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Chapter 0
NOTATION

This book is written as a companion to Concrete Mathematics (Graham, Knuth, and
Patashnik [1]); following it closely in its choice of topics and order of treatment, and
making frequent explicit references to it. Because this book is written in an executable
notation, any expression can be entered directly on a computer for experimentation.

This ability to experiment with the mathematical ideas complements the treatment in
GKP. Although this text can be used independently, it is recommended that the texts be
used together, sometimes reading a section from GKP first, and sometimes reversing the
order.

Conventional mathematical notation is analytic in the sense that it permits meaningful
manipulation of sentences according to relatively strict and simple rules. The use of
notation that is both analytic and immediately executable on a computer permits quick
and reliable experimentation that can make abstract mathematical ideas more accessible,
and their study more enjoyable.

The notation J used in this text possesses these properties, and is readily available on a
wide variety of computers.

In order to minimize digressions from the mathematical development, notation will be
introduced together with brief commentary sufficient to interpret the particular sentence.
To achieve a broader understanding of the notation a reader may:

a) Experiment by entering related sentences on the computer.
b) Consult the final section of each chapter for discussion of the notation introduced.
¢) Consult J Introduction and Dictionary (Iverson [2]).

This style of development will be illustrated by introducing a few of the basic elements of
the notation, using a fixed-width font for dialogue with the computer, and Times Roman
for commentary:

a=: 012 34 The copula =: assigns a name to any entity
a % 10 Division is denoted by %
0 0.1 0.2 0.3 0.4
+/ a Adverb / inserts its verb argument +
10 between items
sum=: +/ The verb or function sum
sum a
10
# a Tally, or number of items
5
mean=: sum % # The arithmetic mean or average
mean a
2
a + The function +/ is ambivalent; applied monadically (to

a single argument, as in +/ a above) it produces sum-
mation; applied dyadically (as it is here) it produces a
function table (in this case an addition table). In this it mimics
the use of the symbol - in math, which represents negation

or subtraction as dictated by its context.
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a; 2 *a A two-element list of boxed results is produced by ;

012 34|02 4¢638



a (+/ : %/ ;) ;') a Four boxed tables ( _ denotes infinity)
012 34|00 0 0 o[ 0 0 O Of[tr1 1111
12345 10.50.3333333 0.25(1 1 1 1 1{01 2 3 4
2345 6| 2 1 0.6666667 0.5]11 2 4 8 16[(0 0 1 3 6
3456 7| 31.5 1 0.75|1 3 927 81|00 0 1 4
45678 4 2 1.33333 1|1 4 16 64 256|0 0 0 0 1

(1.4);(1.3 4); (1.2 3 4);(+/1.2 3 4)

012301 2 3] 0 1 2 312 14 16 18
45 6 71 4 5 6 7|20 22 24 26
8 9 10 11| 8 9 10 11|28 30 32 34
12 13 14 15
16 17 18 19
20 21 22 23
cube=: "&3 The conjunction & bonds power to a right argument
cube a The result is a monadic function
018 27 64
trin=: 2¢&! The conjunction & bonds similarly to a left argument
trin a Triangular numbers
00136
2: a The constant function 2 : applies to entire argument
2
2: "0 a The same function of rank zero applies to each atom
22 2 22

We conclude these samples of notation with the tie conjunction () that applies to verbs
to produce a gerund (a noun that carries the force of a verb), and the agenda (@ .) that
selects for action one of the verbs that comprise a gerund:

+°* / a
14
0+1%2+3%4 Unparenthesized sentences are executed from right
14 to left; there is no hierarchy among functions
O+ (1*(2+(3*%4)))
14
1°"~@. (<&0) 4 Exponential of negative arguments; factorial of others
24
17M@.(<&0) -4
0.0183156

A. THEOREMS AND PROOFS

A theorem is an assertion that one expression L (the /eft [imb) is equivalent to another R,
and may be expressed as the function T=: L -: R . A theorem may also be called a
tautology, a function that yields 1 (true) for any argument. For example:

Ll=: +/@i. Sum of integers
Rl=: (] * ] - 1:) % 2:
Tl=: L1 -: RI1

(TL ; L1 ; R1L ; 1.) 6

|1]15]15l0 123 45



We can also assign the name n to the right argument function ] to allow a function such
as R1 to be written more readably for a beginner. Thus:

n=: |

Rl=: (n*n-1:)%2:
A proof is a sequence of equivalent expressions that lead in justifiable steps from a left

limb to a right. We will write one expression below another to assert that it is equivalent
to the one above it, possibly annotating it with the justification to provide a formal proof:

L1 Theorem 1

+/@1. Definition of .1

+/@].@1. Sum is assoc and comm (| . is reversal)
((+/@Qi.)+(+/@Q|.Q1i.)) % 2: Half of sum of equal quantities
+/@(i. + |.@Q1i.) % 2: Summation distributes over addition
+/@(n # n - 1:) % 2: Sum with reversal gives list of n-1

(n *n-1:) % 2: Definition of times

R1 Definition of R1

We will also present proofs beginning with the theorem and continuing with the sequence
leading from the left limb to the right. For example:

odds=: 1: + 2: * i. First odd integers

T2=: (+/Q@Qodds) -: *: Theorem 2: sum of odds gives square
+/@(1: + 2: * i) Definition of odds

n+ +/@(2: * 1i.) Sum of n ones is n

n+ 2: * +/Qi. Sum of twice is twice sum
n+2:* (n*n-1:) % 2: Theorem 1

n+n*n-1: Simple algebra

n * n Simple algebra

* .

Definition of square

We will use names such as GKP5_4 to refer to theorem 4 of chapter 5 of GKP. Thus:
GKP5 4=: L5 4 —: R5 4=: (-~ ! ])"0 [. L5 4=: !
i (L5 4/ ; R5 4/ ; GKP5 4/) i=: i.6

1

1 1
5 5
10 10
10 10
5 5
1 1
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Chapter 1
RECURSION

If a function recurs in the expression that defines it, the function is said to be recursively
defined. Such a definition must be supplemented by a definition for some specific
argument, using an expression that does not make use of the function being defined.

For example, the factorial of the argument j may be defined by 3 * £ j-1 (or more
formally by 1 * f@<:), supplemented by the definition 1 : for the case j=: 0. Thus:
f=: 1:°(]1*f@<:) Q. *
£ 5
120
£"0 i. 6 The function £ is applied to each rank 0 cell
112 624 120 of i. 6, thatis, to each scalar

In the foregoing definition, the signum function * yields O if the argument is zero, and 1
if it is greater than zero. Consequently, the agenda @. chooses the last element of the
gerund 1:° (]*£@<:) each time until the argument (repeatedly decremented by <:)
becomes zero, in which case it chooses the constant function 1:, thus terminating the
process.

Alternatively, the imposition of zero rank could be incorporated in the recursive
definition :

f=: 1: (]*f@<:) @. * " O

fi. 6
1126 24 120
The reference to £ within the definition works only because the name f is assigned to the
function defined; we may instead use the symbol $: for self-reference to define an
anonymous function to which any name may be assigned:

1:7(]*$:@<:) @. "™ 0 1. 6
112 6 24 120

factorial=: 1: (]*$:@<:) @. * "™ 0

factorial i. 6
112 6 24 120

A. THE TOWER OF HANOI

In this puzzle, discs are to be moved from post A to post B using post C, a larger disc
never being placed on a smaller. The two expressions in GKP1.1 (Eq 1.1 of GKP) for the
number of moves required for n discs lead to the following recursive definition:

T=: 0: (l:42:*T@<:) @. * " O

T x=: 1. 10
01 3 7 15 31 63 127 255 511

This result suggests experiments that lead to an equivalent non-recursive definition:

1+T x
12 48 16 32 64 128 256 512
2"°x
12 48 16 32 64 128 256 512
t=: (2: ~ 1) - 1: (Ort=: <:@(2&™))
t x
01 3 7 15 31 63 127 255 511
(T = t) x
1111111111
(T -: t) x A tautology (true for any argument)



RECURSION

In the definition of t above, the right bracket symbol ] denotes the right argument. By
assigning the name n to it we can also use notation that may be easier to compare with
the expressions in GKP. Thus:

n=: |

t=: (2: * n) - 1:
Properties of a function that is defined recursively can often be established inductively: a
property is assumed to hold for a specific argument value j, and this assumption is used
to prove that it must then hold for the argument §+1. It then remains to show that it does
indeed hold for some specific value of the argument.

For example, we will assume that the functions T and t agree for the argument . Stated
formally:

(T=t) J Induction hypothesis
1

We now establish that (T=t) j+1 is therefore true:

(T=t) j+1

(T §+1)=(t j+1) Definition of the fork T=t
(T §+1)=((279+1)-1) Definition of t

(T F+1)=((2*279)-1) Definition of power

(T J+1)=(1+2*t 7) Def of t and simple algebra
(1+2*T J)=(1+2*t 7) Definition of T

(T J)=(t 3J) Simple algebra

(T =t) j Definition of fork

1 Induction hypothesis

If a typical value is assigned to the argument ; that appears in the proof above (as in
j=: 10), then each line of the proof (excluding the comments) may be entered on the
computer to yield the result 1. If each equal sign is replaced by a comma or semicolon,
the result will be the results of each limb of the assertion. Such displays can be helpful in
developing a proof, since a false step will probably show a discrepancy.

Any proof can be so illuminated by entering the steps, with the argument or arguments
appended. For example, after entering x=: 10, the first three lines of the proof of
Theorem 1 in Chapter 0 may be entered with x appended. Because it is a fork, the next
line must first be enclosed in parentheses.

