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Abstract. We describe a symbolic heap abstraction that unifies reason-
ing about arrays, pointers, and scalars, and we define a fluid update
operation on this symbolic heap that relaxes the dichotomy between
strong and weak updates. Our technique is fully automatic, does not
suffer from the kind of state-space explosion problem partition-based
approaches are prone to, and can naturally express properties that hold
for non-contiguous array elements. We demonstrate the effectiveness of
this technique by evaluating it on challenging array benchmarks and
by automatically verifying buffer accesses and dereferences in five Unix
Coreutils applications with no annotations or false alarms.

1 Introduction

In existing work on pointer and shape analysis, there is a fundamental distinction
between two kinds of updates to memory locations: weak updates and strong
updates [1–4]. A strong update overwrites the old content of an abstract memory
location l with a new value, whereas a weak update adds new values to the
existing set of values associated with l. Whenever safe, it is preferable to apply
strong updates to achieve better precision.

Applying strong updates to abstract location l requires that l correspond to
exactly one concrete location. This requirement poses a difficulty for applying
strong updates to (potentially) unbounded data structures, such as arrays and
lists, since the number of elements may be unknown at analysis time. Many
techniques combine all elements of an unbounded data structure into a sin-
gle summary location and only allow weak updates [2, 5, 6]. More sophisticated
techniques, such as analyses based on 3-valued logic [3], first isolate individ-
ual elements of an unbounded data structure via a focus operation to apply a
strong update, and the isolated element is folded back into the summary location
via a dual blur operation to avoid creating an unbounded number of locations.
While such an approach allows precise reasoning about unbounded data struc-
tures, finding the right focus and blur strategies can be challenging and hard to
automate [3].

In this paper, we propose a way of relaxing the dichotomy between applying
weak vs. strong updates to a particular kind of unbounded data structure, arrays,
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by introducing fluid updates. Fluid updates can always be safely applied regard-
less of whether a given abstract memory location represents a single concrete
location or an array. Three key ideas underpin fluid updates:

1. Arrays are modeled as abstract locations qualified by index variables; con-
straints on index variables specify which concrete elements are referred to
by a points-to edge.

2. In general, we may not know the exact subset of concrete elements updated
by a statement. To deal with this uncertainty, each points-to edge is qualified
by a pair of constraints 〈φNC, φSC〉, called bracketing constraints, over- and
underapproximating the subset of concrete elements selected by this edge.

3. To apply a fluid update, we compute a bracketing constraint 〈φNC, φSC〉
representing over- and underapproximations for the set of concrete elements
updated by a statement. A fluid update preserves all existing points-to edges
under the negation of the update condition, i.e., ¬〈φNC, φSC〉 = 〈¬φSC,¬φNC〉,
while applying the update under 〈φNC, φSC〉.

An important property of bracketing constraints is that the intersection of a
bracketing constraint B and its negation ¬B is not necessarily empty (see Section
2.1). For array elements in the intersection, both the new value is added and the
old values are retained—i.e., a weak update is performed. Because fluid updates
rely on negation, having both over- and underapproximations (or equivalently,
necessary and sufficient conditions) is crucial for the correctness of our approach.

If the concrete elements updated by a statement s are known exactly, i.e.,
φNC and φSC are the same, the fluid update represents a strong update to some
set of elements in the array. On the other hand, if nothing is known about the
update condition, i.e., 〈φNC, φSC〉 = 〈true, false〉, the fluid update is equivalent to
a weak update to all elements in the array. Otherwise, if only partial information
is available about the concrete elements modified by s, the fluid update encodes
this partial information soundly and precisely. Consider the following example:
void send_packets(struct packet** buf, int c, int size) {

assert(2*c <= size);

for(int j=0; j< 2*c; j+=2)

if(transmit_packet(buf[j]) == SUCCESS) { free(buf[j]); buf[j] = NULL; }

}

The function send packets takes an array buf of packet∗’s, an integer c rep-
resenting the number of high-priority packets to be sent, and an integer size,
denoting the number of elements in buf. All even indices in buf correspond to
high-priority packets whereas all odd indices are low-priority.1 This function sub-
mits one high-priority packet at a time; if the transfer is successful (which may
depend on network traffic), it sets the corresponding element in buf to NULL to
indicate the packet has been processed.

1
The distinction between even and odd-numbered elements in a network buffer arises in many real
network applications, for example in packet scheduling [7] and p2p video streaming [8] .



Fig. 1. The points-to graph at the end of function send packets

The figure above shows the symbolic heap abstraction at the entry of send packets.
Here, nodes represent abstract locations named by access paths [9], and edges
denote points-to relations. Because either the source or target of an edge may
be a set, we write constraints on edges to indicate which elements of the source
point to which elements of the target. In the figure, the dereference of buf is an
array, hence, it is qualified by an index variable i; the location named 〈∗buf〉i
represents all elements of array ∗buf. By convention, primed index variables
on an edge qualify the edge’s target, and unprimed index variables qualify the
source. If the over- and underapproximations on an edge are the same, we write
a single constraint instead of a pair. In this graph, the edge from buf to 〈∗buf〉i
is qualified by i′ = 0 because buf points to the first element of array 〈∗buf〉i.
The constraint i = i′ on the edge from 〈∗buf〉i to ∗〈∗buf〉i indicates that the i’th
element of array ∗buf points to some corresponding target called ∗〈∗buf〉i.

The concrete elements modified by the statement buf[j] = NULL cannot be
specified exactly at analysis time since the success of transmit packet depends
on an environment choice (i.e., network state). The loop may, but does not
have to, set all even elements between 0 and 2c to NULL. Hence, the best over-
approximation of the indices of ∗buf modified by this statement is 0 ≤ i <

2c ∧ i%2 = 0. On the other hand, the best underapproximation of the set of
indices updated in the loop is the empty set (indicated by the constraint false)
since no element is guaranteed to be updated by the statement buf[j] = NULL.

Figure 1 shows the symbolic heap abstraction at the end of send packets.
Since the set of concrete elements that may be updated by buf[j] = NULL is given
by 〈0 ≤ i < 2c ∧ i%2 = 0, false〉, the fluid update adds an edge from 〈∗buf〉i to
∗NULL under this bracketing constraint. The existing edge from 〈∗buf〉i to ∗〈∗buf〉i
is preserved under ¬〈0 ≤ i < 2c∧i%2 = 0, false〉. Now, the complement (negation)
of an overapproximation is an underapproximation of the complement; similarly
the complement of an underapproximation is an overapproximation of the com-
plement. Thus, assuming i ≥ 0, this is equivalent to 〈true, i ≥ 2c∨ i%2 6= 0〉. Since
the initial constraint on the edge stipulates i = i′, the edge constraint after the
fluid update becomes 〈i = i′, (i ≥ 2c ∨ i%2 6= 0) ∧ i = i′〉. The new edge condi-
tion correctly and precisely states that any element of ∗buf may still point to
its original target when the function exits, but only those elements whose index
satisfies the constraint i ≥ 2c or i%2 6= 0 must point to their original target. As
this example illustrates, fluid updates have the following characteristics:

– Fluid updates do not require concretizing individual elements of an array to
perform updates, making operations such as focus and blur unnecessary.



– Fluid updates never construct explicit partitions of an array, making this
approach less vulnerable to the kind of state space explosion problem that
partition-based approaches, such as [3], are prone to.

– Fluid updates preserve partial information despite imprecision and uncer-
tainty. In the above example, although the result of transmit packet is un-
known, the analysis can still determine that no odd packet is set to NULL.

– Fluid updates separate the problem of determining which concrete elements
are updated from how the update is performed. Fluid updates are oblivious
to the precision of the over- and underapproximations, and retain the best
possible information with respect to these approximations. In the above ex-
ample, a less precise overapproximation, such as 0 ≤ i < 2c, would not affect
the way updates are performed.

This paper is organized as follows: Section 2 defines a simple language and
introduces basic concepts. Section 3 formalizes the symbolic heap abstraction,
Section 4 presents the basic pointer and value analysis based on fluid updates,
and Section 5 discusses treatment of loops. Section 6 discusses a prototype im-
plementation, Section 7 presents our experimental results, and Section 8 surveys
related work. To summarize, this paper makes the following key contributions:

– We introduce fluid updates as a viable alternative to the dichotomy be-
tween weak vs. strong updates, and we describe an expressive memory anal-
ysis based on symbolic heap abstraction that unifies reasoning about arrays,
pointers, and scalars. (We do not, however, address recursive pointer-based
data structures in this paper.)

