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Abstract

Deformable part models (DPMs) and convolutional neu-
ral networks (CNNs) are two widely used tools for vi-
sual recognition. They are typically viewed as distinct ap-
proaches: DPMs are graphical models (Markov random
fields), while CNNs are “black-box” non-linear classifiers.
In this paper, we show that a DPM can be formulated as a
CNN, thus providing a synthesis of the two ideas. Our con-
struction involves unrolling the DPM inference algorithm
and mapping each step to an equivalent CNN layer. From
this perspective, it is natural to replace the standard im-
age features used in DPMs with a learned feature extractor.
We call the resulting model a DeepPyramid DPM and ex-
perimentally validate it on PASCAL VOC object detection.
We find that DeepPyramid DPMs significantly outperform
DPMs based on histograms of oriented gradients features
(HOG) and slightly outperforms a comparable version of
the recently introduced R-CNN detection system, while run-
ning significantly faster.

1. Introduction

Part-based representations are widely used in visual
recognition. In particular, deformable part models (DPMs)
[10] have been effective for generic object category detec-
tion. DPMs update pictorial structure models [! 1], which
date back to the 1970s [14], with modern image features
and machine learning algorithms.

Convolutional neural networks (CNNs) are another in-
fluential class of models for visual recognition. CNNs also
have a long history [15, 28, 33], and have resurged over the
last two years due to good performance on image classifi-
cation [27], object detection [17], and more recently a wide
variety of vision tasks (e.g., [3, 6, 22, 38, 45]).

These two models, DPMs and CNNs, are typically
viewed as distinct approaches to visual recognition. DPMs
are graphical models (Markov random fields), while CNNs
are “black-box” non-linear classifiers. In this paper, we ask:
Are these models actually distinct? To answer this question
we show that any DPM can be formulated as an equivalent
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CNN. In other words, deformable part models are convo-
lutional neural networks. Our construction relies on a new
network layer, distance transform pooling, which general-
izes max pooling.

DPMs typically operate on a scale-space pyramid of gra-
dient orientation feature maps (HOG [5]). But we now
know that for object detection this feature representation is
suboptimal compared to features computed by deep con-
volutional networks [17]. As a second innovation, we re-
place HOG with features learned by a fully-convolutional
network. This “front-end” network generates a pyramid of
deep features, analogous to a HOG feature pyramid. We
call the full model a DeepPyramid DPM.

We experimentally validate DeepPyramid DPMs by
measuring object detection performance on PASCAL VOC
[9]. Since traditional DPMs have been tuned for HOG fea-
tures over many years, we first analyze the differences be-
tween HOG feature pyramids and deep feature pyramids.
We then select a good model structure and train a Deep-
Pyramid DPM that significantly outperforms the best HOG-
based DPMs. While we don’t expect our approach to out-
perform a fine-tuned R-CNN detector [ | 7], we do find that it
slightly outperforms a comparable R-CNN (specifically, an
R-CNN on the same convs features, without fine-tuning),
while running about 20x faster (0.6s vs. 12s per image).

Our experiments also shed some light the relative mer-
its of region-based detection methods, such as R-CNN, and
sliding-window methods like DPM. We find that region pro-
posals and sliding windows are complementary approaches
that will likely benefit each other if used in an ensemble.
This makes sense; some object classes are easy to segment
(e.g., cats) while others are difficult (e.g., bottles, people).

Interpreted more generally, this paper shows that sliding-
window detectors on deep feature pyramids significantly
outperform equivalent models on HOG. While not surpris-
ing, the implementation details are crucial and challeng-
ing to pin down. As a result, HOG-based detectors are
still used in a wide range of systems, such as recent hy-
brid deep/conventional approaches [3, 46], and especially
where region-based methods are ill-suited (poselets [1] be-
ing a prime example). We therefore believe that the results



presented in this paper will be of broad practical interest
to the visual recognition community. An open-source im-
plementation will be made available on the first author’s
website, which will allow researchers to easily build on our
work.

2. DeepPyramid DPMs

A DeepPyramid DPM is a convolutional network that
takes as input an image pyramid and produces as output a
pyramid of object detection scores. Although the model is
a single network, for pedagogical reasons we describe it in
terms of two smaller networks, a feature pyramid “front-
end” CNN and a DPM-CNN—their function composition
yields the full network. A schematic diagram of the model
is presented in Figure 1.

