
Glasnost: Enabling End Users to Detect Traffic Differentiation

Marcel Dischinger
MPI-SWS

Massimiliano Marcon
MPI-SWS

Saikat Guha
MPI-SWS, Microsoft Research

Krishna P. Gummadi
MPI-SWS

Ratul Mahajan
Microsoft Research

Stefan Saroiu
Microsoft Research

Abstract

Holding residential ISPs to their contractual or legal

obligations of “unlimited service” or “network neutral-

ity” is hard because their traffic management policies are

opaque to end users and governmental regulatory agen-

cies. We have built and deployed Glasnost, a system

that improves network transparency by enabling ordi-

nary Internet users to detect whether their ISPs are dif-

ferentiating between flows of specific applications. We

identify three key challenges in designing such a sys-

tem: (a) to attract many users, the system must have

low barrier of use and generate results in a timely man-

ner, (b) the results must be robust to measurement noise

and avoid false accusations of differentiation, which can

adversely affect ISPs’ reputation and business, (c) the

system must include mechanisms to keep it up-to-date

with the continuously changing differentiation policies

of ISPs worldwide. We describe how Glasnost addresses

each of these challenges. Glasnost has been operational

for over a year. More than 350,000 users from over

5,800 ISPs worldwide have used Glasnost to detect dif-

ferentiation, validating many of our design choices. We

show how data from individual Glasnost users can be

aggregated to provide regulators and monitors with use-

ful information on ISP-wide deployment of various dif-

ferentiation policies.

1 Introduction

A confluence of technical, business, and political in-

terests has made “network neutrality” a hot button is-

sue [18, 19]. The debate revolves around whether and to

what extent Internet service providers (ISPs), who own

and operate data networks, should be allowed to differ-

entiate one class of traffic from another. Many ISPs want

to restrict bandwidth-hungry applications that can hurt

other applications in the network. Some also want to

control applications such as VoIP that reduce ISPs’ abil-

ity to profit from competing services of their own. In

contrast, many content providers are against traffic dif-

ferentiation because it gives the ISPs arbitrary control

over the quality of service experienced by users. In par-

allel, regulatory bodies and politicians are trying to de-

vise policies that balance competing concerns [20, 21].

As this debate rages, ordinary Internet users are often

in the dark, even though they are directly affected. The

information sources available to users today are media

reports, blogs, and statements made by ISPs; such in-

formation sources are imprecise at best and incorrect at

worst. As a result, much traffic differentiation occurs

without their knowledge. However, when ISPs traffic

management practices come to light, user outrage forces

regulatory bodies to conduct public hearings on preva-

lent practices [20, 21].

This situation led us to build and deploy a system,

called Glasnost, that enables users to detect if they are

subject to traffic differentiation. We make no judgment

about whether traffic differentiation should be permit-

ted by regulatory policy. Rather, our motivation is to

make any differentiation along their paths transparent

to users.

While other recent research efforts also aim to detect

traffic differentiation [27, 31], Glasnost is unique in its

focus on users. Instead of providing only a broad char-

acterization of differentiation in the Internet, our goal is

to let individual users determine if they experience dif-

ferentiation and quantify its impact at the time they use

our system.

Our focus is on enabling individuals who are not

technically savvy. This creates design constraints that

are typically not present in other measurement systems.

First, the bar to using the system must be low. For

instance, it is undesirable to require the installation of

special software on client machines, especially if such

software needs privileged access. This constraint hin-

ders our ability to collect high-fidelity data (e.g., packet

traces) or to finely control packet transmissions. We

must limit ourselves to coarse-grained data obtained

through unprivileged client operations. Second, the re-

sults for an individual user must be accurate and simple

to interpret. For example, we cannot return results that

rely on inferences derived from data aggregated across

users. While such results are accurate on aggregate, they

could be incorrect when applied to an individual user.

Third, the system must evolve with ISP practices. Oth-

erwise, Glasnost would gradually become unable to de-

tect the presence of differentiation and users would stop

trusting the system.

We based our Glasnost design on these constraints.

The result is a system that is effective and easy to use.

A user can detect differentiation by simply pointing her

browser to a Web page. The browser downloads and

runs a Java applet which exchanges traffic with our mea-

surement server. The client-server nature of our archi-

tecture helps to avoid many of the operational issues

with network measurements, such as traversing NATs

and firewalls, or raising alarms in network intrusion de-

tection systems. The traffic exchange is designed to ac-

curately and quickly detect any differentiation. We also

build a simple flow emulation tool that simplifies the in-

corporation of tests to detect new differentiation tech-

niques that emerge in the Internet.

The diversity of ISP practices makes it challenging

to detect traffic differentiation reliably. For instance, an

ISP might employ differentiation only at specific times

(e.g., in the evenings), or only under high loads, or only

for flows that send too much traffic. These factors led

us to design an on-demand system. Each time a user

uses Glasnost, she performs an individual test that de-

tects the presence of traffic differentiation for her Inter-

net connection at the time of the test. This provides a

more reliable answer to this user than extrapolating the

results from other testing times or other users.

Glasnost has been operational since March 2008, en-

abling users to detect BitTorrent differentiation. Be-

tween March 2008 and September 2009, more than

350,000 users from over 5,800 ISPs worldwide have

used the system. Several individuals and corporations

volunteered to host Glasnost measurement servers on

their own infrastructure in order to allow operations on

an even larger scale. We believe that our design princi-

ples have directly contributed to the success of Glasnost.

In addition to the design and evaluation of Glasnost,

we also present a detailed analysis of BitTorrent differ-

entiation in the Internet. We find that about 10% of our

users experience differentiation of BitTorrent traffic. We

also study ISPs’ BitTorrent differentiation policies in de-

tail over a period of two months (from January to Febru-

ary 2009) using data from the Glasnost tests. We find,

for instance, that it is more common for ISPs to differ-

entiate against file uploads than downloads and to differ-

entiate throughout the day rather than only during peak

hours.

2 Traffic Differentiation

Traffic differentiation refers to an ISP treating the pack-

ets of one flow differently than those of another flow.

Based on information published by ISPs, researchers,

and equipment vendors [5, 10, 22], we characterize traf-

fic differentiation along three dimensions.

1. Traffic differentiation based on flow types. To dif-

ferentiate between flows of different types, i.e., belong-

ing to different applications, ISPs must distinguish the

packets of one flow from those of other flows. This can

be done by examining one of the following:

(a) The IP header. The source or destination addresses

can determine how an ISP treats a flow. For ex-

ample, universities routinely rate-limit only traffic

that’s going to or coming from their student dorms.

(b) The transport protocol header. ISPs can use port

numbers or other transport protocol identifiers to

determine a flow’s treatment. For example, P2P

traffic is sometimes identified based on its port

numbers.

(c) The packet payload. ISPs can use deep-packet in-

spection (DPI) to identify the application generat-

ing a packet. For example, ISPs look for P2P pro-

tocol messages in packet payload to rate-limit the

traffic of P2P applications, such as BitTorrent.

2. Traffic differentiation independent of flow type. In

addition to features of a flow itself, an ISP may use other

criteria to determine whether to differentiate. Some of

these include:

(a) Time of day. An ISP may differentiate only during

peak hours.

(b) Network load. An ISP may differentiate on a link

only when the network load on that link is high.

(c) User behavior. An ISP may differentiate only

against users with heavy bandwidth usage.