– We propose bracketing constraints to allow a sound negation operation when
performing updates in the presence of imprecision and uncertainty.

– We demonstrate our technique is precise and efficient for reasoning about
values and points-to targets of array elements. Furthermore, our technique
is fully automatic, requiring no annotations or user-provided predicates.

– We show the effectiveness of our approach by verifying the safety of buffer
accesses and dereferences fully automatically in five Unix Coreutils applica-
tions that manipulate arrays and pointers in intricate ways.

2 Language and Preliminaries

We first define a small imperative language in which we formalize our technique:
Program P := F+

Function F := define f(v1, . . . , vn) = S
Statement S := S1;S2 | v1 = v2 |v1 = c | v1 = alloc(v2) |v1 = v2[v3] | v2[v3] = v1

| v1 = v2 ⊕ v3 |v1 = v2 intop v3 | v1 = v2 predop v3 |
if v 6= 0 then S1 else S2 | while v 6= 0 do S end

In this grammar, v is a variable, and c is an integer constant. Types are defined by
the grammar τ := int | pointer(array(τ)). Load (v1 = v2[v3]) and store (v2[v3] = v1)
statements are defined on pointers v2 and integers v3, and we assume programs
are well-typed. v[i] first dereferences v and then selects the i’th element of the
array pointed to by v. Pointer arithmetic v1 = v2 ⊕ v3 makes v1 point to offset



v3 in the array pointed to by v2. Integer operations (intop) include +,−, and
×. Predicate operators (predop) are =, 6= and <, and predicates evaluate to 0
(false) or 1 (true). The alloc(v2) statement allocates an array with v2 elements.

Appendix A gives an operational semantics of this language. In the concrete
semantics, a concrete location lc is a pair (s, i) where s is a start address for a
block of memory and i is an offset from s. An environment E maps program
variables to concrete locations, and a store S maps locations to other locations or
integer values. Due to space limitations, we omit function calls from our formal
discussion; Section 6 discusses how we treat function calls in the implementation.

2.1 Constraint Language

The constraints used in the analysis are defined by:

Term T := c | v | T1 intop T2 |select(T1, T2) | deref(T )
Literal L := true | false |T1 predop T2 | T%c = 0
Atom A := L | ¬A | A1 ∧A2 | A1 ∨A2

Constraint C := 〈ANC, ASC〉

Terms are constants, variables, arithmetic terms, and the uninterpreted function
terms select(T1, T2), and deref(T ). Terms are used to represent scalars, pointers,
and arrays; the uninterpreted function term select(T1, T2) represents the result
of selecting element at index T2 of array T1, and the term deref(T ) represents
the result of dereferencing T .

Literals are true, false, comparisons (=, 6=, <) between two terms, and divisi-
bility checks on terms. Atomic constraints A are arbitrary boolean combinations
of literals. Satisfiability and validity of atomic constraints are decided over the
combined theory of uninterpreted functions and linear integer arithmetic ex-
tended with divisibility (mod) predicates. Bracketing constraints C are pairs of
atomic constraints of the form 〈ANC, ASC〉 representing necessary and sufficient
conditions for some fact. A bracketing constraint is well-formed if and only if
ASC ⇒ ANC. We write dφe to denote the necessary condition of a bracketing
constraint φ and bφc to denote the sufficient condition of φ.

Example 1. Consider an edge from location 〈∗a〉i to ∗NULL qualified by 〈0 ≤ i <
size, 0 ≤ i < size〉.This constraint expresses that all elements of the array with
indices between 0 and size are NULL. Since it is sufficient that i is between 0 and
size for 〈∗a〉i to point to ∗NULL, it follows that all elements in this range are NULL.
On the other hand, if the constraint on the edge is 〈0 ≤ i < size, false〉, any
element in the array may be NULL, but no element must be NULL.

Boolean operators ¬,∧, and ∨ on bracketing constraints are defined as:

¬〈ANC, ASC〉 = 〈¬ASC,¬ANC〉
〈ANC1, ASC1〉 ? 〈ANC2, ASC2〉 = 〈ANC1 ? ANC2, ASC1 ? ASC2〉 (? ∈ {∧,∨})

Since the negation of the overapproximation for some set S is an underapproxi-
mation for the complement of S, necessary and sufficient conditions are swapped
under negation. The following lemma is easy to show:



Lemma 1. Bracketing constraints preserve the well-formedness property ASC ⇒
ANC under boolean operations.

Satisfiability and validity are defined in the following natural way:

SAT(〈ANC, ASC〉) ≡ SAT(ANC) VALID(〈ANC, ASC〉) ≡ VALID(ASC)

Lemma 2. Bracketing constraints do not obey the law of the excluded middle
and non-contradiction, but they satisfy the following weaker properties:

VALID(d〈ANC, ASC〉 ∨ ¬〈ANC, ASC〉e) UNSAT(b〈ANC, ASC〉 ∧ ¬〈ANC, ASC〉c)

Proof. d〈ANC, ASC〉 ∨ ¬〈ANC, ASC〉e is (ANC ∨ ¬ASC)⇔ (ASC ⇒ ANC)⇔ true, where

the last equivalence follows from well-formedness. Similarly, b〈ANC, ASC〉∧¬〈ANC, ASC〉c
is (ASC∧¬ANC)⇔ false, where the last step follows from the well-formedness property.

3 Symbolic Heap Abstraction

Abstract locations are named by access paths [9] and defined by the grammar:

Access Path π := Lv | allocid | 〈π〉i | ∗ π | c | π1 intop π2 | >

Here, Lv denotes the abstract location corresponding to variable v, and allocid

denotes locations allocated at program point id. Any array location is represented
by an access path 〈π〉i, where π represents the array and i is an index variable
ranging over the indices of π (similar to [22]). The location ∗π represents the
dereference of π. The access path c denotes constants, π1 intop π2 represents the
result of performing intop on π1 and π2, and > denotes any possible value.

A memory access path, denoted πmem, is any access path that does not in-
volve c, π1 intop π2, and >. We differentiate memory access paths because only
locations that are identified by memory access paths may be written to; other
kinds of access paths are only used for encoding values of scalars.

Given a concrete store S and an environment E mapping program variables
to concrete locations (see Appendix A), a function γ maps abstract memory
locations to a set of concrete locations (s1, i1) . . . (sk, ik):

γ(E,S,Lv) = {E(v)}
γ(E,S, allocid) = {(l, 0) | l is the result of allocation at program point id }
γ(E,S, 〈π〉i) = {(l, indexj)| (l, indexj) ∈ S ∧ (l, 0) ∈ γ(E,S, π))}
γ(E,S, ∗π) =

S
li∈γ(E,S,π) S(li)

Since we will concretize abstract memory locations under a certain assumption
about their index variables, we define another function γc, similar to γ but
qualified by constraint φ. The only interesting modification is for 〈π〉i:

γc(E,S, 〈π〉i, φ) = {(l, indexj)| (l, indexj) ∈ S ∧ (l, 0) ∈ γc(E,S, π, φ) ∧ SAT(φ[indexj/i])}

As is standard in points-to graphs, we enforce that for any two memory access
paths, either πmem = π′mem or γ(E,S, πmem) ∩ γ(E,S, π′mem) = ∅.



A symbolic heap abstraction is a directed graph where nodes denote abstract
locations identified by access paths and edges qualified by bracketing constraints
denote points-to relations. Since we want to uniformly encode points-to and value
information, we extend the notion of points-to relations to scalars. For example,
if an integer a has value 3, the symbolic heap abstraction contains a “points-to”
edge from a’s location to some location named *3, thereby encoding that the
value of a is 3. Hence, the symbolic heap encodes the value of each scalar.

Formally, a symbolic heap abstraction is defined by

Γ : πmem → 2(π,φ)

mapping a source location to a set of (target location, constraint) pairs. The
edge constraint φ may constrain program variables to encode the condition un-
der which this points-to relation holds. More interestingly, φ may also qualify
the source and the target location’s index variables, thereby specifying which
elements of the source may (and must) point to which elements of the target.

The combination of indexed locations and edge constraints parametric over
these index variables makes the symbolic heap abstraction both very expressive
but also non-trivial to interpret. In particular, if the source location is an array,
we might want to determine the points-to targets of a specific element (or some
of the elements) in this array. However, the symbolic heap abstraction does not
directly provide this information since edge constraints are parametric over the
source and the target’s index variables. Consider the following points-to relation:

Suppose we want to know which location(s) the fourth element of array 〈∗a〉i1
points to. Intuitively, we can determine the target of the fourth element of 〈∗a〉i1
by substituting the index variable i1 by value 3 in the edge constraint 0 ≤ i1 <
5 ∧ i′2 = i1 + 1. This would yield i′2 = 4, indicating that the fourth element of
〈∗a〉i points to the target of the fifth element of 〈∗b〉i2 .