Since the functions agree at zero, they must agree for all succeeding integer arguments.
The pattern shown by the result of 1+T i.10 was so obvious as to require no explicit
analysis of the relations between successive elements in order to define an equivalent t,
but we will use it to illustrate methods that will be so used. Thus:

a=: 1 + T i. 10

a
1248 16 32 64 128 256 512

2 +/\ a Sums of successive pairs
3 6 12 24 48 96 192 384 768
3 -/\a Alternating sums of triples
3 6 12 24 48 96 192 384
$/\ a Division over pairs
0.50.50.50.50.50.50.50.50.5
2 $~/\ a Commuted division over pairs

222222222
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Recursion also provides a simple definition of the sequence of moves in Hanoi. We will
first present and apply such a definition, and then use it to illustrate the steps in
reading or interpretation:

h=: b (p,.q,.r)l.c See §E if this definition does not work
c=: 1l: < [
b=: 2&,Q[ $ ]
p=: <:@[ h 1: A. ]
g=: 1l: h ]
r=: <:@[ h 5: A. ]
3 h x=: '"ABC'
AABACCA
BCCBABB

012 3 4 <@h"0 1 x

A
B

AAC
CBB

AABACCA
BCCBABB

AACABBAACCBCAAC
CBBCACCBBAABCBB

The foregoing definition uses some new notation, but the first line makes it clear that h is
recursively defined, with a base b that is selected when the condition ¢ produces a zero,
and with a main part (p, .q, .r) selected when it produces a one (that is, when the left
argument exceeds one). The main part uses the catenation ,. which should be
experimented with if unfamiliar:

(3 4,.5 6) (1 2,.3 4,.5 6)

’

3 5(1 35
4 6|2 4 6

The inner function g is simply the movement of a single disc, but the outer functions
employ the possibly unfamiliar permutation primitive A. :

(001 2345A. "ABC");(01 2 3 45A. 1.3)
ABC|0 1 2
ACB|0 2 1
BAC|1 0 2
BCA|1l 2 O
CAB(2 0 1
CBA|2 1 0
012 3 45A. "first';'second'; "'third'
first |[second|third
first |[third |second
second|first |third
second|third |first
third |first |second
third |second|first

The functions p and r are therefore seen to be recursive applications of the function h
with the left argument (number of discs) decremented, and with the right argument (the
posts) permuted.



RECURSION

The expression g=: h £. may be used to produce an equivalent function g; the adverb
f. applies to its argument h to (recursively) substitute the referent of each name
encountered, producing a definition in terms of primitives only.

B. TRIANGULAR NUMBERS

The function trn=: +/QAi uses the function Ai=: 1:+i. (Augmented indices) to pro-
duce the triangular numbers, defined as the number of coins in a packed triangular array
with a specified number of coins in the base row. For example:

(Ai=: 1:+i.) 4
12 34

trn 4
10

trn"0 i. 15
01 3 6 10 15 21 28 36 45 55 66 78 91 105

Since trn j equals j+trn j-1, an equivalent recursive definition is:

sr=: 0: (n + $:Q@<:)@.*
The function S=: (n*n+1:)%2: given by GKP1.5 (or the equivalent 2:!>:) can be
shown to be equivalent to the recursive definition sr by an inductive proof. We offer
instead a proof of the equivalence to S, based on the observation of Gauss cited in GKP;
prefacing it with illustrations of some of the expressions to be used in the proof:

S=: (n*n+l:)%2: Recall that n=: ]

J=: 10

(trn,sr,S) j
55 55 55

. AL j
10987654321

(AL + |.@AL) jJ

11 11 11 11 11 11 11 11 11 11
jo# J+1

11 11 11 11 11 11 11 11 11 11
+/ 3 # 3+ 1

110
Jox 3o+ 1

110
(3*3+1) %52

55

Proof:
trn J
+/@A1 J Definition of trn
+/@|.QAL J +/ is symmetric (See § E)
-:@(+/QA1 + +/Q|.QA1) Half sum of equals
—:Q(+/)Q (AL + |.@AL) 7 Sum distributes over +
—:Q(+/)Q@(] # 1 + 1:) 3 Sum is a list of constants
-:@(] * ] + 1:) 7 Definition of multiplication
((1] * 1 +1:) % 2:) 3 Definition of -: (halve)
((n *n+ 1:) % 2:) 3 Definition of n
S j Definition of s

C. THE JOSEPHUS PROBLEM

11
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If £=: }:@|. then the repeated application of i&f to an argument x removes items
located at intervals of i from those remaining (treated as a circle):

f=: }:Q]. Delete last after rotating

x=: 'ABCDE'

x;(3 £ x);,(3 £3 f x);(3 £*: 01 2 3 x)

ABCDE | DEAB | BDE [ABCDE
DEAB
BDE
BD

The original Josephus problem as presented in GKP concerns the application of 3&f to
the argument Ai 41 (the positions of 41 men formed in a circle) until only two (that is,
one less than the interval) survive. To effect this we define and use the following

function:
js =: £7:(1: + #@] - )
3 9s Ai 41

16 31

We will concentrate (as does GKP) on the case of an interval of two, and therefore define
a function 7 that is equivalent to js except that it has a monadic case 2&3s and ranks 0
1:

j=: 2&$: : js " 0 1

(3 x); (,3\x); (,IN\LI+i 4 x); (,3\1.# x)

C|[AACAC|(1 1 3 1 3({0 0 2 0 2

,3\AL 16
113135713579 11 13 15 1

< ;. 1 ,3\Ai 16 Box cuton leading item. See §E.

11 3|11 3 5 7|1 357 9 11 13 15|(1

The last two results agree with the table of values of j that appears after GKP1.8.
However, a more obvious pattern is provided by labelling the positions with indices
beginning at zero rather than one, and we will continue to use such zero-origin indexing
hereafter:

< ;. 1 ,3\i. 16

010 2(0 2 4 6|0 2 4 6 8 10 12 14|0

This result leads to a recursive definition that differs somewhat from that of GKP1.8, but
can easily be related to it:
jr=: 0: even ' odd @. c
even=: +:@>:Q@jr@<:@-:
odd=: +:@jr@-:0<:
c=: * * >:Q(2&])

b ,: §r"0 b=: i. 20
012345678910 11 12 13 14 15 16 17 18 19
0020246024 6 8101214 0 2 4 6 8
<;.1 3r"0 b

010 2|10 2 4 6|0 2 4 6 8 10 12 14(0 2 4 6 8
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The pattern produced by jr may be examined further as follows:
b=: 1.<:2%5
;- y=: <;.1 Jr"0 b

02146

0246 8 10 12 14

0 246810 12 14 16 18 20 22 24 26 28 30

#e>y Lengths of blocks
1 2 48 16

+/\#&>y Lengths of groups of blocks
1 37 15 31

lp=: > 2{y A typical block
02 46 810 12 14

Jag=: > 1I{y Its successor
024 6 8 10 12 14 1o 18 20 22 24 26 28 30

(2 *p +/ 0 1); (g=,2*%p+/0 1) Relation between blocks

0 2111111111111 1111
4 6
8 10
12 14
16 18
20 22
24 26
28 30

The relations between the successive blocks p and g observed above lead to an
alternative recursive definition of jr:

(Jar=: 0: (2: * jar@<:@>.Q@-: + 2&|@<:)@.*"0) i. 6
002024602 4+6381012 14 0
Since each block of jr ascends in steps of two, since each re-starts at zero, and since the
lengths of groups of blocks are as illustrated above, a non-recursive solution (analogous
to GKP1.9) may be defined as follows:

jnr=: 2:*1:4+]-(2:7<.Q(2&".))@>:

Jjnr i. 16
0020246024628 10 12 140
To compare one of the functions developed here with the corresponding function in GKP,
it is necessary (because of the use of zero-origin indexing), to apply it under decrement;
that is, decrement the argument, apply the function, and then apply the inverse function
increment. Thus:

>:Q@jnr@<: 100
73

jnr&.<: 100 Dual of jnr with respect to decrement
73

D. QUICKSORT
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Chapter 2 of GKP (page 28) provides a recursive statement of the number of comparisons
needed in Hoare’s Quicksort algorithm. We will conclude this chapter with a recursive
definition of the quicksort algorithm itself:

sel=: 1 : '] #~ 1 x. {.'

gsort=: ] ($:@(<sel), =sel, $:@(>sel)) Q. (1:<#)

gsort y =: 15 2 9 10 4 0 13 13 18 7
0247 910 13 13 15 18

v /1y
0247 910 13 13 15 18

E. NOTATION

Fork. The three verbs in the definition mean=: +/ % # form a fork, and mean x is
equivalent to (+/x) % (#x). The fork phrase must be isolated; that is, (+/ % #) x
gives the mean of x, but +/ % # x does not.

Atop. The conjunction @ first appears in the expression ] * f@<:. The phrase f@<:
produces a function equivalent to applying £ atop (that is, to the result of) the decrement
function <:.

Curtail. The function }: introduced in the section on Josephus curtails its argument,
dropping the last item or fail, itself selected by the function { :. Similarly, } . beheads its
argument , and { . selects its head.

Cut. In the section on Josephus, the phrase <; .1 is applied to the ravelled argument
,J\Ai 16 to box (<) intervals of the argument demarked by occurrences of the head of
the argument, which therefore serves as a fiet. The cut conjunction ; . may be used with
functions other than box; for example, +/; .1 applied to the same argument yields
1 4 16 32 1.

The right argument of ; . concerns the fret; using the head if it is 1, the tail if it is 2, and
excluding the fret itself from the intervals if it is negative. Thus +/; . 1 applied to the
same argument would yield 0 3 15 31 0.

Erasure. If the names in the phrase b’ (p, .q, .r) @.c that begins the recursive
definition for the Hanoi problem were pre-defined to be other than verbs it would not
work as expected. It is prudent to precede such a phrase by one that erases names that
have not yet been assigned their intended referents. Use:

erase=: 4!:55Q;:,asinerase 'b p g r'
Rank. £"0 1 applies £ between each rank 0 element (atom) of its left argument and

each rank 1 element (vector) of its right. For example:
123 ¢(,"012,; ,10,; ,"11; ,"1) 456

12345%6|12345°%¢6

w NP
IR
oo an
oy oy O
e
N NN
www
oy U1 W

Scans. The adverb \ (first used in the expression 2 +/\ a) applies to its verb argument
+/ to produce a verb that applies +/ (summation) to each length-2 (as specified by the
left argument) infix of the right argument a, therefore producing sums over all adjacent
pairs of a. The monadic case +/\ a applies +/ to each prefix of a, and therefore
produces subtotals or partial sums. Similarly, */\ produces partial products, and <. /\
produces partial minima.