3. Traffic manipulation mechanisms. There are a

number of ways in which an ISP can treat one class of

packets differently.

(a) Blocking. One form of differentiation is to termi-

nate a flow, either by blocking its packets or by

injecting a connection termination message (e.g.,

sending a TCP FIN or TCP RST packet).

(b) Deprioritizing. Routers can use multiple priority

queues when forwarding packets. ISPs can use this

mechanism to assign differentiated flows to lower

priority queues and to limit the throughput of cer-

tain classes.

(c) Packet dropping. Packets of a flow can be dropped

either using a fixed or variable drop rate.

(d) Modifying TCP advertised window size. ISPs can

lower the advertised window size of a TCP flow,

prompting a sender to slow down.

(e) Application-level mechanisms. ISPs can control an

application’s behavior by modifying its protocol

messages. For example, transparent proxies [28]

can redirect HTTP or P2P flows to alternate con-

tent servers.

What kinds of traffic differentiation does Glasnost

detect?

Our current implementation of Glasnost detects traf-

fic differentiation that is triggered by transport protocol

headers (e.g., ports) or packet payload. These triggers

are more common than IP headers [1, 5].

We designed Glasnost to be an on-demand system.

Each time a user uses Glasnost, we detect traffic differ-

entiation between flows of the user at the time of the

test. While Glasnost has not been designed detect traf-

fic shaping that affects all flows of a user, e.g., based

on time of day or network load or user behavior, it is

possible to infer such shaping policies by aggregating

and comparing the results of Glasnost tests conducted at

different times of the day by different users on different

networks.

Instead of inferring differentiation based on a particu-

lar manipulation mechanism, Glasnost detects the pres-

ence of differentiation based on its impact on application

performance.

3 Design Principles

In the process of developing Glasnost we identified sev-

eral key design principles. Although in Glasnost our

focus is traffic differentiation, the design principles we

identified are more general and apply to many mea-

surement systems that want to attract a large number of

users. In this section, we discuss these principles in de-

tail and argue why they are generally useful when de-

signing measurement systems for Internet users at large.

Our goal was to build a system that lets ordinary In-

ternet users determine if they are affected by traffic dif-

ferentiation. Because of its focus on end users and the

nature of its measurements, Glasnost must satisfy cer-

tain design requirements that are typically not present

in other measurement systems. We distill these require-

ments into three design principles. These principles dic-

tate that the system must be easy to use so that it can

serve any Internet user, its inferences must be robust and

simple to interpret, and it must be extensible to allow de-

tection of new network policies as they evolve.

We explain these principles in detail below and also

describe the consequences they have on the design of

Glasnost. These consequences motivate certain design

choices and rule out many others.

Principle #1: Low barrier of use

Attracting a large number of users to a measurement

system requires having a low barrier of use. Although

this challenge appears obvious, solving it is the key to

success. As we discuss later, it complicated the design

of other aspects of the system. But at each step we re-

sisted the temptation to compromise in the interest of

other desirables such as efficiency and higher-fidelity

data.

Design consequences. There are four design conse-

quences of this principle. First, because most users are

not technically savvy, the interface must be simple and

intuitive. Second, we cannot require users to install new

software or perform administrative tasks. Many network

measurement techniques require installing drivers (e.g.,

the WinPcap library for Windows) or running privileged

code (e.g., raw sockets) on users’ machines. Such code

can provide detailed, low-level data (e.g., packet traces)

that simplifies the measurement task. But in our experi-

ence, users are often unwilling to use systems with such

requirements. For example, one of our earlier attempts

required users to run code with administrator privileges

on their machines and to leave a port open in their fire-

walls and NATs. These obstacles greatly limited adop-

tion; we attracted fewer than fifty users. Third, because

many users have little patience, the system must com-

plete its measurements quickly. Fourth, to incentivize

users to use the system in the first place, the system

should display per-user results immediately after com-

pleting the measurements.

In order to satisfy above the requirements, our current

client-side implementation uses a small-size Java applet

(21 KBytes) that users download off our webpage. The

applet exchanges traffic with our servers, which we then

analyze to detect differentiation (we explain the nature

of this traffic below). The test runs for about 6 minutes.

Immediately after the test is finished Glasnost whether

the user is affected by traffic differentiation.

Our quick and simple test methodology is inspired

by non-research-oriented web sites for broadband speed

tests [2] and represents a departure from other research

systems. For instance, Scriptroute [25] requires users

to write their own measurement scripts, and thus its use

has been limited to researchers and other experts.

Principle #2: Measurement accountability

Because the system is designed for ordinary users, it is

essential that the measurements are accurate and that the

results cannot be misinterpreted. For instance, consider

the results of an experiment to infer path capacities in

the Internet. Since the measurements can be affected by

transient noise, researchers will know that the answer

computed along an individual path cannot be trusted but

the answers can be aggregated to provide an accurate

estimate of path capacity. But an ordinary user that is

interested in the capacity of her own path might not be

in a position to make that distinction.

When detecting traffic differentiation, accurate inter-

pretation of results is critical due to the controversial na-

ture of traffic management in the Internet: there is still

a heated debate whether it is legal for an ISP to em-

ploy traffic management. In addition, if people were

to falsely interpret results as their ISP performing traf-

fic differentiation when in fact it is not, the system

would quickly lose credibility. In fact, in the past there

have been instances when some widely publicized stud-

ies have mistakenly accused ISPs of using policies they

never deployed [26, 29].

Design consequences. Maintaining measurement ac-

countability has three design consequences. First, the

test to detect differentiation should, to the extent pos-

sible, marginalize any factors that add uncertainty. The

performance of an Internet flow can be affected by many

confounding factors. This includes the operating sys-

tem, especially its networking stack and its configu-

ration. Additionally, directly using application client

software is problematic as it does not give full control

over the measurement traffic. Short-term throughput of

such “natural” flows can differ because of differences in

packet sizes and burstiness. Finally, we have to consider

transient noise, as, e.g., caused by background traffic.

With passive measurement tools, it is often not easy

to isolate these factors. These tools must take into ac-

count for a large number of confounding factors in their

inference. The complexity of this analysis can lead to

inaccurate results. In contrast, active measurements can

be designed to avoid most confounding factors. Having

full control over the traffic that is sent to measure per-

formance simplifies the analysis. Further, active mea-

surements allow to run all measurements between the

same pair of hosts, removing factors like OS and net-

working stack. The only remaining confounding factor

is transient noise, which can be dealt with using sim-

ple techniques such as repeating measurements multiple

times.

Second, because not all uncertainty can be removed

from the inference, the result presented to the user must

be conservative, with a near-zero false positive rate.

In the context of traffic differentiation, a false positive

means that the system falsely claims that the user is ex-

periencing traffic differentiation. Minimizing false pos-

itives is challenging because it results in an increase in

the false negative rate. This trade-off is inherent.

Because of the concerns above, our testing primitive

is based on comparing the throughput of a pair of flows.

One flow in the pair belongs to the potential victim ap-

plication. The second is a reference flow that belongs

to a different application. The flows are identical except

for the trigger that we want to test for differentiation,

such as port number or payload. The flows are gener-

ated back-to-back and multiple pairs are run to reduce

and calibrate the effect of noise.

Third, we must be prepared to provide the data and

the evidence behind our inferences when requested. We

retain the data of all measurements in which Glasnost

detects traffic differentiation. We treat this data as evi-

dence. If we are challenged to justify our findings, the

stored data will help us explain on what basis Glasnost

declared that an ISP is using traffic differentiation.