While a simple substitution allows us to determine the target of a specific
array element as in the above example, in general, we need to determine the
targets of those array elements whose indices satisfy a certain constraint. Since
this constraint may not limit the index variable to a single value, determining
points-to targets from an indexed symbolic heap abstraction requires existential
quantifier elimination in general. In the above example, we can determine the
possible targets of elements of 〈∗a〉i1 whose indices are in the range [0, 3] (i.e.,
satisfy the constraint 0 ≤ i1 ≤ 3) by eliminating i1 from the following formula:

∃i1.(0 ≤ i1 ≤ 3 ∧ (0 ≤ i1 < 5 ∧ i′2 = i1 + 1))

This yields 1 ≤ i′2 ≤ 4, indicating that the target’s index must lie in the range
[1, 4]. To formalize this intuition, we define an operation φ1 ↓I φ2, which yields
the result of restricting constraint φ1 to only those values of the index variables
I that are consistent with φ2.



Definition 1 (φ1 ↓I φ2) Let φ1 be a constraint qualifying a points-to edge and
let φ2 be a constraint restricting the values of index variables I. Then,

φ1 ↓I φ2 ≡ Eliminate(∃I. φ1 ∧ φ2)

where the function Eliminate performs existential quantifier elimination.

The quantifier elimination performed in this definition is exact because index
variables qualifying the source or the target never appear in uninterpreted func-
tions in a valid symbolic heap abstraction; thus the elimination can be performed
using [10].

4 Pointer and Value Analysis Using Fluid Updates

In this section, we give deductive rules describing the basic pointer and value
analysis using fluid updates. An invariant mapping Σ : Var → πmem maps pro-
gram variables to abstract locations, and the environment Γ defining the sym-
bolic heap abstraction maps memory access paths to a set of (access path, con-
straint) pairs. Judgments Σ ` a : La indicate that variable a has abstract loca-
tion La, and judgments Γ `j πs : 〈πtj ,φj 〉 state that 〈πtj , φj〉 ∈ Γ (πs). Note that
there may be many 〈πtj , φj〉 pairs in Γ (πs), and this form of judgment is used
in the rules to refer to each of them without needing to use sets.

We first explain some notation used in Figure 2. The function U(φ) replaces
the primed index variables in constraint φ with their unprimed counterparts, e.g.,
U(i′1 = 2) is (i1 = 2); this is necessary when traversing the points-to graph because
the target location of an incoming edge becomes the source of the outgoing edge
from this location. We use the notation Γ ∧ φ as shorthand for:

Γ ′(π) = {〈πl, φl ∧ φ〉 | 〈πl, φl〉 ∈ Γ (π)}

A union operation Γ = Γ ′ ∪ Γ ′′ on symbolic heap abstractions is defined as:
〈π′, φ′ ∨ φ′′〉 ∈ Γ (π) ⇔ 〈π′, φ′〉 ∈ Γ ′(π) ∧ 〈π′, φ′′〉 ∈ Γ ′′(π).

We write I(π) to denote the set of all index variables used in π, and we say “i
is index of π” if i is the outermost index variable in π.

The basic rules of the pointer and value analysis using fluid updates are
presented in Figure 2. We focus mainly on the inference rules involving arrays,
since these rules either directly perform fluid updates (Array Store) or rely on
the constraint and index-based representation that is key for fluid updates.

We start by explaining the Array Load rule. In this inference rule, each π2j

represents one possible points-to target of v2 under constraint φ2j . Because π2j

is an array, the constraint φ2j qualifies π2j ’s index variables. Each π3k repre-
sents one possible (scalar) value of v3. Since we want to access the element
at offset v3 of v2’s target, we select the element at offset v3 by substituting i′

with i′ − π3k in the constraint φ2j , which effectively increments the value of i′

by π3k . Now, we need to determine the targets of those elements of π2j whose
indices are consistent with φ′2jk ; hence, we compute φtjl ↓I(π2j ) φ

′
2jk

(recall Sec-
tion 3) for each target πtjl of π2j . The following example illustrates this rule.



Assign

Σ ` v1 : Lv1 , v2 : Lv2
Γ ′ = Γ [Lv1 ← Γ (Lv2 )]

Σ,Γ ` v1 = v2 : Γ ′

Alloc

Σ ` v1 : Lv1
Γ ′ = Γ [Lv1 ← 〈allocid〉i] ∧ i′ = 0 (i fresh)

Σ,Γ ` v1 = alloc(v2) : Γ ′

Array Load

Σ ` v1 : Lv1 , v2 : Lv2 , v3 : Lv3
Γ `j Lv2 : 〈π2j , φ2j 〉 (i index of π2j

)

Γ `k Lv3 : 〈∗π3k , φ3k 〉
Γ `l π2j : 〈πtjl , φtjl 〉
φ′

2jk
= U(φ2j [i′ − π3k/i

′])

φ′
tjkl

= φtjl ↓I(π2j
) φ

′
2jk

Γ ′ = Γ [Lv1 ← (
S
jkl〈πtjl , φ

′
tjkl
∧ φ3k 〉)]

Σ,Γ ` v1 = v2[v3] : Γ ′

Array Store (Fluid Update)

Σ ` v1 : Lv1 , v2 : Lv2 , v3 : Lv3
Γ `j Lv1 : 〈π1j , φ1j 〉
Γ ` Lv2 : {〈π21 , φ21 〉 . . . 〈π2n , φ2n 〉} (ik index of π2k )
Γ `l Lv3 : 〈∗π3l , φ3l 〉

Γ ′ =

8><>:
π ← Γ (π) if π 6∈ {π21 , . . . π2n}
π ← {〈π′

k, φ
′
k ∧ ¬

W
kl(U(φ2k [i′k − π3l/i

′
k]) ∧ φ3l )〉

| 〈π′
k, φ

′
k〉 ∈ Γ (π2k )} if π = π2k ∈ {π21 , . . . π2n}

Γ ′′ =

8<:
π21 ← (

S
jl〈π1j ,U(φ21 [i′1 − π3l/i

′
1]) ∧ φ3l ∧ φ1j 〉)

. . .
π2n ← (

S
jl〈π1j ,U(φ2n [i′n − π3l/i

′
n]) ∧ φ3l ∧ φ1j 〉)

Σ,Γ ` v2[v3] = v1 : Γ ′ ∪ Γ ′′

Pointer Arithmetic

Σ ` v1 : Lv1 , v2 : Lv2 , v3 : Lv3
Γ `j Lv2 : 〈π2j , φ2j 〉
Γ `k Lv3 : 〈∗π3k , φ3k 〉
φ′

2jk
= φ2j [(i′ − π3k )/i′] (i index of π2j

)

Γ ′ = Γ [Lv1 ← (
S
jk 〈π2j , φ

′
2jk
∧ φ3k 〉)]

Σ,Γ ` v1 = v2 ⊕ v3 : Γ ′

Predop

Σ ` v1 : Lv1 , v2 : Lv2 , v3 : Lv3
Γ `j Lv2 : 〈∗π2j , φ2k 〉 (rename all index variables to fresh f2)

Γ `k Lv3 : 〈∗π3k , φ3k 〉 (rename all index variables to fresh f3)

φjk = (π2j predop π3k ) ∧ φ2j ∧ φ3k
φtrue
jk = Eliminate(∃f2, f3. φjk)

Γ ′ = Γ [Lv1 ← (
S
jk〈∗1, φ

true
jk 〉 ∪ 〈∗0,¬φ

true
jk 〉)]

Σ,Γ ` v1 = v2 predop v3 : Γ ′

If Statement

Σ ` v : Lv
Γ ` Lv : {〈∗1, φtrue〉, 〈∗0, φfalse〉}
Σ,Γ ` S1 : Γ ′

Σ,Γ ` S2 : Γ ′′

ΓT = Γ ′ ∧ φtrue

ΓF = Γ ′′ ∧ φfalse

Σ,Γ ` if v 6= 0 then S1 else S2 : ΓT ∪ ΓF

While Loop

ΓP = Parametrize(Γ )
Σ ` v : Lv
ΓP ` Lv : {〈∗1, φtrue〉, 〈∗0, φfalse〉}
Σ,ΓP ` S : Γ ′′ Γ ′′′ = Γ ′′ ∧ φtrue

∆ = Γ ′′′ − ΓP ∆n = fix(∆)
∆gen = Generalize(∆n)
Γfinal = Γ ◦∆gen (Generalized Fluid Update)

Σ,Γ ` while v 6= 0 do S end : Γfinal

Fig. 2. Rules describing the basic analysis

*3

*5

*0

Fig. 3. Here, a points to the third element of an
array of size 10, whose first three elements have the
value 3 or 5, and the remaining elements are 0.

