
Compiling computations to constraints for verified computation
Benjamin Braun

Thesis supervised by Dr. Michael Walfish
The University of Texas at Austin, Austin, TX

Abstract. We present a compiler that automates the task of converting high-level code to constraint sets of
the form accepted by the Ginger and Zaatar protocols for verified computation. Performing the conversion
from high-level code to constraints by hand is prone to human error and therefore not practical for large
computations. This paper evaluates the performance of the compiler and the effectiveness of its optimizations
on reducing the size of the constraint set. We show that the compiler can produce constraint sets for a number
of interesting computations, including DNA sequence alignment of 200 nucleotide sequences and partition-
about-medoids clustering of 100-dimensional data into two clusters.

1 Introduction
Resources such as the cloud or peer-to-peer networks offer powerful computing resources to clients at low
prices. When clients outsource work to a remote computer, they risk that incorrect results may be returned.
Verified computation is a cryptographic primitive for checking whether the remote computer carried out the
computation correctly.

There are many ways a client could check that a remote computer has returned correct results. A client
could simply outsource the same computation multiple times to different remote computers, and check
that the results match [2, 5, 10, 14]. However, in this approach the remote computers could collude and
agree to return a particular, incorrect, output. Another strategy the client could employ is to leverage trusted
hardware [6, 16] and remote attestation [1, 15] to ensure that the remote machine is running software that
the client knows is correct. These approaches place trust in the manufacturer of the trusted hardware.

On the other hand, new protocols for verified computation are emerging that can detect when a remote
computer has returned incorrect results with a bounded probability of error and that make no assumptions
about the remote computer. Some protocols of this kind have been built and evaluated, including those of
Thaler et. al. [8, 22] and the Pepper, Ginger, and Zaatar protocols of Setty et. al. [18–21]. These protocols
were developed to turn results from complexity theory, such as probabilistically checkable proofs [3, 4], into
nearly-practical systems.

In order to use the Ginger and Zaatar protocols to outsource a computation, the computation must be
represented as a set of constraints. This paper presents a multi-target compiler that takes high-level source
code for a computation and produces a representation of the same computation as a set of constrains in the
format required by the Ginger and Zaatar protocols.

The first part of this paper gives an overview of the Ginger and Zaatar protocols and introduces the prob-
lem of converting a computation to a set of constraints. Next, we presents the Broader Function Description
Language (BFDL), a high-level language for specifying computations that have equivalent constraint sets.
Next, we develops a systematic approach to compiling a computation expressed in BFDL to constraints.
Finally, we describe an optimizing compiler that implements this approach. We use the compiler to pro-
duce constraint sets for a number of interesting benchmark computations and investigate the effectiveness
of various compiler optimizations on reducing the size of generated constaint sets. We close with known
limitations to the compiler, and a discussion of future work.

We include BFDL code for all benchmark computations in the appendices.

2 Background
We give an overview of the Ginger and Zaatar protocols, focusing on the format of contraint sets these
protocols accept.

1

correctness proof

1) computation, inputs

2)

outputs

Figure 1—Diagram of verified computation using the Ginger or Zaatar protocols. A client, left, first sends a specifi-
cation of a computation and a batch of input datasets to an untrusted remote computer, right, which may be part of
the cloud or a peer-to-peer network. The remote computer runs the specified computation on the inputs, and returns
the output of the computation. Finally, the client and remote computer enter an interactive protocol which allows the
client to determine whether the remote computer performed the computation correctly.

2.1 Protocols for verified computation

Ginger. The Ginger protocol [21] provides an efficient, general-purpose way to perform verified compu-
tation, illustrated in Figure 1. The protocol makes use of a linear commitment primitive which is a refined
version of the primitive of Ishai et al. [11]. During the Ginger protocol, both the client and the remote com-
puter perform operations which make use of a representation of the computation being outsourced as a set
of constraints.

More precisely, in order to run the Ginger protocol, the computation being outsourced must be repre-
sented as a set of quadratic constraints over the field of integers modulo p, Zp, where p is some large prime.
The terminology used in the preceding statement requires some explanation. A quadratic constraint is an
equation of total degree 2 that uses additions and multiplications. A polynomial (or equation) has total de-
gree n whenever each of the terms of the polynomial (or equation) can be written as a product or at most n
variables and a constant factor. For example, Z1 + Z2 − 2Z1 · Z2 = 0 is a quadratic constraint. A set C of
quadratic constraints over variables Zi is satisfiable if there is some assignment to the Zi such that all of the
constraints in C hold simultaneously. The variables are partitioned into three subsets, X, Y , and M, where
the elements of X are designated “input variables,” the elements of Y are designated “output variables,” and
the elements of M are said to be “intermediate variables.” The names of these designations will make more
sense once the notion of constraints-computation equivalence is defined, below.

Let C(X = x, Y = y) denote the constraint set where each variable Xi is fixed to have value xi and each
variable Yi is fixed to have value yi. Thus, the Mi are the only free variables in C(X = x, Y = y).

A set of constraints C is equivalent to a computation Ψ : Z|X|p → Z|Y|p if, for any x ∈ Z|X|p and y ∈ Z|Y|p ,
C(X = x, Y = y) is satisfiable iff. y = Ψ(x).

Constraints-Computation Equivalence

For example, the following set of quadratic constraints C is equivalent to the computation Ψ which takes
an integer in Zp and returns x + 1.

C =

{
M1 − X1 = 0

M1 + 1− Y1 = 0

}
Proof. Consider two, possibly equal, values x, y in Zp. If y = x + 1, then assigning M1 = x satisfies
C(X = x, Y = y). Otherwise, if y 6= x + 1, then there is no value of M1 which satisfies C(X = x, Y = y).
Since these two cases describe all possible values of x and y, C(X = x, Y = y) is satisfiable if and only if
y = Ψ(x).

2

Once a constraint set C equivalent to a computation Ψ has been found, the client and remote computer
can begin the Ginger protocol. The client first sends its input datasets to the remote computer. After the
remote computer returns output for each of the input datasets, it proves to the client that it performed the
computation correctly by allowing the client to query its assignments to the variables of C. The client’s
queries have the form of vectors in Zn

p, where n = |M|+|M|2 and |M| is the number of intermediate variables
in the constraint set C. The remote computer responds to these queries by evaluating the dot product of each
query vector with a specially formed proof vector w ∈ Zn

p. For a complete description of these queries and
what they mean, as well as a proof that this protocol detects incorrect answers with high probability (under
standard cryptographic assumptions), please see the original Ginger publication [21].

Zaatar. The Zaatar protocol results from modifications to the Ginger protocol inspired by Quadratic Arith-
metic Programs (QAPs) [9]. The Zaatar protocol specifies that the constraints for the computation being
outsourced must have the form pA(Z) · pB(Z) = pC(Z), where pA, pB, and pC are polynomials with total
degree 1. Any such constraint is clearly a quadratic constraint. The compiler presented in this document can
compile to quadratic constraints as well as to constraints in the format required by Zaatar.