The adverb \ . applies its argument to suffixes, and the adverb /. applies its argument to
oblique lines of a table. For example:

c=: 121[d=:1331

(¢ */ d) ; (+//. ¢ */ d) ; <(</. ¢ */ d)
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1510 10 51
3611 6 32 3|1

=N
wow
wow
=N
=
w
N

Symmetry. The proof in the section on triangular numbers uses the phrase “+/ is
symmetric”. A monadic function is said to be symmetric if any permutation of its
argument yields the same result. The function +/ is symmetric because the (dyadic)
function + is both commutative and associative.

Self-reference. The primitive $: provides self-reference to a function being defined, as
in the recursive definition in the introduction to this chapter. It is also used to refer to the
other case (monadic or dyadic) of a function being defined by the conjunction :, as
illustrated by the definition of the ambivalent function j in the Josephus problem.

Under. fs.g applies £ to the result of g, and then applies the inverse of g to that result:

(+: ; *: ; *:8.+4:) 01 2 3 4 Double, square, square under double

0246280149 16[(0 2 8 18 32

The function f&.g is sometimes referred to as the dual of £ with respect to g.

15



Chapter 2
SUMS

A.NOTATION

GKP2.1 introduces sums of the form aj+ay+...+a, “where each a) is a number that
has been defined somehow”. We will therefore treat a as a function, and the list of
indices k as a second function, typically i . or the function Ei=: i.@>:. For example:

Ei=: 1.@>: Extended indices
Ei 5
012 345
a=: *: Square
a Ei 5
01 4 9 16 25
+/ a Ei 5

55

We will define an adverb s such that £ s x yields the sum +/ £ x. Thus:
S=: (+/@:) (RE1) ("0)

1 S
+/@:]@ELi"0

] S5
15

x=: Ei 10

] S x Triangular numbers
01 3 6 10 15 21 28 36 45 55

*: S x Sums of squares 0-10

01 5 14 30 55 91 140 204 285 385

If p is a proposition that yields 1 or 0, then (f*p)S yields the sum of f over those
indices that satisfy the proposition. For example:

Ispr=: (l:=#Q@g:) :: 0:"0 Proposition is prime

Ispr Ei 15 Prime test
0011010100010100

($*Ispr)S Ei 7 Sum of reciprocals of primes
0 0 0.5 0.8333333 0.8333333 1.03333 1.03333 1.17619

Alternatively, the function f*p can be replaced by a function that selects only those
arguments that satisfy a proposition. Thus:
(Ispr # 1) Ei 7
2 357
%@ (Ispr#]) S 7
1.17619

%@ (Ispr#]) S Ei 7
0 0 0.5 0.8333333 0.8333333 1.03333 1.03333 1.17619

4 5% %@ (Ispr#]) S Ei 19
0 0 0.5 0.8333333 0.8333333
1.03333 1.03333 1.17619 1.17619 1.17619
1.17619 1.2671 1.2671 1.34402 1.34402
1.34402 1.34402 1.40285 1.40285 1.45548

B. SUMS AND RECURRENCES

As stated in GKP2.6, the sum a S is equivalent to the following recursively defined
function:
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a=: *:

sum=: a (a+$:@<:) @. * "0

sum Ei 10 Sum of squares
0 15 14 30 55 91 140 204 285 385

a=: |

sum Ei 10 Triangular numbers
01 3 6 10 15 21 28 36 45 55

a=: 3:42:%]

a Ei 10

357 9 11 13 15 17 19 21 23

sum Ei 10
3 8 15 24 35 48 63 80 99 120 143

a S Ei 10
3 8 15 24 35 48 63 80 99 120 143

In a manner analogous to the repertoire method of GKP, we will find a non-recursive
equivalent to a recursively defined function by finding a polynomial fit to a few of its
values. To this end we will use the adverb:

CPA=: (@Ei) %. "/~QEi
so defined that £ CPA n yields the coefficients of a polynomial approximation of order n
to the function £. For example:

a=: *:
a CPA
a@Ei %. ~/~@Ei
sum i=: Ei 7
015 14 30 55 91 140
Jc=: sum CPA 4 Coeffs of polynomial equivalent of sum
0 0.1666667 0.5 0.3333333 0
cp. i Test of coefficients
0 1 5 14 30 55 91 140
6*cC
01320
(001 3 2%6) p. i Alternate expressions of polynomial

01 5 14 30 55 91 140

(1 + (3*172) + (2*1i"3))%6
01 5 14 30 55 91 140

a=: ~&3
sum i Sum of cubes
01 9 36 100 225 441 784

d=: sum CPA 5

d
0 0 0.250.50.250

d p. 1

01 9 36 100 225 441 784
(Fei)*(*:i+1) %4

01 9 36 100 225 441 784
(*:1i*i+1) %4

0 1 9 36 100 225 441 784

C. MANIPULATION OF SUMS

A monadic function g is said to be symmetric if it is invariant under any permutation of
its argument; that is, g=g@p for any permutation function p . For example:

p=: 3 1 0 4 2&{



18 Chapter 2

p 'ABCDE'
DBAEC
g=: */ Product over

(g ; p s g@p) x=: 2 7 8 1 8

8961 7 2 8 8]896

The function */ is symmetric because the dyadic function * (multiplication) is both
associative and commutative. In general, it is easy to prove that £/ is symmetric if £ is
both associative and commutative. In particular, summation (+/) is symmetric.

The relations expressed by GKP2.5-7 are re-expressed in the following tautologies, using
c to denote a constant scalar function, p to denote a permutation, and the adverb S
defined in §A:

a=: 3 2&p. [. b=: *: [. c=: 0.1"0 [. p=: 97&A. Example functions
tl=: (c*a) S = c*a S
t2=: (at+b) S =a S + b S
t3=: a S = alp S
(tl 5), (t2 5), (£3 5)
111

((c*a) s ; as; c*a3s)5b

4.8|48(4.8

((atb) s ; a S ; b S; a S +b S) 5

103|48|55(103

(a S ; pRELi ; alp S) 5

48|10 5 1 2 4 3|48

As shown in GKP, these laws can be used to justify the method of Gauss for expressing a
triangular numberas a product (used earlier in Chapter 1 of this text). We will illustrate
this as follows, noting that reversal (| .) is a permutation:

((1 8); (1. S);(=:@(1+1.) 8); (1+].)@EL) 4

10(10|10|4 4 4 4 4

Partitioning of the type expressed by GKP2.19 may be illustrated as follows:

se=: e#] [. so=: o#] [. e=: —-. @ o=: 2&|

(e;o;se;so) Ei 4 Even, Odd, Select even, Select odd

10101(01 0010|0241 3

((se S);(so S);((se S)+(so S)); (] S))4

6141010

Other splitting of sequences used in the last part of §2.3 of GKP can be effected by the
head, behead, tail, and curtail functions ({. }. {: }:)used in Chapter 1 of this text, or
by functions such as take and drop (3s&{. and 3&}., etc.). More general cutting is
provided by the dyadic case of the function produced by the cut conjunction, in which the
ones in the boolean left argument mark the cut points. For example:

u=: 1 001 0010

] v=: 1. # u
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0123145¢67

u <;.1 v

01 2|3 45|67

u +/;.1 v
312 13

u <;.2 v

The marginal note on page 26 of GKP concerning an approximation to z# may be
expressed as follows:

(8: % ((4:%1) + 1:)*((4:*]) + 3:)) S 1000
3.14109

(8: % 1 4sp. * 3 4gp.) S 1000 Equivalent use of polynomials
3.14109

d=: 8 %~ c=:4//.1 4 */ 3 4
c; ((8: % c&p.) S 1000);d; (%@ (dsp.) S 1000)

3 16 16(3.14109(0.375 2 2|3.14109

D. MULTIPLE SUMS

A matrix or table is said to have two indices (or two axes) because its rows and columns
may be selected independently; summation can be applied over either index to produce a
vector or list result, which may again be summed.

More generally, an array or report may have n axes, and summation may be applied over
any one of them by using a sum of appropriate rank. For example:

r=: i. 4 3 2

(1 ; S # ; #@S ; +/"0 ; +/"1 ; +/"2 ; +/"3 ; +/) r

0 1|4 3 2|4|131 0 1] 1 5 9 6 936 40|36 40
2 3 2 3|13 17 21|24 27|44 48|44 48
4 5 4 5|25 29 33|42 45|52 56|52 56
37 41 45|60 63
6 7 6 7
8 9 8 9
10 11 10 11
12 13 12 13
14 15 14 15
16 17 16 17
18 19 18 19
20 21 20 21
22 23 22 23

Repeated summation will eventually produce a single (scalar) result and, because
summation is symmetric, this result will be the same whatever the order of summation.
Moreover, the same is true of a table formed as the outer product of two vectors, and
indeed of any permutation of such a table. For example:

(+/+/+/x), (+/+/+/"2 ©), (+/"1+/"1+/"1 r)

276 276 276
V=: 2 4 6
W=: 3 1 4 1
t=: V */ W
p=: 4 & A.