Principle #3: Easy to evolve

To remain relevant, a system that wants to detect traf-

fic differentiation must be able to evolve as ISPs evolve

their traffic management policies. For example, in Fall

2008, Comcast blocked BitTorrent uploads for some of

its customers [10]. Several months later, they started

replacing this practice with less severe forms of differ-

entiation [7]. In fact, our recent measurements indicate

that BitTorrent traffic blocking is rare today unlike in

2008. A system with a fixed set of capabilities will have

a limited shelf life in such an evolving environment.

Design consequences. This principle mandates in-

corporation of mechanisms that help the system evolve

with the network. Network evolution may be inciden-

tal or adversarial. In an incidental evolution, ISPs might

target new applications in the future or use new traffic

manipulation mechanisms. A detection system should

be extensible, to add tests that detect traffic differentia-

tion against popular new applications or based on new

shaping techniques. Glasnost enables advanced users to

submit packet-level traces of applications that they sus-

pect are being targeted by their ISPs. User suspicion is

powerful; it was how many of the currently known ISP

differentiation behaviors came to light. We do not ex-

pect all users to be able to submit traces but there are

many enthusiastic users that are capable of collecting

(with our help if needed) and sharing traces. Glasnost

then makes it easy to use these network traces to con-

struct new detection tests. These tests help us keep pace

with new traffic differentiation techniques and applica-

tions that may be targeted.

Adversarialy, ISPs could begin whitelisting traffic

from measurement servers in an attempt to evade detec-

tion. A successful system must be aware of this problem

and find ways to minimize whitelisting. Our solution

was to make our server code publicly available. Any-

one can setup Glasnost on a well-provisioned server and

Web server Measurement servers

Client

1

2

3

4

Figure 1: The Glasnost system. (1) The client contacts

the Glasnost webpage. (2) The webpage returns the ad-

dress of a measurement server. (3) The client connects

to the measurement server and loads a Java applet. The

applet then starts to emulate a sequence of flows. (4)

After the test is done, the collected data is analyzed and

a results page is displayed to the client.

other users can start measuring to new servers. Mak-

ing our code publicly available allowed other Glasnost

servers to appear on the Internet, which makes it hard

for ISPs to evade detection. However, this method

is not foolproof; a determined ISP may choose to stay

up-to-date with the list of Glasnost servers. We doubt

that many ISPs would be willing to invest significant

effort in evading detection. As much as an ISP would

like to conceal its traffic management practices from

the public, denying those practices or making blatant at-

tempts to hide them is risky. Such behavior, if detected,

would attract intense scrutiny from telecom regulators

and would severely damage the ISP’s reputation. For

example, when Comcast’s BitTorrent blocking practices

were revealed to the public [1], Comcast was fined by

the FCC and was subjected to highly critical media cov-

erage.

4 Design of Glasnost

We now present the design of Glasnost based on the re-

quirements outlined above.

4.1 System architecture

Glasnost is based on a client-server architecture. Clients

connect to a Glasnost server to download and run var-

ious tests. Each test measures the path between the

client and the server by generating flows that carry

application-level data. This data is carefully constructed

to detect traffic differentiation along the path.

Figure 1 presents a high-level description of how

clients measure their Internet paths. A client first con-

tacts a central webpage that redirects to a Glasnost mea-

Figure 2: The Glasnost web interface.

surement server. This dynamic redirection enables load

balancing across measurement servers and makes it easy

to incorporate new servers by adding them to the redi-

rection list.

After the client is redirected, the measurement server

presents a simple interface to the user. As shown in Fig-

ure 2, the user selects the application traffic she would

like to test and starts the test by just clicking the “Start

testing” button. The client’s browser downloads a Java

applet that starts exchanging packets with the server. We

elaborate on the Glasnost measurement tests next.

4.2 Measurement tests

The key primitive behind the Glasnost measurement

tests is the emulation of a pair of flows that are iden-

tical except in one respect that we suspect triggers dif-

ferentiation along the path. Comparing the performance

of these flows helps to determine if differentiation is in-

deed present.

Figure 3 shows two flows designed to detect whether

differentiation based on BitTorrent protocol content is

present along a path. The exchange on the left corre-

sponds to the first flow. The client opens a TCP con-

nection to the measurement server and starts exchang-

ing packets that implement the BitTorrent protocol: the

packet payloads carry BitTorrent protocol headers and

content. The exchange on the right corresponds to the

second flow. The client opens another TCP connection

and performs the same packet exchange, but the packets

contain random bytes instead of BitTorrent headers or

data. An ISP that differentiates against BitTorrent based

on protocol messages would impact only the first flow.

Thus, significant differences in the flows’ performance

is likely to be caused by the differences in their pay-

loads and lets us detect whether differentiation is present

along the path. Transient noise can also lead to differ-

ences in flows’ performance; we describe in the next

section how we handle noise.

Handshake [68B]

Client Server

Handshake [
68B]

Bitfield [166B]

Bitfield [166B]

Interested [5B]

Unchoke [5B]

Request [17B]

Piece [256K
B]

(a) BitTorrent flow

Random [68B]

Client Server

Random [68B
]

Random [166B]

Random [166
B]

Random [5B]

Random [5B]

Random [17B]

Random [256
KB]

(b) Reference flow

Figure 3: A pair of flows used in Glasnost tests. The

two flows are identical in all aspects other than their

packet payloads, which allows us to detect differentia-

tion that targets flows based on their packet contents.

During the test, the measurement server records a

packet-level trace of all emulated flows and the client

applet records ancillary information including excep-

tions caused by network errors. Once the transfers end,

the client uploads the recorded information to the server.

The server analyzes this information together with the

traces collected on the server-side and shows the find-

ings to the client.

Glasnost’s emulation methodology leads to measure-

ment robustness. As Figure 3 shows, application-level

data is the only difference between the two emulated

flows. The two flows traverse the same network path and

have the same network-level characteristics, such as port

numbers, packet sizes, etc. In contrast, passive measure-

ment, a different technique, may have many factors dif-

fer across these measured flows. Correctly accounting

for all such differences is challenging.

Another benefit of active measurement is the ability

to carefully control the measurement test. For example,

we can repeat flows with different payloads or port num-

bers. This ability allows Glasnost to precisely identify

the specific factors that trigger differentiation.

In the next section, we describe our measurement test

in more detail and how we make it robust to transient

noise. We describe how we make the system easy to

evolve using a trace replay based tool for constructing

measurement tests in Section 6.

5 Robust Detection of Differentiation

As described earlier, Glasnost emulates a pair of flows

and determines the presence of traffic differentiation by

comparing their performance. When comparing the per-

formance of a pair of flows, we must ensure that their

difference is indeed due to the differences in their con-

tent and not due to some changes in the test environ-

ment. Our measurement tests are constructed in a way

that eliminates all major confounding factors except one

– transient noise due to interference from cross-traffic

(background traffic) along the measurement path. In this

section, we discuss techniques to robustly detect traffic

differentiation in the face of transient noise.

The primary challenge in this task stems from the

fact that the noise can vary at small time-scales. Thus,

two flows can be affected differently even if run back-

to-back. As one egregious example, we found that the

throughput of two back-to-back flows differed by a fac-

tor of three even though the flows were identical. A sim-

plistic detection method will mistakenly detect differen-

tiation in this case. It might appear that the differential

impact of noise could be reduced by running the flows

simultaneously. But we find that setup to be even worse

because of self-interference among the two flows.

