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Abstract

Ontologies are set to play a key rôle in the “Se-
mantic Web” by providing a source of shared
and precisely defined terms that can be used in
descriptions of web resources. Reasoning over
such descriptions will be essential if web re-
sources are to be more accessible to automated pro-
cesses. SHOQ(D) is an expressive description
logic equipped with named individuals and con-
crete datatypes which has almost exactly the same
expressive power as the latest web ontology lan-
guages (e.g., OIL and DAML+OIL). We present
sound and complete reasoning services for this
logic.

1 Introduction
The recent explosion of interest in the World Wide Web has
also fuelled interest in ontologies.1 This is due both to the use
of ontologies in existing Web based applications and to their
likely rôle in the future development of the Web [van Heijst et
al., 1997; McGuinness, 1998; Uschold and Grüninger, 1996].
In particular, it has been predicted that ontologies will play a
pivotal rôle in the Semantic Web—the World Wide Web Con-
sortium’s vision of a “second generation” Web in which Web
resources will be more readily accessible to automated pro-
cesses [Berners-Lee, 1999].

A key component of the Semantic Web will be the an-
notation of web resources with meta-data that describes
their content, with ontologies providing a source of shared
and precisely defined terms that can be used in such meta-
data. This requirement has led to the extension of Web
markup languages in order to facilitate content description
and the development of Web based ontologies, e.g., XML
Schema, RDF (Resource Description Framework), and RDF
Schema [Decker et al., 2000]. RDF Schema (RDFS) in par-
ticular is recognisable as an ontology/knowledge representa-
tion language: it talks about classes and properties (binary
relations), range and domain constraints (on properties), and
subclass and subproperty (subsumption) relations. However,

1The word ontology has been used—some would say abused—
in a wide range of contexts. In this paper it will be taken to mean a
formally defined model of (part of) the domain of interest.

RDFS is a very primitive language (the above is an almost
complete description of its functionality), and more expres-
sive power would clearly be necessary/desirable in order to
describe resources in sufficient detail. Moreover, such de-
scriptions should be amenable to automated reasoning if they
are to be used effectively by automated processes.

These considerations have led to the development of
OIL [Fensel et al., 2000] and DAML [Hendler and McGuin-
ness, 2001], two ontology languages that extend RDFS with a
much richer set of modelling primitives. Both languages have
been designed in such a way that they can be mapped onto a
very expressive description logic (DL).2 This mapping pro-
vides them with a formal semantics, a clear understanding of
the characteristics of various reasoning problems (e.g., sub-
sumption/satisfiability), and the possibility of exploiting ex-
isting decision procedures. OIL, in particular, was designed
so that reasoning services could be provided, via a mapping
to the SHIQ DL, by the FaCT system [Horrocks et al., 1999;
Horrocks, 2000].

Unfortunately, these mappings are currently incomplete in
two important respects. Firstly, any practical ontology lan-
guage will need to deal with concrete datatypes (numbers,
strings, etc.) [Baader and Hanschke, 1991]. E.g., ontologies
used in e-commerce may want to classify items according
to weight, and to reason that an item weighing more than
50 kilogrammes is a kind of item that requires special ship-
ping arrangements. OIL already supports the use of inte-
gers and strings in class descriptions, and it is anticipated
that DAML+OIL, a new language developed from a merg-
ing of the DAML and OIL efforts, will support (most of) the
datatypes defined or definable by XML Schema. However,
the SHIQ logic implemented in the FaCT system does not
include any concrete datatypes, so there is no mechanism for
reasoning with this part of the language.

Secondly, realistic ontologies typically contain references
to named individuals within class descriptions. E.g., “Ital-
ians” might be described as persons who are citizens of
“Italy”, where Italy is a named individual [Schaerf, 1994].
The required functionality can be partially simulated by treat-
ing such individuals as pairwise disjoint atomic classes (this
is the approach taken in the existing OIL −→ FaCT map-
ping), but this can result in incorrect inferences.

2In fact they can be viewed as syntactic variants of such a logic.