19
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p 012
2 01
Lty (H/+/8); (H/+/"1 B);(p t); (+/+/p )

6 2 8 2(108|108[18 6 24 6(108

The symmetry of summation likewise ensures that complete summation of a product
table v */ W remains unchanged if the arguments v and w are permuted. Thus:

(+/,V*/W); (p V); (| .W); ((p V)*/|.W); (+/,(p V) */|.W)

108|6 2 4|1 4 1 3|6 24 6 18(108

The following results illustrate GKP2.28:
(V*/W) 5 (+/+/V*/W) ; (+/V) 5 (£/W) 7 ((+/V)* (+/W))

108|12]9]108

More generally, it is convenient to treat tables as outer products of functions that apply to
lists of integers. For example:

a=: 1: + 2: * 1 [. b=: *:

t=: a */ b

(l;asbrt; (+/Q(+/@t)); (+/@(+/"1Qt))) Ei 4

012341 35729|0149 16 4 9 16|750|750
12 27 48
45 80
28 63 112

36 81 144

[cleoloNoNe]
O JOTWwrH
N
(@]

Propositions may be used to limit summation to subsets. For example:

pr=: <:/~ Upper triangle
(pr; (pr * t); (+/@,@(pr*t))) Ei 4
11111{01 4 9 1le6|584
01 111|0 3 12 27 48
0011 1(0 0 20 45 80
00011|00 063 112
0000100 O 0 144

The adverb S of §A may be used to illustrate the two limbs of GKP2.33 as follows:
(,@(pr * a */ a) S ; 2: %~ *:@Q(a S) + *:Qa S) 4

395(395

The left limb sums all elements of the upper triangle of the table a */ a; the right halves
the square of the sum of a added to the sum of its squares.

E. GENERAL METHODS
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In §B we developed a general method (analogous to the repertoire method of GKP)
which determined the coefficients of a polynomial equivalent to the sum over a specified
function. In particular, we treated the cases of squares and cubes.

There are several reasons why polynomials are useful in exploring expressions for sums:

A) A simple function Epa may be used to expand a polynomial f=: ce&p.; thatis, to
obtain a polynomial g=: d&p. such that g x equals £ x+1. This is clearly useful in
developing recursion and inductive proofs.

Epa=: Bc@# X ]

X=: +/ . * Matrix product
Bec=: i. !/ 1i. Binomial coefficients
]Jd=: Epa c=: 1 2 3
6 8 3
(c p. xt1) ,: dp. x=: 01 2 3
6 17 34 57.
o 17 34 57

B) It is easy to obtain sums and products of functions expressed as polynomials. For
example, csp. * d&p. is equivalent to (cappad) &p., where pp is a polynomial
product function. Thus:

pp=: +//.@(*/)

121ppl331
1510 10 5 1

0Ol ppllppl?2
0132

pp/0 1,1 1,:1 2
0132
C) The adverb cpa of §B used in c=: £ CPA d yields the coefficients of a
polynomial approximation of degree d to the function £. Thus:
CPA=: (@Ei) %. "/~QEi
Jc=: %: CPA ©
0 1.71544 1.0635 0.43653 0.0995919 0.011677 _0.00054824
c p. x=: Ei 5
0 1 1.41421 1.73205 2 2.23607

[

% X
0 1 1.41421 1.73205 2 2.23607

D) A linear function of a collection of polynomials is equivalent to a polynomial
whose coefficients are the same linear function of their coefficients. For example,
using the matrix product Xx=: +/ . *:

C=: 312, 0123,:21

d=: 01 4 [ y=: 01 2 3 4

C;(Cp./ y);(dXCp./ y);((dXC) p.vVy)

31203 6 13 24 39|8 18 50 122 252(8 18 50 122 252
01 2 3|0 6 34 102 228
210023 4 5 6

E) The derivative and the integral of a polynomial csp . are also polynomials:
(I: }. 1 * i.@#)@[ p. Jand (0: , ] % >:Qi.Q@#)@[ p. ]
Method 5 on page 46 of GKP may be paraphrased by the following tautology:

td6=: +/Q@*:Q@A1 = +/@(+/\.)QAi
tdo"0 i. 6
111111
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The right limb of t46 may be illustrated as follows:
: Al t=: 4

(<\.i); (+/\.1); (+/+/\ . 1)

10 9 7 4|30

12 3 4|12 3 4|3 4|4

It may also be paraphrased by an expression that multiplies a table of integers by a
boolean upper triangle (to suppress the elements suppressed by the foregoing suffix scan)
before performing a final summation:

A=: (t,t)$S1

I=: +/\. A

U=: <:/~ 1.Q@%I

A;T;U; (I*U); (+/"1 I*U); (+/+/"1 I*U)

1111|444 4(1 111|444 416 9 4 1|30
11111333301 11|03 33
11111222 2{0011|00 22
11111 111)j00 01|00 071

F. FINITE CALCULUS

The difference operator of GKP2.42 and the falling factorial function of GKP2.43 may be
defined as follows:

fd=: 1 : '"x.@>: - x.' Forward difference adverb
ff=: */Q([ - 1.@]1)"0 Falling factorial function
For example:
*: fd
*i@>: - *:
~&3 fd
~&3@>: - "&3

(("&2 £d); ("&3 £d); ("&d4 £d)) x=: 0 1 2 3 4

1 3579|1719 37 1|1 15 65 175 369

(3*x"2)+ (3*x)+1
1 7 19 37 61

4 ff x
1 4 12 24 24

x ff/x
10 0 0 O
11 0 0 0
12 2 0 O
13 6 6 0
1 4 12 24 24

The function ~! . r is a variant of the power function defined by the expression:
g=: */Q@Q([ + r"_ * i.€])"0
In particular, ~!. 1 is equivalent to the falling factorial ££ defined above, ~! .0 is the

power function itself, and ~! .1 is the rising factorial. Moreover, the parameter r is not
restricted to integers.

Similarly, p. ! . r is a variant of the polynomial defined as a weighted sum of the function
~ 1. r rather than *. In particular, p. ! .0 is equivalent to p., and p. ! . 1 is a polynomial
based on the falling factorial. For example:

ff=: ~!. 1 [. fp=: p.!. 1
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c=: 2 314 [ d=: 2813 4 [ x=: 4 5 6
(x » 5);(x £f 5); (c p. x); (d fp x)

1024 3125 7776|0 120 720|286 542 920(286 542 920

Because the derivative of ~st is t times ~& (t-1), the derivative of the polynomial ~st
is the polynomial (Dpc c) &p. and its integral is (Ipcéac) sp., where Dpc and Ipc are
defined as follows:

Dpc=: 1: }. ] * i.Q#

Ipc=: 0: , ] % >:@i.Q#
For example:

c&p. x=: 01 2 3 4
2 10 44 128 286

c&p. D. 1 x First derivative of cap.
3 17 55 117 203

(Dpc c)&p. X
3 17 55 117 203
(Ipc c)é&p. x
0 4.83333 28.6667 109.5 309.333
(Ipc ¢c)&p. D. 1 x
2 10 44 128 286
As stated in GKP2.45, the difference ffsm fd is equivalent to m times ff& (m-1).
For example:
m=: 4
((ff&m f£d); (ff&(m-1)); (m"_ * ff&(m-1))) x

0 00 24 9|0 0 0 6 24]0 0 0 24 96

Thus the difference of the falling polynomial behaves analogously to the derivative of the
ordinary polynomial:

(c&fp ; c&fp fd ; (Dpc c) &fp) x

2 510 41 1223 5 31 81 155|3 5 31 81 155

((Ipc c)&fp fd ; +/\Q(c&fp)) x

2 5 10 41 1222 7 17 58 180

Expecting that the integral might be related to sums over the falling polynomial, we
compare them as follows:

(((Ipc c)&fp); (+/\Q(c&fp))) x

0 27 17 58|2 7 17 58 180

However, in order to apply the results of finite differences and integrals to ordinary
polynomials we must develop a transformation t such that (t c)&fp is equivalent to
c&p.. To this end we express a polynomial as a linear function of its coefficients.

If vm is the table of powers x ~/ i.#c (called a Vandermonde matrix), then vm X c is
equivalent to csp. x. An analogous matrix may be defined for the falling factorial
function. Thus:

X=: +/ . * Matrix product
vm=: x ~/ 1i.#c
vmf=: x ~!. 1/ i.#c

;&> (vm; (vm X ¢); (¢ p.x);vmE; (vimf X ¢);c fp x)
I T T T T T 1

23
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10 0 O 2 2(1 0 0 O 2 2
11 1 1| 10) 1011 1 0O O 5 5
12 4 8| 44| 44|11 2 2 0Of 10 10
1 3 9 27|128|128|1 3 6 6| 41| 41
1 4 16 64(286(286|1 4 12 24122122

The transformation t may therefore be defined as the “quotient” of square Vandermonde
matrices using i . #c for x:

s=: i. (~/ %. ff/) 1i.

t=: s@# X ]

d=: t c
;-&.>((s 4);(%.s 4);c;d; (c p. x);(dp.!. 1 x))
10002 0 0 02 2 2 2
011 1{01 1 2|3 8 10| 10
0013|001 31113 44| 44
000 1|0 0 O 1]4f 4128|128
2861286

The transformation t may now be used to define a transformation from the coefficients of
the polynomial +/\@ (c&p.):

st=: Epa@(t®: 1)Q@Ipc@t

Ipc=: 0: , 1 % >:@1i.@#
Epa=: Bc@# X ]
X=: +/ . *
Be=: i. !/ 1.
e=: st c

;&> (cie; (H/\c p. x); (e p. %))

2 2 2
3.66667| 12 12
3| 56| 56
2.33333|184(184
114701470

D= W N

The polynomial coefficients of the successive powers appear as the successive rows of
the identity matrix, and the function st may now be applied to them to obtain a table of
coefficients of sums of powers:

(Id=: i. =/ i.) 5 Identity matrix function
10000
01000
00100
00010
00001
st"l Id 5
1 1 0 0 0 0
0 0.5 0.5 0 0 0
~5.55112e 17 0.1666667 0.5 0.3333333 0 0
0 0 0.25 0.5 0.25 0

7.21645e 16 0.03333333 8.88178e 16 0.3333333 0.5 0.2
Tiny values of the order of 1e 17 that appear in this result should be treated as zeros;
they arise from the limited precision of the computer calculations. They may be
suppressed from the display by the following threshold function as shown:
Thr=: ] * 0.1&"Q[ <: |@Q]
3 Thr st"1 Id 5

