

What We Have Learned About Fighting Defects

Forrest Shull†, Vic Basili†‡, Barry Boehm*, A. Winsor Brown*, Patricia Costa†, Mikael Lindvall†,
Dan Port*, Ioana Rus†, Roseanne Tesoriero†, and Marvin Zelkowitz†‡

†Fraunhofer Center for Experimental *University of Southern California ‡University of Maryland
 Software Engineering, Maryland Center for Software Engineering Empirical Software Engineering Group

Contributors:
Ed Allen (MSU), Frank Anger (NSF), Sunita Chulani (IBM), Noopur Davis (Davis Systems), Michael
Dyer (Lockheed Martin), Christof Ebert (Alcatel), Bill Elliott (Harris Corp.), Eileen Fagan (Michael

Fagan Associates), Martin Feather (JPL), Liz Green (Harris Corp.), Ira Forman (IBM), Scott Henninger
(UNL), Philip Johnson (U. Hawaii), Oliver Laitenberger (IESE), Ray Madachy (USC), Yoshihiro
Matsumoto (Toshiba), Tom McGibbon (ITT Industries), James Miller (U. Alberta), James Moore

(MITRE), Don O’Neill (Don O’Neill Consulting), Stan Rifkin (Masters Systems), Dieter Rombach
(IESE), Dan Roy (STTP, Inc.), Hossein Saiedian (U. Kansas), Giancarlo Succi (University of Alberta),

Gary Thomas (Raytheon), Otto Vinter (independent software engineering mentor)

Abstract
The Center for Empirically Based Software Engineering
helps improve software development by providing
guidelines for selecting development techniques,
recommending areas for further research, and supporting
software engineering education. A central activity toward
achieving this goal has been the running of “eWorkshops”
that capture expert knowledge with a minimum of overhead
effort to formulate heuristics on a particular topic. The
resulting heuristics are a useful summary of the current
state of knowledge in an area based on expert opinion.
 This paper discusses the results to date of a series of
eWorkshops on software defect reduction. The original
discussion items are presented along with an encapsulated
summary of the expert discussion. The reformulated
heuristics can be useful both to researchers (for pointing
out gaps in the current state of the knowledge requiring
further investigation) and to practitioners (for
benchmarking or setting expectations about development
practices). The heuristics will be further refined during a
physical expert workshop at the 2002 Metrics Symposium.

1. Building an experience base for software

engineering

Software development is a people- and knowledge-
intensive activity; it is a rapidly changing field, and
although it is slowly maturing, many activities are still ad
hoc and depend upon personal experiences. In order to cope
with such restrictions as firm deadlines and shrinking
budgets, software-developing organizations need assistance
in setting up and running increasingly critical projects.
 In order to reach their goals, software development
teams need to understand and choose the right models and
techniques to support their projects. They must answer key

questions: what is the best life-cycle process model to
choose for a particular project (from waterfall to extreme
programming)? What is an appropriate balance of effort
between inspections and testing in a specific context? What
are the savings from buying a readily available software
component instead of developing it?

These questions are not easy to answer. In some cases
the knowledge exists to answer such questions; in other
cases it does not, so instead of relying on knowledge and
experience, we must trust our instincts. In order to support
this decision-making activity, we need to develop
empirically based software models in a systematic way,
covering all aspects from high-level lifecycle models to
low-level techniques, in which the effects of process
decisions are well understood. However, context plays an
important role as most projects and organizations differ.
Consequently, the knowledge must be formulated relative
to the development context and project goals.
 The Center for Empirically-Based Software
Engineering (CeBASE)1 was organized to support this goal.
CeBASE accumulates empirical models in order to provide
validated guidelines for selecting techniques and models,
recommend areas for research, and support software
engineering education. CeBASE’s objective is to transform
software engineering from a fad-based practice to an
engineering-based discipline in which development
processes are selected based on what is known about their
effects on products, through synthesis, derivation,
organization, and dissemination of empirical knowledge on
software development and evolution phenomenology.
 CeBASE is a National Science Foundation-sponsored
research center led by personnel with extensive industry
and government experience, including co-authors

1 http://www.CeBASE.org

Professors Barry Boehm (University of Southern
California) and Victor Basili (University of Maryland and
Fraunhofer Center for Experimental Software Engineering
– Maryland). CeBASE collects, documents, and
disseminates knowledge on software engineering gained
from experiments, case studies, observations, and real
world projects. While some of this empirical knowledge
might be well known by the community, it has not yet been
documented. Although this knowledge is believed to be
generally applicable, the effects of its application have
never been systematically investigated making it difficult to
discern when it is useful. Some of this knowledge is
distributed among many individuals, which means that we
need to gather the pieces together and facilitate the
collection and management of collective knowledge. The
initial focus of CeBASE is on two high-leverage areas of
software engineering, defect reduction and COTS based
development.