In this paper we will present a new DL that overcomes
both of the above deficiencies by taking the logic SHQ
and extending it with individuals (O) and concrete datatypes
(D) to give SHOQ(D). The starting point for these ex-
tensions is SHQ rather than SHIQ (i.e., without inverse
roles), because reasoning with inverse roles is known to be
difficult and/or highly intractable when combined with ei-
ther concrete datatypes or named individuals: the concept
satisfiability problem is know to be NExpTime hard even
for the basic DL ALC augmented with inverse roles and ei-
ther concrete datatypes or named individuals [Lutz, 2000;
Tobies, 2000]. This hardness result for concrete datatypes
is not yet directly applicable to SHOQ(D) as it depends on
comparisons of concrete values (binary predicates), but the
addition of such comparisons would be a natural future ex-
tension to SHOQ(D). Moreover, the presence of nominals
in any DL leads to the loss of the tree/forest model prop-
erty, which becomes particularly problematical in the pres-
ence of inverse roles, number restrictions, and general ax-
ioms. As a result, to the best of our knowledge, there is
no (practicable) decision procedure for SHIQ with nom-
inals or converse-DPDL with nominals, the latter being a
close relative of SHIQ from dynamic logics [Streett, 1982].
Finally, since individuals and concrete datatypes are much
more widely used in ontologies than inverse roles [Corcho
and Pérez, 2000], SHOQ(D) is a very useful addition to our
reasoning armoury.

2 Preliminaries
In this section, we will describe our choice of concrete
datatypes and named individuals, and introduce the syntax
and semantics of SHOQ(D).
Concrete Datatypes Concrete datatypes are used to represent
literal values such as numbers and strings. A type system typ-
ically defines a set of “primitive” datatypes, such as string or
integer, and provides a mechanism for deriving new datatypes
from existing ones. For example, in the XML schema type
system the nonNegativeInteger datatype is derived from the
integer datatype by constraining values of nonNegativeInte-
ger to be greater than or equal to zero [Biron and Malhorta,
2000].

In order to represent concepts such as “persons whose age
is at least 21”, we can extend our concept language with a
set D of concrete datatypes and concepts of the form ∃R.d
and ∀R.d, where d ∈ D. To be more precise, we assume
that we have a set of datatypes D, and, with each d ∈ D, a
set dD ⊆ ∆D is associated, where ∆D is the domain of all
datatypes. We will assume that:

1. the domain of interpretation of all concrete datatypes
∆D (the concrete domain) is disjoint from the domain
of interpretation of our concept language (the abstract
domain), and

2. there exists a sound and complete decision procedure for
the emptiness of an expression of the form dD

1 ∩. . .∩dD
n ,

where di is a (possibly negated) concrete datatype from
D (where ¬d is interpreted as ∆D \ dD).

We will say that a set of datatypes is conforming if it satisfies
the above criteria.

The disjointness of the abstract and concrete domains is
motivated by both philosophical and pragmatic considera-
tions. On the one hand, concrete datatypes are considered to
be already sufficiently structured by the type system, which
may include a derivation mechanism and built-in ordering re-
lations; therefore, we do not need the DL mechanism to form
new datatypes as in [Baader and Hanschke, 1991]. On the
other hand, it allows us to deal with an arbitrary conforming
set of datatypes without compromising the compactness of
our concept language or the soundness and completeness of
our decision procedure.

This scheme can be trivially extended to include boolean
combinations of datatypes and number restrictions qualified
with data types, but to simplify the presentation we will only
consider (possibly negated) atomic datatypes and exists/value
restrictions. The type system can be as complex as that
defined for XML schema, or as simple as the one defined
in the OIL ontology language [Fensel et al., 2000], where
the only primitive datatypes are integer and string, and new
types are derived by adding minimum and maximum value
constraints. Using the OIL typesystem we could, for ex-
ample, define the type (min 21) and use it in the concept
Person u ∃age.(min 21).
Named Individuals Allowing named individuals to occur in
concepts provides additional expressive power that is use-
ful in many applications; nominals (as such individuals can
be called) are a prominent feature of hybrid logics [Black-
burn and Seligman, 1998], and various extensions of modal
and description logics with nominals have already been in-
vestigated (see, e.g., [Schaerf, 1994; De Giacomo, 1995;
Areces et al., 2000]). As we have seen, nominals occur natu-
rally in ontologies as names for specific persons, companies,
countries etcetera.