Our basic strategy for robust detection is to run each

flow type multiple times. We use the variance in the

performance of the flows of the same type to identify

paths that are too noisy to enable reliable detection. For

the remaining paths, we can then detect differentiation

by comparing the flows of different types. We first de-

scribe how we apply this strategy when tests are run long

enough that we do not have to worry about having too

little data. As we found that many users are too impa-

tient to run long tests, we adapted our strategy to tests

that run for a shorter duration.

We describe our method using throughput as the mea-

sure of flow performance1, since it is of prime interest to

many applications and is the target of many ISPs looking

to reduce their network load. Because of TCP dynam-

ics, throughput is directly affected by any differentiation

that impacts flow latency or loss.

5.1 Filtering tests affected by noise

To detect the level of transient noise, we repeat the runs

of the two flow types multiple times back-to-back. Un-

like active ISP differentiation, transient noise does not

discriminate based on flow content; it would not affect

multiple runs of the same flow type and thus can be de-

tected by comparing their performance.

To understand transient noise patterns and the extent

to which they affect flow throughput, we configured our

Glasnost deployment to run a BitTorrent flow and a ref-

erence flow with random bytes, five times each. The

runs of the two flow types were interspersed and each

flow lasted for 60 seconds to allow sufficient time for

TCP to achieve stable throughput. Over a period of one

1Our method can be extended to other measures of performance such

as jitter.

 0

 200

 400

 600

 800

 1000

consistent
high noise

variable
high noise

occasional
high noise

low noise

T
h

ro
u

g
h

p
u

t
(K

b
p

s
)

Figure 4: The four classes of noise we observed in

our analysis. The graph shows the minimum, median,

and maximum throughputs observed in example tests af-

fected by each class of noise.

month, we collected measurements of 3,705 residential

broadband hosts, 2,871 in the upstream and 834 in the

downstream direction.

We compared the throughput obtained by the five runs

of each flow type with each other. Our analysis of the

maximum, median, and minimum throughput reveals

the four distinct patterns shown in Figure 4, correspond-

ing to four different cross-traffic levels:

1. Consistently low cross-traffic: all throughput

measurements belonging to the same flow type fall

within a narrow range (i.e., min is close to max).

2. Mostly low but occasionally high cross-traffic: a

majority of throughput measurements are clustered

around the maximum but a few points are farther

away (i.e., max and min are far apart but median is

close to max).

3. Highly variable cross-traffic: the throughput

measurements are scattered over a wide range (i.e.,

max and min are far apart and median is far apart

from both).

4. Mostly high but occasionally low cross-traffic: a

majority of throughput measurements are clustered

around the minimum but a few measurements are

farther away (i.e., max and min are far apart but

median is close to min).

Our categorization of the level of cross-traffic in each

case is based on two key observations about the nature

and impact of cross-traffic. First, cross-traffic only low-

ers throughput and never improves it. Thus, when a

majority of throughput measurements are close to min

but far apart from max (as in category 4 above), it is

more likely that the noise-free throughput is closer to

max than min.

Second, cross-traffic is unlikely to be consistently

high over a long period of time. In theory, measurements

in category 1 above could be explained by consistently

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0% 20% 40% 60% 80% 100%

C
D

F

Noise

Upstream
Downstream

Figure 5: Noise observed in our 3,705 sample dataset.

85.2% of upstream flows and 75.7% of downstream

flows have less than 20% of noise. Noise is measured as

the difference between maximum and median through-

put calculated as a percentage of maximum throughput.

high cross-traffic. But, this would require the cross-

traffic to remain high and consistent (without changing)

over the duration of the entire experiment, which is ten

minutes. We believe that this is unlikely.

For robust detection of differentiation, we discard all

tests where a majority of flows are affected by high noise

(i.e., categories 3 and 4). For these tests, we cannot de-

termine whether the difference in throughput is caused

by differentiation or transient noise. We analyze only

the remaining tests, for which a majority of runs experi-

ence low noise (i.e., categories 1 and 2).

To help determine which tests belong to the predom-

inantly low noise category, we plot the difference be-

tween maximum and median throughput as a percentage

of maximum throughput in Figure 5. We found that for

a large majority of tests (85.2% of upstream tests and

75.7% of downstream tests) the median throughput is

within 20% of the maximum. The difference between

median and maximum throughput is considerably larger

for the remaining flows. We thus use the 20% difference

between median and max throughputs as a threshold

to discard tests that are significantly affected by noise.

Next, we describe how we detect traffic differentiation

within the remaining tests.

5.2 Detecting differentiation in low-noise

tests

To detect traffic differentiation among tests that are iden-

tified as low noise, we compare the maximum througput

of each flow type. Our decision to use the maximum

is based on the observations that (a) in low-noise cases,

most measurements lie close to the maximum through-

put and (b) because noise tends to lower throughput, the

maximum throughput is a good approximation for what

the flows would achieve without cross-traffic.

We infer that the two flow types are being treated dif-

ferently if the maximum throughput of one differs from

0%

2%

4%

6%

8%

10%

0% 10% 20% 30% 40% 50% 60%

P
e

rc
e

n
ta

g
e

 o
f

fl
o

w
s

d
e

te
c
te

d
 a

s
 d

if
fe

re
n

ti
a

te
d

Throughput difference threshold

Figure 6: Selecting a good throughput difference

threshold. Thresholds smaller than 20% tend to pro-

duce a significant number of false positives.

that of the other by more than a threshold δ. Selecting a

good δ involves a trade-off. With high values, we can-

not detect differentiation unless the impact on through-

put is high. For instance, with δ=50%, we would only

detection differentiation that halves the flow throughput.

Thus, high values raise the false negative rate. On the

other hand, with low values of δ (say 5%), we risk false

positives, i.e., declaring that ISPs are employing traffic

differentiation while they actually do not.

To understand how the false positive rate varies with

δ, we selected 302 test runs from users from ISPs that

we know do not differentiate. Figure 6 plots the per-

centage of tests that are falsely marked as being differ-

entiated for different threshold values. The plot shows

an interesting trend; the false positive rate drops steeply

until δ reaches 20%. Beyond this threshold, there are a

handful of hosts (0.58%) that pass our noise tests but are

still falsely marked as differentiated. To avoid any false

positives, we would need to raise the threshold to 40%,

which increases the false negative rate.

We thus set δ to 20%. With this value we maintain a

low false positive rate (under 0.6%), but we fail to detect

differentiation that reduces a flow’s throughput by less

than 20%. We consider this an acceptable trade-off.

5.3 User impatience with long tests

As described above, we configured Glasnost to run a

pair of one-minute-long flows five times, resulting in a

total test time of 10 minutes. The tests we originally

deployed also detected whether the differentiation was

based on port number or payload, extending the test du-

ration to 20 minutes. While this test configuration en-

ables us to detect differentiation with high confidence,

we noticed that a considerable fraction of users were

aborting the tests before completion.

Figure 7 shows how long users keep their Glasnost

test running. The plot for 20 minute long tests shows an

alarming decline in the percentage of users as the test

progresses. Only 40% of the users stay till the end and

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400

C
C

D
F

Test run time per user (seconds)

 6 min Glasnost test
20 min Glasnost test

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400

C
C

D
F

Test run time per user (seconds)

Minimum run-
time 6 min test

Minimum run-
time 20 min test

Figure 7: Duration users run the Glasnost test.