2. Collecting expert knowledge on defect

reduction

This paper describes the process and results to date of
building up our understanding of what is currently
understood about defect reduction in software
development.
 The goal of this work is to create a set of heuristics that
represent what experts in the field consider to be the current
state of understanding about the topic. To seed the
discussion, a set of statements were proposed by Barry
Boehm and Vic Basili in a “top-10” list that attempted to
capture 10 useful and commonly accepted statements about
the phenomena of software defects: the cost and effort
associated with defects, the impacts of defects on software
quality, and effective methods for reducing defects.
CeBASE then sponsored a series of events to test, collect
data on, and ultimately refine those statements. This series
of events consisted of several eWorkshops followed by a
physical capstone meeting at the Metrics Symposium,
2002, in Ottawa, Canada. Most participants in these events
are experts in their respective domain. Our lead discussants
(workshop leaders) formed part of the CeBASE team that
interacted with an international group of invited participant
experts.
 Meetings among experts discussing their findings and
recording their discussions are a classical method for
creating and disseminating knowledge. By analyzing such
discussions new knowledge can be created and the results
can be shared. This is generally achieved by holding
workshops. Workshops, however, possess limitations: 1)
experts are spread all over the world and would have to
travel, and 2) workshops are usually oral presentations and
discussions, which are generally not captured for further
analysis. To overcome these problems we designed the
concept of the eWorkshop, using the facilities of the
Internet.

 The eWorkshop is an on-line meeting, which replaces
the usual face-to-face workshop. While it uses a Web-based
chat-application, it is structured to accommodate the needs
of a workshop without becoming an unconstrained on-line
chat discussion. The goal is to synthesize new knowledge
from a group of experts as an efficient and inexpensive
method in order to populate the CeBASE experience base.
The idea behind the eWorkshop was to use simple
collaboration tools, thus minimizing potential technical
problems and decreasing the time it would take to learn the
tools. Simultaneously, we set up a process, a support team
and control room to ensure that there would be as few
disturbances as possible once the eWorkshop was running.
To minimize disturbances during the meeting and to
capture important information, we relied on a support team
operating from a single control room. This support team
consisted of the following roles: moderator, director,
scribe, tech support, and analyst. The moderator was
responsible for monitoring and focusing the discussion
(e.g., proposing items on which to vote) and maintaining
the agenda. Of the support team, only the moderator was
an active participant in the sense that he contributed actual
responses during the meeting. The director was responsible
for assessing and setting the pace of the discussion. He
decided when it was time to redirect the discussion onto
another topic. As the discussion moved from one topic to
another, the scribe highlighted the current agenda item and
captured and organized the results displayed on the
whiteboard area of the screen. When the participants
reached a consensus on a particular item through a vote, the
scribe summarized and updated the whiteboard to reflect
the outcome. The contents of the whiteboard became the
first draft of the meeting minutes. The analyst coded the
responses according to the pre-defined taxonomy. The
analyst entered one or more codes to categorize responses
as they were entered. The tech support was responsible for
handling any problems that might occur with the tools. For
example, some participants accidentally closed their
sessions and had difficulty logging into the meeting for a
second time. The tech support assisted these participants in
troubleshooting their problems
More details about the eWorkshop tool and processes can
be found in [2].

3. Results to date

During the series of three eWorkshops on defect reduction,
participants contributed their own data and experiences on
the topic, which resulted in the following types of results:

• Refinement: The consensus of the experts was that
the original statement was generally true, but new
considerations were introduced that represented a
deepening of understanding. For example, the
statement might be accepted but bounds were put
on the circumstances under which it applied.

• Addition: The experts added new and related

hypotheses that had some support and broadened
the understanding of the same general topic.

• Restatement: The experts felt that the statement
was not accurate, and reformulated a statement
that was more generally accepted.

• Meta-statement: The experts were not satisfied
with the original statement but discussed why the
current state of knowledge did not allow it to be
reformulated.

 In the following sections, the original statements are
presented along with a summary of the eWorkshop
discussion concerning it. At the end of each section, the
results of the discussion are summarized by the
presentation of a new set of hypotheses or statements,
organized using the following notation:

• x.1: Used to label a statement that is a refinement
of the original statement x.

• xa: Used to label a statement that was added in
response to statement x.

• x’: Used to label a statement that re-states more
accurately the topic addressed by original
statement x.

• xm: Use to label a meta-statement concerning the
current knowledge regarding statement x.

 Excerpts of the discussions are presented below, along
with the resulting statements about software defects. The
full discussion summaries can be found at the CeBASE
web site.2

3.1 Effort to find and fix

“Finding and fixing a software problem after delivery is
often 100 times more expensive than finding and fixing
it during the requirements and design phase.”

Discussion: General data were presented that supported an
effort increase of approximately 100:1. Don O’Neill
described data from IBM Rochester [10] in the pre-meeting
feedback that found an increase in effort of about 13:1 for
defect slippage from code to test and a further 9:1 increase
for slippage from test to field (so, a ratio of about 117:1
from code to field). From Yoshihiro Matsumoto’s
experience in a software factory of 2600 IT workers,
average rework time after shipment is 22.85 hours versus
less than 10 minutes if the work had been done prior to
shipment (a factor of 137:1). Other corroboration came
from Ed Allen’s experiences with a telecommunications
client as well as Noopur Davis’ experience.
 An important distinction that emerged was that the
large effort multiplier holds for severe defects; many
defects with lesser impact will not cost appreciably more to
change after delivery than before.

• Barry Boehm pointed out that the 100:1 factor was
about right for critical defects on large projects,

2 www.cebase.org/www/researchActivities/defectReduction/index.htm

illustrated for example by the data from the Data
Analysis Center for Software [11].

• Sunita Chulani also agreed that this factor was
consistent with her experience for severe defects.

