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Introduction
One of the main goals of robotics is to assist or replace
people performing performing tedious or dangerous tasks.
Typically, robot controllers for such tasks are designed and
implemented by specialists, and the process requires hand-
crafting a new and different controller for each particular
task. Learning from demonstration (Schaal 1997) and im-
itation (Mataríc 2002; Schaal 1999) offer alternatives to
hand-crafting of robot controllers, emphasizing collabora-
tive human-robot interaction as a natural and accessible
method for robot programming.

Demonstration-based learning and supervisory control
have certain complementary properties. Both approaches
maintain human presence in the robot’s control process. Su-
pervisory methods do so by yielding robot autonomy to hu-
man control. In contrast, demonstration-based methods al-
low for robot autonomy; in those, the human does not di-
rectly operate the robot, but provides teaching and feed-
back. Another complementary property of the two methods
involves the amount of communication between the human
and the robot. Potential human-robot interaction modalities,
such as speech and gesture, may not be capable of convey-
ing information at a sufficient rate to maintain direct human
tele-operation of the robot. Furthermore, complex control
problems are not always amenable to or practical for tele-
operation, due to the dimensionality of the control space and
the required skill and concentration on the part of the human
operator.

The above scenarios can all benefit from a combination
approach, with the robot maintaining autonomy over low-
level control while receiving direct high-level control from
a human operator or high-level feedback from a human
teacher. Conversely, having the human in the loop at vari-
ous levels of control is also of value in demonstration-based
learning, as it is a subjective process susceptible to errors in
the demonstration, observation, and generalization.

In this paper, we discuss the potential of such combination
approaches to learning low-level robot skills and high-level
robot task from demonstration, intended as a foundation for
higher-level supervised control and collaboration in a variety
of interaction modalities. In particular, we discuss a com-
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binedexemplar-based representationof skills (e.g., Jenkins
& Matarić (2003) and Jenkins & Matarić (2004)) and tasks
(e.g., Nicolescu & Matarić (2002)), a method for their unsu-
pervised extraction from demonstration, and supervised re-
finement through human feedback and operation. We place
the discussion in the context of three scenarios for supervi-
sory control, along with potential applications and avenues
for future work.

Representing Skills and Tasks Learned From
Demonstration

For truly autonomous robots, an effective method for learn-
ing from demonstration should be able to uncover descrip-
tions of skills and tasks contained in the demonstration data.
We have recently proposed methods for unsupervised ex-
traction of skills from human motion (Jenkins & Matarić
2003) and tasks from human demonstration to a mobile
robot (Nicolescu & Mataríc 2001). These methods were val-
idated on vastly different robot platforms, but they share a
common representation amenable to autonomous and super-
vised control.

In our representation, askill behavioris defined by a set
of exemplars in the configuration space of the robot and a
task behavior (or abstract behavior)is a task description
that coordinates those skills in a goal-directed fashion. As
described in Jenkins & Matarić (2003), unlabeled and un-
segmented motion data from demonstrations can be auto-
matically partitioned into segments, clustered into distinct
behaviors, and generalized into a repertoire of skill behav-
iors. The resulting behaviors are represented in a form that
can be used not only for control but also for prediction. This
predictive capability enables the skill behaviors to provide
expected future robot configurations useful for specifying
control desires or for matching against observed demonstra-
tor configurations.

Task or abstract behaviors provide purposeful, goal-
directed robot control based on the foundation of skill be-
haviors described above. In Nicolescu & Matarić (2003),
an approach to learning task behaviors from demonstration
is described that assumes a predefined set of skill behav-
iors, complementary to Jenkins & Matarić (2003). In that
approach, skill behaviors are used to partition and classify
(through matching observations to skill postconditions) an



individual demonstration into a sequential task description
of the formA → B → C or A → D → C. Task descrip-
tions across multiple demonstrations are then generalized to
produce a single description that retains the common charac-
teristics through specific-to-general learning. For instance,
the general descriptionA → (B or D) → C is produced
from the two examples above. Because the task description
is encoded using a set of skill behaviors as controllers, the
resulting generalized task description can be used to direct
the skill controllers to perform the task on the robot indepen-
dent of a particular configuration or situation. Additionally,
the task behaviors can be structured hierarchically to con-
struct new, higher-level composite task behaviors.

Relating Skills and Tasks
While sharing the exemplar-based philosophy and the use of
suchbehavior primitives(Mataríc 2002), skill representa-
tions utilized by Nicolescu & Matarić (2002) and Jenkins &
Mataríc (2003) differ in their form, at least in part due to the
type of robot platform on which they were employed: mo-
bile robots and humanoids, respectively. In particular, the
following issues require further attention:

• Perceptual-motor versus Sensory-motor primitives as
skills. The perceptual-motor skills used by Jenkins and
Mataríc assume that data gathered through observation
have been preprocessed and transformed into the proprio-
ceptive (internal) configuration space of the robot. In con-
trast, sensory-motor skills used by Nicolescu and Matarić
use basic sensory preprocessing and consider exterocep-
tive factors, the robot’s external state for the environment.

• Preconditions and Postconditions.Given their consider-
ation of exteroceptive factors, Nicolescu and Matarić re-
quire explicit preconditions and postconditions for each
skill. In contrast, preconditions and postconditions are
implicit in the skills of Jenkins and Matarić and would
require explicit extraction.

