensions and further applications.

Main applications of our formalisation lie in the development of tools for
program verification and correctness. Our technique for integrating the control
flow into the algebraic layer is generic. We have already extended it to arbitrary
data types beyond natural numbers and verified additional algorithms. An inte-
gration of data flow into predicate transformer semantics and the extension of
our tool to refinement or program transformation are topics for future work. Fi-
nally, we have applied our approach in the context of shared variable concurrency
verification [2], with similar algebras, but trace-based semantics.

Acknowledgements. The authors are grateful to Jordan Milner for a prepara-
tory implementation and to Peter Jipsen for joint work on the one-sorted test
axiomatisation. They also acknowledge funding from CNPq and EPSRC.

16 Alasdair Armstrong, Victor B. F. Gomes, and Georg Struth

References

[1] A. Angus and D. Kozen. Kleene algebra with tests and program schematology.
Technical Report TR2001-1844, Computer Science Department, Cornell Univer-
sity, July 2001.

[2] A. Armstrong, V. B. F. Gomes, and G. Struth. Algebraic principles for rely-
guarantee style concurrency verification tools. CoRR, abs/1312.1225, 2013.

[3] A. Armstrong, V. B. F. Gomes, and G. Struth. Kleene algebras with tests and
demonic refinement algebras. Archive of Formal Proofs, 2014.

[4] A. Armstrong, G. Struth, and T. Weber. Kleene algebra. Archive of Formal
Proofs, 2013.

[5] A. Armstrong, G. Struth, and T. Weber. Program analysis and verification
based on Kleene algebra in Isabelle/HOL. In S. Blazy, C. Paulin-Mohring, and
D. Pichardie, editors, ITP, volume 7998 of LNCS, pages 197–212. Springer, 2013.

[6] R.-J. Back. A method for refining atomicity in parallel algorithms. In E. Odijk,
M. Rem, and J.-C. Syre, editors, PARLE, volume 366 of LNCS, pages 199–216.
Springer, 1989.

[7] R.-J. Back and R. Kurki-Suonio. Distributed cooperation with action systems.
ACM TOPLAS, 10(4):513–554, 1988.

[8] R-J. Back and J. von Wright. Refinement Calculus: A Systematic Introduction.
Springer, 1998.

[9] E. Cohen. Separation and reduction. In R. C. Backhouse and J. N. Oliveira,
editors, MPC, volume 1837 of LNCS, pages 45–59. Springer, 2000.

[10] J. H. Conway. Regular Algebra and Finite Machines. Chapman and Hall, 1971.
[11] J. Desharnais and G. Struth. Internal axioms for domain semirings. Science of

Computer Programming, 76(3):181–203, 2011.
[12] S. Foster and G. Struth. Automated analysis of regular algebra. In B. Gramlich,

D. Miller, and U. Sattler, editors, IJCAR, volume 7364 of LNCS, pages 271–285.
Springer, 2012.

[13] P. Höfner, G. Struth, and G. Sutcliffe. Automated verification of refinement laws.
Ann. Mathematics and Artificial Intelligence, 55(1-2):35–62, 2009.

[14] B. Jónsson and A. Tarski. Boolean algebras with operators, part 1. American
Journal of Mathematics, 73(4):891–939, 1951.

[15] D. Kozen. Kleene algebra with tests. ACM TOPLAS, 19(3):427–443, 1997.
[16] D. Kozen. On Hoare logic and Kleene algebra with tests. ACM TOCL, 1(1):60–76,

2000.
[17] E. G. Manes and D. B. Benson. The inverse semigroup of a sum-ordered semiring.

Semigroup Forum, 31(1):129–152, 1985.
[18] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof Assistant for

Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.
[19] V. Preoteasa. Algebra of monotonic boolean transformers. In A. S. Simão and

C. Morgan, editors, SBMF, volume 7021 of LNCS, pages 140–155. Springer, 2011.
[20] T. M. Rabehaja and J. W. Sanders. Refinement algebra with explicit probabilism.

In W.-N. Chin and S. Qin, editors, TASE, pages 63–70. IEEE Comp. Soc., 2009.
[21] K. Solin. Normal forms in total correctness for while programs and action systems.

J. Logic and Algebraic Programming, 80(6):362–375, 2011.
[22] J. von Wright. From Kleene algebra to refinement algebra. In E. A. Boiten and

B. Möller, editors, MPC, volume 2386 of LNCS, pages 233–262. Springer, 2002.
[23] J. von Wright. Towards a refinement algebra. Science of Computer Programming,

51(1-2):23–45, 2004.