 For non-severe defects, the effort multiplier was not
nearly as large. Otto Vinter indicated that his data (which
do not include requirements defects) show an
approximately 2:1 relationship between after-shipment and
before-shipment debugging effort: 14 hours after release
versus 7.4 hours in testing before release. Barry Boehm
said that the 2:1 relationship also held for the million-line
CCPDS-R project done by TRW for the Air Force
(described by Walker Royce [13]), in which early risk
resolution and well-validated modular architecting were
used to reduce early defects. Victor Basili also had data
from NASA’s Johnson Space Center, which didn’t measure
post-delivery defects but still showed that the effort
multiplier associated with different defect types are
different: the effort just to find a defect increased from

• 1.2 hours early in the project to 1.5 hours late in
the project, for non-severe defects

• 1.4 hours early in the project to 3.0 hours late in
the project, for severe defects.

 Other variables likely to have an impact were
proposed, although no supporting data was available. Gary
Thomas pointed out that post-shipment costs would be
expected to be raised even further when a different
organization than the one that developed the software is
responsible for the maintenance of the system. Philip
Johnson said that research has so far neglected
development environments that do not fit into the
“waterfall family” of development approaches. For
example, in XP, requirements and implementation phases
are so entwined that it no longer makes sense to talk about
"early" vs. "late" phases of development.

Result Summary: EWorkshop participants generally
agreed that finding and fixing software defects after
delivery is much more expensive than fixing during early
stages of development – for certain types of defects. A
100:1 increase in effort from early phases to post-delivery
was a usable heuristic for severe defects, but for non-severe
defects the effort increase was not nearly as large.
However, this heuristic is appropriate only for certain
development models with a clearly defined release point;
research has not yet targeted new paradigms such as
extreme programming (XP), which has no meaningful
distinction between “early” and “late” development phases.
Item 1’. Finding and fixing a severe software problem

after delivery is often 100 times more
expensive than finding and fixing it during
the requirements and design phase.

Item 1.1. Finding and fixing non-severe software
defects after delivery is about twice as
expensive as finding these defects pre-
delivery.

3.2 Amount of avoidable rework

“About 40-50% of the effort on current software
projects is spent on avoidable rework.”

Discussion: Data in support of large amounts of rework on
projects were cited by several participants:

• Vic Basili said that the 40-50% claim is borne out
by the Cleanroom studies at NASA Goddard’s
Space Flight Center [1]

• Barry Boehm pointed out that Capers Jones' books
(e.g. [9]) have data on rework costs, that indicate
that the rework fraction goes up with the size of
the project, and can go as high as 60% for very
large projects.

• Don O’Neill submitted pre-meeting feedback data
from the national benchmarking effort showing
that the range across projects is wide, on the order
of 20% to 80%.

 However, there was some agreement that higher-
maturity projects spend considerably less effort on rework.
Brad Clark has published analyses of the effects of process
maturity [6], in which the benefits at higher levels of
maturity are traced mainly to the reduced rework effort.

• Gary Thomas, using data from Raytheon, cited a
range of about 10-20% avoidable rework on
higher-maturity projects.

• Barry Boehm said that some TRW projects, such
as CCPDS-R, were also able to reduce rework
effort down to 10-20%.

 Because of this disparity between high- and low-
maturity projects, Don O’Neill suggested that we should
distinguish disciplined software engineering, structured
software engineering, and ad hoc programming and seek to
associate with each a characteristic level of effort spent on
avoidable rework.
 In general, comparing rework costs across projects is
dangerous because it can be defined in several different
ways. (For one example, Vic Basili pointed out that the
rework effort collected from the Software Engineering
Laboratory (SEL) at NASA was measured as the effort
required to make changes due to defect corrections.)
Winsor Brown pointed out that, further complicating the
comparison, is how one accounts for the defect: if a
detailed design defect is introduced during testing, it might
be counted as a “test” defect or a “design” defect (although
in the latter case it would likely be much cheaper to fix than
other design defects).
 But there are other potential rework measures for
which researchers might not even be able to collect metrics,
for example the rework that is found on volatile
development teams, where people are often added or
removed and as a consequence spend time relearning or
redoing the same things.
 Preventing defects and reducing rework is not free, but

Barry Boehm reported that at TRW it was found that early
prevention effort (via reviews, inspections, and analysis
tools) had a 5:1 or 10:1 payoff.

Result Summary: Most eWorkshop participants believed
that significant amounts of effort are spent on avoidable
rework. However, the data across many projects had a
much wider range than the proposed 40-50%; on some
projects cited, for example, it was as low as 10-20%. In
general, it was felt necessary to distinguish different types
of software engineering process so that we could examine
the avoidable rework rates for different types of
environments.
Item 2’: A significant percentage of the effort on

current software projects is typically spent on
avoidable rework.

Item 2.1: The amount of effort spent on avoidable
rework decreases as process maturity
increases.

3.3 Defects causing rework

“About 80% of the avoidable rework comes from 20%
of the defects.”