The Zaatar protocol differs from Ginger in how the remote computer derives its proof vector w, and
how the client queries this vector. As in Ginger, the remote computer proves to the client that it performed a
computation correctly on a batch of datasets by allowing the client to perform certain queries. These queries
take the form of vectors in Zn′

p , where n′ = |Z| + |C| + 1 and |Z| is the number of variables and |C| is the
number of constraints in a constraint set C for the computation being outsourced. The prover responds to
a query q for each input dataset by evaluating the dot product between q and a specially constructed proof
vector w ∈ Zn′

p . For a complete description of how the queries and the proof vector are constructed, please
see [19].

3 BFDL
We desire a high level language for representing the class of computations which have equivalent constraint
sets. Such a language should be designed so that a programmer can use the language without any knowledge
of constraint sets, their formats, or the Ginger or Zaatar protocols. On the other hand, the language should
not deceive the programmer about the expressiveness of constraints. We will show in section 6.1 that any
computation which can be represented as a list of simple assignment statements can be written as a set of
constraints. Hence, we seek a language which limits the programmer to using code structures which can be
expanded into lists of assignment statements.

The problem of compiling computations to lists of assignment statements is also encountered when
compiling high level code to circuits. The Secure Function Description Language (SFDL) was developed
by researchers studying secure computation to be a language which compiles to “theoretician’s Boolean
circuits” [13]. SFDL limits the programmer to writing programs which can be expanded to a list of as-
signment statements. The only looping structures available in SFDL are for-loops whose loop bounds are
compile-time constants. Function call recursion is not supported in SFDL.

The original SFDL compiler, the Fairplay compiler, unrolls for loops, separates multiple-arity assign-
ments, and expands if-else statements to produce a list of assignment statements equivalent to the computa-
tion being compiled.

We derive our compiler from the Fairplay compiler. Our modified compiler outputs constraint sets of ei-
ther the form accepted by Ginger or the form accepted by Zaatar. Because array access at an input-dependent
index does not have an efficient expansion in terms of constraint sets, our modified compiler does not accept
code where array accesses are not resolvable to constants. We augment the existing type system of the Fair-
play compiler with type inference functionality so that fewer variables have to have declared types. Because
of these modifications, our compiler accepts a different language than the original Fairplay compiler does.
We term this new language BFDL, for Broadened Function Description Language.

3

Snippet 1 BFDL code to count occurrences of an input integer in a list of m = 10 input integers
1. program test {

2. const m = 10;

3. type Input = struct{int<32> key, int<32>[m] list};

4. type Output = struct{int count};

5. function Output output (Input X){

6. var int count;

7. var int i;

8. count = 0;

9. for (i = 0 to m-1) {

10. if (X.list[i] == X.key) {

11. count = count + 1;

12. }

13. }

14. output.count = count;

15. }

16. }

Syntax of BFDL. BFDL uses C-style syntax, is statically typed, and supports type-inference. The language
supports three primitive types: boolean, int, and float. The boolean type can have two values, 0, which
is identified with the false keyword, and 1, which is identified with the true keyword. The int type by
default represents an arbitrary precision integer. The float type represents a rational number whose integer
is an arbitrary precision integer and whose denominator is an arbitrary precision integer, but which must be
a power of two.

As an example, BFDL code for a computation that counts the number of occurrences of an input integer
in an array of m = 10 input integers is given in Snippet 1. The structure of this code should be familiar
to those familiar with the C programming language. The keywords program, const, type, var, for, and
function begin a program, constant, type, variable, for-loop, or function definition, respectively. The main
function of a program must have the name output. Struct types are defined with the struct keyword, in
C fashion. Of interest is the int<32> type used in line 3, which is defined to be the type of a 32-bit signed
integer, i.e. an integer in the range [−231, 231 − 1]. Array indirection is supported, but the index into the
array must be resolvable at compile time, i.e. not a function of the inputs. It is required that variables which
are inputs to the main function (output) have declared types which are bounded, however other variables
can be declared with the unqualified int and float types. Helper functions to the output function can be
defined (see the appendix for examples.) However, function calls cannot be recursive. That is, a function can
appear at most once in a function call stack of any BFDL program.

We will present a systematic approach for compiling the code in Snippet 1 to constraints. This approach
will involve combining constraint sets for simple computations to produce a constraint set for a more com-
plex computations. At first glance, the notion of compiling the code in Snippet 1 to constraints is not well
defined, because while this example computation operates over 32-bit integers, we only defined constraint
equivalence for computations over Zp. We will show how to form constraint sets for simple computations,
and show how to resolve the difference between 32-bit integer computations and computations over Zp, in
the next sections.

4 Constraint sets for simple computations
This section presents constraint sets equivalent to simple computations. All of the presented constraint sets
are in the form accepted by the Zaatar protocol, and are hence of the form accepted by Ginger as well.

4

Boolean function Constraint

False 0− Y1 = 0
NOR (1− X1) · (1− X2)− Y1 = 0
X2, NOT X1 (1− X1) · X2 − Y1 = 0
NOT X1 1− X1 − Y1 = 0
X1, NOT X2 X1 · (1− X2)− Y1 = 0
NOT X2 1− X2 − Y1 = 0
XOR (−2X1) · X2 + X1 + X2 − Y1 = 0
NAND (−X1) · X2 + 1− Y1 = 0
AND X1 · X2 − Y1 = 0
EQUAL (2X1) · X2 − X1 − X2 + 1− Y1 = 0
X2 X2 − Y1 = 0
X1 =⇒ X2 (−X1) · (1− X2) + 1− Y1 = 0
X1 X1 − Y1 = 0
X2 =⇒ X1 (1− X1) · (−X2) + 1− Y1 = 0
OR (X1 − 1) · (1− X2) + 1− Y1 = 0
True 1− Y1 = 0

Figure 2—Each of the 16 Boolean functions of two inputs X1 and X2 can be represented as a single constraint.

4.1 Evaluating simple polynomials

Let Ψ be a computation which evaluates a polynomial over variables X taking values in Zp of the form
pA(X) · pB(X) + pC(X), where pA, pB, and pC are polynomials with total degree 1. Then the constraint
pA(X) · pB(X)− pC(X)− Y1 = 0 is clearly equivalent to Ψ.

One special case of the above result is that any Boolean expression of two inputs has an equivalent
constraint set. For example, the NAND (not-and) of two Boolean (0 or 1) inputs X1 and X2 can be written
as the polynomial (−X1) · X2 + 1. Hence, an equivalent constraint for NAND is (−X1) · X2 + 1 − Y1 = 0.
This process can be used to represent any two-input Boolean functions as a single constraint, as shown in
Figure 2.

Another special case is the construction of equivalent constraints for a simple multiplexer, also called a
mux. Let ΨMUX be a computation over Zp which takes one Boolean input X1 and two inputs X2 and X3, and
returns X2 if X1 is 1 and X3 if X1 is 0. Then ΨMUX can be written as the polynomial X1 · (X2 − X3) + X3, so
a constraint equivalent to ΨMUX is X1 · (X2 − X3) + X3 − Y1 = 0.