1 1 0 0 0 0
0 0.5 0.5 0 0 0
0 0.1666667 0.5 0.3333333 0 0
0 0 0.25 0.5 0.25 0
0 0.03333333 0 0.3333333 0.5 0.2
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The function s used in the definition of the transformation t is simply related to the
Stirling numbers discussed in Chapter 6:

(l: s 7)y 7 (l: | %. s 1)
10 0 0 0 00]|1 0 0 0 0 00
01 0 0 0O 0O0]0 1 0 0O 0 00
01 1 0 0 0 0]0 1 1 0 0 00
01 3 1 0 0 0]0 2 3 1 0 00
01 7 6 1 0 0]0 6 11 6 1 00
01152510 1 00 24 50 3510 10
01 31 90 65 15 1|0 120 274 225 85 15 1

The extension of the rising factorial to negative exponents (GKP2.51) uses m factors;
from x to x+m-1 or, for the case of -m, from x+1 to x+m. The final result is their product,
or, in the case of -m, its reciprocal. We will define more general increments that provide
specification of the step size, thus extending the definition to falling factorials (with a
step size of 1) as well:
inc=: [ * 1.@|@] + 0: > ]
1 1 inc"0/ 5 5
o 1 2 3 4
1 2 3 4 5

0 1 2 3 4

1 2 3 4 5
Finally, we define an adverb whose left argument specifies the step size:
FAC=: 1 : '"*/@([ + x."0 inc 1) ~ *@]"
x=: 456 [ m=: 3 3

(x 1 FAC"0/ m) ; (x _1 FAC"0/ m)

120 0.004761905| 24 0.1666667
210 0.00297619| 60 0.04166667
336 0.001984127|120 0.01666667

G. INFINITE SUMS

The expression +/ £ i. n sums the function £ over the first n integers, but it cannot be
used directly to sum only until some condition (such as a limiting value) has been
reached. For this we will define an adverb step such that the function £ step performs
a single step in the summation. Thus:

step=: 1 : '">:@{. , {: + x.@{."
*: step

>:Q{. , {: + *:@{.
k=: i. 8

(*: step *: kK 0 0) ; (3: ~ =) step *: kK 0O

0 0]0 0
1 0f1 1
2 1|2 1.33333
3 5|3 1.44444
4 14(4 1.48148
5 30(|5 1.49383
6 556 1.49794
7 91|7 1.49931

Two further adverbs serve to test whether the sum is still changing (has not converged),
and to apply the step until it does converge:

test=:1 : '"{:@([ ~: x. step)'

25
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lim=: 1 : "{:@(x. step”:(x. test)”": )'

(3: » =) 1im 0 O
1.5

H. NOTATION

Derivatives. The conjunction D. is used as in £ D. k to produce the kth derivative of
the function £. The adverb D1=: ("0) (D.1) produces the scalar first derivative.

The property of the falling factorial stated in GKP2.45 is used in Iverson [4] as a basis
from which to derive the falling factorial as a function for which differencing is
analogous to differentiation of the power functions.

Matrix quotient. The monadic case of %. is the matrix inverse, and the dyadic case may
be called the matrix quotient: m%.t is defined as ($.t) X m. If t is a tall (and therefore
singular) matrix, the result is a best fit in the least-squares sense.

Oblique. The oblique adverb /. applies its function argument to each of the (forward-
sloping) diagonals of a matrix argument of the resulting verb. For example:
Jm=: 1 21 */ 1331

=N
w o w
=N

<

~ WoyWw

113 213 6 1|1 6 3|2 3|1

+//. m
1510 10 51

Passive and reflexive. The sentence a f~ b applies £ passively (commuting the
arguments), and £ b applies it reflexively (asinb f b). For example:

into=: %~

10 into 0 1 2 3 4
0 0.1 0.2 0.3 0.4

(*~ 4) , (4*4)
16 16
Stopes. ~!.r is a variant of the power function defined by the fact that
x ~!l.r t is equivalent to */xa&+ar * i.t. Special cases are the falling factorial
(. 1), the rising factorial (~!.1), and the power function itself (*!.0). The function
p.!.r is a similar variant of the polynomial. These variants may be used instead of the
functions £ £ and fp defined in this chapter, and ~! . 1 is so used in §D of Chapter 5.

Prime factors. The function q: used in the proposition Ispr=: 1:=#Qq: produces the
list of prime factors of its argument; that is, ]=*/@q: is a tautology. The function p:
produces primes. For example:

p: 01 2 3 45
2 35 7 11 13

Jg=: p:": 1 (2731)-1
105097564

p: g
2147483647
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INTEGER FUNCTIONS

A. FLOOR AND CEILING

As stated in GKP, the floor or integer part of a real number is the greatest integer that
does not exceed it. For example:

Si=: EiQ@+: - ] Symmetric integers
Ei=: i.@>: Extended integers

6 5 4 3 2 1012345¢%6
x=: 5%~ S5i 6

11 0 0 0 oo 1 1 1 11 2
172 71 0.8 0.6 0.4 0.200.20.40.60.811.2
21~ 17 17 17 10 0 0 0 01 1

We will use the floor and ceiling to illustrate the definition of propositions (to yield 1 if
the argument satisfies certain criteria) and of tautologies (to yield 1 for any argument).
Thus:

IsI=: ] = <. Is integral

IsMi=: ] -: /:~ Is monotone increasing (matches sort)
IsMd=: ] -: \:~ Is monotone decreasing

GKP3 3=: IsMil(<: , <. , 1 , >. , >1)

GKP3 4=: <. = >.&.-

GKP3_ 6=: IsI@] <: <.@+ = <.@[ + <.@]

IsI x

01 0000100001O0

IsMi <. x Floor of a monotone increasing argument is monotone increasing
1
The function GKP3 3 is so named because it represents GKP3.3; GKP3 4 states that floor
is the dual of ceiling with respect to arithmetic negation. Since duality is symmetric,
ceiling is also the dual of floor. The function GKP3 6 may be read as: The right
argument being an integer implies that the floor of the sum equals the floor of the left
argument added to the floor of the right.

The dyadic function <: (less than or equal or does not exceed) represents implication
because the “false” and “true” resulting from relations and from boolean functions are
represented by 0 and 1 in the manner used by Boole himself. For example:

x GKP3_6"0/ x

1111111111111
1111111111111
1111111111111
1111111111111
1111111111111
1111111111111
1111111111111
1111111111111
1111111111111
1111111111111
1111111111111
1111111111111
1111111111111
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Because the phrase <.@[ + <.@] is equivalent to +&<., and because implication
becomes redundant if the right argument ] is replaced by the integer <. @], the tautology
may also be written in simpler forms as follows:

GKP3 6a=: (IsIQ] <: <.@+ +&<.)"0

GKP3 6b=: (<.@([ + <.@]) = +&<.)"0

This last definition may be read as “The floor of the sum of one argument with the floor
of the other equals the sum of their floors”.

The function GKP3_ 3 asserts that decrement, floor, identity, ceiling, and increment are in
non-decreasing order. Alternatively this may be stated by asserting that successive pairs
are each in non-decreasing order:

GKP3_3a=: *./Q@(2: <:/\ (<: , <. , 1, >, >1))

GKP3 3a"0 x
1111111111111
To examine the definitions of floor and ceiling on complex numbers, we use a non-
negative table of them as follows:

<xm=: J./~ 5%~ Ei 5

0 030.2 030.4 030.6 030.8 031
0.2 0.230.2 0.2350.4 0.230.6 0.230.8 0.231
0.4 0.430.2 0.4350.4 0.430.6 0.430.8 0.4751
0.6 0.630.2 0.630.4 0.630.6 0.630.8 0.631
0.8 0.830.2 0.830.4 0.830.6 0.830.8 0.831

1 150.2 150.4 150.6 150.8 151

(<. ; >.) xXm
00O 0 0 031|0 031 031 031 031 031
00O 0 031 0311 031 0j1 031 031 151
0 00 031 031 0311 1 031 031 131 131
001 1 031 0311 1 1 151 131 131
011 1 1 0311 1 131 191 131 131
111 1 1 151)1 1391 191 131 131 151

These results may be surprising; the functions do possess some of the characteristics to be
expected, but they are clearly not defined as the floors and ceilings of the individual real
and imaginary parts. This may be illustrated as follows:

ri=: +.

y=: 2r33j4r5

(1 7 ri ; j./@<.) y

0.6666667j0.8|0.6666667 0.8]|031

sfl=: j./@<.@+."0

< sfl xm
0 00O0O0 031
00000 031
0 00O0O0 031
0 00O0O0 D031
0 00O0O0 031
11111131

For a somewhat “higher-level” problem in the sense of GKP, one might experiment with
<. and >. on further tables, and try to define the properties of a function that would lead
to the definitions adopted for them in J. Any solution may be compared with the
discussion in McDonnell [5] also cited in the dictionary of J.
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Clues to the definition may be found by examining the region of the complex plane that

maps to a particular Gaussian integer. For example:

map=: {&'.*' @

(031s=)

[. Si=: EiQ+: - ]

[.

(0j1= <.xm); (map <.xm); (0J1l= >.xm); (map >.xm)

00000 1f..... *10 1 1 1 1 1. ****x*
00001 If....* |0 1 1 1 1 Qf.x**x,
00011 1|...**10 0110 0f..**..
000011f....**|00O0O0O0O0f..cn...
00000 1f..... *00 00O O0f.unnn.
00000 O[.eue.... 00000 O[.eue....