Discussion: On this topic, little data was put forward.
While most participants (Thomas, O’Neill, Rifkin, Allen,
Basili) indicated they believed that most of the avoidable
rework comes from a small number of defects, no data
from personal experience was cited. Some confirmatory
data from the SEL and from the work of Khoshgoftaar and
Allen was described.
 Some time was spent trying to make definitions more
clear. First, “rework” was defined broadly to include the
effects of such things as changing operating systems,
databases, or customer base; possibly also the re-
configuration of tools.
 Stan Rifkin suggested that the definition be refined by
clarifying that “avoidable rework” is related to changes that
are corrective (to mitigate the effect of defects) and
performance-related (to improve system performance). A
consensus then emerged that unavoidable rework was
rework that came from other sources than defects, e.g. from
adaptive, preventive, or user-requested changes to the code
or architecture. Otto Vinter suggested to expand this
definition by proposing that unavoidable rework could be
caused by some defects that are simply too hard to prevent.
 Most of the discussion centered on suggesting what
types of defects were most likely to cause
disproportionately large amounts of rework. Barry Boehm
said that in his experience one source of high-rework
defects is "architecture-breakers:" defects whose fix
requires you to significantly change the architecture, which
then ripples into design and code changes.
 Stan Rifkin described his belief that it costs more to fix
errors that are found "inappropriately" late in the process.

For example, we ought to be finding and fixing function
errors early in the cycle and timing errors later, so function
errors that aren’t found until the later stages will cause a
higher amount of rework. Barry Boehm commented that
IBM data (from Ram Chillarege’s papers [5]) do indicate
that some defects tend to be found earlier (e.g., function
defects) and others tend to be found later (e.g., timing
defects). Another implication of this is that timing defects
are probably more expensive to fix than function defects,
because they can’t be found in earlier phases where fixing
would be cheaper.

Result Summary: There was general agreement that
relatively few defects tend to cause most of the avoidable
rework on software projects. (However, it was clear that
there is a significant amount of unavoidable rework as well
that comes from such sources as adaptive maintenance. We
need to spend more work on characterizing the types of
rework and their causes.) There wasn’t a lot of
confirmatory evidence about the 80/20 rule, but there
weren’t any strong counterexamples either. In terms of the
implications of this statement, there was a general
consensus that characterizing high-rework defects would be
worthwhile.
Item 3’: Most of the avoidable rework comes from a

small number of software defects, where
avoidable rework is defined as work done to
mitigate the effects of errors or to improve
system performance.

Item 3a: Some rework is simply unavoidable, for
example, work arising from adaptive,
preventive, or user-requested changes.

Item 3.1: Defects causing high amounts of rework are
likely to be those that are “architecture-
breakers” or that are found
“inappropriately” late in the development
process.

3.4 Modules contributing defects

“About 80% of the defects come from 20% of the
modules and about half the modules are defect free”

Discussion: Data collected during development showed
that defects are widespread among modules before release.
Don O’Neill had data from the National Software Quality
Experiment3 (NSQE) that showed that almost no modules
pass through an inspection without some defects being
found. Dan Roy had student and industrial data from TSP
which indicated that only about 10% of modules should be
considered defect-free at compile time, progressing to
around 90% by system test.

When the decision was made to focus the discussion
on defects resulting from failures occurring after software

3 http://members.aol.com/ONeillDon/nsqe-results.html

delivery, the data submitted did tend to indicate that a
majority of the defects come from relatively few modules.
Aside from Dan Roy’s TSP data showing that only 10% of
the modules had any defects,

• Ed Allen cited studies of mature
telecommunications products showing that only
10% of the modules that changed from one release
to another contributed to user failures;

• Stan Rifkin recalled data from Nortel switches
showing that 80% of the defects came from 20%
of the most-changed modules;

• Christof Ebert said that data from Alcatel
confirmed that 20% of modules contain about
40% to 80% of defects, depending on product line
[8];

• Otto Vinter had data that 70% of defects come
from 19% of modules.

Gary Thomas and Dan Roy (based on work on Landsat-D)
also believed the heuristic to be true, although they had no
hard data.
 However it was recognized that the 80/20 heuristic is
not a hard and fast rule but varies based on environmental
characteristics such as: development processes, quality
goals, complexity and age of the system, and degree of
reuse.

Result Summary: This statement should really be split into
two parts. As to whether about 80% of the defects come
from 20% of the modules, some supporting data was
submitted and the general consensus is that this heuristic
can be used as a general rule of thumb. However, it should
not be assumed to be true for all systems, but varies based
on environmental characteristics such as development
processes and quality goals.
 On the second half of the statement, that half the
modules are defect free, less data was submitted. Data from
software inspections during development indicates that
almost no modules are defect free; however post-release
failure counts from an embedded system showed that about
40% of the modules contributed no defects.
Item 4’: As a general rule of thumb, 80% of a

system’s defects come from 20% of its
modules. However, the relationship varies
based on environment characteristics such as
processes used and quality goals.

Item 4’’: During development, almost no modules are
defect-free as implemented.

Item 4’’’: Post-release, about 40% of modules may be
defect-free.

3.5 Defects contributing downtime

“About 90% of the downtime comes from at most 10%
of the defects.”