4.2 Equality testing

Define the computation Ψ!=(X) : Z2
p → Zp which takes two values X1 and X2 in Zp and returns 1 if X1 and

X2 are different values of Zp and 0 if they are the same. The constraint set shown below is equivalent to Ψ!=.

C!= =

{
M1 · (X1 − X2)− Y1 = 0
(1− Y1) · (X1 − X2) = 0

}
Proof. Consider some x ∈ Z2

p and some y ∈ Zp. The proof proceeds by cases.
Say x1 = x2, hence Ψ!=(x) = 0. If y = Ψ!=(x) = 0, then setting M1 = 0 satisfies C!=(X = x, Y = y).

Otherwise, if y 6= 0, then the first constraint of C!=(X = x, Y = y) is not satisfiable.
Take instead x1 6= x2, so Ψ!=(x) = 1. If y = Ψ!=(x) = 1, then the constraint set C!=(X = x, Y = y) is

satisfied by setting M1 to be the multiplicative inverse of X1−X2 in Zp. Otherwise, if y 6= 1, then the second
constraint of C!=(X = x, Y = y) is not satisfiable.

Thus, C!=(X = x, Y = y) is satisfiable if and only if Ψ!=(x) = y.

5

4.3 Order comparisons

The field Zp is not usually defined with a notion of an ordering of its elements. However, the hope for
outsourcing computations using Ginger and Zaatar would be bleak if we could only outsource computations
that do not use the < operation. We can define the < binary operation on a subset U of Zp by defining a
mapping from Z to Zp; this allows elements of U to make use of the standard ordering inherited from Z.
Define the mapping θ:

θ : Z→ Zp where p is a large, odd prime

θ(x) = x mod p

We can define a computation Ψ<,U(X) : Z2
p → Zp which takes two values X1 and X2 in a subset U ⊂ Zp and

returns 1 if θ−1(X1) < θ−1(X2) and 0 otherwise. Strictly speaking, θ is not uniquely invertible. However,
we define its inverse θ−1 to be in the range [−(p + 1)/2, (p + 1)/2− 1], so that θ−1 maps an element of Zp

in the sequence 0, 1, 2, ...(p + 1)/2−1 to the corresponding element of the sequence of nonnegative integers
0, 1, 2, ...(p + 1)/2− 1 and an element of Zp in the sequence (p + 1)/2, ...p− 2, p− 1 to the corresponding
element of the sequence of negative integers −(p + 1)/2,−(p + 1)/2 + 1...− 2,−1.

If U is defined such that θ−1(U) is the set of all integers {x s.t. |x| < 2N−1}, then Ψ<,U has an equivalent
constraint set over Zp, shown below, so long as p > 2N .

C<,U =



A1. M0(1−M0) = 0,
A2. M1(2−M1) = 0,

...
AN−1. MN−2(2N−2 −MN−2) = 0,

B1. M< · (1−M<) = 0,
B2. M= · (1−M=) = 0,
B3. M> · (1−M>) = 0,
B4. M< + M= + M> − 1 = 0,
B5. M< · (X1 − X2 + 2N−1 −

∑N−2
i=0 Bi) = 0

B6. M= · (X1 − X2) = 0
B7. M> · (X2 − X1 + 2N−1 −

∑N−2
i=0 Bi) = 0

B8. Y1 −M< = 0


Proof. We assume that X1 and X2 will always only be assigned values in U. Constraints B1 through B4 of
C<,U are satisfied precisely when one of M<, M=, and M> takes on the value 1 and the remaining two take
on the value 0. Hence, say that M< is assigned 1. In this case, C<,U can be seen as containing the constraint
set shown in section C.1 of [21], which is satisfiable iff. θ−1(X1) < θ−1(X2). Hence, C<,U is satisfiable
in this case iff. θ−1(X1) < θ−1(X2) and Y1 = 1. Similarly, when M> is assigned 1, C<,U can be seen as
containing the constraint set shown in section C.1 of [21] except where the roles of the input variables have
been reversed, hence C<,U is satisfiable in this case iff. θ−1(X2) < θ−1(X1) and Y1 = 0.

Finally, if M= is assigned 1, then the constraint set C<,U boils down to the constraints{
X1 − X2 = 0
Y1 − 0 = 0

}
, which are satisfiable iff. X1 = X2 and Y1 = 0.

Hence, for some x1, x2 ∈ U and some y ∈ Zp, C<,U(X = x, Y = y) is satisfiable only when y = 0
and x1 = x2 or θ−1(x1) > θ−1(x2) or when y = 1 and θ−1(x1) < θ−1(x2). But then C<,U is equivalent to
Ψ<,U .

6

Dom(Ψ)
(p+1)/2

p-1

0

g

f -1

ℤp

Range(Ψ)

Figure 3—Diagram of mapping the domain and range of a computation Ψ to Zp, so that the tools of Ginger and Zaatar
may be applied. Functions f and g are bijections and return output vectors in Zn

p, for some n. The case where n = 1 is
shown, in general Zp appears n times in the right-hand side of the above diagram.

5 Outsourcing computations not over Zp

For a computation Ψ which is not over Zp, there is (sometimes) a substitute computation for Ψ over Zp.
Define Ψ̃ be a computation over Zp with the property that Ψ(X) = f−1(Ψ̃(g(X))), where g is a bijection
from the domain of Ψ to vectors whose components lie in a subset of Zp and f is a bijection from the range
of Ψ to vectors whose components lie in a subset of Zp. Rather than outsourcing Ψ, a client can outsource
Ψ̃ on an input X mapped under the function g. Then, after applying a proof protocol to guarantee that the
remote computer’s output Y ′ is in fact Ψ̃(g(X)), the client can retrieve the value of Ψ(X) by computing
f−1(Y ′). This strategy is illustrated in Figure 3.

One example of this strategy is that the computation Ψ<,U of section 4.3 is a substitute for the compu-
tation that takes two integers x1, x2 in the set U = [−2N−1, 2N] for some integer N and returns 1 if x1 < x2
and 0 otherwise. Here, we have set f (x1, x2) = (θ(x1), θ(x2)) and g = θ, where θ is defined in Section 4.3.
Thus f and g are bijections as long as p > 2N .

Another use of this strategy is to produce substitutes for computations over rational numbers. Here we
make use the mapping function θQ:

θQ : Q→ Zp

θQ

(a
b

)
= ab−1 mod p

Define the set of rational numbers U = {a/b : |a| < 2Na , b ∈ {1, 2, 22, 23, ...2Nb}}. Assuming that p is a
prime with at least 2(1 + max{Na, Nb}) bits, θQ is a bijection from U to Zp [21].

5.1 Constraints for arithmetic over rational numbers

Let x1 and x2 be two rational numbers in the set U = {a/b : |a| < 2Na , b ∈ {1, 2, 22, 23, ...2Nb}} whose
sum and product is also in U, and let p be a prime with at least 2(1 + max{Na, Nb}) bits. Then it turns out
that θQ(x1 + x2) = θQ(x1) + θQ(x2) and that θQ(x1 · x2) = θQ(x1) · θQ(x2) [21]. Hence, the operations of
addition and multiplication over such numbers x1 and x2 can be substituted with the operations of addition
and multiplication over Zp, where f (x1, x2) = (θQ(x1), θQ(x2)) and g = θQ.