(map@<. ; map@>.) j./~ 1lr5 * Si 10
R O S
00000000000000000000000000000000000 * kK
00000000000000000 *0 0000000000000*****
................ * k k% ............*****
............... * Kk Kk kK ...........*****.....
00000000000000 *kokkk 00000000000****000000
0000000000000 * ok ok ok k 000000000000**0000000
.............. * Kk % e e e e e e e e e e e
--------------- *----- ® o & o o o o o s s e s s e e s s e o s .
B. INTERVALS

The closed interval conventionally denoted by a<x<b may be defined by a proposition,

to be used in the manner x in

in=: >/@sgd
sgd=: *@(-~/~)
Ix=: 1r2*Si 5
2.5 2 1.5
x sgd 1 2
1 1 1 1 1 1 1 0
11 1 1 1 1 1 1
x in 1 2
0O 00000O0O1IT1IT1O0

X #~ x in 1 2
1 1.5 2

Similar definitions for the various closed and open intervals may be derived from the

a,b. Thus:

Ei=:

Sign of difference

1 0.500.511.52 2.5

patterns observed in the result of x sgd 1 2 above. Thus:

>/@sgd
0&>:Q@(%/)@sqgd

incc=:
inco=:
inoc=:
0&=@ (+/) @sgd

X ((incc#[); (inco#[)

inoo=:

Interval closed on left and right

e.&0 1@ (+/)@sgd

; (inoc#[); (inoo#[)) 1

2

i.

@>:
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11.52|1 1.5]1.5 2]1.5

These functions may be combined in a gerund to define an adverb IN such that 0404IN
through 1 1 1IN (or, perhaps 0 IN through 3 IN) provide all cases.

C. RESIDUE

The sine function is periodic in the sense that it repeats after a certain period p; that is,
sine (x+p) equals sine x for any x. We might therefore say that it is congruent with
respect to the measure p, or congruent modulo p.

If the study of the sine had begun with emphasis on this important property it might well
have been named modulo. Such a name would clearly be inappropriate since the sine is
only one of many periodic functions, functions which include the cosine and the
remainder or residue on division by p. Nevertheless, the term modulo (or mod) has
gained wide acceptance for the latter function.

The function mod used in GKP is the commute of the residue denoted by | . Thus:

311.8
01201201
mod=: |~

(1.8) mod 3

01201201
Using c to denote a constant times function, GKP3.23 can be expressed as a tautology as
follows:

c=: 5&*

tl=: c@mod = modé&c

For example:

7 tl 3
1
Similarly:
t2=: c@| = |é&c

The periodic properties of the residue (and a way of deriving a divisibility table from it
by comparison with zero) may be seen in the following table:

a=: Si 4

(a By a Over a |/ a),&<(a By a Over 0 = a |/ a) See§E

i
w
N
-
(@)
=
N
w
o~
S
w
N
-
(@)
-
N
w
N

PFRPRPORORNW

NMNNOONOO DN

I
\
oOrocORMOONO

BWNERE O RN WS
|
ONOOBROORrO
|
PORPOWORHROW
|
NP OONOONN
|
WNHFOR O
DO OO
WOHOWORr OR
BWNRE O RN WS
RPORROREPOR
O ORORORO
COrRrRPRORRFROO
OCOORrRORrROOO
PR RPRR R R R R
OCOORrRORrROOO
COrRrRPORRFROO
OHORrRORORO
RPORROREFROR

Since the sum down a column of a divisibility table gives the number of distinct divisors,
a simple test for primes may be defined as follows:

prime=: 2: = +/@(0: = Ai | 1)
Ai=: >:@1i.
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prime 5

prime"0 a=: i. 20
001101010001 01000101

a #~ prime"0 a
2 35711 13 17 19
The function prime may be compared with the proposition IsPr used in §2A.

The heart of the problem of partitioning n things into m groups as equally as possible
(posed just after GKP3.23) is a function that yields the number in the first partition, the
number remaining, and the number of groups decremented by one. Thus:

f=: >.@% , ([ - >.Q@%) , (<:@])

314 £ 6
53 261 5

£/ 314 6
53 261 5

Recursive use of f to append these results until the value of m reaches zero may be done
as follows:
g=: 2&}.°($:@( 2&}. , £/@( 2&{.))) Q. (*@(:)

g 314 ©
53 53 52 52 52 52

D. FLOOR AND CEILING SUMS
§3.5 of GKP concerns the sum +/Qipsqr@Ei, where ipsqgr is the integer part of the
square root. Thus:
sr=: +/Q@ipsqr@Ei
ipsgr=: <.@%:

sr"0 i. 10
012357911 13 16

Alternative functions for this sum given in GKP may be expressed using the interval
functions defined in §B.

E. NOTATION
Bordering. The functions By and over used in §C (and in other chapters) are defined
by:

By=: ' '&;@,.@[ ,. ] [. Over=: ({.;}.)@":@,

Compose and atop. For monadic use (as in f&g y and £@g y) these conjunctions are
equivalent, but in dyadic use x f&g vy is defined by (g x) f (g y), whereas
x f@g yisdefinedbyx £ (g vy).

Grade and sort. Used monadically, the function /: grades its argument; used
dyadically, it permutes the left argument according to the grade of its right argument. For

example:
a=: 31416
b=: 'cable'

(/:a) ; (b/:a) ; (a/:a) ; (/:b); (b/:b) ; (/:~a)

1 30 2 4|lalcbe|l 1 3 4 6|1 2 0 4 3|abcel|l 1 3 4 6

Membership. The membership function e. is so denoted because the corresponding
function in math is denoted by the Greek epsilon.
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A. DIVISIBILITY
As remarked in GKP, m | t has been used in mathematics to assert that m divides t. Since
| denotes residue in J, we define a divide test as divides=: 0:=|, and will illustrate its

use together with a table adverb Ta (to produce a bordered table for easy reading) defined
as follows:
Ta=: / (['By'] Over )\
By=: ' '&;@,.@[ ,. ] [. Over=: ({.;}.)Q":@,
divides=: 0:=|
divides"0 Ta
[ By ] Over divides"0/

(A1 divides"0 Ta Ai) 6 The augmented indices pi=: >:Qi.

123456

U WN -
[cloloNoNeN o
[N eoReNGN N ]
OO oOoRror
OO roOr
el SN oNoNeoN o
RPOORREFRE

As stated in GKP4.2 , the greatest common divisor may be defined by:
gcd=: >./@Qcd Greatest of common divisors
cd=: Ai@<. #~ *./"1 @ (Ai@<. divides™0/ ,)
(A1 gcd"0 Ta Ai) 9

123456789
1f111111111
21121212121
3113113113
4{1 21412141
5/(11 1151111
611 2 3216123
7M1 11111711
811 21412181
911713113119

Components of the definition of cd (common divisors) may be illustrated as follows:
dt=: Ai@<. divides"0/ ,
9(Ai@<. ; dt ; */"1l@dt; (Ai@<. #~ *./"1@dt))6

°g]
Vv

1
3

YU WN -
[cloNoN S NeN ]
POORr R
OO OoORror

GKP4.2 is written as a function of a list (that is, as gcd (m,t)) rather than as a function of
two arguments, and therefore corresponds to gcd/ or gcd/ "1 rather than to gcd itself. A
function for the least common multiple can be defined analogously according to GKP4.3,
but we will use the somewhat more generally defined functions +. and *. :

Si=: ]-Ei@+: [. Ei=: 1.@>:
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((Si +. Ta Si),.(Si *. Ta Si)) 4
4 3 2 101234 4 3 2 10 1 2 3 4
4l 4 1 2 141 214| 4] 4 12 4 40 4 4 12 4
31 3 1 131131( 312 3 6 30 3 6 3 12
202 1 2 1212122 4 6 2 20 2 2 "6 4
10111 1111111 4 3 2 10 1 2 "3 4
of 4 3 2 10123470 0 0 0 00 0 0 "0 "0
111 1 1 11111101 4 3 2 10 1 2 3 4
2|2 1 2 1212122 4 6 2 20 2 2 6 4
31 3 1 1311313/ 12 36 30 3 6 3 12
40 4 1 2 141214 4| 4 T2 4 40 4 4 12 4

On the boolean sub-domain 0 1, the functions +. and *. are or and and. Since +. and
* . are associative and commutative, the functions +. / and * ./ are symmetric:

ranp=: ?~Q@#{] A random permutation

x=: 96 24 48 36

y=: ranp x

Xiyi (/%) (+./y) i (%o /%) (%L /y)

96 24 48 36|96 48 36 24(12(12(288|288

Tl=: +./ -: +./Qranp
T2=: *./ -: *./@Qranp
T3=: *. = * & + LCM is the product divided by the GCD
gcdr=: gcdr@(|/ , {.) {: @.(0:={.) Recursive definition
gcdr 24 60

12
gcdr 60 24

12

The identity stated in GKP4.4 may be expressed as follows:
GKP4_4=: +./ = +./@Q(1/ , {.)