Discussion: The discussion began with a disparity of

opinions about whether organizations are collecting any
data of this kind. Ray Madachy said that the intent of the
heuristic was clear but he had no experience with
organizations where downtime was a focus of
measurement. Philip Johnson said he had seen that some
companies have defect databases but it is highly unlikely
that the information is traced back to resulting downtime or
resulting changes. Stan Rifkin said that he had in fact seen
data collected by clients of his but they are kept private,
because the clients’ contracts depend on service level
agreements that give them a competitive edge.
Of those who had a feel for such data:

• Stan Rifkin said that in lower process maturity
organizations, the downtime comes from a much
larger spread of the defects than just 10%;

• Christof Ebert said that it depends on how you do
the accounting, but that in telecommunications
systems about 10% to 30% of all defects are
classified as causing downtime and blocking
systems;

• Gary Thomas said that this was a hard statement
to support based on evaluating the data collected
but that anecdotally, in his environment, for
operational systems only 2% of defects recorded
caused the system to go down (i.e. were Category
1 defects where the system was “Dead in the
Water”).

As Christof Ebert pointed out, what complicates the
accounting is that downtime is not only a function of the
system quality but also the environment, circumstances of
usage, and the cost and time required for repair. Philip
Johnson thought it unlikely that developers ever collect
data at the level of detail that could answer this question,
since there’s no evidence that the effort required to trace
defects to results would have a payoff for them.

Result Summary: On this statement, there was little
consensus. There was a wide disparity of opinions about
whether organizations even collect this information, and
what they do with it if it is collected. Much of the
discussion focused on what measures would need to be
collected if organizations wanted useful insight in this area.
Item 5m: Insufficient data have been collected to posit

a relationship between defects and the
downtime they cause.

3.6 Contribution of peer reviews

“Peer reviews catch 60% of the defects.”

Discussion: Participants submitted a wide range of data on
this issue.

• Oliver Laitenberger submitted a list of published
data from several companies, in which defect
detection effectiveness ranged from 19% to 93%,
with most (6/10) of the sources falling in the 50%-

70% range.
• Bill Elliott provided data from a large project at

Harris GCSD showing 64% of total defects in the
product were found by inspection activities, and
mentioned that these results seemed typical for the
division, which had an average defect detection
effectiveness of 68%. He also provided data
summarizing industry averages for the number of
defects remaining in software at various phases of
the lifecycle. The averages (over hundreds of
programs) show a 90% reduction in the number of
defects between the design phase (99.5
faults/KLOC) and the beginning of testing phases
(9.4 faults/KLOC), with most of that reduction
due to inspection activities.

• Stan Rifkin referenced data from a case study in
industry showing a rate of 70-80% for
organizations with inspection experience.

• Don O’Neill summarized data received by the
National Software Quality Experiment from
across many organizations to show that the
average detection rate was about 50-65% for less
mature organizations, rising to 70-80% for
structured software engineering organizations
(which account for the majority of practitioners),
and again to 85-95% for organizations employing
disciplined software engineering practices.

• Dan Roy cited SEI PSP data showing an average
of 60% of errors caught during design and code
reviews, rising to 80% with the addition of cross
reviews.

• Otto Vinter cited a study of various techniques to
prevent requirements-related defects, which found
that various forms of review techniques could
together find about 60% of the requirements-
related defects.

• James Miller cited data from experiments where
review effectiveness was about 50%.

• Winsor Brown cited Michael Fagan’s claim
(which he has made since 1985) of “95% of
defects found before testing” due to Fagan-style
inspections.

 Thus the 60% heuristic seemed useful as a rule of
thumb to describe the data that was submitted – although
that data described inspections in several lifecycle phases
(requirements, design, or code), with different process
definitions, in various domains. The discussion began with
an attempt to do a better comparison of the data by at least
agreeing on a common definition of the defect detection
rate as a measure of review effectiveness.
 Vic Basili proposed that the detection rate should
be measured as the percentage found during a given review
of all defects discovered in the product before release (that
is, effectiveness should be determined by comparing the
number of defects found during reviews with the number
found during testing activities). The majority of participants

felt that, using this definition, a valid heuristic is that
reviews find 60-90% of defects. [The 90% value as a
"fuzzy upper bound" was supported by publications by
Capers Jones, Richard Lindner [10], Tim Olson [12], and
also from the data submitted by Brown, Laitenberger, and
O'Neill (for disciplined teams).] As Philip Johnson pointed
out, this definition is only meaningful in an environment
where there is a clear boundary between development and
release.
 Several participants felt that this definition of defect
detection rate does not capture all of the important aspects
in measuring review effectiveness. Otto Vinter and Dan
Port proposed a second definition, related to but extending
the first: A review’s defect detection rate should be
measured as a percentage of all defects found over the
lifetime of the product, including those found post-release.
Vic Basili objected on the grounds that the total number of
post-release defects can never be definitively known.
However, Bill Elliott said that techniques exist to estimate
the number of post-release defects at ship time.

Result Summary: On this issue there was consensus.
Several participants described confirmatory evidence in the
pre-meeting feedback and during the discussion. Although
numbers varied, most sources reported that reviews caught
more than half of a product’s defects regardless of the
domain, level of maturity of the organization, or lifecycle
phase during which they were applied.
Item 6’: Reviews catch more than half of a product’s

defects regardless of the domain, level of
maturity of the organization, or lifecycle
phase during which they were applied.

3.7 Contribution of perspective-based reviews

“Perspective-based reviews catch 35% more defects
than non-directed reviews.”