5.2 Constraints for order comparison over rational numbers

We can produce a substitute computation for the computation Φ that takes two rational numbers x1, x2 in
the set U = {a/b : |a| < 2Na , b ∈ {1, 2, 22, 23, ...2Nb}} for two integers Na and Nb and returns 1 if x1 < x2
and 0 otherwise. Under these assumptions, it is the case that x1 − x2 ∈ S, where S = {a/b : |a| < 2N′

a , b ∈
{1, 2, 22, 23, ...2Nb}} where N′a = Na + Nb + 1.

7

We can define Ψ<Q,S to be the computation over Zp which takes two field elements x1, x2 and returns 1 if
θ−1

Q (x1) < θ−1
Q (x2) and 0 otherwise. Clearly, Ψ<Q,S is a substitute computation for Φ where we have defined

f (x1, x2) = (θQ(x1), θQ(x2)) and g = θQ. Constraints equivalent to Ψ<Q,S are shown below.

C<Q,S =



D1. A0(1− A0) = 0,
D2. A1(2− A1) = 0,
...

...
DN′

a
. AN′

a−1(2N′
a−1 − AN′

a−1) = 0,

DN′
a+1. A− (p− 2N′

a)−
∑N′

a−1
i=0 Ai = 0,

E1. B0(1− B0) = 0,
E2. B1(1− B1) = 0,
...

...
ENb+1. BNb(1− BNb) = 0,

F1.
∑Nb

i=0 Bi − 1 = 0,

F2. B−
∑Nb

i=0 Bi · θ−1
Q (1/2i) = 0,

F3. C − A · B = 0
G1. M< · (1−M<) = 0,
G2. M= · (1−M=) = 0,
G3. M> · (1−M>) = 0,
G4. M< + M= + M> − 1 = 0,
G5. M< · (X1 − X2 − C) = 0
G6. M= · (X1 − X2) = 0
G7. M> · (X2 − X1 − C) = 0
G8. Y1 −M< = 0


Proof. Assume that p is a prime with at least 2(1 + max{N′a, Nb}) bits.

Constraints G1 through G4 of C<Q,S are satisfied whenever exactly one of M<, M= and M> are assigned
1 and the remaining two are assigned 0. If M< is assigned 1, then the constraint set can be seen as containing
the constraint set in section C.2 of [21], which is satisfiable iff θ−1

Q (X1) < θ−1
Q (X2). Hence, in this case,

C<Q,S is satisfiable iff. θ−1
Q (X1) < θ−1

Q (X2) and Y1 = 1. If instead M> is assigned 1, then the constraint set
can be seen as containing the contraint set in section C.2 of [21], except that the roles of the input variables
have been reversed. Hence, in this case, C<Q,S is satisfiable iff. θ−1

Q (X2) < θ−1
Q (X1).

Finally, if M= is assigned 1, then the constraint set boils down to the following constraints{
X1 − X2 = 0
Y1 − 0 = 0

}
, which are satisfiable iff. X1 = X2 and Y1 = 0.

Hence, for some x1, x2 ∈ θQ(U) and some y ∈ Zp, C<,U(X = x, Y = y) is satisfiable only when y = 0
and x1 = x2 or θ−1

Q (x1) > θ−1
Q (x2) or when y = 1 and θ−1

Q (x1) < θ−1
Q (x2). But then C<,U is equivalent to

Ψ<,U .
The assumption that p is a prime with at least 2(1 + max{N′a, Nb}) bits was required to make use of

results from Section C.2 of [21].

8

6 Compiling BFDL to constraints
6.1 Systematic construction of constraint sets

We now return to the problem of compiling the example BFDL code in Snippet 1 to constraints. Compilation
begins by producing from BFDL code an intermediate representation of the computation in single assign-
ment form. In single assignment form, a computation is represented as a sequence of assignment statements
such that no variable is assigned no more than once.

The BFDL code in Snippet 1 is converted to single assignment form in Snippet 2. Note that the loop in
line 9 of Snippet 1 has been unrolled, and that variables have been added to represent the state of variable
count at each point in the computation. Furthermore, note that the if statement has been converted to single
assignment form by creating a multiplexing statement which chooses between two values for count based
on the value of the condition of the if statement.

Snippet 2 Assignments to count occurrences of an input integer in a list of m = 10 input integers
cond1 ← X.list[0] != X.key

count1 ← ΨMUX(cond1, 0, 1)
cond2 ← X.list[1] != X.key

count2 ← ΨMUX(cond2, count1, count1 + 1)
...
cond10 ← X.list[9] != X.key

count10 ← ΨMUX(cond10, count9, count9 + 1)

Each of the right hand sides in the assignments in Snippet 2 perform computations which we know how
to convert to constraints, by Section 4. These constraint sets can be combined to form a constraint set for
the entire computation, shown in Snippet 3. The only wrinkle when combining constraint sets in this way is
that intermediate variables will need to be renamed to avoid naming collisions between the constraint sets.

Snippet 3 Constraint set which counts occurrences of an input integer in a list of m = 10 input integers

C =



M1 · (Xlist[0] − Xkey)−Mcond1
= 0

(1−Mcond1
) · (Xlist[0] − Xkey) = 0

Mcond1
· (0− 1) + 1−Mcount1 = 0

M2 · (Xlist[1] − Xkey)−Mcond2
= 0

(1−Mcond2
) · (Xlist[1] − Xkey) = 0

Mcond2
· (Mcount1 −Mcount1 + 1) + Mcount1 −Mcount2 = 0

...
M10 · (Xlist[9] − Xkey)−Mcond10

= 0
(1−Mcond10

) · (Xlist[9] − Xkey) = 0
Mcond10

· (Mcount9 −Mcount9 + 1) + Mcount9 − Ycount10 = 0


The constraint set in Snippet 3 has 11 designated input variables Xi, subscripted according to their name

in the single assignment form and 1 designated output variable Ycount1 . The remaining 29 intermediate
variables Mi are subscripted according to either their name in the single assignment form or integers starting
from 1 if they were created by expanding an operation into constraint sets.

A detail glossed over in the above description of compilation is that the original computation was over Z,
but the constraint sets are over Zp. In fact, the point at which operations over Z were converted to operations
over Zp is in the conversion from BFDL to single assignment form. Any constants written in a BFDL

9

BFDL Assignments ConstraintsP1

P2

P3

Figure 4—Diagram of the compiler pipeline used to compile a computation specified in BFDL to a constraint set for
either the Ginger or Zaatar framework. The target framework for the compiler is determined before compiling begins.
Task P1 is performed using the BFDL compiler described in Section 6.2 to compile a piece of BFDL code to a list of
assignments. Task P2 uses various optimizations in the modified SFDL compiler to reduce the number of assignment
statements in this list of assignments. The behavior of these optimizations changes depending on whether the target
framework is Ginger or Zaatar. Task P3 is performed by the compiler backend and converts a list of assignments to a
constraint set of the format accepted by the target framework.

program, say a constant −3, are replaced with their image under the function θQ (defined in Section 5),
which for this constant would be p − 3. Any instances of floating point addition, multiplication, and order
comparison in a BFDL program are treated as operations over rational numbers, which can be represented
as constraints using the techniques of Section 5. Thus, the value of p must be chosen to be large enough
so that θQ bijectively maps all possible intermediate values of any variable in the computation to Zp, when
the computation is run on any valid input. The compiler produces alongside the output constraint set for a
computation the smallest value of p for which the computation can be run safely in the Ginger and Zaatar
protocols.