From a semantic point of view, it is important to distinguish
between a nominal and an atomic concept/simple class, since
the nominal stands for exactly one individual—in contrast to
a concept, which is interpreted as some set of individuals.
Modelling nominals as pairwise disjoint atomic concepts can
lead to incorrect inferences, in particular with respect to im-
plicit maximum cardinality constraints. For example, if Italy
is modelled as an atomic concept, then it would not be possi-
ble to infer that persons who are citizens only of Italy cannot
have dual-nationality (i.e., cannot be citizens of more than
one country).

Finally, nominals can be viewed as a powerful generali-
sation of DL Abox individuals [Schaerf, 1994]: in an Abox
we can assert that an individual is an instance of a concept
or that a pair of individuals is an instance of a role (binary
relation), but Abox individuals cannot be used inside con-
cepts. For example, if Giuseppe and Italy are Abox in-
dividuals, we could assert that the pair (Giuseppe, Italy)
is an instance of the citizen-of role, but we could not de-
scribe the concept Italian as a Person who is a citizen-of
Italy. Using nominals, not only can we express this con-
cept (i.e., Person u ∃citizen-of .{Italy}), but we can also
capture Abox assertions with concept inclusion axioms of
the form {Giuseppe} v Italian (Giuseppe is an Italian)
and {Giuseppe} v ∃citizen-of .{Italy} (Giuseppe is a
citizen-of Italy).



Construct Name Syntax Semantics
atomic concept C A AI ⊆ ∆I

abstract role RA R RI ⊆ ∆I × ∆I

concrete role RD T T I ⊆ ∆I × ∆I
D

nominals I {o} {o}I ⊆ ∆I , ]{o}I = 1
datatypes D d dD ⊆ ∆D

conjunction C u D (C u D)I = CI ∩ DI

disjunction C t D (C t D)I = CI ∪ DI

negation ¬C (¬C)I = ∆I \ CI

¬d (¬d)I = ∆D \ dI

exists restriction ∃R.C (∃R.C)I = {x | ∃y.
〈x, y〉 ∈ RI and y ∈ CI}

value restriction ∀R.C (∀R.C)I = {x | ∀y.
〈x, y〉 ∈ RI implies y ∈ CI}

atleast restriction >nS.C >nS.CI = {x | ]({y.
〈x, y〉 ∈ SI} ∩ CI) > n}

atmost restriction 6nS.C 6nS.CI = {x | ]({y.
〈x, y〉 ∈ SI} ∩ CI) 6 n}

datatype exists ∃T.d (∃T.d)I = {x | ∃y.
〈x, y〉 ∈ T I and y ∈ dD}

datatype value ∀T.d (∀T.d)I = {x | ∀y.
〈x, y〉 ∈ T I implies y ∈ dD}

Figure 1: Syntax and semantics of SHOQ(D)

SHOQ(D) Syntax and Semantics

Definition 1 Let C, R = RA ] RD, and I be disjoint sets
of concept names, abstract and concrete role names, and in-
dividual names.

For R and S roles, a role axiom is either a role inclusion,
which is of the form R v S for R,S ∈ RA or R,S ∈ RD,
or a transitivity axiom, which is of the form Trans(R) for
R ∈ RA. A role box R is a finite set of role axioms.

A role R is called simple if, for v* the transitive reflex-
ive closure of v on R and for each role S, S v* R implies
Trans(S) 6∈ R.

The set of SHOQ(D)-concepts is the smallest set such
that each concept name A ∈ C is a concept, for each individ-
ual name o ∈ I, {o} is a concept, and, for C and D concepts,
R an abstract role, T a concrete role, S a simple role, and
d ∈ D a concrete datatype, complex concepts can be built
using the operators shown in Figure 1.