Discussion: The only data submitted come from Oliver
Laitenberger, who observed a 20-60% detection rate due to
perspective-based reviews during controlled experiments.
[To preserve impartiality, the eWorkshop organizers did
not enter their own data into the discussion, but a good
summary of experiences with perspective-based reviews
can be found in [14].] These data were observed for PBR, a
procedural approach to the individual preparation for
reviews. Despite the lack of data, participants tended to
agree in general that such reviews had promise for
increased effectiveness, since they:

• provide more assurance that all pages of a review
document are covered equally. That is, giving
reviewers a perspective or scenario to follow helps
keep them focused when they might normally lose
interest or get tired toward the end. (Barry Boehm)

• help enforce a “speed limit” by requiring
reviewers to process the information they read

from their particular point of view, rather than
skimming quickly over it. (Dan Roy)

• alter thinking patterns, by asking people to review
the information not by itself but by relating it back
to some particular point of view. (James Miller)

 Since perspective-based reviews seem to provide an
effective way for reviewers to do the individual preparation
phase, subsequent discussion centered on the relative
importance of team meetings. Oliver Laitenberger felt that
the individual preparation phase is more important for
finding defects than the team meeting, so that efforts spent
to improve an individual’s effectiveness at finding defects
in the first place are more important than efforts spent at
optimizing the team meeting afterwards. Eileen Fagan
disputed this by saying that Michael Fagan has data that
show more defects found as a result of the meetings than
were discovered during preparation. Winsor Brown
wondered if the apparent discrepancy could be explained
by the fact that, in Fagan's paradigm, inspection
participants during the preparation phase are only required
to prepare themselves to fulfill their role in the inspection
meeting, at most identifying “areas of concern” that may be
addressed during the meeting. Hence, the objective of
individual preparation is not to identify defects explicitly.
 Participants did generally agree that the review
meeting has positive effects even aside from defect
detection, such as filtering out false positives, allowing
participants to learn from each other, and convincing
authors to submit future documents with fewer defects
(Oliver Laitenberger, Eileen Fagan, Otto Vinter, Barry
Boehm).

Result Summary: Few data were provided to quantify the
effectiveness of perspective-based reviews. However, most
participants agreed that having multiple perspectives
represented during software reviews was an effective
practice. Discussion centered on why this might be so and
the implications as a result for review processes.
Item 7’: Having multiple perspectives represented

during software reviews is an effective
practice.

3.8 Contribution of disciplined personal practices

“Disciplined personal practices can reduce defect
introduction rates by up to 75%.”

Discussion: The pre-meeting feedback contributed little
data concerning the effectiveness of disciplined personal
practices. Don O’Neill cited figures from the NSQE
showing that disciplined software engineering practices in
general lowered defect insertion rates (10-15
defects/thousand lines vs. 20-30 defects/thousand lines for
structured software engineering and 40-60 defects/thousand
lines for undisciplined, ad hoc processes) as well as defect
detection rates. Barry Boehm mentioned that similar rates

were seen during the calibration of the COQUALMO
model: average defect introduction rates were 10/KLOC in
requirements, 20/KLOC in design, and 30/KLOC in code
(numbers are not cumulative across phases).
 Dan Roy felt that the phrase defect introduction must
be clarified. For example, the Personal Software Process
defines a “defect” as anything that requires modification to
the product, including compile errors. Because the NSQE is
intended to measure inspection effectiveness, it doesn't use
(nor does it need to) a definition that is as inclusive. Oliver
Laitenberger agreed, saying that the focus of an inspection
should not be on syntactical defects, which can be caught
more cheaply by a compiler. Thus Dan Roy’s definition
would include many more items than are commonly
counted in inspection data.
 Participants spent time refining the heuristic by
discussing what kinds of practices could be included under
the heading “disciplined personal practices.” The majority
felt that PSP was not the only such practice, just the best
known. Cleanroom was nominated as another such practice
(Vic Basili, Barry Boehm), and Winsor Brown pointed out
that under a suitably broad definition, even disciplined
practices of “desk checking” could be included. There was
a bit of debate about whether extreme programming (XP)
practices could be included, although no clear consensus
emerged.
 Although little quantitative evidence of benefits for
disciplined personal practices was established, participants
did believe such practices provide benefits, especially in
the areas of:

• Reducing defect introduction rates
• Increasing defect detection rates – although

inspection yield may be lower because better
practices introduce fewer defects into the product
in the first place (Barry Boehm)

• Reducing the cost of repairing a defect – because
disciplined practices may mean that the artifact
creator can repair the artifact with less effort
(Martin Feather)

 In the absence of consensus on the issue, participants
felt that a decision could only be made using some kind of
framework to relate the defect insertion/removal numbers
we do have from various phases. Two candidates were
proposed:

• Martin Feather identified the "Defect Detection
and Prevention" framework, an effort led by Steve
Cornford of JPL. Although intended more for
hardware defects, it seems applicable to hardware,
software and combinations [7].

• Barry Boehm mentioned a model called
COQUALMO, currently in its first draft, which
tries to do this [3].

Result Summary: Few participants submitted data to
support the heuristic concerning benefits of disciplined
personal practices. Some discussion time was spent to

come to a consensus as to what exactly should be included
in the definition of such practices, although agreement was
not reached on all candidates. Participants felt that the
effectiveness of disciplined practices was related to a
number of issues – defect introduction, removal, and cost-
to-fix rates – across multiple stages of the lifecycle, and
that without a framework to relate such numbers no global
estimate of effectiveness could be reached. The discussion
ended with two such frameworks being proposed.
Item 8’: The effectiveness of disciplined personal

practices is related to a number of issues
(such as defect introduction, removal, and
cost-to-fix rates) across multiple stages of the
lifecycle.