Example 2. Consider perform-
ing t = a[1] on the sym-
bolic heap abstraction shown
in Figure 3. Here, Lv2 is the
memory location labeled a,
the only target π2j of Lv2 is
〈∗b〉i, and the only π3k is 1.

The constraint φ′2jk is U((i′ = 2)[i′/i′ − 1]), which is i = 3. Thus, we need to
determine the target(s) of the fourth element in array 〈∗b〉i. There are three
targets πtjl of 〈∗b〉i: ∗3, ∗5, ∗0; hence, we compute φ′tjkl once for each πtjkl . The
only satisfiable edge under constraint i = 3 is the edge to *0 and we compute



*3

*5

*0

*7

Fig. 4. Graph after processing the state-
ments in Example 3

Fig. 5. Colored rectangles illustrates the
partitions in Example 3; equations on the
left describe the ordering between variables.

Eliminate(∃i. 3 ≤ i < 10∧ i = 3), which is true. Thus, the value of t is guaranteed
to be 0 after this statement.

The Array Store rule performs a fluid update on an abstract memory location
associated with an array. In this rule, each π2k ∈ {π21 . . . π2n} represents an array
location, a subset of whose elements may be written to as a result of this store.
Γ ′ represents the symbolic heap abstraction after removing the points-to edges
from array elements that are written to by this store while preserving all other
edges, and Γ ′′ represents all edges added by this store. Hence, Γ ′ and Γ ′′ are
unioned to obtain the symbolic heap abstraction after the store. Note that Γ ′

preserves the existing targets of any access path π 6∈ {π21 . . . π2n}. The points-
to targets of those elements of π21 , . . . π2n that are not affected by this store
are also preserved in Γ ′ while elements that are written to by the store are
killed in Γ ′. This is because elements that are updated by the store must satisfy
U(φ2k [i′k − π3l/i

′
k])∧ φ3l for some k, l such that the edge to π′k is effectively killed

for those elements updated by the store. On the other hand, elements that are
not affected by the store are guaranteed not to satisfy U(φ2k [i′k−π3l/i

′
k])∧φ3l for

any k, l, i.e., ¬
W
kl(U(φ2k [i′k − π3l/i

′
k]) ∧ φ3l) = false, and the existing edge to π′k

is therefore preserved. Note that negation is only used in the Fluid Update rule;
the soundness of negation, and therefore the correctness of fluid updates, relies
on using bracketing constraints.

Example 3. Consider the effect of the following store instructions
a[k] = 7; a[m] = 3;

on Figure 3. Suppose k and m are symbolic, i.e., their values are unknown. When
processing the statement a[k] = 7, the only location stored into, i.e., π2k , is 〈∗b〉i.
The only π3l is k under true, and the only π1j is ∗7 under true. The elements of
〈∗b〉i updated by the store are determined from U((i′ = 2)[i′− k/i′]) = (i = k+ 2).
Thus, a new edge is added from 〈∗b〉i to ∗7 under i = k + 2 but all outgoing
edges from 〈∗b〉i are preserved under the constraint i 6= k + 2. Thus, after this
statement, the edge from 〈∗b〉i to ∗3 and ∗5 are qualified by the constraint 〈0 ≤
i < 3∧ i 6= k+ 2, false〉, and the edge to ∗0 is qualified by 3 ≤ i < 10∧ i 6= k+ 2.
The instruction a[m] = 3 is processed similarly; Figure 4 shows the resulting
symbolic heap abstraction after these store instructions. Note that if k = m, the
graph correctly reflects a[k] must be 3. This is because if k = m, the constraint



on the edge from 〈∗b〉i to ∗7 is unsatisfiable. Since the only other feasible edge
under the constraint i = k + 2 is the one to ∗3, k = m implies a[k] must be 3.

As Example 3 illustrates, fluid updates do not construct explicit partitions
of the heap when different symbolic values are used to store into an array. In-
stead, all “partitions” are implicitly encoded in the constraints, and while the
constraint solver may eventually need to analyze all of the cases, in many cases
it will not because a query is more easily shown satisfiable or unsatisfiable for
other reasons. As a comparison, in Example 3, approaches that eagerly construct
explicit partitions may be forced to enumerate all partitions created due to stores
using symbolic indices. Figure 5 shows that eight different heap configurations
arise after performing the updates in Example 3. In fact, only one more store
using a symbolic index could create over 50 different heap configurations.

In the Pointer Arithmetic rule, the index variable i′ is replaced by i′−π3k in
the index constraint φ2j , effectively incrementing the value of i′ by v3. We also
discuss the Predop rule, since some complications arise when array elements are
used in predicates. In this rule, we make use of an operation π which converts
an access path to a term in the constraint language:

πR = πR if πR ∈ {c,Lv, allocid} ∗π = deref(π)

〈π〉i = select(π, i) π1 intop π2 = π1 intop π2

In this rule, notice that index variables used in the targets of Lv2 and Lv3
are first renamed to fresh variables f2 and f3 to avoid naming conflicts and
are then existentially quantified and eliminated similar to computing φ1 ↓I φ2.
The renaming of index variables is necessary since naming conflicts arise when
〈∗π2j , φ2j 〉 and 〈∗π3k , φ3k〉 refer to different elements of the same array. 2

In the If Statement rule, observe that the constraint under which v 6= 0
evaluates to true (resp. false) is conjoined with all the edge constraints in Γ ′

(resp. Γ ′′); hence, the analysis is path-sensitive. We defer discussion of the While
Loop rule until Section 5.

4.1 Soundness of the Memory Abstraction

We now state the soundness theorem for our memory abstraction. For a concrete
store S, we use the notation S(ls, lt) = true if S(ls) = lt and S(ls, lt) = false
otherwise. Similarly, we write Γ (πs, πt) = φ to denote that the bracketing con-
straint associated with the edge from πs to πt is φ, and φ is false if there is no
edge between πs and πt. Recall that I(π) denotes the set of index variables in
π, and we write σI(π) to denote some concrete assignment to the index variables
in I(π); σ′I(π) is an assignment to I(π) with all index variables primed. The no-
tation σ(φ) applies substitution σ to φ. Finally, we use a function eval?(φ,E, S)
for ? ∈ {+,−} which evaluates the truth value of the necessary and sufficient
conditions of constraint φ for some concrete environment E and concrete store
S; this function is precisely defined in Appendix B.
2

Quantifier elimination performed here may not be exact; but since we use bracketing constraints,
we compute quantifier-free over- and underapproximations. For instance, [11] presents a tech-
nique for computing covers of existentially quantified formulas in combined theories involving
uninterpreted functions. Another alternative is to allow quantification in our constraint language.



Definition 2 (Agreement) We say a concrete environment and concrete store
(E,S) agrees with abstract environment and abstract store (Σ,Γ ) (written
(E,S) ∼ (Σ,Γ )) if and only if the following conditions hold:

1. E and Σ have the same domain
2. If S(ls, lt) = b and Γ (πs, πt) = 〈φ+, φ−〉, then for all substitutions σI(πs), σ

′
I(πt)

such that ls ∈ γc(E,S, πs, σI(πs)) and lt ∈ γc(E,S, πt, σ′I(πt)
), we have:

eval−(σ′(σ(φ−)), E, S)⇒ b⇒ eval+(σ′(σ(φ+)), E, S)

Theorem 1. (Soundness) Let P be any program. If (E,S) ∼ (Σ,Γ ), then

E,S ` P : S′ ⇒ (Σ,Γ ` P : Γ ′ ∧ (E,S′) ∼ (Σ,Γ ′))

We sketch the proof of Theorem 1 in Appendix C.