2.1. Feature pyramid front-end CNN

Objects appear at all scales in images. A standard tech-
nique for coping with this fact is to run a detector at multiple
scales using an image pyramid. In the context of CNNs, this
method dates back to (at least) early work on face detection
in [40], and has been used again in contemporary works, in-
cluding OverFeat [35], DetectorNet [4], DenseNet [24], and
SPP-net [23], a recently proposed method for speeding up
R-CNNs. We follow this approach and use as our front-end
CNN a network that maps an image pyramid to a feature
pyramid. To do this, we use a standard single-scale archi-
tecture (Krizhevsky et al. [27]) and tie the network weights
across all scales. Implementation details are given in Sec-
tion 3.

2.2. Constructing an equivalent CNN from a DPM

In the DPM formalism, an object class is modeled as a
mixture of “components”, each being responsible for mod-
eling the appearance of an object sub-category (e.g., side
views of cars, people doing handstands, bi-wing propeller
planes). Each component, in turn, uses a low-resolution
global appearance model of the sub-type (called a “root fil-
ter”), together with a small number (e.g., 8) of higher reso-
lution “part filters” that capture the appearance of local re-
gions of the sub-type.

At test time, a DPM is run as a sliding-window detec-
tor over a feature pyramid, which is traditionally built using
HOG features (alternatives have recently been explored in
[29, 32]). A DPM score is assigned to each sliding-window
location by optimizing a score function that trades off part
deformation costs with image match scores. A global max-
imum of the score function is computed efficiently at all
sliding-window locations by sharing computation between
neighboring positions and using a dynamic programming
algorithm. This algorithm is illustrated with all of the steps
“unrolled” in Figure 4 of [10]. The key observation of this
section is that for any given DPM, its unrolled detection

algorithm generates a specific convolutional network archi-
tecture of a fixed depth. This architecture, which we call a
DPM-CNN, is illustrated for a single-component DPM by
the network diagram in Figure 2. In words, the architecture
operates in the following way:

1. A DPM-CNN receives a feature pyramid level as input
(e.g., a convy feature map)

2. It convolves this feature map with the root filter and P
part filters, generating P + 1 feature maps

3. The P feature maps coming from the part filters are
fed into a distance transform pooling layer

4. The feature map coming from the root filter is
“stacked” (channel-wise concatenated) with the P
pooled feature maps from the previous step

5. The resulting P + 1 channel feature map is convolved
with an object geometry filter, which produces the out-
put DPM score map for the input pyramid level

We describe the layers of this network in greater detail in
the following subsections. We start by introducing the idea
of distance transform (DT) pooling, which generalizes the
familiar max-pooling operation used in CNNs. Then, we
describe the object geometry layer that encodes the relative
offsets of DPM parts. Finally, we describe how to extend a
single-component DPM-CNN to a multi-component DPM-
CNN using maxout units.

To simplify the presentation, we consider the case where
all DPM parts operate at the same resolution as the root fil-
ter. Multi-resolution models can be implemented by taking
two scales as input and inserting a subsampling layer after
each DT-pooling layer.

2.2.1 Distance transform pooling

Here we show that distance transforms of sampled functions
[12] generalize max pooling.

First, we define max pooling. Consider a function
f: G — R defined on a regular grid G. The max pool-
ing operation on f, with a window half-length of k, is
also a function My: G — R that is defined by My(p) =
MaXApe{—t,...k} [ (0 + Ap).

Following [12], the distance transform of f is
a function Dy: G — R defined by Dy(p) =
maxqeg (f(g) — d(p — q)). In the case of DPM, d(r) is as
a convex quadratic function d(r) = ar? + br, where a > 0
and b are learnable parameters, which vary from part to part.
Intuitively, these parameters define the shape of the distance
transform’s pooling region.