Longer duration tests are aborted by a larger fraction of

users.

nearly 50% aborted their tests within the first 10 min-

utes. The sudden drop near the 20 minute point corre-

sponds to successfully completed tests.

Our results show that users are impatient. Most are

not willing to use tests that take more than a few min-

utes. To confirm this, we reconfigured Glasnost to use

shorter-duration tests. We reduced the number of times

we repeat each flow type to two (from five), and we de-

creased the duration of each flow to 20 seconds (from 60

seconds), which is still sufficient for TCP to exit slow-

start and achieve stable throughput. We bundled the tests

for both upstream and downstream directions, and the

resulting test takes 5.33 or roughly 6 minutes.

Figure 7 shows also how long users keep the 6 minute

Glasnost test running. More than 80% of the users stay

till the end, confirming that shorter tests on the order of

a few minutes are more effective at retaining users.

5.4 Detecting differentiation with short

tests

Short duration tests are challenging for detecting differ-

entiation robustly because they gather few measurement

samples. To estimate the impact of this reduction in data

on detection accuracy, we consider data from the longer

tests for which we have a result, i.e., for which we know

whether or not the ISP is differentiating. We prune the

data to include only what would be gathered by the short

test and run our analysis on the pruned data. We com-

pare the results from this shorter test data with those ob-

tained before.

We find that nearly 25% of the long tests that we were

able to successfully analyze before, were discarded as

too noisy after pruning. We find the false positive rate

(i.e., cases when the long test found no traffic differen-

tiation but the short test did) to be 2.8% and the false

negative rate (i.e., cases when the long test found traffic

differentiation but the short test did not) to be 0.9%.

We also find that we can achieve a four-fold reduc-

tion in false positive rate, to 0.7% (which is comparable

to the false positive rate of long tests), by raising the δ

threshold from 20% to 50%. While this increases the

false negative rate to 1.7%, we consider it an acceptable

trade-off.

6 Facilitating New Test Construction

Manually implementing Glasnost tests for a new appli-

cation is a laborious and error prone task. It requires

detailed knowledge of the application’s protocols and

their common implementations. This creates a high bar-

rier for new test construction, making it difficult to keep

pace with the evolution of ISPs’ policies.

In this section, we present a tool called

trace-emulate that simplifies the construction

of new tests by automating most of the process. We

also present a validation of the tests constructed by

trace-emulate using the open source DPI engine

of a commercial traffic shaper [22].

Our trace-emulate tool automatically generates

a new Glasnost test from the packet-level trace of an

application. It extracts the essential characteristics of

the application flows. These include packet sizes and

payloads as well as the order of packets with protocol

messages and the inter-packet timing.

The test configuration that trace-emulate out-

puts is then used by the Glasnost Java applet to run the

test. When run against the server, the applet exchanges

two flows. The first flow has the same characteristics

as the original trace. For example, assume that in the

original trace the client performed the following opera-

tions: (1) sent packet A, (2) received packet B, (3) sent

packet C after t seconds. These operations occur in the

same order and relative times in the generate flow. In

some cases, simultaneously preserving packet ordering

and inter-packet timing is impossible. Such cases arise

when an endpoint is waiting to receive a packet that gets

delayed in the network. We make the endpoint (client

or the server) wait until the packet is received before

continuing the emulation, even though it increases the

inter-packet time. Our decision to preserve ordering at

the expense of timing is motivated by the observation

that ISPs often use the sequence of protocol messages

to identify applications, rather than their relative timing.

The second flow exchanged by the applet is a reference

flow with the same characteristics but uses different pay-

loads and ports. The user uploading the trace can set

the ports to specific values, e.g., the application’s default

port; otherwise, random ports are used.

Our experiments confirm that the replaying method

of trace-emulate produces the same packet sizes,

payloads, and ordering as the original trace. We omit

detailed results.

Validating tests generated by trace-emulate. We vali-

date that trace-emulate captures the essential char-

acteristics that an ISP might use to identify an applica-

tion flow in practice. While ISPs can, in theory, use ar-

bitrarily complex mechanisms, in practice they are lim-

ited to using mechanisms that can scale to at least mul-

tiple Gbps. We are therefore interested in validating

trace-emulate against practical detection mecha-

nisms used by ISPs.

As one might imagine, ISPs use traffic classification

solutions from third-party vendors such as Sandvine,

BlueCoat, and Arbor Networks; most ISPs do not build

their own system. Fortunately, pressure from privacy

watchdogs compelled one of these vendors – Ipoque –

to release the code it uses to inspect user traffic [22].

This release gives the research community, for the first

time, access to production code that ISPs use to detect

the application that a user is running.

The Ipoque code allows us to realistically validate

trace-emulate. By inspecting the code we dis-

cover what applications are detected. We run the ap-

plication and check whether the Ipoque detector de-

tects the application from the packet flow. We then use

trace-emulate to generate a Glasnost test for that

application. We run the test and check whether the re-

sult is the same. If Ipoque detects our emulated flow

as the target application, then we have successfully cap-

tured the essential characteristics that are necessary for

detection by a commercial traffic classifier.

Ipoque’s detector can identify traffic from more than

90 widely-used applications broadly classified as peer-

to-peer, video streaming, instant messaging, online

gaming, and other applications (email, web, etc.). It

took us less than two hours to generate Glasnost tests

for 10 representative applications in all five of the above

categories. This included eMule, Gnutella, and BitTor-

rent (all P2P); YouTube (streaming video); World of

Warcraft (online game); IRC (instant messaging); and

HTTP, FTP and IMAP. For eMule and Gnutella, Ipoque

separately identifies their control and data connections;

consequently, we used trace-emulate to generate

the corresponding two tests. That we were able to gen-

erate all tests in a matter of hours is a testament to the

simplicity of trace-emulate.

In every single case, Ipoque identified the test gen-

erated by trace-emulate as the target application.

To the extent Ipoque is representative of other similar

vendors, we can claim that trace-emulate captures

the essential flow characteristics for applications that do

not encrypt traffic. However, without knowledge of how

Ipoque detects applications from encrypted traffic, we

cannot make any claims in that regard.

To convince ourselves that the Ipoque result holds in

the real-world, we further validated trace-emulate

Application Port-based Content-based

BitTorrent 6881, down down

eMule data 4662, down down

Gnutella control 6346, down+up down+up

Gnutella data 6346, down+up down

HTTP no no

IMAP no no

SSH no no

Table 1: Results from running new Glasnost tests on

a host connected via Kabel Deutschland. We iden-

tified instances of port-based and content-based traf-

fic differentiation both the downstream (down) and up-

stream (up) directions.

against Kabel Deutschland, the biggest cable ISP in Ger-

many. Kabel Deutschland targets P2P filesharing ap-

plications between 6pm and midnight [12]; their cho-

sen vendor for traffic shaping equipment is unknown.

In any event, since we know their policy, validating

trace-emulate is straightforward. We run tests

we generated for BitTorrent, eMule, Gnutella, HTTP,

IMAP, and SSH from a Kabel Deutschland user, and

check if Glasnost detects traffic differentiation.