6.2 Compiler implementation

We implement a compiler, illustrated in Figure 4, which automates the translation described in Section 6.1.
The task of converting BFDL code to assignments, P1, is performed by a modified version of the Fairplay
compiler [13]. The task of optimizing the list of assignments, P2, refers to existing optimizations in the
Fairplay compiler as well as some domain-specific optimizations we add, see below. The BFDL compiler
contains 5294 lines of Java, as opposed to the Fairplay compiler’s 3886. The task of converting assignments
to constraints, P3, is performed by a new Python program of 1105 lines.

6.3 Robust compilation for large computations

When the size of the computation being performed becomes very large, the list of assignments being pro-
duced may be too large to hold in memory. One modification of the BFDL compiler is that it streams the
list of assignments to disk as it is generated. This dramatically reduces the memory use required to run the
compiler on large computations. An additional measure could be to use a structured database to hold the
compiled representation as in [12], and this would allow the compiler to scale up to even larger computa-
tions.

6.4 Optimizations

The work performed by the client and the remote computer during the Ginger and Zaatar protocols scales
with the number of variables, and constraints in a constraint set. We present a number of optimizations
which the compiler performs in an attempt to reduce the number of variables or constraints in the compiled
constraint set.

The Fairplay compiler removes dead code and redundant statements from the output list of assignments,
and it evaluates constant expressions where possible. These optimizations, which are global in the Fair-
play compiler, are replaced with locally optimizing equivalents in the BFDL compiler. Implementing these
optimizations in the streaming output model used by the compiler requires some care.

First, the BFDL compiler sequentially expands program structures in the BFDL code to produce a list

10

M4 ← M1 + M3
M5 ← M2 + M3
M6 ← M4 ·M5

M4 ← M1 ·M3
M5 ← M2 + M3
M6 ← M4 + M5

M3 ← M2 −M1
M4 ← M3 ·M3

↓ ↓ ↓
M6 ← (M1 +M3) · (M2 +M3) M6 ← (M1) · (M3)+M2 +M3 M4 ← (M2−M1) · (M2−M1)

Figure 5—Combining simple assignment statements to produce a single assignment statement which can be repre-
sented in a single constraint. The extent to which the compiler can consolidate statements in this way is limited by the
constraint format accepted by the target protocol for compilation, which is either Zaatar or Ginger. Left, Center: the
arguments to an addition or multiplication operation are inlined, resulting in a computation with a single assignment
which can be expanded to a single constraint. Right: The variable M3 is inlined twice into an assignment for M4. By
default, the compiler will inline an assignment only if the assignment becomes dead code as a result. When an assign-
ment is referenced multiple times, such as in the right-most example above, the compiler will inline an expression up
to a maximum number of times indicated by a compiler parameter.

of assignment statements. Specifically, the compiler visits each node on the parse tree of the BFDL code
in-order, and for each node emits a sequence of assignment statements equivalent to that node.

Next, the compiler gathers profiling information on the output list of assignment statements. The com-
piler produces a reversed list of the assignments (using the efficient tac program available on many Linux
distributions). In the reversed ordering, the first assignment which references a given variable ends the scope
of, or “kills,” the referenced variable. By iterating over the reversed list of assignment statements, the com-
piler can efficiently produce a list (in reverse order) of tuples (i, j, k) where i is some variable, j is the
assignment which kills variable i (if i is killed), and k is the number of times variable i is referenced. This
output list of tuples is reversed (again with the tac program) to produce a list of profiling data (in the correct
order) which is used during optimization.

Dead, redundant, and constant assignments. The compiler performs dead code elimination in a stream-
ing fashion by iterating over the list of assignments and removing those which, according to the profiling
data, are never referenced.

The compiler also retains a buffer of the past N statements written to the disk in this way. Only assign-
ment statements in this window of statements are visible to the optimization routines. The compiler also
retains a table of values for each live variable which can be referenced at the current node of the parse tree
being visited, if that value is a constant, or a simple reference to another variable. Hence, the compiler can
make use of the buffer of the past N statements and the values of some of the live variables when applying
optimizations. Redundant assignments can be removed by efficiently checking whether the statement under
investigation is in the past N statements, using a hash table lookup. Constant expressions are simplified by
attempting to replace variable references in every assignment with their corresponding constant values (if
available).

Combining gates By default, the BFDL compiler outputs one assignment statement for every primitive
operation in the BFDL code, i.e. one for each +, ·, ! =, <, and ΨMUX operation. However, we can represent
an assignment statement of the form Zi ← pA(Z) · pB(Z) + pC(Z), where pA, pB, and pC are polynomials of
total degree 1, in a single constraint in the Zaatar format. Additionally, any assignment statment of the form
Zi ← P2(Z) where P2 is any polynomial of total degree 2 can be represented using a single constraint in the
Ginger format.

We introduce an optimization to the BFDL compiler which consolidates arithmetic operations, so that
the resulting assignment statement can be expanded in a single constraint. This optimization is shown in
Figure 5. Only statements which all simultaneously exist in the buffer of the past N statements can be
combined in this way.

11

6.5 Improvements to the type system

The BFDL compiler associates with each variable its declared type, which appears in the BFDL code, and
its actual type, which is determined by the expressions assigning a variable its value. The input variables to
the main function, output, have actual type equal to their declared type. The compiler can propagate types
through any of the primitive operations (+, ·, ! =, <) in a computation, to produce the actual type of the
remaining variables. If at any time the declared type of a variable is not a subtype of the actual type of that
variables value, a type error is thrown. The type system uses conservative rules to determine the type of an
expression. In the case that the programmer can prove that a particular expression has a particular type, the
programmer can make use of the special meta-function reinterpret_cast to re-type an expression.

7 Evaluation
Benchmark computations We implemented 6 benchmark computations in BFDL, which we use to evalu-
ate the performance of the compiler. We implement (a) Floyd-Warshall all pairs shortest paths [7], (b) DNA
sequence global alignment [17], (c) the fannkuch benchmark 1, (d) insertion sort, (e) matrix multiplication,
and (f) Partitioning Around Medoids (PAM) clustering [23].

Details of testbed We run All experiments on a computer equipped with an Intel Xeon processor E31270
3.40GHz with 15.6 GB of RAM. All running time data was collected by repeating the trial at least three
times; the standard deviation of the measurement was always less than 5% of the mean.