Max pooling can be expressed equivalently as M(p) =
maxgeg (f(q) — dmax (P — q)), where dinax (1) 18 zero if €
{=k,...,k} and oo otherwise. Expressing max pooling as



L DeepPyramid DPM |
(5) DPM score pyramid

(1) Color image pyramid (3) Convs5 feature pyramid

3

level L level L
(2) Truncated SuperVision CNN (4) DPM-CNN /
R [ P i
' i | i
|
: ! | |
3 | ] ] ]
| For each pyramid ! | For each pyramid !
LY ! level 1 ' Hevel 7 N
. mid ~ utput Tayer s somvs) " I [ DPM score
Image pyrami conv5 pyramid pyramid
level 1 level 1 level 1

(1/16th spatial resolution of the image)

Figure 1. Schematic model overview. (1) An image pyramid is built from a color input image. (2) Each pyramid level is forward
propagated through a fully-convolutional CNN (e.g., a truncated SuperVision CNN [27] that ends at convolutional layer 5). (3) The result
is a pyramid of convs feature maps, each at 1/16th the spatial resolution of its corresponding image pyramid level. (4) Each convs level is
then input into a DPM-CNN, which (5) produces a pyramid of DPM detection scores. Since the whole system is the composition of two
CNN:gs, it can be viewed as a single, unified CNN that takes a color image pyramid as input and outputs a DPM score pyramid.
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Figure 2. CNN equivalent to a single-component DPM. A DPM component can be written as an equivalent CNN by unrolling the DPM
detection algorithm into a network. We present the construction for a single-component DPM-CNN here and then show how several
of these CNNs can be composed into a multi-component DPM-CNN using a maxout layer (Figure 3). A single-component DPM-CNN
operates on a feature pyramid level. (1) The pyramid level is convolved with the root filter and P part filters, yielding P + 1 convolution
maps. (2) The part convolution maps are then processed with a distance transform pooling layer, which we show is a generalization of max
pooling. (3) The root convolution map and the DT pooled part convolution maps are stacked into a single feature map with P + 1 channels
and then convolved with a sparse object geometry filter (see sidebar diagram and Section 2.2.2). The output is a single-channel score map
for the DPM component.

the maximization of a function subject to a distance penalty
dmax makes the connection between distance transforms and
max pooling clear. The distance transform generalizes max
pooling and can introduce learnable parameters, as is the
case in a DPM. Note that unlike max pooling, the distance

but parallel-friendly maximization, as was done in [37].

2.2.2 Object geometry filters

The score of DPM component ¢ at each root filter location

transform of f at p is taken over the entire domain G. There-
fore, rather than specifying a fixed pooling window a priori,
the shape of the pooling region can be learned from the data.

In the construction of a DPM-CNN, DT-pooling layers
are inserted after each part filter convolution. When the DT-
pooling layer is implemented on a CPU, the distance trans-
form can be computed efficiently in O(|G]) time, using the
algorithm of [12]. When implemented on a GPU, it is faster
to loosely bound the pooling region and use a brute-force,

s is given by adding the root filter score at s to the distance
transformed part scores at “anchor” locations offset from s.
Each part p has its own anchor offset that is specified by a
2D vector v, = (Upg, Upy)-

Computing component scores at all root locations can be
rephrased as a convolution. The idea is to stack the root fil-
ter score map together with the P distance transformed part
score maps to form a score map with P + 1 channels, and
then convolve that score map with a specially constructed
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Figure 3. CNN equivalent to a multi-component DPM. A multi-component DPM-CNN is composed of one DPM-CNN per component

(Figure 2) and a maxout [

filter that we call an “object geometry” filter. This name
comes from the fact that the filter combines a spatial config-
uration of parts into a whole. The coefficients in the object
geometry filter are all zero, except for a single coefficient set
to one in each of the filter’s P+1 channels. The first channel
of an object geometry filter always has a one in its upper-left
corner (the root’s anchor is always defined as vy = (0, 0)),
causing it to “select” the root filter’s score. Filter channel
D, has a one at index v,, (using matrix-style indexing, where
indices grow down and to the right), causing it to select part
filter p’s score. To clarify this description, an example ob-
ject geometry filter for a DPM component with one root and
one part is shown in the Figure 2 sidebar.

DPMs are usually thought of as flat models, but making
the object geometry filter explicit reveals that DPMs actu-
ally have a second, implicit convolutional layer. In princi-
ple one could train this filter discriminatively, rather than
heuristically setting it to a sparse binary pattern [10]. We
revisit this idea when discussing our experiments in Sec-
tion 4.1.