The semantics is given by means of an interpretation I =
(∆I , ·I) consisting of a non-empty domain ∆I , disjoint from
the concrete domain ∆D, and a mapping ·I , which maps
atomic and complex concepts, roles, and nominals accord-
ing to Figure 1 (] denotes set cardinality). An interpretation
I = (∆I , ·I) satisfies a role inclusion axiom R1 v R2 iff
RI

1 ⊆ RI
2 , and it satisfies a transitivity axiom Trans(R) iff

RI = (RI)+. An interpretation satisfies a role box R iff it
satisfies each axiom in R.

A SHOQ(D)-concept C is satisfiable w.r.t. a role box R
iff there is an interpretation I with CI 6= ∅ that satisfies R.
Such an interpretation is called a model of C w.r.t. R. A
concept C is subsumed by a concept D w.r.t. R iff CI v DI

for each interpretation I satisfying R. Two concepts are said
to be equivalent (w.r.t. R) iff they mutually subsume each
other (w.r.t. R).

Some remarks are in order: In the following, if R is clear
from the context, we use Trans(R) instead of Trans(R) ∈ R.

Please note that the domain of each role is the abstract do-
main, and that we distinguish those roles whose range is also
the abstract domain (abstract roles), and those whose range
is the concrete domain (concrete roles). In the following, we
use R for the former and T for the latter form of roles (pos-
sibly with index). We have chosen to disallow role inclusion
axioms of the form T v R (or R v T ) for R an abstract and
T a concrete role, since each model of such an axiom would
necessarily interpret T (or R) as the empty relation.

Restricting number restrictions to simple roles is required
in order to yield a decidable logic [Horrocks et al., 1999].

Next, negation of concepts and datatypes is relativised to
both the abstract and the concrete domain.

As usual, subsumption and satisfiability can be reduced to
each other, and SHOQ(D) has the expressive power to in-
ternalise general concept inclusion axioms [Horrocks et al.,
1999]. However, in the presence of nominals, we must also
add ∃O.o1 u . . .u∃O.o` to the concept internalising the gen-
eral concept inclusion axioms to make sure that the universal
role O indeed reaches all nominals oi occurring in the input
concept and terminology.

Finally, we did not choose to make a unique name assump-
tion, i.e., two nominals might refer to the same individual.
However, the inference algorithm presented below can easily
be adapted to the unique name case by a suitable initialisation
of the inequality relation 6

.
=.

3 A Tableau for SHOQ(D)
For ease of presentation, we assume all concepts to be in
negation normal form (NNF). Each concept can be trans-
formed into an equivalent one in NNF by pushing negation
inwards, making use of deMorgan’s laws and the following
equivalences:

¬∃R.C ≡ ∀R.¬C ¬∀R.C ≡ ∃R.¬C
¬∃T.d ≡ ∀T.¬d ¬∀T.d ≡ ∃T.¬d

¬6nR.C ≡ >(n + 1)R.C
¬>(n + 1)R.C ≡ 6nR.C

¬>0R.C ≡ C u ¬C

We use ∼ C to denote the NNF of ¬C. Moreover, for a con-
cept D, we use cl(D) to denote the set of all subconcepts of
D, the NNF of these subconcepts, and the (possibly negated)
datatypes occurring in these (NNFs of) subconcepts.

Definition 2 If D is a SHOQ(D)-concept in NNF, R a role
box, and R

D
A , RD

D
are the sets of abstract and concrete roles

occurring in D or R, a tableau T for D w.r.t. R is defined
to be a quadruple (S,L,EA,ED) such that: S is a set of in-
dividuals, L : S → 2cl(D) maps each individual to a set of
concepts which is a subset of cl(D), EA : R

D
A → 2S×S

maps each abstract role in R
D
A to a set of pairs of individ-

uals, ED : R
D
D

→ 2S×∆D maps each concrete role in R
D
D

to
a set of pairs of individuals and concrete values, and there is
some individual s ∈ S such that D ∈ L(s). For all s, t ∈ S,
C,C1, C2 ∈ cl(D), R,S ∈ R