Our continuing work is exploring these issues.

Scenarios for Supervisory Control
Next, we discuss situations where supervisory con-
trol/feedback is necessary or beneficial for the representation
of the described skill and task behaviors. We also describe
avenues for future research in the context of these scenarios.

Supervisory Feedback for Autonomous Task
Control and Refinement
As described in Nicolescu & Matarić (2003), task behaviors
whose descriptions were extracted/learned from demonstra-
tion, can be used for autonomously controlling a robot to
perform the demonstrated task. This autonomy is enabled by
having a repertoire of underlying skills that provide the robot
with autonomous control and the ability to classify the ob-
served demonstration into those skills and parametrize and
execute them accordingly.

Given multiple demonstrations of a specific task, the
learned generalized task behavior encodes the specifics of

each demonstration while incorporating their common com-
ponents. Consequently, the generalized task behavior is ca-
pable of autonomous robot control of the given task in a va-
riety of related situations.

In a significant number of cases, however, a task behav-
ior may not perform as intended by the human during au-
tonomous execution due to factors such as sparsity in the
input set and errors in generalization. In such cases, the hu-
man intervenes to provide feedback to the robot, with the
result being the refinement of the robot’s task description.

As described, this method allows for refinement of task
descriptions but not their underlying repertoire of skills. Ide-
ally, both the task and its underlying skills should be refin-
able based on user feedback. Skills used in Nicolescu &
Mataríc (2003) are not readily modifiable due to their man-
ually coded nature, but the combined exemplar-based skill
and task representation presented in the previous section
could remedy this problem. However, challenges remain,
including:

• Determining what should be refined. Manual and
automated methods for determining whether refinement
should take place for the task descriptions or for an indi-
vidual skill are needed. In their absence, wholesale com-
bined refinement of a task and underlying skills requires
increased effort from the human supervisor. Additionally,
such wholesale refinement requires a means of adaptive
capable of retaining the desirable while discarding the un-
desirable properties of the skills.

• Avoiding task specificity in skills. A known danger in
refining skills for a particular task is overfitting, i.e., con-
vergence towards the single task. Avoiding such overfit-
ting is a recognized problem in learning.

Collaborative High-level Supervisory Control
As discussed in the previous subsection, Nicolescu &
Mataríc (2003) utilizes a formal relationship between the
robot and the human input through speech and gesture com-
munication. This method is suited for robots learning from
humans and other robots and for autonomous performance
by a robot. For certain tasks, however, a more collabora-
tive relationship is needed between the robot and the hu-
man, or among multiple robots. Robot soccer is a popular
example of multi-robot collaboration, where robots perform
autonomously but not independently; instead, they are in-
directly supervised by others on the team via sensing and
communication. In addition, they may (at some future time)
play with human teammates who use speech and gesture
for interaction. Such collaborations assume a significant
amount ofa priori domain knowledge. Methods for learn-
ing from demonstration could provide an excellent means
for acquiring such collaborative tasks and skills without the
intractability of exploring vast learning spaces (as is the case
in robot teams) or the specificity of hardcoded controllers
and interactions.

Collaborating at this level involves major challenges, in-
cluding:

• How to observe collaborative demonstration?It is dif-
ficult to observe complex interactions and collaboration



without detaileda priori models of expected interactions.

• How to segment, cluster, and generalize collaborative
demonstration? In particular, it is an open question as to
how to generalize a robot’s interactions with collaborators
and adversaries.

• How to model other collaborators? We assume collab-
orators will not be able to provide detailed communica-
tions. Thus, collaborator interactions will require some
type of a generalizable model.

Direct High-Level Supervisory Control
In contrast to the previous two scenarios, autonomous task-
level control may not be necessary when a human can con-
tinually provide high-level tele-operation. In such situations,
the human directs a repertoire of low-level skills for control-
ling the robot’s actuation system. One application of this ap-
proach is inbrain-machine interfaces for neural prostheses.
As described by Blacket al. (2003), devices for direct inter-
faces are advancing toward providing greater ability to help
people with motor impairments. In the foreseeable future,
however, such devices will become bandwidth-limited; the
limited communication channels could be complemented
by a repertoire of exemplar-based skills, such as those de-
scribed by Jenkins & Matarić (2003). Human users could
use high-level sparse control to direct autonomous motor
programs encoded as skills that actuate a robot or some other
relevant platform.

Such direct high-level control brings up several questions,
including:

• What are appropriate vocabularies of skills? This is-
sue is addressed in part by the automated skill derivation
method provided by Jenkins & Matarić (2003). However,
that method is dependent upon having demonstration data
as input, which may not be unavailable.

• How can signals generated from human high-level op-
eration be reliably mapped onto a repertoire of skills?
Classification of observed human instruction onto the skill
repertoire for non-trivial vocabularies and real activity
perception remains a challenging problem.

• How can we extract structure from human high-level
operation to build increasingly rich hierarchical sets
of autonomous behaviors?Such task behaviors would
expand the ability of the human operator toward new and
more complex tasks.

In summary, we have discussed the potential benefits and
challenges of learning low-level robot skills and high-level
robot task from demonstration/by imitation. Such skills and
tasks can serve as a foundation for higher-level supervised
control and collaboration in a variety of interaction modali-
ties. We have used our past work as an example of promising
avenues and outstanding research problems.
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