2.2.3 Combining mixture components with maxout

Each single-component DPM-CNN produces a score map
for each pyramid level. Let z,. be the score for component
c at location ¢ in a pyramid level. In the DPM formalism,
components compete with each other at each location. This
competition is modeled as a max over component scores:
Zq = Max, zq., where the overall DPM score at g is given
by z4. In DPM-CNN, 2z, = W, - X4 + b, where w, is
component ¢’s object geometry filter (vectorized), X, is the
sub-array of root and part scores at g (vectorized), and b, is
the component’s scalar bias. Figure 3 shows the full multi-
component DPM-CNN including the max non-linearity that
combines component scores.

It is interesting to note that the max non-linearity used
in DPMs is mathematically equivalent to the “maxout” unit
recently described by Goodfellow et al. [20]. In the case
of DPMs, the maxout unit has a direct interpretation as a
switch over the latent choice of model component.

] layer that takes a max over component DPM-CNN outputs at each location.

2.2.4 Generalizations

For clarity, we constructed a DPM-CNN for the case of mix-
tures of star models [10]. However, the construction is gen-
eral and naturally extends to a variety of models such as
object detection grammars [19] and recent DPM variants,
such as [44].

The CNN construction for these more complex models
is analogous to the DPM-CNN construction: take the exact
inference algorithm used for detection and explicitly unroll
it (this can be done given a fixed model instance), then ex-
press the resulting network in terms of convolutional layers
(for appearance and geometry filters), distance transform
pooling layers, subsampling layers (if parts are at different
scales), and maxout layers (for mixture components).

We also note that our construction is limited to models
for which exact inference is possible with a non-iterative
algorithm. Models with loopy graphical structures, such
as Wang et al.’s hierarchical poselets model [43], require
iterative, approximate inference algorithms that cannot be
converted to equivalent fixed-depth CNNs without further
approximation.

2.3. Related work

Our work is most closely related to the deep pedestrian
detection model of Ouyang and Wang [31]. Their CNN is
structured like a DPM and includes a “deformation layer”
that takes a distance penalized global max within a detec-
tion window. Their work reveals some connections be-
tween single-component DPMs and CNNs, however they
focus on a specific model for pedestrian detection and do
not present a complete mapping of generic DPMs to CNNss.
We extend their work by: (1) developing object geometry
filters, (2) showing that multi-component models are im-
plemented with maxout, (3) describing how DPM inference
over a whole image is efficiently computed in a CNN by
distance transform pooling, and (4) using a more powerful
CNN front-end to generate the feature pyramid. Our dis-
tance transform pooling layer also differs from their “de-
formation layer” because it efficiently computes a distance
transform over the entire input, rather than an independent
global max for each window as described in [31].



Our experimental setup is similar to the contemporane-
ous work of Savalle et al. [34]. Savalle et al. show simi-
lar results when using deep feature pyramids together with
DPMs. Our report complements their work by developing
the theoretical relationship between DPMs and CNNs and
evaluating more experimental designs.

The idea of unrolling (or “time unfolding”) an inference
algorithm in order to construct a fixed-depth network was
explored by Gregor and LeCun in application to sparse cod-
ing [21]. In sparse coding, inference algorithms are iterative
and converge to a fixed point. Gregor and LeCun proposed
to unroll an inference algorithm for a fixed number of itera-
tions in order to define an approximator network. In the case
of DPMs (and similar low tree-width models), the inference
algorithm is exact and non-iterative, making it possible to
unroll it into a fixed-depth network without any approxima-
tions.

Boureau et al. [2] study average and max pooling from
theoretical and experimental perspectives. They discuss
variants of pooling that parametrically transition from av-
erage to max. Distance transform pooling, unlike the pool-
ing functions in [2], is interesting because it has a learnable
pooling region. Jia et al. [25] also address the problem of
learning pooling regions by formulating it as a feature se-
lection problem.