Item 8m: The real effect of personal practices on
software defects cannot be quantified without
a framework for relating defect introduction
and removal rates across lifecycle phases.

3.9 Cost of high-dependability

“All other things being equal, it costs 50% more per
source instruction to develop high-dependability
software products than to develop low-dependability
software products. However, the investment is more
than worth it if significant operations and maintenance
costs are involved.”

Discussion: Barry Boehm, who formalized the original
heuristic, explained that the phrase "all other things being
equal" in Item 9 came from the context of the COCOMO II
calibration, which found that it was necessary to normalize
the effects of often-correlated variables such as system
complexity, development time and storage constraints. The
total system cost escalation factor becomes a good deal
higher when these effects are compounded.
 The data contributed by participants was sparse, but
did indicate that high dependability is much more
expensive than 50%. Dan Roy cited a study at NASA HQ
that found a factor of 3 increase between the cost of
relatively low-dependability ground software ($70/LOC)
and that of high-dependability flight software ($220/LOC).
Christof Ebert also reported that Alcatel considers high-
dependability software 10 times more expensive in the
domain of distributed embedded legacy real-time
environments.
 Don O’Neill addressed the question of whether
development processes suitable for high-dependability
software are more expensive, by using data from the NSQE
to track the relative cost of ad-hoc, structured, and
disciplined software engineering. NSQE data show that
structured software engineering is 100% more expensive
than ad-hoc while disciplined costs 200% more.
 Although participants found no appropriate measures
during the discussion, Frank Anger felt that having ways to
measure “levels of confidence” or “levels of dependability”

for a system, and relating those levels to productivity rates
or costs levels, was still a useful research goal.

Result Summary: High dependability software costs more
per source instruction than low dependability software
products. This being the consensus, participants of the
discussion tended to agree that the cost factor is much more
than 50% higher for high-dependability. Participants
suggested that the cost may be from 3 to 10 times more
expensive.
Item 9’: High-dependability software costs three to

ten times more per source instruction than
low-dependability software.

3.10 Software quality at delivery

“About 40-50% of user programs enter use with
nontrivial defects.”

Discussion: Participants began by discussing whether a
majority of commercial systems contain defects at the time
of release. Although no direct statistics were cited, several
supporting facts were proposed that seemed to indicate a
high likelihood of software being released with nontrivial
defects:

• Results from the NSQE, cited by Don O’Neill,
reveal that during development almost every
inspection finds some significant defects. In over
3,000 inspection sessions, only a couple dozen
have ever produced a zero yield.

• Dan Roy said that PSP data on hundreds of
engineers shows that any program bigger than 200
LOC will have some bug in it. If only 10% of
these are "nontrivial" then any program bigger
than 2KLOC has one of these nontrivial defects.

• A rough estimate by Otto Vinter that every
commercial product has a re-release every six
months, not necessarily for updates in
functionality but rather also to correct nontrivial
defects that surface after some time in use, seems
a consequence of high rates of systems entering
use with nontrivial defects.

 Barry Boehm narrowed the discussion by noting that
the original intent of the statement was to measure the
software written by software users, not professional
developers. The participants reached a consensus around a
definition proposed by Vic Basili, defining a user program
as one written by a non-professional software developer for
use by other than himself. To help illustrate that this is a
real phenomenon, Scott Henninger gave the example of
NASA, where scientists often write their own software to
analyze the data being returned from satellites. Given this
definition, the only data that could be found was the
original data Barry Boehm cited for the heuristic: lab
studies reported 35-90% of models had defects; 21-26% of
operational spreadsheet models had defects [4].

 Given the lack of data, participants discussed if this
was a heuristic that was important to be further
investigated. Winsor Brown felt the answer was “yes” and
the underlying issue is that non-professional programmers
can be helped if the software engineering field can reach
out and teach them basic principles, for example for the
process of creating high-quality spreadsheets. Scott
Henninger felt the important issue was whether we had a
true understanding of the difference between professional
and non-professional programmers; how many
professionals might not be actually applying what we
would consider good software engineering practices?

Result Summary: There was a consensus that a majority
of systems have non-trivial defects when they enter use,
although participants felt that the figure is higher than 40-
50% and not limited only to user-created programs.
Experience seems to indicate that a large percentage of
software systems of all types contain defects that affect
execution. Such information can serve as a baseline for
future assessments of development effectiveness.
Item 10’: More than half of all types of software

systems enter use with defects that affect
execution.

4. Implications for researchers

Aside from recognizing where consensus agrees on aspects
of software defect reduction, the eWorkshops were also
helpful in identifying areas where the current state of the
knowledge is insufficient to draw the level of conclusions
that were desired. In this way the participants also helped
point to important open research questions. For example,
before the items on the original list can be entirely
corroborated, some gaps in the existing knowledge must be
addressed:

• Item 5m: Insufficient data have been collected to
posit a relationship between defects and the
downtime they cause.

• Item 8m: The real effect of personal practices on
software defects cannot be quantified without a
framework for relating defect introduction and
removal rates across lifecycle phases.