D
A , T, T ′ ∈ R

D
D

, and

ST (s, C) := {t ∈ S | 〈s, t〉 ∈ EA(S) and C ∈ L(t)},



it holds that:

(P1) if C ∈ L(s), then ¬C /∈ L(s),

(P2) if C1 u C2 ∈ L(s), then C1 ∈ L(s) and C2 ∈ L(s),

(P3) if C1 t C2 ∈ L(s), then C1 ∈ L(s) or C2 ∈ L(s),

(P4) if 〈s, t〉 ∈ EA(R) and R v* S, then 〈s, t〉 ∈ EA(S),
if 〈s, t〉 ∈ ED(T ) and T v* T ′, then 〈s, t〉 ∈ ED(T ′)

(P5) if ∀R.C ∈ L(s) and 〈s, t〉 ∈ EA(R), then C ∈ L(t),

(P6) if ∃R.C ∈ L(s), then there is some t ∈ S such that
〈s, t〉 ∈ EA(R) and C ∈ L(t),

(P7) if ∀S.C ∈ L(s) and 〈s, t〉 ∈ EA(R) for some R v* S
with Trans(R), then ∀R.C ∈ L(t),

(P8) if >nS.C ∈ L(s), then ]ST (s, C) > n,

(P9) if 6nS.C ∈ L(s), then ]ST (s, C) 6 n, and

(P10) if {6nS.C,>nS.C} ∩ L(s) 6= ∅ and 〈s, t〉 ∈ EA(S),
then {C, ∼ C} ∩ L(t) 6= ∅,

(P11) if {o} ∈ L(s) ∩ L(t), then s = t,

(P12) if ∀T.d ∈ L(s) and 〈s, t〉 ∈ ED(T ), then t ∈ dD,

(P13) if ∃T.d ∈ L(s), then there is some t ∈ ∆D such that
〈s, t〉 ∈ ED(T ) and t ∈ dD.

Lemma 3 A SHOQ(D)-concept D in NNF is satisfiable
w.r.t. a role box R iff D has a tableau w.r.t. R.

Proof: We concentrate on (P11) to (P13), which cover the
the new logical features, i.e., nominals and datatypes; the
remainder is similar to the proof found in [Horrocks et al.,
1999]. Roughly speaking, we construct a model I from a
tableau by taking S as its interpretation domain and adding
the missing role-successorships for transitive roles. Then,
by induction on the structure of formulae, we prove that, if
C ∈ L(s), then s ∈ CI . (P11) ensures that nominals are
indeed interpreted as singletons, and (P12) and (P13) make
sure that concrete datatypes are interpreted correctly.

For the converse, each model is by definition of the seman-
tics a tableau. 2

4 A tableau algorithm for SHOQ(D)
From Lemma 3, an algorithm which constructs a tableau for
a SHOQ(D)-concept D can be used as a decision proce-
dure for the satisfiability of D with respect to a role box R.
Such an algorithm will now be described in detail. Please
note that, due to the absence of inverse roles, subset blocking
is sufficient (see also [Baader and Sattler, 2000]) to ensure
termination and correctness.

Definition 4 Let R be a role box, D a SHOQ(D)-concept
in NNF, RD

A the set of abstract roles occurring in D or R, and
I
D the set of nominals occurring in D. A completion forest

for D with respect to R is a set of trees F where each node x
of the forest is labelled with a set

L(x) ⊆ cl(D) ∪ {↑(R, {o}) | R ∈ R
D
A and {o} ∈ I

D},

and each edge 〈x, y〉 is labelled with a set of role names
L(〈x, y〉) containing roles occurring in cl(D) or R. Addi-
tionally, we keep track of inequalities between nodes of the

forest with a symmetric binary relation 6
.
= between the nodes

of F. For each {o} ∈ I
D there is a distinguished node x{o}

in F such that {o} ∈ L(x). We use ↑(R, {o}) ∈ L(y) to
represent an R labelled edge from y to x{o}.

Given a completion forest, a node y is called an R-
successor of a node x if, for some R′ with R′ v* R, either y is
a successor of x and R′ ∈ L(〈x, y〉), or ↑(R′, {o}) ∈ L(x)
and y = x{o}. Ancestors and roots are defined as usual.