Our work is also related to several recent approaches
to object detection using CNNs. OverFeat [35] performs
coarse sliding-window detection using a CNN. At each
rough location, OverFeat uses a regressor to predict the
bounding box of a nearby object. Another recent CNN-
based object detector called DetectorNet [4] also performs
detection on a coarse set of sliding-window locations. At
each location, DetectorNet predicts masks for the left, right,
top, bottom, and whole object. These predicted masks are
then grouped into object hypotheses. Currently, the most
accurate object detection method for both ImageNet detec-
tion as well as PASCAL VOC is the Region-based CNN
framework (R-CNN) [16, 17]. Unlike DetectorNet and
OverFeat, R-CNN does not perform sliding-window detec-
tion; instead R-CNN begins by extracting a set of region
proposals [39] and classifies them with a linear SVM ap-
plied to CNN features.

3. Implementation details

We implemented our experiments by modifying the
DPM voc-release5 code [ 18] and using Caffe [26] for CNN
computation. We describe the most important implemen-
tation details in this section. Source code for the complete
system is available, thus providing documentation of the re-
maining implementation details.

3.1. Parameter learning

There are at least two natural ways to train a DeepPyra-
mid DPM. The first treats the model as a single CNN and
trains it end-to-end with SGD and backpropagation. The
second trains the model in two stages: (1) fit the front-end
CNN; (2) train a DPM on top of stage 1 using latent SVM
[10] while keeping the front-end CNN fixed. The first pro-
cedure is more in the spirit of deep learning, while the sec-
ond is an important baseline for comparison to traditional
HOG-based DPM and for showing if end-to-end training is
useful. We chose to focus on latent SVM training since it is
a necessary baseline for end-to-end training. Although we
don’t explore end-to-end training due to space constraints,
we point interested readers to contemporaneous work by
Wan et al. [41] that shows results of a similar model trained
end-to-end. They report modest improvements from end-
to-end optimization.

3.2. Feature pyramid construction

Any fully-convolutional network can be used to generate
the feature pyramid. In our DeepPyramid DPM implemen-
tation, we chose to use a truncated variant of the SuperVi-
sion CNN [27]. In order to directly compare our results
with R-CNN [17], we use the publicly available network
weights that are distributed with R-CNN. These weights
were trained on the ILSVRC 2012 classification training
dataset using Caffe (we do not use the detection fine-tuned
weights since they were trained on warped image windows).

Starting from this network, two structural modifications
are required to generate feature pyramids. The first is to
truncate it by removing the last max pooling layer (pooly),
all of the fully-connected layers (fcg, fcy, fcg), and the
softmax layer. The network’s output is, therefore, the fea-
ture map computed by the fifth convolutional layer (convs),
which has 256 feature channels. The second modification
is that before each convolutional or max pooling layer, with
kernel size k, we zero-pad the layer’s input with | k/2] zeros
on all sides (top, bottom, left, and right). This padding im-
plements “same” convolution (and pooling), where the in-
put and output maps have the same spatial extent. With this
padding, the mapping between image coordinates and CNN
output coordinates is straightforward. A “pixel” (or “cell”)
at zero-based index (z,y) in the CNN’s convs feature map
has a receptive field centered on pixel (16, 16y) in the in-
put image. The convs features, therefore, have a stride of
16 pixels in the input image with highly overlapping recep-
tive fields of size 163 x 163 pixels. Our experimental results
show that even though the receptive fields are very large, the
features are localized well enough for sliding-window de-
tectors to precisely localize objects without regression (as
in OverFeat and DetectorNet). This observation confirms
recent observations in [30].

For simplicity, we process the image pyramid with a



naive implementation in which each image pyramid level is
embedded in the upper-left corner of a large (1713 x 1713
pixel) image. For the first image pyramid level, the origi-
nal image is resized such that its largest dimension is 1713
pixels. For PASCAL VOC images, this results in upsam-
pling images by a factor of 3.4 on average. This upsam-
pling helps compensate for the large 16-pixel stride and fa-
cilitates detecting small objects. The first convs pyramid
level has 108 cells on its longest side. We use a pyramid
with only 7 levels, where the scale factor between levels is
2-1/2 (the pyramid spans three octaves). The entire convs
pyramid has roughly 25k output cells (sliding-window loca-
tions). For comparison, this is considerably more than the
roughly 1,500 sliding-window locations used in OverFeat,
but many fewer than the 250k commonly used in HOG fea-
ture pyramids. Computing the convs feature pyramid as de-
scribed above is fast, even with the naive implementation,
taking 0.5 seconds on an NVIDIA Titan Black GPU. This
could be made faster by pyramid packing (e.g., [7, 24]).