 Additionally, during the discussions important ideas
were raised for extending the list, or for identifying
situations in which the items on the list do not give enough
information:

• How do we measure the impact of software
defects in non-waterfall lifecycles, where
requirements and implementation phases are so
intertwined that it no longer makes sense to talk
about “early” versus “late” phases of
development?

• What are the root causes for different types of
defects, and can we find preventive mechanisms
that can improve resulting software quality?

• What are the root causes for rework effort on
projects, and can we better distinguish when
rework is avoidable and when it is necessary?

5. Implications for practitioners

For practitioners, the resulting list of statements represents
a summary of what an influential sector of the software
engineering community feels to be the current state of the
knowledge in an important area, defect reduction. It shows
that there are some underlying principles of software
development that tend to hold across development
environments and problem domains, and begins to identify
some of the important factors that can cause results to vary
from one project to another. For example, several
statements described evidence that increased process
maturity affects the results of software development in a
positive way (e.g. Item 2.1, which said that effort spent on
avoidable rework decreases as process maturity increases).
Such statements can be useful for benchmarking
(comparison of a particular project to what is known in
general) and decision-making (summarizing what can be
expected from software development in general).

6. Conclusions
CeBASE has an ambitious goal of collecting relevant
empirically-based software engineering knowledge. Based
on our experiences on the topic of defect reduction, the
eWorkshop has been shown to be a mechanism for
inexpensively and efficiently capturing this information.
The eWorkshops have been useful for testing the items in
the top-ten defect reduction list, and we have obtained
additional references and data that seek to classify when
specific defect reduction heuristics are applicable.
 To provide a capstone for this series of discussions, we
are holding a final, physical workshop co-located with the
International Symposium on Software Metrics 2002 in
Ottawa. Participating experts will argue for or against the
revised statements, and present data to back up their
position. The workshop will result in an updated, final list
of heuristics useful to broad swathes of the software
engineering community as a representation of what the
field has learned based on years of observation of
developers at work. The heuristics will be recorded along
with a summary of the contributed data and observations so
that the conclusions can be traced back to their supporting
evidence.

7. Acknowledgements

This work is partially sponsored by NSF grant
CCR0086078, establishing the Center for Empirically
Based Software Engineering (CeBASE). We want to thank
Scott Henninger, Rayford Vaughn, and Michael Frey as

well as all participants for their contribution to the success
of the eWorkshops.

8. References

[1] Basili, V.R., and Green, S. “Software Process Evolution at
the SEL,” IEEE Software, July 1994, pp. 58-66.

[2] Basili, V. R., Tesoriero, R., Costa, P., Lindvall, M., Rus, I.,
Shull, F., and Zelkowitz, M. V. "Building an Experience Base for
Software Engineering: A report on the first CeBASE eWorkshop",
Bomarius, Frank and Komi-Sirviö, Seija, Springer, In
Proceedings of Profes (Product Focused Software Process
Improvement), pp. 110-125, 2001.

[3] Boehm, B., Horowitz, E., Madachy, R., Reifer, D., Clark, B.,
Steece, B., Brown, A.W., Chulani, S., Abts, C. Software Cost
Estimation with COCOMOII, Prentice Hall, 2000.

[4] Chen, H.C., Ying, C., and Peh, C.B. “Strategies and
Visualization Tools for Enhancing User Auditing of Spreadsheet
Models,” Information and Software Technology, Dec. 2000, pp.
1037-1043.

[5] Chillarege, R., Bhandari, I., Chaar, J., Halliday, M., Moebus,
D., Ray, B., and Wong, M. “Orthogonal Defect Classification – A
Concept for In-Process Measurements,” IEEE TSE, vol. 18, no. 11
(Nov. 1992), pp. 943-956.

[6] Clark, B. “The Effects of Process Maturity on Software
Development Effort,” Ph.D. Dissertation, University of Southern
California, 1997.

[7] Cornford, S.L., Feather, M.S., Hicks, K.A. “DDP – A Tool
for Life-Cycle Risk Management,” In Proc. of Aerospace
Conference 2001. Vol. 1, pp. 441-451.

[8] Ebert, C. “Metrics for Identifying Critical Components in
Software Projects,” Handbook of Software Engineering and
Knowledge Engineering. 2001.

[9] Jones, C. Applied Software Measurement. 1996.

[10] Lindner, R. J., and Tudahl, D. “Software Development at a
Baldrige Winner,” Proceedings of ELECTRO’94, Boston, MA,
May 12, 1994, pp. 167-180.

[11] McGibbon, T. Software Reliability Data Summary, DACS,
1996.

[12] Olson, T. “Performing Best In Class Software Inspections,”
Proc. of SEPG 2001.

[13] Royce, W. Software Project Management: A Unified
Framework, Addison-Wesley Object Technology Series, 1998.

[14] Shull, F. "Software Reading Techniques." In The
Encyclopedia of Software Engineering, Second Edition.
Copyright John Wiley & Sons, 2002.

	Abstract
	Building an experience base for software engineering
	Collecting expert knowledge on defect reduction
	Results to date
	Effort to find and fix
	Amount of avoidable rework
	Defects causing rework
	Modules contributing defects
	Defects contributing downtime
	Contribution of peer reviews
	Contribution of perspective-based reviews
	Contribution of disciplined personal practices
	Cost of high-dependability
	Software quality at delivery

	Implications for researchers
	Implications for practitioners
	Conclusions
	Acknowledgements
	References