Analysis of compiler improvements. Figure 6 shows the effectiveness of the gate combining optimization.
In general, this computation offers at least a 2x reduction in the size of the list of assignment statements.

Figure 7 shows the effect of increasing the size of the compiler window on the size of the list of assign-
ment statements. A lower buffer size uses less memory during compilation. For buffer sizes above 1024, the
results are within 1% of the unlimited size case.

End-to-end running time Figure 8 shows the running times of the compiler to produce constraint sets for
the benchmark computations, and the size of the produced constraint sets.

8 Conclusion
The compiler presented in this paper successfully produces constraint sets equivalent to arguably useful
computations at realistic input sizes. The compiler allows a user to easily apply the Ginger and Zaatar
protocols to outsource some computation Ψ in a simple way. The user writes the computation Ψ in BFDL,
runs the compiler on the BFDL code to produce a constraint set equivalent to Ψ using either the Ginger
or Zaatar format specification, and then outsources the constraint set produced using the Ginger or Zaatar
protocols.

9 Acknowledgements
I would like to thank Dr. Mike Walfish and doctoral candidate Srinath Setty for their help on this project.

1See http://www.haskell.org/haskellwiki/Shootout/Fannkuch.

12

0.02 0.02
0

0.5

1

0

0.5

1

G
inger

Z
aatar

all pairs
shortest paths

DNA
alignment

fannkuch insertion
sort

matrix
multiplication

PAM
clustering

N
o.

of
as

si
gn

m
en

ts
(f

ra
ct

io
n

of
ba

se
lin

e)

Figure 6—Number of assignment statements produced by the compiler when gate combining is disabled (dark bar) or
enabled (light bar) for the benchmark computations, and when the compiler is outputting Ginger (top graph) or Zaatar
(bottom graph) format constraints. The computations are run at the following input sizes: Floyd-Warshall’s all pairs
shortest paths algorithm on a graph with m = 25 nodes, DNA alignment on two m = 200 nucleotide sequences, the
Fannkuch benchmark on m = 100 permutations of the numbers {1, 2, ...13}, insertion sort on an array of m = 256
integers, matrix multiplication on m × m matrices where m = 100, and PAM clustering on m = 20 data points of
dimension 100.

0%

1%

2%

3%

all pairs
shortest paths

DNA
alignment

fannkuch insertion sort PAM
clustering

N
o.

of
as

si
gn

m
en

ts
(%

in
cr

ea
se

vs
.u

nl
im

ite
d)

Buffer size
16
64
256
1024
4096
Unlimited

Figure 7—Increase in the size of the list of assignments produced by the compiler (Zaatar output mode) for various
choices of compiler window size. The computations are run at the following input sizes: Floyd-Warshall’s all pairs
shortest paths algorithm on a graph with m = 10 nodes, DNA alignment on two m = 50 nucleotide sequences, the
Fannkuch benchmark on 10 permutations of the numbers {1, 2, ...13}, insertion sort on an array of m = 64 elements,
and PAM clustering on m = 5 data points of dimension 100. Results for Ginger are similar.

13

Ginger
Computation Ψ Compile (s) Optimize (s) Constraints (s) Total (s) |w| K
DNA alignment 221 518 213 953 1.8e+12 4.7e+06
fannkuch 80 441 198 721 1.4e+12 4.6e+06
all pairs shortest paths 17 57 132 206 4.7e+11 2.7e+06
insertion sort 24 82 253 360 1.6e+12 5.2e+06
matrix multiplication 45 208 46 301 2.5e+09 1.1e+06
PAM clustering 89 525 206 822 3e+11 3.9e+06

Zaatar
Computation Ψ Compile (s) Optimize (s) Constraints (s) Total (s) |w| Nz(A, B, C)
DNA alignment 218 559 201 979 3.5e+06 5.7e+06
fannkuch 80 487 202 770 3.3e+06 5.8e+06
all pairs shortest paths 18 62 106 187 1.7e+06 3.4e+06
insertion sort 25 86 201 312 3.4e+06 6.6e+06
matrix multiplication 46 319 150 516 2.1e+06 4e+06
PAM clustering 95 497 225 819 3.4e+06 6.7e+06

K: # of non-zero terms in Ginger constraint set for Ψ
Nz(A, B, C): # of non-zero terms in Zaatar constraint set for Ψ
|w|: # of entries in the vector w encoding a proof (§2.1)

Figure 8—Compile time and constraint set sizes for the benchmark applications, when the compiler is run in either
Ginger or Zaatar mode, with Ginger results on top and Zaatar results on bottom. Input sizes to all computations are
the same as those in Figure 6. Compile: time to produce the initial compiled circuit. Optimize: time to optimize the
circuit (dead code elimination, concise gate introduction). Constraints: time to convert the circuit description of the
computation to a constraint set equivalent to the computation. Total: sum of the preceding three columns. For an
analysis of how K, Nz(A, B, C) and |w| affect the runtime of the Ginger and Zaatar protocols, see [19].

14

References
[1] S. Alsouri, Ö. Dagdelen, and S. Katzenbeisser. Group-based attestation: Enhancing privacy and

management in remote attestation. In TRUST, 2010.
[2] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer. SETI@home: An experiment

in public-resource computing. CACM, 45(11):56–61, Nov. 2002.
[3] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the hardness of

approximation problems. J. of the ACM, 45(3):501–555, May 1998.
[4] S. Arora and S. Safra. Probabilistic checking of proofs: a new characterization of NP. J. of the ACM,

45(1):70–122, Jan. 1998.
[5] M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive recovery. ACM Trans. on

Computer Sys., 20(4):398–461, 2002.
[6] A. Chiesa and E. Tromer. Proof-carrying data and hearsay arguments from signature cards. In ICS,

2010.
[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT Press, 1990.
[8] G. Cormode, M. Mitzenmacher, and J. Thaler. Practical verified computation with streaming

interactive proofs. In ITCS, 2012. Earlier version: http://arxiv.org/abs/1105.2003, May 2011.
[9] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and succinct NIZKs

without PCPs. Apr. 2012. Cryptology eprint 215.
[10] A. Haeberlen, P. Kouznetsov, and P. Druschel. PeerReview: Practical accountability for distributed

systems. In SOSP, 2007.
[11] Y. Ishai, E. Kushilevitz, and R. Ostrovsky. Efficient arguments without short PCPs. In Conference on

Computational Complexity (CCC), 2007.
[12] B. Kreuter, abhi shelat, and C. hao Shen. Billion-gate secure computation with malicious adversaries.