5 Fluid Updates in Loops

In loop-free code, a store modifies one array element, but stores inside a loop
often update many elements. In this section, we describe a technique to over-
and underapproximate the set of concrete elements updated in loops. The main
idea of our approach is to analyze the loop body and perform a fixed-point
computation parametric over an iteration counter. Once a fixed-point is reached,
we use quantifier elimination to infer elements that may and must be modified
by the loop. 3

5.1 Parametrizing the Symbolic Heap Abstraction

When analyzing loops, our analysis first identifies the set of scalars modified by
the loop; we call such values loop-dependent scalars. We then infer equalities
relating each loop-dependent scalar to the unique iteration counter k for that
loop. The iteration counter k is assumed to be initialized to 0 at loop entry
and is incremented by one along the back edge of the loop. We say that a loop-
dependent value i is linear with respect to the loop if i − i0 = c ∗ k for some
constant c 6= 0. We compute a set of equalities relating loop-dependent scalars
to the iteration counter using standard linear invariant generation techniques
[12, 13]. At loop entry, we use these linear equalities to modify Γ as follows:

– Let π be a linear loop-dependent scalar with the linear relation π = π0+c∗k,
and let 〈∗πt, ct〉 ∈ Γ (π). Then, replace πt by πt + c ∗ k.

– Let π be a loop-dependent value not linear in k. Then, Γ (π)← {〈>, true〉}.

Thus, all loop-dependent scalars are expressed in terms of their value at
iteration k or >; analysis of the loop body proceeds as described in Section 4.

Example 4. Consider the send packets function from Section 1. Here, we infer
the equality j = j0 + 2k, and Γ initially contains an edge from j to ∗(j0 + 2k).
3

In this section, we assume no pointer arithmetic occurs in loops; our implementation, however,
does not make this restriction.



Fig. 6. The effect set after analyzing the loop body once in function send packets

5.2 Fixed-Point Computation

Next, we perform a fixed-point computation (parametric on k) over the loop’s
net effect on the symbolic heap abstraction. This is necessary because there may
be loop carried dependencies through heap reads and writes. We define the net
effect of the loop on the symbolic heap abstraction during some iteration k as
the effect set :

Definition 3 (Effect Set ∆) Let Γ ′ be a symbolic heap obtained by perform-
ing fluid updates on Γ . Let ∆ = Γ ′−Γ be the set of edges such that if φ qualifies
edge e in Γ and φ′ qualifies e in Γ ′, then ∆ includes e under constraint φ′ ∧ ¬φ
(where φ = false if e 6∈ Γ ). We call ∆ the effect set of Γ ′ with respect to Γ .

Example 5. Figure 6 shows the effect set of the loop in send packets after an-
alyzing its body once. (Edges with false constraints are not shown.) Note that
the constraints qualifying edges in this figure are parametric over k.

We define Γ ◦∆ as the generalized fluid update that applies ∆ to Γ :

Definition 4 (Γ ◦∆) Let π be a location in Γ and let Sπ denote the edges in
∆ whose source is π. Let δ(Sπ) be the disjunction of constraints qualifying edges
in Sπ, and let I be the set of index variables used in the target locations in Sπ
but not the source. Let Update(π) = Eliminate(∃I.δ(Sπ)). Then, for each π ∈ Γ :

(Γ ◦∆)[π] = (Γ (π) ∧ ¬Update(π)) ∪ Sπ

The above definition is a straightforward generalization of the fluid update op-
eration given in the Store rule of Figure 2. Instead of processing a single store,
it reflects the overall effect on Γ of a set of updates defined by ∆. The fixed-
point computation is performed on ∆. We denote an edge from location πs to
πt qualified by constraint φ as 〈πs, πt〉\φ. Since we compute a least fixed point,
〈πs, πt〉\〈false, true〉 ∈⊥ for all legal combinations (i.e., obeying type restrictions)
of all 〈πs, πt〉 pairs. Note that the edge constraints in ⊥ are the inconsistent
bounds 〈false, true〉 representing the strongest over- and underapproximations.
We define a t and v on effect sets as follows:

〈πs, πt〉\〈(φnc1 ∨ φnc2), (φsc1 ∧ φsc2)〉 ∈ ∆1 t∆2

⇐⇒
(〈πs, πt〉\〈φnc1, φsc1〉 ∈ ∆1 ∧
〈πs, πt〉\〈φnc2, φsc2〉 ∈ ∆2)

∆1 v ∆2

⇐⇒
((φnc1 ⇒ φnc2 ∧ φsc2 ⇒ φsc1)
∀〈πs, πt〉\〈φnc1, φsc1〉 ∈ ∆1 ∧
∀〈πs, πt〉\〈φnc2, φsc2〉 ∈ ∆2)

Let Γ0 be the initial symbolic heap abstraction before the loop. We compute
Γnentry representing the symbolic heap on entry to the n’th iteration of the loop:



Γnentry =


Γ0 if n = 1
Γ0 ◦ (∆n−1[k − 1/k]) if n > 1

Γnexit is obtained by analyzing the body of the loop using Γnentry at the entry point
of the loop. In the definition of Γnentry, the substitution [k− 1/k] normalizes the
effect set with respect to the iteration counter so that values of loop-dependent
scalars always remain in terms of their value at iteration k. We define ∆n rep-
resenting the total effect of the loop in n iterations as follows:

∆n =


⊥ if n = 0
(Γnexit − Γnentry) t∆n−1 if n > 0

First, observe that ∆n−1 v ∆n by construction (monotonicity). Second, observe
the analysis cannot create an infinite number of abstract locations because (i)
arrays are represented as indexed locations, (ii) pointers can be dereferenced
only as many times as their types permit, (iii) all allocations are named by their
allocation site, and (iv) scalars are represented in terms of their linear relation to
k. However, our constraint domain does not have finite ascending chains, hence,
we define a widening operator on bracketing constraints (although widening was
never required in our experiments). Let β denote the unshared literals between
any constraint φ1 and φ2. Then, we widen bracketing constraints as follows:

φ1 5 φ2 =
〈(dφ1e ∨ dφ2e)[true/β] ∨ (dφ1e ∨ dφ2e)[false/β],
(bφ1c ∧ bφ2c)[true/β] ∧ (bφ1c ∧ bφ2c)[false/β]〉

Example 6. The effect set obtained in Example 5 does not change in the second
iteration; therefore the fixed-point computation terminates after two iterations.

5.3 Generalization

In this section, we describe how to generalize the final effect set after a fixed-point
is reached. This last step allows the analysis to extrapolate from the elements
modified in the k’th iteration to the set of elements modified across all iterations
and is based on existential quantifier elimination.

Definition 5 (Generalizable Location) We say a location identified by π is
generalizable in a loop if (i) π is an array, (ii) if πi is used as an index in a store
to π, then πi must be a linear function of the iteration counter, and (iii) if two
distinct indices πi and πj may be used to store into π, then either only πi, or
only πj (or neither) is used to index π across all iterations.

Intuitively, if a location π is generalizable, then all writes to π at different
iterations of the loop must refer to distinct concrete elements. Clearly, if π is
not an array, different iterations of the loop cannot refer to distinct concrete
elements. If an index used to store into π is not a linear function of k, then the
loop may update the same concrete element in different iterations. Furthermore,
if two values that do not have the same relation with respect to k are used to
store into π, then they may update the same element in different iterations.



In order to generalize the effect set, we make use of a variable N unique
for each loop that represents the number of times the loop body executes. If
the value of N can be determined precisely, we use this exact value instead of
introducing N . For instance, if a loop increments i by 1 until i ≥ size, then it is
easy to determine that N = size− i0, assuming the loop executes at least once. 4

Finally, we generalize the effect set as follows:

– If an edge qualified by φ has a generalizable source whose target does not
mention k, the generalized constraint is φ′ = Eliminate(∃k. (φ ∧ 0 ≤ k < N)).

– If an edge qualified by φ does not have a generalizable source, the generalized
constraint is φ′ = Eliminate〈∃k. φ ∧ 0 ≤ k < N, ∀k. 0 ≤ k < N ⇒ φ〉 5.

– If π is a loop-dependent scalar, then ∆[π]← ∆[π][N/k].

We now briefly explain these generalization rules. If the source of an edge is
generalizable, for each iteration of the loop, there exists a corresponding concrete
element of the array that is updated during this iteration; thus, k is existentially
quantified in both the over- and underapproximation. The constraint after the
existential quantifier elimination specifies the set of concrete elements updated
by the loop. If the source is not generalizable, it is unsafe to existentially quantify
k in the underapproximation since the same concrete element may be overwritten
in future iterations. One way to obtain an underapproximation is to universally
quantify k because if the update happens in all iterations, then the update must
happen after the loop terminates. According to the last rule, loop-dependent
scalar values are assigned to their value on termination. Once the effect set is
generalized, we apply it to Γ0 to obtain the final symbolic heap abstraction after
the loop.