GKP4_4"1 220 2 $ 1000
11111111111111111111

Consequently, the function g=: |/ , {. may be applied repeatedly to yield pairs that
have the same GCD. For example:

g=: 1/ , {.
gh:0 12 345 y=: 228 39
228 39

39 228
33 39

6 33

3 6

0 3

gedp=: {.@(g":(*@(l1/))": )

gcdp vy

3

The foregoing function gcdp is defined to apply g until the remainder becomes zero, and
to then select the first element of the result. The process may be modified to produce the
integer quotient as well, and to record the successive quotients in the result:

41:55 'q';'r';'f! Erase names (undefined names are
111 treated as verbs until defined - See §1E)
qrf=: q , r , f Quotient, remainder, first
g=: £ %~ {: - r=: |/ [. £=: {

33
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grf x=: 13 76
511 13
gqrfI=: {: , 1&{ + {. * {:4 Inverse function

grfl grf x
13 76

By applying qgrf to the last two elements and appending its result to the remaining
elements we obtain a process, called the Euclidean algorithm, that may be applied
repeatedly. An analogous extension of the inverse function may also be made:

eu=: 2&}. , grf@( 2&{.)

eul=: 3&}. , qrfI@( 3&{.)

eu&.> *: 01 2 3 4 5 <x

13 76(5 11 13|51 2 11|51 5125152015152 010

eul&.> ~: 01 2 3 4 5 <eu ":5 x

5152010|515201|51512|51211|5 11 13|13 76

Although eu to any power continues to give a correct result (to which euI applies
correctly), neither function terminates and they must be terminated by tests, using either a
gerund and agenda or a power of the function under self-reference:

euc=: $:@eu ": (*Q(|/Q(_2&{.)))

eucI=: $:@eul ": (2:<#)

] ;euc;euclIleuc) x

13 76(5 1 5 1 2|13 76

B. THE EUCLIDEAN ALGORITHM

The process defined by grf can be meaningful for a wide variety of the component
functions g and r. They may, for example, concern the remainder and quotient on
dividing one polynomial (represented by its coefficients) by another. We will sketch an
approach to this as follows:

rem=: 1: }. =/Q@(] ,: [ * %~&{.)

mrem t [ m=: 2 34 [ t=: 6 4 2 1 7
5 1017

m rem m rem t
2.5 11 7

Since the arguments are not scalars, we will re-express the process in terms of boxed
arguments:

brem=: {. , {. rem&.> {:

(brem b) ,&< (brem brem b=: m ; t)

2345 101 7|||2 34| 2.5 117

C. NUMBER SYSTEMS

The expression b 4. d yields the base b value of a list of digits d. For example:
(10 #. 1 9 9 5);(2 #. 1 01 1);(8 #. 1 0 1 1)

1995(11|521
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A function £ that yields all numbers (or at least a significant subset such as all non-
negative integers) will be said to define a number system, and if n=: £ d, then d is said
to represent n in the system defined by f. For example, 10s#. defines the decimal
system. Number systems have useful properties, such as those illustrated below:

dec=: 10&#.

a=: 365 [ b=: 31 4

((dec a)+(dec b)) ; (atb) ; (dec a+b)

67916 7 9|679

((dec a)*(dec b));(a +//.Q(*/) b);(dec a +//.@Q(*/) Db)

11461019 21 33 29 20|114610

Since the product 9 21 33 29 20 could also be represented by 1 1 4 6 1 0, itis
clear that representations under dec are not unique, and that a difference in two
representations does not imply that they represent different numbers. Uniqueness under
dec can be ensured by restricting elements to non-negative integers less than 10, and
suppressing leading zeros.

The phrase a+b used above worked only because a and b had the same number of
elements. More generally, the shorter of two such lists must be prefaced by zeros before
adding. A similar problem arises in the addition of polynomial coefficients, where the
function ps must append trailing zeros. The corresponding sum functions may be defined
as follows:

ps=: +/@,:

ds=: ps&.|.

365 (ps ,: ds) 31415
6791 5
317 710
A number system based upon prime numbers provides interesting expressions for the
greatest common divisor and least common multiple, and expressions for multiplication
and division that are analogous to logarithms. For example:

a=: 2 02 01

b=: 11111

lpr=: p: i. # a First #a primes
2 35711
prta Powers of primes
4 1 251 11
*/prta Number represented by a
1100
f=: */Q@(pr&”) A number system
(f a);(f b);((f a)+.(f b)); (a<.b); (f a<.b) GCD

1100({2310(110|1 0 1 0 1|110

(f a);(f b); ((£f a)*.(f b));(a>.b); (£ a>.b) LCM

1100|2310|23100)12 1 2 1 1|23100

(f a); (£ b); ((f a)*(f b)); (atb); (£ a+tb) Product

1100(2310(2541000|3 1 3 1 2|2541000
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(f a); (£ b); ((f a)3(f b)); (a-b); (f a-b) Quotient

1100(2310({0.4761905|1 1 1 1 0[0.4761905

The function £ must be re-defined to make it independent of the particular list of primes
pr. Thus:

f=: */@(p:@1.@# ~ 1)
Moreover, expressions such as a<.b and a+b that occur in the foregoing examples will
not work for lists that differ in number of elements, and must be replaced by expressions

such as:
plus=: +/@,: [. minus=: -/@,: [. max=:min&.- [. min=: <./Q,:
a=: 3 0 2
b=: 11111
(f a); (f b); ((£f a)*.(f b)); (a max b); (f a max b) LCM

20012310(46200(3 1 2 1 1(46200

(f a); (f b); ((f a)*(f b)); (a plus b); (f a plus b) Prod

20012310(462000|14 1 3 1 1(462000

The inverse problem of determining the list of exponents that represent a number may be
handled as follows:

gq: n=: 1100 Factors
2 2 55 11

pix=: p:": 1@ ( _1&{.) Prime index of last factor

pix g: n

primes=: p:@i.@>:@pix Successive primes

primes g: n
235711

( / primes) g: n Classification of factors versus primes

00
00
00
00
01

[ONeReN N
oNeoloNoNe]

rep=: +/@(] =/ primes)@q: Representation

D. FACTORIAL FACTORS

The Stirling approximation to the factorial (GKP4.23) may be expressed as:
Saf=: %:@(2pl&*) * $&lx1l ~ ]
(Saf , !, : Saf%!) i. 10
0 0.922137 1.919 5.83621 23.5062 118.019 710.078 4980.4 39902.4 359537

1 1 2 6 24 120 720 5040 40320 362880
0 0.922137 0.9595022 0.9727016 0.979424 0.9834931 0.9862197 0.9881738 0.9896427 0.9907872

0.2 ": (!, saf) 10
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3628800.00 3598695.62

A straightforward function for the largest power of a prime p that divides !n is obtained
by counting the occurrences of p in the factorization of !n:
powin=: +/Q@([ = g:@Q!@])"0

Jprimes =: p: i. 6
2 357 11 13

primes powin/ 1i.13
001133447 78810
000111222444 5
o0ooo0oo001111122 2
0o0000O0OO0O1TTI1II1I1T1 1
000000000001 1
000000000000 O

This function is, of course, limited to factorials that are precisely representable in the
computer system used. A more usable function (defined by GKP4.25) may be expressed
as follows:

POWIN=: +/@<.Q@(] % [ ~ Ai@<.@(". 1l&>.))"O

o

Ai=: >:Q1.

primes POWIN/ 1i.21
001133447 7881010 11 11 15 15 16 16 18
000111222444 5 5 5 6 6 6 8 8 8
ooooo01111122 2 2 2 3 3 3 3 3 4
ooooo0o0011111 1 1 2 2 2 2 2 2 2
coooo0oo0000001 1 1 1 1 1 1 1 1 1
cooooo0o000O0OO0OO0O O 1 1 1 1 1 1 1 1

53 POWIN 52 53 100 1000 10000
01 1 18 191

E. RELATIVE PRIMALITY
Just as a test for divisibility may be expressed as 0:=1, so a test for relative primality as
defined by GKP4.26 may be expressed as 1 :=+.. Thus:

dt=: (0:=])"0

rp=: (l:=+.)"0

((AL rp Ta Ai),. (A1 dt Ta Ai)) 10
123456782910 123456782910
{1 11111111 1 1{1 11111111 1
2/[1 01 010101 0] 201 0101010 1
31710110110 1] 3l001 001001 O
4117 01 01 0101 0] 4000100010 O
511711101111 0] 5000010000 1
61 0001 0100 0] 6/]O0OO0DO0CO01IO0O0O0 O
711711111011 1] 7|10 000 00100 O
81 01 010101 O0f 8000 000O01O0 O
91r 1 0110110 1| 90 0 00O 0OO0OOO0OT1 O
10[1 01 000101 010|000 00O0O0O0OO0O0 1

If a is a two-element list of integers that are relatively prime (that is, rp/a is true), then a
is said to be the representation of the fraction %/a in lowest form. Moreover, b % +./b
is necessarily in lowest form.

The function sb defined below expands its list argument by inserting the sum of each
adjacent pair between them. For example:
pair=: 1 :'2: x.\ 1' Applies function argument over pairs
a=: 3141529

+/ pair a
4 55 6 14

37
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sb=: {: ,~ [: , +/\pair Verb after cap ([ :) applies monadically
sb a
3415451¢651409
As stated in GKP, the repeated application of sb to the arguments 0 1 and 1 0
generates the list of numerators and denominators of all fractions in lowest form.
Moreover, the fractions they represent are in ascending order. For example:
m=: sb*:4 (0 1) [ t=: sb™:4 (1 0)

m, :t
011213231

4 3525341
14352534132312110
The functions rp and Mi=: ]-:/:~ may be used to show that m and t are relatively
prime and that the fractions they represent are monotone increasing:

(m rp t) ; (Mi m%t)

111111111111 11111f1

GKP4.31 may be expressed as the negative of the determinant of the matrices represented
by successive pairs of rows of the matrixm , . t. Thus:

-@Det pair m,.t [. Det=: -/ . *
1111111111111 111

The following function produces the Stern-Brocot numerators and denominators of
specified orders:

sbr=: 3 : 'sb"1”:y. 0 1,:1 0'

sbr 3
011213231
132312110

sbr 2 3 45
011210000000000000O00O0DO0OODOO0COO0OOOODOODO
121 1000000000000O0OODO0OO0OODOOCOOOOCOOOCDO
011213231000000000000DO00DO0D00DO00ODO0DO0DO0ODO0CDO0

011213231435253415473857275837451
1547385727583 74514352534132312110
Farey series are those members of sbr in which the numerator does not exceed the
denominator, and the denominator does not exceed the order. Thus:

farey=: 1 (] #~"1 <:/@Q] *. [ >: {:Q@]) sbr

farey 6
011112132345
1 6543525345%6
As stated in GKP, the test -@De
series to yield results of 1.