For a role S and a node x in F we define SF(x,C) by

SF(x,C) := {y | y is an S-successor of x and C ∈ L(y)}.

A node x is directly blocked if none of its ancestors are
blocked, and it has an ancestor x′ that is not distinguished
such that L(x) ⊆ L(x′). In this case we will say that x′

blocks x. A node is blocked if is directly blocked or if its
predecessor is blocked.

For a node x, L(x) is said to contain a clash if

1. for some concept name A ∈ NC , {A,¬A} ⊆ L(x),

2. for some role S, 6nS.C ∈ L(x) and there are n + 1
S-successors y0, . . . , yn of x with C ∈ L(yi) for each
0 ≤ i ≤ n and yi 6

.
= yj for each 0 ≤ i < j ≤ n,

3. L(x) contains (possibly negated) datatypes d1, . . . , dn

such that dD
1 ∩ . . . ∩ dD

n is empty, or if

4. for some {o} ∈ L(x), x 6
.
= x{o}.

If {o1}, . . . , {o`} are all individuals occurring in D, the al-
gorithm initialises the completion forest F to contain ` + 1
root nodes x0, x{o1} . . . , x{o`} with L(x0) = {D} and
L(x{oi}) = {{oi}}. The inequality relation 6

.
= is initialised

with the empty relation. F is then expanded by repeatedly ap-
plying the rules from Figure 2, stopping if a clash occurs in
one of its nodes.

The completion forest is complete when, for some node x,
L(x) contains a clash, or when none of the rules is applica-
ble. If the expansion rules can be applied in such a way that
they yield a complete, clash-free completion forest, then the
algorithm returns “D is satisfiable w.r.t. R”, and “D is un-
satisfiable w.r.t. R” otherwise.

Lemma 5 When started with a SHOQ(D) concept D in
NNF, the completion algorithm terminates.

Proof: Let m = |cl(D)|, k = |RD
A |, n the maximal number

in atleast number restrictions, and ` = |ID|. Termination is
a consequence of the following properties of the expansion
rules: (1) Each rule but the 6- or the O-rule strictly extends
the completion forest, by extending node labels or adding
nodes, while removing neither nodes nor elements from node.
(2) New nodes are only generated by the ∃- or the >-rule
as successors of a node x for concepts of the form ∃R.C
and >nS.C in L(x). For a node x, each of these concepts
can trigger the generation of successors at most once—even
though the node(s) generated was later removed by either the
6- or the O-rule. If a successor y of x was generated for a
concept ∃S.C ∈ L(x), and y is removed later, then there will
always be some S-successor z of x such that C ∈ L(z), and
hence the ∃-rule cannot be applied again to x and ∃S.C.

For the >-rule, if y1, . . . , yn were generated by an appli-
cation of the >-rule for a concept >nS.C, then yi 6

.
= yj is



u-rule: if C1 u C2 ∈ L(x), x is not blocked, and {C1, C2} 6⊆ L(x),
then L(x) = L(x) ∪ {C1, C2}

t-rule: if C1 t C2 ∈ L(x), x is not blocked, and {C1, C2} ∩ L(x) = ∅,
then L(x) = L(x) ∪ {C} for some C ∈ {C1, C2}

∃-rule: if ∃R.C ∈ L(x), (or ∃T.d ∈ L(x)) x is not blocked, and x has no R-successor y with C ∈ L(y)
(resp. no T -successor y with d ∈ L(y)),

then create a new node y with L(〈x, y〉) = {R} and L(y) = {C} (resp. with L(〈x, y〉) = {T} and L(y) = {d})
∀-rule: if ∀R.C ∈ L(x) (or ∀T.d ∈ L(x)), x is not blocked, and there is an R-successor y of x with C /∈ L(y),

(resp. a T -successor y of x with d 6∈ L(y)),
then L(y) = L(y) ∪ {C} (resp. L(y) = L(y) ∪ {d})