Glasnost detected traffic differentiation for each of

the P2P applications, and none of the non-P2P appli-

cations. In fact, by running the tests in both directions

(downstream and upstream) and using different ports

(default application port, random port), we were able to

refine the policy published by Kabel Deutschland. Ta-

ble 1 shows that P2P traffic is differentiated regardless

of the port number used (i.e., based on the packet con-

tent). Next, we ran the HTTP, IMAP, and SSH tests on

the ports typically used by the three P2P applications

and found the flows achieved significant lower through-

put. Running the same tests on random ports resulted in

normal throughput. This is precisely what one might ex-

pect if Kabel Deutschland additionally uses port-based

detection, which naturally has false-positives. Regard-

less of whether Kabel Deutschland sought to omit men-

tion of side effects of their differentiation policy or we

have identified a misconfiguration, our finding demon-

strates the value of network transparency tools such as

Glasnost.

7 Deployment Experiences

We deployed Glasnost publicly on the Internet on

March 18th, 2008 and it has been operational ever

since. It can be accessed at http://broadband.mpi-

sws.org/transparency/glasnost.php. Initially, Glasnost

was deployed on eight servers at MPI-SWS. Over the

last year, the number of servers has grown to eighteen

with the use of Measurement Lab (M-Lab) [16], an open

platform for the deployment of Internet measurement

tools to enhance network transparency. Eleven servers

are in Europe, three on the west coast of the USA, and

four on the east coast of the USA.

In the beginning, we chose to focus on one application

as we developed our system and refined its techniques.

We picked BitTorrent because it is widely suspected of

being manipulated by ISPs [15]. However, our differ-

entiation detection techniques are not specific to BitTor-

rent and can be applied to other applications as well.

Because we have only recently deployed tests for other

applications, an overwhelming majority of our data is

from BitTorrent. We thus limit most of the discussion

below to BitTorrent.

Details of deployed tests. In this paper, we present

results for four BitTorrent tests deployed on Glasnost.

These tests detect port- and content-based differentia-

tion in the upstream as well as the downstream direction.

Each test involves emulating BitTorrent and reference

flows. For detecting content-based differentiation, we

replace BitTorrent packet payloads with random bytes

in the reference flows, while keeping other aspects iden-

tical. For detecting port-based differentiation, only the

port of the reference flow is switched from a well-known

BitTorrent port (e.g., 6881) to a neutral port that is not

associated with any particular application (e.g., 10009).

We emulate flows in both upstream and downstream di-

rections to check for manipulation of both BitTorrent

uploads and downloads. As described in Section 5, we

configured Glasnost to offer a 6-minute long test to users

with each flow running for 20 seconds. Also, each flow

type is repeated once.

Usage. Between March 18th, 2008 and September 21st,

2009, 368,815 users2 from 5,846 ISPs used Glasnost to

test for traffic differentiation. We believe that our large

user base is a result of our focus on lowering the barrier

of use such that even lay users can use our system.

Figure 8 shows that our users have a wide geo-

graphical footprint. They come from North Amer-

ica (38%), Europe (36%), South America (11%), Asia

(12%), Oceania (3%), and Africa (<1%).

Table 2 lists the top 20 access ISPs to which our users

belonged. Users’ IP addresses are mapped to ISPs us-

ing whois information from the Regional Internet Reg-

istries. We see that a large fraction of our users are from

some of the largest residential ISPs in their respective

countries, such as Comcast in the USA, Bell Canada in

Canada, or BT in the UK.

2In this section, we use the terms tests, IP addresses, and users in-

terchangeably. There are very few IP addresses from which we saw

repeat tests and a vast majority of tests correspond to an unique IP

address. The same end user may be associated with different IP ad-

dresses during the course of our study. By overlooking this, we may

be over-counting the number of unique end users.

Figure 8: Location of Glasnost users.

ISP Tests ISP Tests

Comcast (US) 29,464 BT (UK) 5,192

RoadRunner (US) 16,257 Chunghwa T. (TW) 5,084

AT&T (US) 10,884 Shaw (CA) 4,933

UPC (NL) 8,871 Brasil Telec. (BR) 4,862

Verizon (US) 7,611 Rogers (CA) 4,499

Cox (US) 4,194 Telefonica (BR) 4,408

Net Virtua (BR) 7,207 Telefonica (ES) 4,229

Telecom Italia (IT) 6,955 NTL (UK) 3,852

Charter (US) 3,634 Vivo (BR) 3,723

Bell Canada (CA) 5,233 GVT (BR) 3,723

Table 2: Top 20 ISPs based on the number of Glas-

nost tests conducted by their users.

7.1 Characterizing BitTorrent Differenti-

ation

We now use the data collected during our deployment

to characterize BitTorrent differentiation in the Internet.

To our knowledge, such detailed characterization was

not available before.

Figure 9 shows the percentage of users for whom

we detected differentiation in at least one of the four

tests that we widely deployed on Glasnost. Aside from

a few weeks in the beginning when we did not have

enough users, this percentage has stayed roughly con-

stant around 10%. Thus, a non-negligible fraction of our

testers are subject to differentiation.

We do not, however, claim that 10% of all Internet

users experience differentiation. Glasnost users are self-

selecting, and our data may be biased towards users that

suspect their ISP to be differentiating against BitTorrent.

7.2 Understanding ISP behaviors

Our Glasnost deployment was so popular that we had

hundreds of users from some of the largest ISPs world-

wide. Aggregating results from all the users belonging

to an ISP can provide an understanding of the extent

to which the ISP differentiates traffic. Such ISP-wide

perspectives are especially useful for policy makers and

government regulators responsible for monitoring ISP

behavior. Further, end users can compare the state of

0%

20%

40%

60%

80%

100%

Apr’08

M
ay

Jun
Jul

Aug
Sep

O
ct

N
ov

D
ec

Jan’09

Feb
M

ar
Apr

M
ay

Jun
Jul

Aug

U
s
e
rs

 w
it
h
 d

if
fe

re
n
ti
a
ti
o
n

Figure 9: Percentage of tests in which we detected

differentiation since March 2008.

differentiation across different ISPs to make a more in-

formed choice when selecting their ISP.

We now turn our attention to understanding the poli-

cies of individual access ISPs. For this analysis, we

map users to their access ISPs (using whois) and assume

that the access ISP is responsible for any observed dif-

ferentiation. While it is possible that the responsibility

lies with a transit ISP along the path, differentiation is a

more common practice amongst access ISPs [1, 5].

We limit the analysis in this section to the tests con-

ducted in the two-month period that covers January and

February 2009 because the differentiation behavior of

an ISP can change over time. We select the two-month

period for which we have the most data. Further, we

consider only ISPs for which we have at least 100 tests

in this time period. There are 140 such ISPs.

7.2.1 Basis for differentiation

Table 3 shows the list of the top-30 ISPs ranked based

on the fraction of hosts that detected differentiation. Ta-

ble 3 also shows how traffic is differentiated. More than

half the ISPs differentiate only in the upstream direction

and 7 ISPs only in the downstream direction. 20% of

ISPs (e.g., Clearwire, TVCABO) differentiate in both

directions. We also find that most differentiating ISPs

use both content- and port-based differentiation. For

only four ISPs (Free, GVT, Pipex, and Tiscali UK) do

we observe an exclusive use of port-based differentia-

tion (which is easier to evade). And only one ISP, Oi,

uses content-based differentiation exclusively.

Our results show that Glasnost can shed light on how

ISPs identify the traffic they differentiate.