Example 7. Consider the effect set given in Figure 6. In the send packets func-
tion, 〈∗buf〉i is generalizable since j is linear in k and no other value is used
to index 〈∗buf〉i. Furthermore, if the loop executes, it executes exactly c times;
thus N = c. To generalize the edge from 〈∗buf〉i to ∗NULL, we perform quantifier
elimination on 〈∃k.i = j0 + 2k ∧ 0 ≤ j0 + 2k < 2c ∧ 0 ≤ k < c, false〉, which yields
〈j0 ≤ i∧i < j0 +2c∧(i−j0)%2 = 0, false〉. Since j0 is 0 at loop entry, after applying
the generalized effect set to Γ0 , we obtain the graph from Figure 1.

6 Implementation and Extensions

We have implemented the ideas presented in this paper in the Compass pro-
gram verification framework for analyzing C programs. For solving constraints,
Compass utilizes a custom SMT solver called Mistral [14], which also provides
support for simplifying constraints. Compass does not assume type safety and
4

Even though it is often not possible to determine the exact value of N , our analysis utilizes the
constraint (∀k.0 ≤ k < N ⇒ ¬φterm(k)) ∧ φterm(N) stating that the termination condition φterm

does not hold on iterations before N but holds at the N ’th iteration. Our analysis takes this
“background axiom” into account when determining satisfiability and validity.

5
We can eliminate a universally quantified variable k from ∀k.φ by eliminating existentially quan-
tified k in the formula ¬∃k.¬φ.



handles casts soundly using a technique based on physical subtyping [15]. Com-
pass supports most features of the C language, including structs, unions, multi-
dimensional arrays, dynamic memory allocation, and pointer arithmetic. To
check buffer overruns, Compass also tracks buffer and allocation sizes. For inter-
procedural analysis, Compass performs a path- and context-sensitive summary-
based analysis. Loop bodies are analyzed in isolation before the function or loop
in which they are defined; thus techniques from Section 5 extend to nested loops.

While the language defined in Section 2 only allows loops with a single exit
point, techniques described in this paper can be extended to loops with multiple
break points by introducing different iteration counters for each backedge, similar
to the technique used in [16] for complexity analysis.

Compass allows checking arbitrary assertions using a static assert(. . .) prim-
itive, which can be either manually or automatically inserted (e.g., for memory
safety properties). The static assert primitive also allows for checking quanti-
fied properties, such as “all elements of arrays a and b are equal” by writing:

static_assert(buffer_size(b) == buffer_size(a));

for(i=0; i<buffer_size(a); i++) static_assert(a[i] == b[i]);

7 Experiments

7.1 Case Study on Example Benchmarks

To demonstrate the expressiveness of our technique, we evaluate it on 28 chal-
lenging array benchmarks available at http://www.stanford.edu/~tdillig/array.tar.gz

and shown in Figure 7. The functions init and init noncost initialize all el-
ements of an array to a constant and an iteration-dependent value respectively.
init partial initializes part of the array, and init even initializes even positions.
2D array init initializes a 2-dimensional array using a nested loop. The programs
labeled buggy exhibit subtle bugs, such as off-by-one errors. Various versions of
copy copy all, some, or odd elements of an array to another array. reverse re-
verses elements, while swap (shown in Figure 8) swaps the contents of two arrays.
double swap invokes swap twice and checks that both arrays are back in their ini-
tial state. strcpy, strlen, and memcpy implement the functionality of the standard
C library functions and assert their correctness. find (resp. find first nonnull)
looks for a specified (resp. non-null) element and returns its index (or -1 if el-
ement is not found). append appends the contents of one array to another, and
merge interleave interleaves odd and even-numbered elements of two arrays into
a result array. The function alloc fixed size initializes all elements of a dou-
ble array to a freshly allocated array of fixed size, and then checks that buffer
accesses to the element arrays are safe. The function alloc nonfixed size initial-
izes elements of the double array a to freshly allocated arrays of different size,
encoded by the elements of another array b and checks that accessing indices
[0, b[i− 1]] of array a[i] is safe. Compass can automatically verify the full func-
tional correctness of all of the correct programs without any annotations and
reports all errors present in buggy programs. To check functional correctness,
we add static assertions as described in Section 6 and as shown in Figure 8.



Program Time Memory #Sat Solve
queries time

init 0.01s < 1 MB 172 0s
init nonconst 0.02s < 1 MB 184 0.01s
init partial 0.01s < 1MB 166 0.01s
init partial buggy 0.02s < 1 MB 168 0s
init even 0.04s < 1 MB 146 0.04s
init even buggy 0.04s < 1 MB 166 0.03s
2D array init 0.04s < 1 MB 311 0.04s
copy 0.01s < 1 MB 209 0.01s
copy partial 0.01s < 1 MB 220 0.01s
copy odd 0.04s < 1 MB 243 0.02s
copy odd buggy 0.05s < 1 MB 246 0.05s
reverse 0.03s < 1 MB 273 0.01s
reverse buggy 0.04s < 1 MB 281 0.02s
swap 0.12s 2 MB 590 0.11s
swap buggy 0.11s 2 MB 557 0.06s
double swap 0.16s 2 MB 601 0.1s
strcpy 0.07s < 1 MB 355 0.04s
strlen 0.02s < 1 MB 165 0.01s
strlen buggy 0.01s < 1 MB 89 0.01s
memcpy 0.04s < 1 MB 225 0.04s
find 0.02s < 1 MB 119 0.02s
find first nonnull 0.02s < 1 MB 183 0.02s
append 0.02s < 1 MB 183 0.01s
merge interleave 0.09s < 1 MB 296 0.07s
merge interleave
buggy 0.11s < 1 MB 305 0.09s

alloc fixed size 0.02s < 1 MB 176 0.02s
alloc fixed size buggy 0.02s < 1 MB 172 0.02s
alloc nonfixed size 0.03s < 1 MB 214 0.02

Fig. 7. Case Study

void swap(int* a, int* b, int size) {
for(int i=0; i<size; i++) {

int t = a[i]; a[i] = b[i]; b[i] = t; }
}
void check_swap(int size, int* a, int* b) {

int* a_copy = malloc(sizeof(int)*size);
int* b_copy = malloc(sizeof(int)*size);
for(int i=0; i<size; i++) a_copy[i] = a[i];
for(int i=0; i<size; i++) b_copy[i] = b[i];
swap(a, b, size);
for(i=0; i<size; i++) {

static_assert(a[i] == b_copy[i]);
static_assert(b[i] == a_copy[i]);

}
free(a_copy); free(b_copy);

}

Fig. 8. Swap Function from Figure 7. The
static assertions check that all elements of
a and b are indeed swapped after the call
to the swap function. Compass verifies these
assertions automatically in 0.12 seconds.

Figure 7 reports for each program the total running time, memory usage
(including the constraint solver), number of queries to the SMT solver, and
constraint solving time. All experiments were performed on a 2.66 GHz Xeon
workstation. We believe these experiments demonstrate that Compass reasons
precisely and efficiently about array contents despite being fully automatic. As
a comparison, while Compass takes 0.01 seconds to verify the full correctness of
copy, the approach described in [4] reports a running time of 338.1 seconds, and
the counterexample-guided abstraction refinement based approach described in
[17] takes 3.65 seconds. Furthermore, our technique is naturally able to verify
the correctness of programs that manipulate non-contiguous array elements (e.g.,
copy odd), as well as programs that require reasoning about arrays inside other
arrays (e.g., alloc nonfixed size). Figure 7 also shows that the analysis is mem-
ory efficient since none of the programs require more than 2 MB. We believe this
to be the case because fluid updates do not create explicit partitions.

Observe that the choice of benchmarks in Figure 7 sheds light on both what
our technique is good at and what it is not meant for. In particular, notice these
benchmarks do not include sorting routines. While sorting is an interesting prob-
lem for invariant generation techniques, the focus of this work is improving static
analysis of updates to aggregate data structures, such as arrays, through fluid
updates. As shown in Section 5, fluid updates can be combined with invariant
generation techniques to analyze loops, but we do not claim that this particular
invariant generation approach is the best possible. We leave as future work the
combination of fluid updates and more powerful invariant generation techniques.
7.2 Checking Memory Safety on Unix Coreutils Applications

To evaluate the usefulness of our technique on real programs, we also check
for memory safety errors on five Unix Coreutils applications [20] that manip-
ulate arrays and pointers in complex ways. In particular, we verify the safety



Program Lines Total Time Memory #Sat queries Solve Time
hostname 304 0.13s 5 MB 1533 0.12s
chroot 371 0.13s 3 MB 1821 0.10s
rmdir 483 1.05s 12 MB 3461 1.02s
su 1047 1.86s 32 MB 6088 1.69s
mv 1151 0.70s 21 MB 7427 0.68s

Total 3356 3.87s 73 MB 20330 3.61

Fig. 9. Experimental results on Unix Coreutils applications.

of buffer accesses (both buffer overruns and underruns) and pointer derefer-
ences. However, since Compass treats integers as mathematical integers, the
soundness of the buffer analysis assumes lack of integer overflow errors, which
can be verified by a separate analysis. In the experiments, Compass reports
zero false positives, only requiring two annotations describing inputs to main:
assume(buffer size(argv) == argc) and assume(argv! = NULL)). Compass is even
able to discharge some arbitrary assertions inserted by the original program-
mers. Some of the buffer accesses that Compass can discharge rely on complex
dependencies that are difficult even for experienced programmers to track; see
Appendix D for an interesting example.