3.3. DPM training and testing details

Compared to training a DPM with HOG features, we
found it necessary to make some changes to the standard
DPM training procedure. First, we don’t use left/right mir-
rored pairs of mixture components. These components are
easy to implement with HOG because model parameters
can be explicitly “flipped” allowing them to be tied between
mirrored components. Second, R-CNN and DPM use dif-
ferent non-maximum suppression functions and we found
that the one used in R-CNN, which is based on intersection-
over-union (IoU) overlap, performs slightly better with
convs features (but is worse for the baseline HOG-DPM).
Lastly, we found that it’s very important to use poorly lo-
calized detections of ground-truth objects as negative ex-
amples. As in R-CNN, we define negative examples as all
detections that have a max IoU overlap with a ground-truth
object of less than 0.3. Using poorly localized positives as
negative examples leads to substantially better results (Sec-
tion 4.1.2) than just using negatives from negative images,
which is the standard practice when training HOG-DPM.
Using these difficult negative examples in HOG-DPM did
not improve the baseline results.

4. Experiments
4.1. Exploratory experiments

Deformable part models have been tuned for use with
HOG features over several years. A priori, it’s unclear if
the same structural choices that have worked well for HOG
(e.g., the number of mixture components, number of parts,
multi-resolution modeling, efc.) will also work well with
very different features. We conducted several preliminary
experiments on the PASCAL VOC 2007 dataset [8] in order

to find a DPM structure suited to convs features.

In Table 1, rows 1-3, we show the effect of adding parts
to a three component DeepPyramid DPM (three was se-
lected through cross-validation). As in HOG-based DPMs,
the dimensions of root filters vary across categories and
components, influenced by the aspect ratio distribution for
each class. Our root filter sizes typically range from 4 x 12
to 12 x 4 feature cells. We start with a “root-only” model
(i.e., no parts) and then show results after adding 4 or 8
parts to each component. With 4 parts, mAP increases by
0.9 percentage points, with an improvement in 16 out of 20
classes. The effect size is small, but is statistically signifi-
cant at p = 0.016 under a paired-sample permutation test, a
standard method from information retrieval [36].

One significant difference between HOG and convj fea-
tures is that HOG describes scale-invariant local image
statistics (intensity gradients), while convs features describe
large (163 x 163 pixel) image patches. The top two rows of
Figure 4 illustrate this point. Each row shows a feature pyra-
mid for an image of a face. The first is HOG and the second
is the “face channel” of convs. In the HOG representation,
the person’s face appears at all scales and one can imag-
ine that for each level in the pyramid, it would be possible
to define an appropriately sized template that would fire on
the face. The convy face channel is quite different. It only
shows strong activity when the face is observed in a specific
range of scales. In the first several levels of the pyramid, the
face feature responses are nearly all zero (black). The fea-
ture peaks in level 6 when the face is at the optimal scale.

Based on the previous experiments with parts and the
feature visualizations, we decided to explore another hy-
pothesis: that the convolution filters in convs already act as
a set of shared “parts” on top of the conv, features. This
perspective suggests that one can spatially spread the convs
features to introduce some local deformation invariance and
then learn a root-only DeepPyramid DPM to selectively
combine them. This hypothesis is also supported by the
features visualized in Figure 4. The heat maps are charac-
teristic of part responses in that they select specific visual
structures (cat head, person face, upper-left quarter of a cir-
cle) at their locations and scales.