7.2.2 Fraction of users impacted

ISPs that differentiate against BitTorrent traffic do not

do so for every user. For each ISP in Table 3, Figure 10

shows the fraction of users that tested positive for dif-

ferentiation. We see that in the median case only 21%

of users are affected. Given our tests’ low false posi-

ISP Loc.
Upstream Downstream

app port app port

Bell Canada (D) CA × ×

Brasil Telecom (D) BR × ×

BT (D) UK × ×

Cablecom (C) CH × ×

Canaca (D) CA × ×

City Telecom (F) HK × × × ×

Clearwire (W) US × × × ×

Cogeco (C) CA × ×

EastLink (C) CA × ×

Free (D) FR ×

GVT (D,F) BR ×

Kabel Deutschland (C) DE × × × ×

Magix (D) SG × ×

Oi (D) BR ×

ONO (C) ES × ×

ISP Loc.
Upstream Downstream

app port app port

PCCW (D) HK × × × ×

Pipex (D) UK ×

Rogers (C) CA × ×

Shaw (C) CA × ×

TekSavvy (D) CA × ×

Tele2 (D) IT × ×

Telenet (D) BE × ×

TFN (D) TW × ×

Tiscali Italia (D) IT × ×

Tiscali UK (D) UK ×

TM Net (D) MY × ×

TVCABO (C) PT × × × ×

UPC NL (C) NL × ×

UPC Poland (C) PL × ×

UPC Romania (C) RO × ×

Table 3: Top 30 ISPs based on the fraction of users that are affected by traffic differentiation during January

and February 2009. The table shows if the flows are differentiated based on application content (app), TCP ports, or

both. The letter in parenthesis gives the type of access network the ISP runs, i.e., DSL (D), Cable (C), Fiber-To-The-

Home (F), and WiMax (W).

 0

 0.2

 0.4

 0.6

 0.8

 1

0% 20% 40% 60% 80% 100%

F
ra

c
ti
o

n
 o

f
d

if
fe

re
n

ti
a

ti
n

g
 I

S
P

s

Percentage of users affected by differentiation per ISP

Figure 10: Typically, we detected traffic differentia-

tion for only a fraction of an ISP’s users.

tive and negative rates, this inconsistent impact within

an ISP cannot be explained by inference errors alone.

Our data does not allow us to infer why only a frac-

tion of users of an ISP experience traffic differentiation.

There are many possible reasons. An ISP might choose

to target only customers who generate a lot of P2P traf-

fic, the traffic shapers might be deployed in only a por-

tion of the ISP network, or an ISP might differentiate

only during peak hours or periods of high load.

7.2.3 Dependence on time of day

One potential explanation for why only some users ex-

perience differentiation is that ISPs may differentiate

only during peak hours, when the network is experienc-

ing the greatest load. To investigate the dependence on

time of day we divided our dataset into two time periods

based on the local time of the user3. The peak period

3We used an IP-to-geolocation tool to infer the timezone of each user.

is 8pm–12am, and the off-peak period is 5–9am. These

periods are strict subsets of the peak and off-peak dura-

tions for access ISPs [5, 14].

For each period we infer if an ISP differentiated traf-

fic. Our analysis excludes ISPs that have fewer 100 mea-

surements for either of the two time periods. This leaves

us with 30 ISPs. We find that slightly more than half

of these ISPs to differentiate during both peak and off-

peak hours. The other ISPs, e.g., BT, Bell Canada, Ka-

bel Deutschland, ONO, and Tiscali UK, restrict traffic

differentiation to the peak period.

Our results in the last two sections show the impor-

tance of enabling end users to detect differentiation for

themselves and at particular points in time. Many exist-

ing tools attempt to discover whether or not a ISP dif-

ferentiates traffic [27, 30]. Since not all users of an ISP

are affected by differentiation all the time, ISP-wide in-

formation alone is not sufficient for a user to determine

if she experiences differentiation.

7.3 User feedback

Since our system became operational, we have received

more than one hundred e-mails from users. The feed-

back is overwhelmingly positive, and it reveals two

pieces of information. First, we find evidence of false

negatives in our results. Around 6% of our emailers

were skeptical when Glasnost did not discover traffic

differentiation. They were convinced that their ISP dif-

ferentiates, sometimes based on information their ISP

publishes. If these users are right, their cases con-

firm that our decision to minimize the false positive rate

comes at the cost of false negatives. While we continue

to investigate ways to reduce the false negative rate, we

are pleased to report that no user has complained about

the presence of a false positive.

Second, some emails requested Glasnost tests for

other P2P applications such as eMule as well as non-P2P

applications such as FTP, SSH, and HTTP. The constant

stream of such requests motivated us to open the Glas-

nost platform and allow users to contribute new Glas-

nost tests. We describe this extension in the following

section.

7.4 User-contributed Glasnost tests

It is not feasible for us to create Glasnost tests for each

of the large number of applications and possible traf-

fic differentiation policies that are of interest to users.

Hence, we decided to allow users to create their own

Glasnost tests using the trace-emulate tool that we

described earlier. To create a new test, users need to

capture a packet trace of their target application using

tcpdump and then use trace-emulate to create a

new Glasnost test from the trace. These new tests can be

uploaded to our measurement servers using the Glasnost

webpage. Our interface for creating new tests is targeted

not at lay users, but at advanced users who have some

familiarity with capturing network traces.

We have deployed this interface only recently, and we

do not yet have a lot of experience with it. However,

we asked a handful of our colleagues, who are doctoral

students not associated with our project, to use the in-

terface to create new Glasnost tests: they were able to

create new tests quite easily.

8 Related Work

This section describes Glasnost in the context of exist-

ing work on traffic differentiation, trace replay, and mea-

surement systems.

Traffic Differentiation. Three early studies investi-

gated the prevalence of blocking for BitTorrent [10, 11]

or for general traffic based on port numbers [4]. They

found blocking to be relatively common. Our results

show that gentler forms of differentiation are now much

more prevalent than outright blocking.

Three recent efforts proposed techniques for detecting

traffic differentiation. NetPolice [31] (previously named

NVLens [30]) compares the aggregate loss rates of dif-

ferent flows to infer the presence of “network neutrality

violations” in backbone ISPs. In contrast, Glasnost fo-

cuses on enabling individuals to detect whether they are

subject to traffic differentiation.

NANO [27] uses causal inference to infer the pres-

ence of traffic performance degradation. NANO re-

lies on a vast amount of passively collected traces from

many users to infer if traversing a particular ISP leads to

poorer performance for certain kinds of traffic. In con-

trast, Glasnost uses active measurements and a simple

head-to-head comparison of two flows to quickly inform

users whether they face traffic differentiation — without

relying on other users. However, adding passive mea-

surement techniques to Glasnost might enable it to de-

tect time- or usage-dependent traffic differentiation.

DiffProbe [13] detects whether traffic differentiation

based on active queue management (AQM), such as

RED and weighted fair queueing, is deployed in the

network path. DiffProbe complements Glasnost as it

can detect differentiation that leads to small increase in

latency and can identify the AQM technique used. If

AQM affects application throughput, Glasnost can also

detect this.

Trace replay. Monkey [6] is a TCP replay tool that

takes a packet-level trace as input and generates a new

trace with similar network-level properties, such as la-

tency and bandwidth. More recent work [8] investi-

gates ways to infer higher-level protocols from low-level

packet traces. Our trace-emulate tool is an adap-

tation of such methods.