∀+-rule: if ∀S.C ∈ L(x), x is not blocked, and there is some R with Trans(R) and R v* S,
and an R-successor y of x with ∀R.C /∈ L(y),

then L(y) = L(y) ∪ {∀R.C}
choose-rule: {>nS.C,6nS.C} ∩ L(x) 6= ∅, x is not blocked, and y is an S-successor of x with {C, ∼ C} ∩ L(y) = ∅,

then L(y) = L(y) ∪ {E} for some E ∈ {C, ∼ C}
>-rule: if >nS.C ∈ L(x), x is not blocked, and there are no n S-successors y1, . . . , yn of x with C ∈ L(yi) and

yi 6
.
= yj for 1 ≤ i < j ≤ n,

then create n new nodes y1, . . . , yn with L(〈x, yi〉) = {S}, L(yi) = {C}, and yi 6
.
= yj for 1 ≤ i < j ≤ n.

6-rule: if 6nS.C ∈ L(x), x is not blocked, and x has n + 1 S-successors y0, . . . , yn with C ∈ L(yi) for
each 0 ≤ i ≤ n, and there exist i 6= j s. t. not yi 6

.
= yj and, if only one of yi, yj is distinguished, then it is yi,

then 1. L(yi) = L(yi) ∪ L(yj) and add y 6
.
= yi for each y with y 6

.
= yj , and

if both yi, yj are not distinguished, then 2. L(〈x, yi〉) = L(〈x, yi〉) ∪ L(〈x, yj〉)
if yi is and yj is not distinguished, then 2. L(x) = L(x) ∪ {↑(S, {o}) | S ∈ L(〈x, yj〉)} for some {o} ∈ L(yi)

and 3. remove yj and all edges leading to yj from the completion forest
O-rule: if {o} ∈ L(x), x is neither blocked nor distinguished, and not x 6

.
= x{o}

then, for z distinguished with {o} ∈ L(z), do 1. L(z) = L(z) ∪ L(x), and
2. if x has a predecessor x′, then L(x′) = L(x′) ∪ {↑(R, {o}) | R ∈ L(〈x′, x〉)},
3. add y 6

.
= z for each y with y 6

.
= x, and remove x and all edges leading to x from the completion forest

Figure 2: The complete tableaux expansion rules for SHOQ(D)

added for each i 6= j. This implies that there will always
be n S-successors y′

1, . . . , y
′
n of x since neither the 6-rule

nor the O-rule ever merges two nodes y′
i, y

′
j with y′

i 6
.
= y′

j ,
and, whenever the 6- or the O-rule removes a successor of
x, there will be some S-successor z of x that “inherits” all
inequalities from y′

i.
Hence the out-degree of the forest is bounded by nm.

(3) Nodes are labelled with subsets of cl(D) ∪ {↑(R, {o}) |
R ∈ R

D
A and {o} ∈ I

D}, so there are at most 2m+k` dif-
ferent node labellings. Therefore, if a path p is of length
at least 2m+k`, then, from the blocking condition in Defini-
tion 4, there are two nodes x, y on p such that x is directly
blocked by y. Hence paths are of length at most 2m+k`. 2

Lemma 6 If a SHOQ(D) concept D in NNF has a tableau
w.r.t. R, then the expansion rules can be applied to D and R
such that they yield a complete, clash-free completion forest.

Proof: Again, we concentrate on the new features nominals
and datatypes and refer the reader to [Horrocks et al., 1999]
for the remainder. Given a tableau T for D w.r.t. R, we can
apply the non-deterministic rules, i.e., the t-, choose, and
6-rule, in such a way that we obtain a complete and clash-
free tableau: inductively with the generation of new nodes,
we define a mapping π from nodes of the completion for-
est to individuals in the tableau and concrete values in such
a way that L(x) ⊆ L(π(x)) for π(x) ∈ S and, for each
pair of nodes x, y and each (abstract or concrete) role R, if
y is an R-successor of x, then 〈π(x), π(y)〉 ∈ EA(R) or

〈π(x), π(y)〉 ∈ ED(R). Please note that the latter also holds
in the case that y is not a successor of x but a distinguished
node (i.e., ↑(R, {o}) ∈ L(x) and y = x{o}), and in the case
that y is a concrete value (i.e., π(y) 6∈ S). Due to (P12) and
(P13), we do not encounter a clash of the form (3), and (P11)
makes sure that the O-rule can be applied correctly. 2

Lemma 7 If the expansion rules can be applied to a
SHOQ(D) concept D in NNF and a role box R such that
they yield a complete and clash-free completion forest, then
D has a tableau w.r.t. R.