In USENIX Security, Aug. 2012.
[13] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay—a secure two-party computation system. In

USENIX Security, 2004.
[14] D. Malkhi and M. Reiter. Byzantine quorum systems. Distributed Computing, 11(4):203–213, 1998.
[15] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki. Flicker: An execution

infrastructure for TCB minimization. In EuroSys, 2008.
[16] A.-R. Sadeghi, T. Schneider, and M. Winandy. Token-based cloud computing: secure outsourcing of

data and arbitrary computations with lower latency. In TRUST, June 2010.
[17] P. H. Sellers. On the theory and computation of evolutionary distances. SIAM J. of Appl. Math.,

26(4):787–793, 1974.
[18] S. Setty, A. J. Blumberg, and M. Walfish. Toward practical and unconditional verification of remote

computations. In HotOS, 2011.
[19] S. Setty, B. Braun, V. Vu, A. J. Blumberg, B. Parno, and M. Walfish. Resolving the conflict between

generality and plausibility in verified computation, Oct. 2012.
[20] S. Setty, R. McPherson, A. J. Blumberg, and M. Walfish. Making argument systems for outsourced

computation practical (sometimes). In NDSS, Feb. 2012.
[21] S. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg, and M. Walfish. Taking proof-based verified

computation a few steps closer to practicality (extended version). In USENIX Security, Aug. 2012.
[22] J. Thaler, M. Roberts, M. Mitzenmacher, and H. Pfister. Verifiable computation with massively

parallel interactive proofs. In USENIX HotCloud Workshop, June 2012.
[23] S. Theodoridis and K. Koutroumbas. Pattern Recognition, Third Edition. Academic Press, Inc., 2006.

15

10 Appendix: BFDL code for benchmark computations
10.1 BFDL code for Floyd-Warshall’s all pairs shortest paths

program f_w_apsp{

//Constants

const m = 50;

const Infinity = 0x7FFFFFFF; //Maximum value of a 32bit signed int

//types

type dist_t = int<32>; //The type for weights and shortest path lengths

//Input - a square matrix holding the weights of the directed edges of

//the graph. W[i][j] is the weight of edge (i,j), or Infinity if

//the edge does not exist. The graph must not have any negative weight cycles.

type Input = struct{dist_t[m][m] W};

//Output - a square matrix holding the shortest path lengths between

//every pair of nodes in the graph.

//We assume that the shortest path between any two nodes will have a

//length which fits in a 32 bit signed integer.

type Output = struct {dist_t[m][m] D};

//functions

function dist_t min(dist_t a, dist_t b){

if (a < b){

min = a;

} else {

min = b;

}

}

function Output output (Input X){

var int i;

var int j;

var int k;

var dist_t[m][m] D;

var dist_t[m][m] Dnext;

//Initialize the matrix D to be the weights of the graph

D = X.W;

//These for loops follow the structure of the description of the Floyd

//Warshall algorithm in the CLR Intro to Algorithms textbook.

for(k = 0 to m-1) {

for(i = 0 to m-1) {

for(j = 0 to m-1) {

Dnext[i][j] = D[i][j];

//If D[i][k] and D[k][j] are both finite, then the path that goes

//from i -> k -> j is an option.

//Strictly speaking, it is possible for the shortest path between

//two nodes to exceed the bounds of 32 bit signed integers.

//However, we explicitly assumed that this does not occur in the

//problem statement - hence a reinterpret_cast here is valid.

if (D[i][k] != Infinity & D[k][j] != Infinity){

Dnext[i][j] = min(

Dnext[i][j],

reinterpret_cast(dist_t, D[i][k] + D[k][j]));

16

}

}

}

D = Dnext;

}

output.D = D;

}

}

10.2 BFDL code for DNA alignment

program DNA_alignment{

//Constants

const m = 50;

const n = 50; //n >= m

//types

type char = int<16>;

type Input = struct{char[m] A, char[n] B};

//If the LCS is shorter than n characters, the result will be terminated

//with the zero character, i.e. a C-style string is returned.

type Output = struct {char[n] LCS};

//functions

//Returns true iff. 0 <= i < a and 0 <= j < b

function boolean checkIndex2(int i, int j, int a, int b){

checkIndex2 = (0 <= i) & (i < a) & (0 <= j) & (j < b);

}

//main method, called "output"

function Output output (Input X){

var int i;

var int ir;

var int j;

var int jr;

var int[m] A;

var int[n] B;

//Dynamic programming memo

var int[m][n] LL;

//Hold choices made at each step, for use when backtracking

var int[m][n] choices;

//Used when backtracking

var boolean inserted;

var int iPtr;

var int jPtr;

var int diag;

var int down;

var int right;

var char[m] LCS; //min(m,n) = m

A = X.A;

B = X.B;

//Go backwards from i = m-1 downto 0

for(ir = 0 to m-1){

i = m-1-ir;

for(jr = 0 to n-1){

j = n-1-jr;

17

if (A[i] == B[j]){

if (checkIndex2(i+1,j+1,m,n)){

diag = LL[i+1][j+1];

} else {

diag = 0;

}

//Diagonal jump

LL[i][j] = 1 + diag;

choices[i][j] = 0;

} else {

if (checkIndex2(i+1,j,m,n)){

down = LL[i+1][j];

} else {

down = 0;

}

if (checkIndex2(i,j+1,m,n)){

right = LL[i][j+1];

} else {

right = 0;

}

//Assertion: down and right differ by at most 1

if (down == right + 1){

//Jump down

LL[i][j] = down;

choices[i][j] = 1;

} else {

//Jump right if down == right or right == down + 1.

LL[i][j] = right;

choices[i][j] = 2;

}

}

}

}

//Construct LCS, allowing it to have intermittent zero characters

iPtr = 0;

jPtr = 0; //Pointers to where in LL we are with respect to backtracking

for(i = 0 to m-1){

LCS[i] = 0; //If A[i] is not in the LCS, this remains 0.

for(j = 0 to n-1){

if ((i == iPtr) & (j == jPtr)){ //Loop until we meet up with the iPtr and jPtr

if (choices[i][j] == 0){ //we made a diagonal jump here

LCS[i] = A[i];

iPtr = iPtr + 1;

jPtr = jPtr + 1;

} else {

if (choices[i][j] == 1){//jump down

iPtr = iPtr + 1;

} else { //jump right

jPtr = jPtr + 1;

}

}

}

}

}

//Now move any string terminator (\0) characters in LCS to the end ala

//insertion sort

for(i = 1 to m-1){

18

inserted = false;

for(j = 0 to i-1){

if ((LCS[j] == 0) & !inserted){

//Swap LCS[j] and LCS[i].

LCS[j] = LCS[i];

LCS[i] = 0;

inserted = true;

}

}

}

output.LCS = LCS;

}

}

19

10.3 BFDL code for fannkuch benchmark

program fannkuch{

//Constants

const m = 13; //Fn only supplied for m <= 13.

const Fn = {0, 0, 1, 2, 4, 7, 10, 16, 22, 30, 38, 51, 65, 80}; //the n’th Fannkuch numbers

const log2_m = 5;

const L = 5; //How many permutations to run.

//types

type Input = struct{int<log2_m>[m] a};

type Output = struct {int flips};

//main method, called "output"

function Output output (Input X){

var int i;

var int j;

var int k;

var int u;

var int iter;

var int flipNum;

var int[m] a;

var int[m] b;

var int flips;

var int winningK;

var int aWinningK;

var int winningU;

var int aWinningU;

output.flips = 0;

for(j = 0 to L-1){

a = X.a;

b = a;

flips = 0;

for(i = 0 to Fn[m]-1) {

if (a[0] != 1){

flips = flips + 1;

for(flipNum = 2 to m) {

if (a[0] != flipNum){

} else {

for(j = 0 to flipNum-1){

b[j] = a[flipNum - 1 - j];

}

}

}

a = b;

}

}

if (flips > output.flips){

output.flips = flips;

}

//Advance X.a to the next lexographic permutation.