We implemented this idea by applying a 3 x 3 max filter
to convs and then training a root-only DeepPyramid DPM
with three components. The max filter is run with a stride of
one, instead of the typical used stride of two in max pooling,
to prevent subsampling the convs feature map, which would
increase the sliding-window stride to 32 pixels. We refer to
the max-filtered convs features as “maxs”. Note that this
model does not have any explicit DPM parts and we can
think of the root filters as learned object geometry filters
that combine the convs “parts”. This approach (Table 1 row
4) outperforms the DeepPyramid DPM variants that operate
directly on convs in terms of mAP as well as training and
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Conv-DPM+FT [41]] 3 | 9 |50.9 68.3 31.9 282 38.1 61.0 61.3 39.8 254 465 47.3 29.6 67.5 634 46.1 252 39.1 454 57.0 57.9|46.5
HOG-DPM 6|0 (238 51.3 5.1 11.5 192 413 463 85 158 208 8.6 104 439 376 319 119 18.1 257 36.5 354|252
HOG-DPM [ 18] 6 | 8 (332 60.3 10.2 16.1 27.3 543 582 23.0 20.0 24.1 26.7 12.7 58.1 482 432 120 21.1 36.1 46.0 43.5|33.7
R-CNN [17] pool; |n/a|n/a|51.8 60.2 36.4 27.8 232 52.8 60.6 49.2 183 47.8 443 40.8 56.6 58.7 424 234 46.1 36.7 51.3 55.7|44.2
fine-tuned variants of R-CNN

R-CNN FT pool, n/a|nfa|58.2 63.3 37.9 27.6 26.1 54.1 66.9 51.4 26.7 555 434 43.1 5777 59.0 458 281 50.8 40.6 53.1 56.4|47.3
R-CNN FT fcr n/a|n/a| 642 69.7 50.0 41.9 32.0 62.6 71.0 60.7 32.7 58.5 46.5 56.1 60.6 66.8 542 31.5 52.8 489 579 64.7|54.2
R-CNNFT fc; BB |n/a|n/a|68.1 72.8 56.8 43.0 36.8 66.3 74.2 67.6 34.4 63.5 54.5 61.2 69.1 68.6 58.7 334 62.9 51.1 62.5 64.8|58.5

Table 1. Detection average precision (%) on VOC 2007 test. Column C' shows the number of components and column P shows the
number of parts per component. Our method is DP-DPM (DeepPyramid DPM).
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Figure 4. HOG versus convs feature pyramids. In contrast to HOG features, convs features are more part-like and scale selective. Each
convs pyramid shows 1 of 256 feature channels. The top two rows show a HOG feature pyramid and the “face channel” of a convs pyramid
on the same input image. In the HOG pyramid, the face is represented by semi-local gradient features and one can imagine that for each
pyramid level, an appropriately sized template could detect the face. The convs face channel, in contrast, is scale selective. The response is
almost entirely zero (black) in the first pyramid level and peaks in level 6. Pyramids for two additional images and channels are displayed
in rows 3 and 4, demonstrating more scale selectivity. (Face image credit: Yale Face Database.)

testing speed (since each model only has three filters). on HOG features. We report results using the standard 6
component, 8 part configuration, which achieves a mAP of
33.7%. We also computed another HOG-DPM baseline us-
ing 6 components, but without parts. Removing parts de-
We compare our approach to several other methods on the creases HOG-DPM performance to 25.2%. The max; vari-
VOC 2007 dataset. The first notable comparison is to DPM ant of DeepPyramid DPM, which uses convs implicitly as

4.1.1 Comparison with other methods



method aero bike bird boat botl bus car cat chair cow table dog horse mbike pers plant sheep sofa train tv |mAP
DP-DPM maxs 61.0 55.7 36.5 20.7 33.2 52.5 46.1 48.0 22.1 35.0 323 45.7 50.2 592 55.8 18.7 49.1 28.8 40.6 48.1|42.0
HOG-DPM [ 18] 49.2 53.8 13.1 153 35.5 534 49.7 27.0 17.2 28.8 147 17.8 46.4 512 477 108 342 20.7 43.8 38.3|33.4
UVA [39] 56.2 424 153 12.6 21.8 49.3 36.8 46.1 129 32.1 30.0 36.5 43.5 529 329 153 41.1 31.8 47.0 44.8|35.1
Regionlets [42] 65.0 489 259 24.6 245 56.1 545 51.2 17.0 289 30.2 35.8 40.2 557 435 143 439 32.6 54.0 459]39.7
SegDPM [13] 61.4 534 25.6 252 35.5 51.7 50.6 50.8 19.3 33.8 26.8 404 483 544 47.1 148 38.7 35.0 52.8 43.1| 404
R-CNN FT fc7 [17]]67.1 64.1 46.7 32.0 30.5 56.4 572 659 27.0 473 409 66.6 57.8 659 53.6 26.7 56.5 381 52.8 50.2|50.2
R-CNNFT fc; BB |71.8 65.8 53.0 36.8 35.9 59.7 60.0 69.9 27.9 50.6 414 70.0 62.0 69.0 58.1 29.5 594 39.3 61.2 52.4|53.7

Table 2. Detection average precision (%) on VOC 2010 test.

allows for more recall.