Proof: From a complete and clash-free completion forest F,
we can obtain a tableau T = (S,L′,EA,ED) by unravelling
as usual. That is, each element of the tableau is a path in the
completion forest that starts at one of the root nodes and that,
instead of going to a blocked node, goes to the node that is
blocking this node (we disregard nodes that have datatypes in
their labels). E-successorship for abstract roles is defined ac-
cording to the labels of edges (i.e., if R′ ∈ L(〈xn, xn+1〉) in
F with R′ v* R, then 〈x0 . . . xn, x0 . . . xnxn+1〉 ∈ EA(R) in
T ) and following labels ↑(R, {o}) (i.e., if ↑(R, {o}) ∈ L(xn)
in F, then 〈x0 . . . xn, x{o}〉 ∈ EA(R)). E-successorship for
concrete roles is defined following the edges to those (disre-
garded) nodes with datatypes in their labels. Clash-freeness
makes sure that this is possible.

To satisfy (P8) also in cases where two R-successors y1, y2

of a node x with >nR.C are blocked by the same node z, we
must distinguish between individuals that, instead of going to



yi, go to z. This can be easily done as in [Horrocks et al.,
1999], annotating points in the path accordingly. Finally, we
set L

′(x0 . . . xn) = L(xn).
It remains to prove that T satisfies each (Pi). (P1) to (P10)

are similar to those in [Horrocks et al., 1999]. (P11) is due to
completeness (otherwise, the O-rule was applicable), which
implies that nominals can be found only in the labels of dis-
tinguished nodes (note that the definition of blocking is such
that a distinguished node can never block another one). (P12)
and (P13) are due to the fact that F has no clash of form (3),
and that the ∃- and ∀-rule are not applicable. 2

As an immediate consequence of Lemmas 3, 5, 6, and
7, the completion algorithm always terminates, and answers
with “D is satisfiable w.r.t. R” iff D is satisfiable w.r.t. R.
Next, subsumption can be reduced to (un)satisfiability. Fi-
nally, as we mentioned in Section 2, SHOQ(D) can inter-
nalise general concept inclusion axioms, and we can thus de-
cide these inference problems also w.r.t. terminologies.

Theorem 8 The completion algorithm presented in Defini-
tion 4 is a decision procedure for satisfiability and subsump-
tion of SHOQ(D) concepts w.r.t. terminologies.

5 Conclusion
As we have seen, ontologies are set to play a key rôle in the
Semantic Web, where they will provide a source of shared
and precisely defined terms for use in descriptions of web
resources. Moreover, such descriptions should be amenable
to automated reasoning if they are to be used effectively by
automated processes.

We have presented the DL SHOQ(D), along with a
sound and complete decision procedure for concept satisfi-
ability/subsumption. With its support for both nominals and
concrete datatypes, SHOQ(D) is well suited to the provision
of reasoning support for ontology languages in general, and
web based ontology languages in particular. In addition, the
SHOQ(D) decision procedure is similar to the SHIQ de-
cision procedure implemented in the highly successful FaCT
system, and should be amenable to a similar range of perfor-
mance enhancing optimisations.

The only feature of languages such as OIL and
DAML+OIL (and SHIQ) that is missing in SHOQ(D) is
inverse roles. Its exclusion was motivated by the very high
complexity of reasoning that results from the unconstrained
interaction of inverse roles with nominals and datatypes. Fu-
ture work will include a detailed study of this interaction with
a view to providing (restricted) support for inverse roles with-
out triggering the explosion in complexity. An implementa-
tion (based on the FaCT system) is also planned, and will be
used to test empirical performance.
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