//Find the largest index k such that a[k] < a[k+1].

winningK = -1;

aWinningK = -1;

for(k = 0 to m-2){

if (X.a[k] < X.a[k+1]){

20

winningK = k;

aWinningK = X.a[k];

}

}

if (winningK != -1){

//Find the largest index u such that a[winningK] < a[u].

//Since k >= 0 and u > k, u >= 1.

for(u = 1 to m-1){

if (aWinningK < X.a[u]){

winningU = u;

aWinningU = X.a[u];

}

}

//Swap a[k] and a[u].

for(i = 0 to m-1){

if (i == winningK){

X.a[i] = aWinningU;

}

if (i == winningU){

X.a[i] = aWinningK;

}

}

//Reverse the sequence a[k+1] up to a[m-1]

b = X.a;

for(i = 0 to m-1){

if (i == winningK){

for(u = i+1 to m-1){

X.a[u] = b[i+m-u]; //m-1-(u-(i+1)) = m-1-(u-i-1)

}

}

}

}

}

}

}

21

10.4 BFDL code for insertion sort

program insertion_sort{

//Constants

const m = 512;

//types

type Input = struct{int<32>[m] a};

type Output = struct {int<32>[m] Ya};

//functions

//main method, called "output"

function Output output (Input X){

var int i;

var int j;

var int[m] a;

var int[m] b;

var boolean inserted;

a = X.a;

b = a;

for(i = 0 to m-1) {

inserted = false;

//Try to insert a[i] into a[0...i-1]

for(j = 0 to i-1) {

if (b[i] < b[j]) {

if (inserted) {

b[j] = a[j-1];

} else {

b[j] = a[i];

inserted = true;

}

} else {

b[j] = a[j];

}

}

if (inserted) {

b[i] = a[i-1];

} else {

b[i] = a[i];

}

//update list

a = b;

}

output.Ya = a;

}

}

22

10.5 BFDL code for matrix multiplication

program matrixmult{

//Constants

const m = 10;

//Types

type Output = struct {int[m][m] Y};

//Functions

function Output output (int<32>[m][m] Xa, int<32>[m][m] Xb){

var int i;

var int j;

var int k;

for (i = 0 to m-1) {

for (j = 0 to m-1) {

output.Y[i][j] = 0;

for(k = 0 to m-1) {

output.Y[i][j] = output.Y[i][j] + Xa[i][k] * Xb[k][j];

}

}

}

}

}

23

10.6 BFDL code for PAM clustering

program pam_clustering{

//Constants

const k = 2; //Number of clusters

const d = 100; //Dimensionality of datapoints

const m = 5; //Number of datapoints

const L = 5; //Number of times to run the swap phase (Each iteration tests (m-1)*k configurations)

//types

//Input - An m by d matrix A, such that A[i][j] is the j-th coordinate

//of the i-th datapoint

type Input = struct{float<32, 5>[m][d] A};

//Output - A vector c of m elements, such that c[i] indicates which

//cluster,

//numbered 1 through k, datapoint i is in.

type Output = struct {int[m] c};

function float getDistance(float[d] a, float[d] b){

var float diff;

var int i;

//Squared euclidean distance

getDistance = 0;

for(i = 0 to d-1){

diff = a[i] - b[i];

getDistance = getDistance + diff * diff;

}

}

function float getPointCost(float[d] a, float[k][d] medoids){

var float cndPointCost;

var int i;

getPointCost = getDistance(a, medoids[0]);

for(i = 1 to k-1){

cndPointCost = getDistance(a, medoids[i]);

if (cndPointCost < getPointCost){

getPointCost = cndPointCost;

}

}

}

function float getCost(float[m][d] A, float[k][d] medoids){

var float cost;

var int i;

cost = 0;

for(i = 0 to m-1){

cost = cost + getPointCost(A[i], medoids);

}

getCost = cost;

}

//main method, called "output"

function Output output (Input X){

var int i;

var int j;

var int u;

24

var int iter;

var float[m][d] A;

var int[m] c;

var float[k][d] medoids; //The current medoids

var boolean[m] isMedoid; //isMedoid[i] is true if the i-th dp is a medoid

var float optDist;

var float newDist;

var float newCost;

var float currentCost;

var float testDistance;

var float[d] backup;

var float[m] pointCosts;

var float[m] newPointCosts;

A = X.A;

//Randomly choose medoids

for(i = 0 to m-1){

isMedoid[i] = false;

}

//Currently, just set the medoids to be the first k datapoints

for(i = 0 to k-1){

isMedoid[i] = true;

medoids[i] = A[i];

}

//Initial cost

currentCost = getCost(A, medoids);

//Swap phase

for(iter = 0 to L-1) {

for(i = 0 to k-1){

//Swap medoid i with a nonmedoid point in the best way,

//or leave it as is if no better point found

for(j = 0 to m-1){

if (j != i){

if (!isMedoid[j]){

//This is a possible medoid - nonmedoid swap.

//Compute the change in cost as a function of the swap

backup = medoids[i];

medoids[i] = A[j];

newCost = getCost(A, medoids);

//Is it an improvement?

if (newCost < currentCost){

isMedoid[j] = true;

isMedoid[i] = false;

currentCost = newCost;

} else {

medoids[i] = backup;

}

}

}

}

}

}

//Classify points (Note - a medoid may end up in a different

//cluster than its own, if two medoids have the same coordinates)

25

for(i = 0 to m-1){

c[i] = 0;

optDist = getDistance(medoids[0], A[i]);

for(j = 1 to k-1){

newDist = getDistance(medoids[j], A[i]);

if (newDist < optDist){

optDist = newDist;

c[i] = j;

}

}

}

output.c = c;

}

}

26

	1 Introduction
	2 Background
	2.1 Protocols for verified computation

	3 BFDL
	4 Constraint sets for simple computations
	4.1 Evaluating simple polynomials
	4.2 Equality testing
	4.3 Order comparisons

	5 Outsourcing computations not over Zp
	5.1 Constraints for arithmetic over rational numbers
	5.2 Constraints for order comparison over rational numbers

	6 Compiling BFDL to constraints
	6.1 Systematic construction of constraint sets
	6.2 Compiler implementation
	6.3 Robust compilation for large computations
	6.4 Optimizations
	6.5 Improvements to the type system

	7 Evaluation
	8 Conclusion
	9 Acknowledgements
	10 B
	10.1 BFDL code for Floyd-Warshall's all pairs shortest paths
	10.2 BFDL code for DNA alignment
	10.3 BFDL code for fannkuch benchmark
	10.4 BFDL code for insertion sort
	10.5 BFDL code for matrix multiplication
	10.6 BFDL code for PAM clustering