Measurement systems. Many researchers use net-

work testbeds, such as PlanetLab [24], RON [3], and

NIMI [23], to conduct measurement studies. Unlike

Glasnost, these testbeds are designed explicitly for use

by researchers. There are a number of tools deployed on

M-Lab [16] with the goal of enhancing Internet trans-

parency. Most of them are generic measurement tools

that characterize certain features of the Internet

The DIMES project [9] is based on the SETI@home

model. It uses volunteer-contributed hosts to run

traceroute measurements that are used to map

the connectivity of edge networks. The two systems,

DIMES and Glasnost, offer an interesting (if unfair due

to different goals) comparison of user models. DIMES

relies on the ability to run arbitrary code on users’ com-

puters. It was deployed over four years ago and has

about 8,000 users.

Finally, Netalyzr [17] is a web-based measurement

tool that mostly focuses on the detection of network-

ing problems. Like Glasnost, it targets lay users with an

easy-to-use interface and allows them to detect, for in-

stance, manipulation of web content by a HTTP proxy in

the path or blocking of traffic on some prominent ports.

9 Conclusion

We described Glasnost, a system that we deployed more

than a year ago to let ordinary users detect traffic dif-

ferentiation along their paths. More than 350,000 users

from over 5,800 ISPs worldwide have used it to detect

BitTorrent differentiation. We believe that our focus on

making it easy for lay users to use the system and to

understand its results have led to its success. Using the

data gathered by Glasnost, we also presented what to our

knowledge is the first detailed analysis of BitTorrent dif-

ferentiation practices in the Internet. The data collected

by Glasnost is available through M-Lab [16].

Over the past year, we have encountered many re-

searchers who were skeptical about the benefits of mea-

suring traffic differentiation. Even some of this paper’s

authors were initially skeptical. A common argument is

that, since traffic differentiation is attracting so much at-

tention from industry and the government, the permissi-

ble practices would soon be standardized and apparent.

The skeptics might or might not be right. But the pop-

ularity of Glasnost and the positive feedback shows that

many users are curious about the behavior of their Inter-

net paths. Indeed, Glasnost’s impact goes beyond traffic

differentiation in our view. Its design shows one effec-

tive way to build and deploy a measurement system that

satisfies such curiosities and makes the network more

transparent to its users.

10 Acknowledgments

We thank Andreas Haeberlen and Alan Mislove for their

contributions during the early stages of the Glasnost

project. We also thank our shepherd Nick Feamster, and

the anonymous reviewers for detailed feedback on this

paper. Finally, we thank the people and the organiza-

tions supporting the M-Lab platform for hosting Glas-

nost on M-Lab servers.

References

[1] Comments of Comcast Corporation before the FCC. http://

fjallfoss.fcc.gov/prod/ecfs/retrieve.cgi?

native_or_pdf=pdf&id_document=6519840991.

[2] The Global Broadband Speed Test. http://www.

speedtest.net.

[3] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. Re-

silient Overlay Networks. In Proc. of SOSP, 2001.

[4] R. Beverly, S. Bauer, and A. Berger. The Internet’s Not a Big

Truck: Toward Quantifying Network Neutrality. In Proc. of the

Passive and Active Measurement Conference (PAM), 2007.

[5] Canadian Radio-television and Telecommunications Commis-

sion. Review of the Internet traffic management practices of In-

ternet service providers. http://crtc.gc.ca/PartVII/

eng/2008/8646/c12_200815400.htm.

[6] Y.-C. Cheng, U. Hoelzle, N. Cardwell, S. Savage, and G. M.

Voelker. Monkey See, Monkey Do: A Tool for TCP Tracing and

Replaying. In Proc. of the USENIX Technical Conference, 2004.

[7] Comcast: Description of planned network management

practices. http://downloads.comcast.net/docs/

Attachment_B_Future_Practices.pdf.

[8] W. Cui, M. Peinado, K. Chen, H. J. Wang, and L. Irun-Briz.

Tupni: automatic reverse engineering of input formats. In Proc.

of CCS, 2008.

[9] The DIMES Project. http://www.netdimes.org/.

[10] M. Dischinger, A. Mislove, A. Haeberlen, and K. P. Gummadi.

Detecting BitTorrent Blocking. In Proc. of IMC, 2008.

[11] EFF. “Test Your ISP” Project. http://www.eff.org/

testyourisp.

[12] J. Röttgers, Focus Online, 6.03.2008. Internetanbieter bremst

Tauschbörsen aus. http://www.focus.de/digital/

internet/kabel-deutschland_aid_264070.html.

[13] P. Kanuparthy and C. Dovrolis. DiffProbe: Detecting ISP Ser-

vice Discrimination. In Proc. of INFOCOM, 2010.

[14] N. Laoutaris and P. Rodriguez. Good Things Come to Those

Who (Can) Wait – or how to handle Delay Tolerant traffic and

make peace on the Internet. In Proc. of HotNets, 2008.

[15] List of ISPs suspected to traffic shape BitTorrent. http://

www.azureuswiki.com/index.php/Bad_ISPs.

[16] Measurement Lab. http://www.measurementlab.net.

[17] The ICSI Netalyzr. http://netalyzr.icsi.

berkeley.edu.

[18] New York Times. ’Neutrality’ Is New Challenge for Internet

Pioneer, September 2006. http://nytimes. com/2006/

09/27/technology/circuits/27neut.html.

[19] New York Times. Comcast: We’re Delaying, Not Block-

ing, BitTorrent Traffic, October 2007. http://bits.

blogs.nytimes.com/2007/10/22/comcast-were-

delaying-not-blocking-bittorrent-traffic.

[20] New York Times. F.T.C. Urges Caution on Net Neutrality,

June 2007. http://www.nytimes.com/2007/06/28/

technology/28net.html.

[21] New York Times. F.C.C. Chairman Favors Penalty on Com-

cast, July 2008. http://www.nytimes.com/2008/07/

11/technology/11fcc.html.

[22] OpenDPI. http://www.opendpi.org.

[23] V. Paxson, A. K. Adams, and M. Mathis. Experiences with

NIMI. In Proc. of the SAINT Workshop, 2002.

[24] PlanetLab. http://www.planet-lab.org/.

[25] N. Spring, D. Wetherall, and T. Anderson. Scriptroute: A Public

Internet Measurement Facility. In Proc. of USITS, 2003.

[26] Systems Research Lab, University of Colorado at

Boulder. Broadband network management. http:

//systems.cs.colorado.edu/mediawiki/index.

php/Broadband_Network_Management.

[27] M. B. Tariq, M. Motiwala, N. Feamster, and M. Ammar. De-

tecting Network Neutrality Violations with Causal Inference. In

Proc. of the CoNEXT Conference, 2009.

[28] VELOCIX: New Generation Content Delivery Network. http:

//www.velocix.com.

[29] Vuze Network Status Monitor. http://azureus.sf.net/

plugin_details.php?plugin=aznetmon.

[30] Y. Zhang, Z. M. Mao, and M. Zhang. Ascertaining the Reality

of Network Neutrality Violation in Backbone ISPs. In Proc. of

ACM HotNets-VII Workshop, 2008.

[31] Y. Zhang, Z. M. Mao, and M. Zhang. Detecting Traffic Differen-

tiation in Backbone ISPs with NetPolice. In Proc. of the Internet

Measurement Conference (IMC), 2009.