The chosen benchmarks are challenging for static analysis tools for multiple
reasons: First, these applications heavily use arrays and string buffers, making
them difficult for techniques that do not track array contents. Second, they heav-
ily rely on path conditions and correlations between scalars used to index buffers.
Finally, the behavior of these applications depends on environment choice, such
as user input. Our technique is powerful enough to deal with these challenges
because it is capable of reasoning about array elements, is path-sensitive, and
uses bracketing constraints to capture uncertainty. To give the reader some idea
about the importance of these components, 85.4% of the assertions fail if array
contents are smashed and 98.2% fail if path-sensitivity is disabled.

As Figure 9 illustrates, Compass is able to analyze all applications in under 2
seconds, and the maximum memory used both for the program verification and
constraint solving combined is less than 35 MB. We believe these running times
and memory requirements demonstrate that the current state of Compass is use-
ful and practical for verifying memory safety in real modest-sized C applications
manipulating arrays, pointers, and scalars in complex ways.

8 Related Work

Reasoning about unbounded data structures has a long history. Jones et al.
first propose summary nodes to finitely represent lists in LISP [21], and [1]
extends this work to languages with updates and introduces strong and weak
updates. Representation of access paths qualified by indices is first introduced
in Deutsch [22], which uses a combination of symbolic access paths and numeric
abstract domains to represent may-alias pairs for recursive data structures. This
technique does not address arrays, and since it does not reason about updates,
negation is not a consideration. Deutsch’s technique does not allow disjunctive
constraints, is not path-sensitive, and does not address underapproximations.

The most basic technique for reasoning about array contents is array smash-
ing, which represents all elements with one summary node and only allows weak
updates [2]. Gopan et al. propose a 3-valued logic based framework to discover



relationships about values of array elements [4]. This technique isolates individ-
ual elements to perform strong updates and places elements that share a common
property into a partition (usually a contiguous range), and relevant partitions
are heuristically inferred. In contrast, our approach does not need to distin-
guish between strong and weak updates or concretize individual elements; it can
also naturally express invariants about non-contiguous array elements. Further-
more, our approach obviates the need for explicit partitioning, and effectively
delays decisions about partitions until constraint solving. While many factors
contribute to the overall performance of program analysis systems, we believe
our tool’s significantly better performance over [4] is largely due to avoiding
the construction of explicit partitions. Jhala and McMillan propose a technique
similar to [4] for reasoning about arrays, but their technique is based on coun-
terexample guided abstraction refinement and interpolation [17]. This approach
also only reasons about contiguous ranges and constructs explicit partitions.
Furthermore, the predicates used in the abstraction belong to a finite language
to guarantee convergence.

Many techniques have been proposed for generating invariants about ele-
ments of unbounded data structures [18, 19, 23–26]. Some of these techniques
can reason about complex data invariants, such as sortedness, which is orthogo-
nal to the ability to perform fluid updates. Unlike these approaches whose goal is
to discover complex invariants about array elements, our goal is to design an ex-
pressive pointer and value analysis that unifies reasoning about pointers, scalars,
and arrays. However, we believe these techniques can be gainfully combined.

Concepts similar to the iteration counter from Section 5 have been previously
proposed. For example, Gulwani et al. [16] use an iteration counter for performing
complexity analysis. The invariant generation technique described in [19] also
uses a combination of an iteration counter combined with quantifier elimination.

Our technique uses bracketing constraints to represent both over- and under-
approximations to naturally handle imprecision and uncertainty. Furthermore,
bracketing constraints allow for a sound negation operation in the presence of
approximations. The idea of over- and underapproximations has been proposed
previously in the context of abstract interpretation by Schmidt [27]; however,
the techniques presented there are not concerned with negation. In this paper,
we share the goal of gracefully handling imprecision when analyzing unbounded
data structures with [28], which presents a compositional shape analysis based
on separation logic. In contrast to [28] which focuses exclusively on recursive
pointer data structures, such as linked lists, this paper focuses on arrays. We
believe our approach can be extended to at least some useful recursive data
structures, such as lists, and we leave this extension as future work.
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Appendix A

Here, we present an operational semantics of the language from Section 2. A
concrete location lc is a pair (s, i) where s is a start address for a block of memory
and i is an offset from s. For scalars, we use the notation (v, ·) to indicate that
the value stored in lc is v and that the offset is not relevant. The environment E:
Var → lc maps variables to concrete locations, and the store S: lc → lc maps
locations to other locations. The notation S′ = S[l← e] denotes that store S′ is
identical to store S except that it maps location l to e. The function newloc(S, c)
returns the start address of freshly allocated memory containing c cells such that
no cell overlaps existing memory cells.

Sequence

E, S ` s1 : S′

E, S′ ` s2 : S′′

E, S ` s1; s2 : S′′

Variable Assign

E ` v1 : l1, v2 : l2
S ` l2 : e

E, S ` v1 = v2 : S[l1 ← e]

Constant Assign

E ` v : l
S′ = S[l← (c, ·)]
E, S ` v = c : S′

Alloc

E ` v1 : l1, v2 : l2
S ` l2 : (c, 0)
s = newloc(S, c)
S′ = S[(s, 0)← 0, ..., (s, c− 1)← 0]
S′′ = S′[l1 ← (s, 0)]

E, S ` v1 = alloc(v2) : S′′

Array Load

E ` v1 : l1, v2 : l2, v3 : l3
S ` l3 : (c, ·)
S ` l2 : (s, i)
S ` (s, i+ c) : e
S′ = S[l1 ← e]

E, S ` v1 = v2[v3] : S′

Array Store

E ` v1 : l1, v2 : l2, v3 : l3
S ` l3 : (c, ·)
S ` l2 : (s, i)
S ` l1 : e
S′ = S[(s, i+ c)← e]

E, S ` v2[v3] = v1 : S′

Pointer plus

E ` v1 : l1, v2 : l2, v3 : l3
S ` l2 : (s, i)
S ` l3 : (c, ·)
S′ = S[l1 ← (s, i+ c)]

E, S ` v1 = v2 ⊕ v3 : S′

Intop, Predop

E ` v1 : l1, v2 : l2, v3 : l3
S ` l2 : (c, ·)
S ` l3 : (c′, ·)
S′ = S[l1 ← (c op c′, ·)]
E, S ` v1 = v2 op v3 : S′

If-True

E ` v : l
S ` l : (c, ·)
c 6= 0 : true
E, S ` s1 : S′

E, S ` ifv 6= 0 then s1else s2 : S′

If-False

E ` v : l
S ` l : (c, ·)
c 6= 0 : false
E, S ` s2 : S′

E, S ` ifv 6= 0 then s1else s2 : S′

While-True

E ` v : l
S ` l : (c, ·)
c 6= 0 : true
E, S ` s : S′

E, S′ ` while v 6= 0 do s end : S′′

E, S ` while v 6= 0 do s end : S′′

While-False

E ` v : l
S ` l : (c, ·)
c 6= 0 : false

E, S ` while v 6= 0 do s end : S



Appendix B

Here, we give a precise definition of the eval function used in Section 4.1. First,
we define an evalt function on terms in the constraint language as follows:

evalt(c, E, S) = {c}
evalt(v,E, S) = {S(li)| li ∈ γ(E,S, v)}
evalt(select(deref(t1, t2)), E, S) = {S(s1, i1 + c) | (s1, i1) ∈ evalt(t1, E, S) ∧ (c, ·) ∈ evalt(t2, E, S)}
evalt(deref(t), E, S) = {S(li) | li ∈ evalt(t, E, S)}
evalt(t1 intop t2, E, S) = {v1i + v2j | (v1i, ·) ∈ S(li) ∧ li ∈ evalt(t1, E, S)