We also looked at the effect of

a set of shared parts, has a mAP of 45.2%. We also include
contemporaneous results from Wan et al. [41] and Savalle
et al. [34]. The baseline method from Wan et al. reaches
43.3% mAP, which is then improved to 46.5% by end-to-
end fine-tuning.

We also compare our method to the recently proposed
R-CNN [17]. The directly comparable version of R-CNN
uses pooly features and no fine-tuning (pooly is the same as
maxs, but with a stride of two instead of one). This com-
parison isolates differences to the use of a sliding-window
method versus classifying warped selective search [39] win-
dows. We can see that for some classes where we expect
segmentation to succeed, such as aeroplane and cat, R-
CNN strongly outperforms DeepPyramid DPM. For classes
where we expect segmentation might under or over segment
objects, such as bottle, chair, and person, DeepPyramid
DPM strongly outperforms R-CNN. Performance is similar
for most of the other categories, with DeepPyramid DPM
edging out the pool; R-CNN in terms of mAP. Of course,
this represents the weakest variant of R-CNN, with signif-
icant improvements coming from adding fully-connected
layers and then fine-tuning for detection and incorporating
a bounding-box (BB) regression stage.

We have shown that DeepPyramid DPM is competitive
with R-CNN pool; without fine-tuning. The R-CNN re-
sults suggest that most of the gains from fine-tuning come
in through the non-linear classifier (implemented via layers
fce and fcr) applied to pool, features. This suggests that it
might be possible to achieve similar levels of performance
with DeepPyramid DPM through the use of a more pow-
erful non-linear classifier, although then the model would
deviate more strongly from the DPM family.

4.1.2 Ablation studies

To understand the effects of some of our design choices,
we report mAP performance on VOC 2007 test using a few
ablations of the DP-DPM maxs; model. First, we look at
mAP versus the number of mixture components. Mean AP
with {1, 2, 3} components is {39.9%, 45.1%, 45.2%}. For
most classes, performance improves when going from 1 to
2 or 1 to 3 components because the variety of templates

training with negative examples that come only from neg-
ative images (i.e., not using mislocalized positives as neg-
ative examples), as is done in HOG-DPM. Using negatives
only from negative images decreases mAP by 6.3 percent-
age points to 38.8%. This training strategy, however, does
not improve results for HOG-DPM. We also benchmarked
the effects of changing non-maximum suppression. Using
standard HOG-DPM NMS decreases mAP by 1.3 percent-
age points, while using the R-CNN variant of NMS does not
improve results for HOG-DPM.

4.2. Results on PASCAL VOC 2010-2012

We used the VOC 2007 dataset for model and hyperpa-
rameter selection, and now we report results on VOC 2010-
2012 obtained using the official evaluation server. Table 2
compares a DeepPyramid DPM with a variety of methods
on VOC 2010. The DeepPyramid DPM outperforms all re-
cent methods other than the fine-tuned versions of R-CNN.
Performance against HOG-DPM is especially strong. When
comparing to R-CNN FT fcr, without bounding-box regres-
sion (BB), DeepPyramid DPM manages better performance
in two classes: bottle and person. This likely speaks to
the weakness in the region proposals for those classes. The
VOC 2011 and 2012 sets are the same and performance is
similar to 2010, with a mAP of 41.6%.

5. Conclusion

We have presented a synthesis of deformable part mod-
els and convolutional neural networks. This paper demon-
strates that any DPM can be expressed as an equivalent
CNN by using distance transform pooling, object geometry
filters, and maxout units. Distance transform pooling gener-
alizes max pooling and relates the idea of deformable parts
to max pooling. We also showed that a DPM-CNN can run
on top a feature pyramid constructed by another CNN. The
resulting model—which we call a DeepPyramid DPM—is
a single CNN that performs multi-scale object detection by
mapping an image pyramid to a detection score pyramid.
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