∧(v2j , ·) ∈ S(lj) ∧ lj ∈ evalt(t2, E, S)}

Since we only allow pointers to arrays in the language from Section 2, terms
involving select are guaranteed to be followed by a deref. Thus, we give a def-
inition for evalt(select(deref(t1, t2))), but not for evalt(select(t1, t2)). We define
val(t) for a term t as follows:

val(t, E, S) = {si + offi|(si, offi) ∈ evalt(t, E, S)}

where offi = 0 if (si, ·) ∈ evalt(t, E, S).
Finally, we define the eval? (? ∈ {+,−}) function for constraints as follows:

eval?(b, E, S) = b, b ∈ {true, false}

eval?(t1 predop t2, E, S) =

{∨
vi∈val(t1,E,S),vj∈val(t2,E,S)(vi predop vj) if ? = +∧
vi∈val(t1,E,S),vj∈val(t2,E,S)(vi predop vj) if ? = −

eval?(t%c, E, S) =
{∨

vi∈val(t,E,S)(vi%c) if ? = +∧
vi∈val(t,E,S)(vi%c) if ? = −

eval?(¬φ,E, S) =
{
¬eval−(φ,E, S) if ? = +
¬eval+(φ,E, S) if ? = −

eval?(φ1 ∧ φ2, S) = eval?(φ1, E, S) ∧ eval?(φ2, E, S)
eval?(φ1 ∨ φ2, S) = eval?(φ1, E, S) ∨ eval?(φ2, E, S)

Appendix C

In this section, we present a proof sketch of Theorem 1. The proof is a standard
induction on the inference rules given in Figure 2; here, we only establish the
base case for the fluid update rule v2[v3] = v1 using a proof by contradiction.

By assumption, (E,S) ∼ (Σ,Γ ) before the fluid update, but suppose (E,S′) 6∼
(Σ,Γ ′) after the fluid update, i.e., there exist two concrete locations ls =
(s, o) and lt in Σ′ and two abstract locations πs and πt in Γ ′ such that ls ∈
γc(E,S′, πs, σI(πs)) and lt ∈ γc(E,S′, πt, σ′I(πt)

) for some substitutions σ, σ′ and
one of the following two conditions holds:

1. S′(ls, lt) = true, but eval+(σ′(σ(Γ ′(πs, πt))), E, S′) = false, or
2. S′(ls, lt) = false, but eval−(σ′(σ(Γ ′(πs, πt))), E, S′) = true.



Since the arguments for conditions (1) and (2) are symmetric, we focus on
disproving (1). To disprove (1), we consider two cases:

1. Either the points-to edge from ls to lt was added due to this store instruction,
or

2. There was an edge from ls to lt before this instruction that was not killed
by the store.

We first consider (1). By assumption, (E,S) ∼ (Σ,Γ ); hence, πs must cor-
respond to some π2k in the array store rule. Furthermore, σ must assign ik to
o, otherwise ls 6∈ γc(E,S′, π2k , σI(π2k )). Also, πt must correspond to some π1j

such that lt ∈ γc(E,S, π1j , σ
′
I(π1j )) and eval+(σ′(φ1j ), E, S) is true. Consider

any π3l that represents the value of v3 = o′ in this execution; for such a π3l ,
eval+(φ3l , E, S) must be true.

Thus, if an edge from ls to lt was added by the current store instruction but
eval+(σ′(σ(Γ ′(πs, πt))), E, S′) is false, then by the argument above and the fluid
update rule, it must be the case that:

eval+(σ′(σ((U(φ2k [i′k − π3l/i
′
k]) ∧ φ3l ∧ φ1j ))), E, S) = false

From above, we already have eval+(σ′(φ1j ), E, S) = true, and eval+(φ3l , E, S) =
true. Thus,

eval+(σ(U(φ2k [i′k − π3l/i
′
k])), E, S) = false (∗)

must hold for some σ such that ik : o. Consider substitution σ′′ that is the same
as σ, but all index variables are replaced by their primed counterparts. Clearly,
(*) implies:

eval+(σ′′(φ2k [i′k − π3l/i
′
k]), E, S) = false

Now consider an assignment that is identical to σ′′ but it assigns o − o′ to ik
instead of o. Since S ∼ Γ :

eval+(σ′′[i′k ← (o− o′)](φ2k), E, S) = true

because φ2k is the constraint under which the dereference of v2 is π2k and v3 = o′.
However, this contradicts eval+(σ′′(φ2k [i′k−π3l/i

′
k]), E, S) = false since π3l = o′.

We now consider (2), i.e., suppose there is an existing edge between ls and lt
that was not killed by this store, but σ′(σ(eval+(Γ (πs, πt))), E, S′) = false. As
before, πs corresponds to some π2k of the store rule, otherwise, none of the con-
straints on the outgoing edges of πs could have been weakened in the abstraction.
The fluid update weakens constraints by conjoining ¬(

∨
l,k(U(φ2k [i′k−π3l/i

′
k])∧

φ3l)) with existing edge constraints. For the edge between πs and πt to be killed,
we must have

eval−(σ(U(φ2k [i′k − π3l/i
′
k]) ∧ φ3l), E, S) = true

for some l, k. If we construct σ′′ from σ as in case (1), clearly:

eval−(σ′′(φ2k [i′k − π3l/i
′
k] ∧ φ3l), E, S) = true



As in the previous case, σ must assign ik to o; otherwise ls 6∈ γc(E,S′, π2k , σI(π2k ));
hence σ′′ assigns i′k to o. Assume the concrete value of v3 is o′. If this store did not
update l2 and since S ∼ Γ before the store, eval−(σ′′[i′k ← (o−o′)](φ2k), E, S) =
false. Again, this contradicts

eval−(σ′′(φ2k [i′k − π3l/i
′
k] ∧ φ3l), E, S) = true

since π3l must represent the value of o′.

Appendix D

Here, we discuss an interesting buffer access from the Coreutils chroot appli-
cation that is quite challenging for a human to prove safe. Figure 10 presents
a simplified slice of the relevant segment of the chroot program. Here, our goal
is to prove the safety of two buffer accesses marked Buffer check 1 and Buffer

check 2 in comments. First, observe that there is no buffer access in main if
getopt long does not return -1 because usage() is an exit function, i.e., a call to
usage terminates the program. Therefore, only the return points 1, 2, and 4 in
getopt long could have been taken at points where a buffer is accessed. Second,
observe that the if statement marked Cond 1 exits if argc <= optind. Therefore,
if program point (***) is reached, only the exit point Return 4 could have been
taken. This is because Return 1 is taken if argc < 1; since optind is initialized
to 0, Cond 1 would hold and (***) could not be reached. Similarly, return point
2 could also not have been taken if (***) is reached because return point 2 im-
plies argc <= optind. Furthermore, observe that if getopt long returns at return
point 4, optind is at least 2. Thus, Buffer check 1 is safe because argc is at least
3 inside the if statement marked Cond 2. It is now easy to see why Buffer check

2 is also safe if Cond 2 holds. If Cond 2 does not hold, we still need to prove that
argv has at least one remaining element since argv is incremented by optind+ 1

in the else branch. If the else branch is taken, from Cond 2, we have argc !=

optind+1, and from Cond 1, we know argc > optind. Therefore, argc is strictly
greater than optind+1, and Buffer check 2 is safe even if the else branch is taken.
Compass is able to prove these buffer accesses and many other challenging ones
safe fully automatically without any difficulty. As this example demonstrates,
the techniques presented in this paper are not just limited to tracking contents
of arrays; they are equally powerful at reasoning about scalar and pointer values.



int optind = 0;
int getopt_long (int argc, char **argv,...)
{

if(argc < 1)
return -1; /* Return 1 */

if(optind == 0)
optind = 1;

while( skip(argv[optind])
&& optind<argc) optind++;

if(optind>=argc)
return -1; /* Return 2 */

optind++;
if(str_prefix(options,

argv[optind-1])) {
optarg = argv[optind-1];
return 0; /* Return 3 */

}
return -1; /* Return 4 */

}

int main (int argc, char **argv) {
if (getopt_long (argc, argv, "+",

NULL, NULL) != -1) usage (EXIT_FAILURE);

if (argc <= optind) { /* Cond 1 */
error (0, 0, "missing operand");
usage (EXIT_FAILURE);

}
(***)
if (argc == optind + 1) { /* Cond 2 */

/* Buffer check 1 */
static_assert(buffer_size(argv) > 2);
argv[0] = shell; argv[1] = bad_cast ("-i");
argv[2] = NULL;

}
else argv += optind + 1;
/* Buffer check 2 */
static_assert(buffer_size(argv) > 0);
execvp (argv[0], argv);

}

Fig. 10. A challenging buffer access from chroot