1
1
t pair |: farey 6 may also be applied to the Farey

“When N is prime, N-1 new fractions will appear; but otherwise we’ll have fewer than N-
1 because this process generates only numerators that are relatively prime to N.”. This
assertion in GKP may be compared with the following result for the number of elements
in Farey series of various orders:

Jy=: {:@S$Qfarey"0 1.13
0 2 35 7 11 13 19 23 29 33 43 47
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Because the list sbr t contains all members of the Stern-Brocot integers of order t, they
cannot be compared directly with the tree display of S-B numbers provided in GKP.
However, the selection of only those in alternate positions provides a result that may be
so compared. Moreover, rows of the table may be shifted and formatted for more direct
comparison. Thus:

sbt=: (alt=: (2&|Q@i.@# # 1)"1) sbr 01 2 3 4 5

i=: [.+/\N0 42100

sbsh=: (-i,.1i) |."0 1 sbt

Numeric tables, such as those we have used thus far, can be formatted (using " :), and the
irrelevant zeros replaced by spaces to provide a less cluttered display. A simpler rough
formatting can be provided by simple indexing. It works well in cases where the table to
be displayed has no significant zeroes (such as those that occur in multi-digit numbers),

as illustrated below.
sbt; sbsh

000O0O
0000O0O

o
[@Ne]
[@Ne]
[@Ne]
[@Ne]
[@Ne]
[@Ne]
[@Ne]
[@Ne]
[@Ne]
[@Ne]
[@Ne]
[@Ne]
[@Ne]
[@Ne]
[@Ne]
[@Ne]
[@Ne]
o
[@Ne]
[@Ne]
[@Ne]
[@Ne]
[@Ne]
[@Ne]
[@Ne]
[@Ne]

=
=

N =
=

[@Ne]
[@Ne]
[@Ne]
[@Ne]
[@Ne]
[@Ne]

We will use sbsh to index the character list ' 123456789' producing a tree that may
be compared with that on page 117 of GKP:

sbsh { ' 123456789"'
1

1
1

12
21

1233
3321

12334554
45543321

1233455457877875
5787787545543321

The last item of sbt may be selected and then indexed to select a particular
numerator/denominator pair. For example:

lg=: 1 { sbt
12334554578 77875
5787 787545543321

6 {"1 g
57
If the index 6 is represented as the binary number b=: 0 1 1 0 (that is, LRRL in the
terminology of GKP), then the selection (#.b) {"1 g may be construed as the selection

of a path in the “binary tree” represented by sbt:
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#. b=: 01 10

6

(path=: #. {"1 alt@sbr@>:Q#) b
5 7
F. PHI and MU

Euler’s totient or phi function of m is the number of elements of the list i .m that are
relatively prime to m. Thus:

phi=: +/@(i. rp 1)"0

rp=: (1: = +.)"0 Test for relative primality
(1,:phi) i. 21
01 2345%6 7891011 12 13 14 15 16 17 18 19 20

01122420646 410 412 6 8 8 16 6 18 8

Fermat’s Little theorem as stated in GKP4.47 may be expressed as follows:
GKP4 47=: ([ rp p:Q]) <: p:@] | [ ~ <:Q@p:@]
p: y=: i. 5

2 35711
y GKP4 47"0/ y

11

11

11

11
1111

el el
PR
PR

Its generalization as stated in GKP4.50 may be expressed as:
GKP4 50=: rp <: 1: =1 | [ ~ phi@]
y GKP4 50"0/ y

10111
10111
10111
10111
10111

The column of zeros indicates that the theorem fails for a left argument of 1 (m=1 in
GKP). Since the residue of any integer modulo 1 is zero, the case m=1 should be
excludedas: GKP4 50=: (rp *. 1 ~: 1:) <: 1 | [ ~ phi@]
A simple argument (given in GKP) shows that the number of divisors of the kth power of
a prime p is simply the difference (p~k) - (p~k-1). Hence the following theorem:

L=: phi@(p:@] ~ [)

R=: (p:@] ~ [) - (p:@] ~ [ - 1:)

T=: L -: R

123 (L"0/ ; R"0/ ; T"0/) 01 2 3 4

1 2 4 6 1011 2 4 6 101 1111
2 6 20 42 110(2 6 20 42 1101 1 111
4 18 100 294 1210|4 18 100 294 1210(1 1 1 1 1

If two integers are relatively prime they share no divisors, and a simple argument shows
that the number of divisors of their product is the product of the number of divisors of
each. For example:

a=: 573 [ b=: 274

a([ ; 1 ; phi@[ ; phi@] ; phi@* ; */&phi ; rp) b

125|16|100|8|800|800]|1
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An integer can be expressed as the product */p~e, where p is a list of distinct primes,
and e is a list of integer exponents. The list of prime factors produced by q: provides the
basis for these as follows:

dpr=: ~.Q@q: Distinct primes among prime factors
pex=: #/.~Qq: Number in each group of factors
pde=: dpr ,: pex Prime decomposition (primes and exponents)

(q: ; dpr ; pex ; pde ; ~/@pde ; */Q@("/)@pde) 1400

222557257321 5 7|8 25 7|1400
21

2
3

These results can now be used in an alternative definition of the function for the number
of divisors:
phil=: */@(f/@pde) Alternative totient function
f=: ~ - [ ~ 1 - 1: From R (# of divisors in power of a prime)
(phil ; phi ; pde ; f/Q@pde) 1400

480(480 7(4 20 6
1

25
32

The execution of phil is, of course, much faster than phi. Timings can be obtained as

follows:
time=: 6!:2

100 time 'phil 490 Average time for 100 executions
0.0368

100 time 'phi 490°
0.2686

The right limb of GKP4.53 can be used to define a further totient function as follows:
phi2=: [ * -.@%@~.&.qg:

100 time 'phi2 490
0.0126

The following functions provide a list of basic rationals (whose quotients yield a list of
basic fractions in the range from zero to nearly one), reduction to a corresponding table
with relatively prime numerators and denominators, and sorting on the denominators:

S=: srt@red@bar"0
red=: ] %$"1 +./ [. bar=: 1i.,:]
srt=: /:"1 {:

;- (S ; red@bar ; bar) 12

01121315 1 5 711
12334460612 12 12 12
0o 1111 51 723511
112 6 4 3 12 2 12 3 4 6 12

o 1 2 3 4 5 6 7 8 910 11
12 12 12 12 12 12 12 12 12 12 12 12

As remarked in GKP, every divisor d of 12 occurs as a denominator, together with all
phi d of its numerators, so the sum over phi on all divisors must equal 12. Thus:

div=: Ei #~ 0: = Ei | ] [. Ei=: 1.@>:
(div ; phi@div ; +/Q@(phi@div))"0 (12 20 30 40)

12346 12 112224 |12|



42 Chapter 4

124510 20 1124148 20

123561015 30|11 12 42 48 8 (30

1245810 20 40|11 1 2 4 4 4 8 16|40

The theorem of GKP4.54 may therefore be expressed as follows:

GKP4 54=: ] -: +/@ (phi@div)
The definition of the Mobius function in GKP4.57 may be expressed in terms of the
prime exponents as follows:

mu=: */Q@( l&"@# , ] = 1:)@ pex

(mu"0 ,: 1) >: i. 20
11 10 11 100 1 1 0 1 1 1 0 1 0 1 0
1 2 34 56 78910 11 12 13 14 15 16 17 18 19 20

Other properties of mu and phi presented in GKP theorems may be expressed rather
simply in terms of them (or in terms of phi1l if speed of execution is important). For
example:

L=: phi

R=: +/Q@( mu@QRdiv * ] % div)"0

GKP4 58=: L -: R

(L , R,: GKP4 58) 1 + 1i. 20
1122426 46410412 6 8 8 16 6 18 8
112242 646410412 6 8 8 1o 6 18 8
1111111111 11 1111 11 11
G. NOTATION

Columnize under. The function , . columnizes a vector; used with under open (& .>) it
columnizes boxed vectors. For example:

a=: 1 2 3 [. b=: 45 6 7
a;(,.a);at/b

12 3(1
2
3

~J oy U1
O ~J O
O 00 I
O WO

,.&.> a;b;a+/b

wN -
~J o U1 >
~J oy U1
o0 J o
O 0 I
O W O

Grade and sort. /: vy grades the argument v, and x /: y permutes x according to the
grade of yv. Downgrade is denoted by \ : .

Nub. The function ~. suppresses all repeated items from its argument. For example:

~. 'mississippi’
misp
Explicit definition. The sentence pair=: 1 :'2: x.\ ] 'that defines the adverb
pair is an example of explicit definition, in which x. refers to the left argument of the
adverb.

Transpose. The function | : reverses the order of the axes of its argument. For example:
a=: i. 3 4 [ b=: 1. 2 3 4




NUMBER THEORY
01 2 3{04 8/ 0 1 2 3| 012
45 6 7|15 94 5 6 7| 416
8 9 10 112 6 10 8 9 10 11| 8 20
37 11

12 13 14 15| 1 13

16 17 18 19| 5 17

20 21 22 23| 9 21

2 14

6 18

10 22

3 15

7 19

11 23

Laminate. The verb , : laminates its arguments to produce a result of higher rank, first
padding a possibly shorter one to bring them to a common shape. For example:

324 ,:27182
32400
27182
GCD, LCM. +. and *. yield the GCD and LCM which, for boolean arguments 0 and 1,
are equivalent to or and and.

Cap. When a cap ([ :) occurs in a fork, it acts as a “null”, causing the verb that follows it
to apply monadically. For example, the comma in the following definition acts to ravel its
right argument rather than to catenate it to anything:

sb=: {: ,~ [: , +/\pair
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Chapter S
BINOMIAL COEFFICIENTS

A. BASIC IDENTITIES

The binomial theorem expresses a power of a sum (that is, (x+y)~t) as an equivalent
weighted sum of products of ascending powers of x and descending powers of y:

x=: 3 [ y=: 5 [ t=: 4 [. Ei=: 1.@>:
(x+y) "t
4096

(E1 t); (x"Eil t); (|.EL £); (y"I|.Ei t)

0123 41 3927 81|43 210625125 2551

+/ 14 6 41 * (x*Ei1 t) * (y*|.Ei t)
4096

The weights (1 4 6 4 1 in the case of t=: 4) are called the binomial coefficients of
order t. It remains to determine a function bc that yields the binomial coefficients of the
order of its argument.

For the case y=: 1 all powers of y are 1, and the identity reduces to the form:
((x+1)7"t) = +/(bc t) * x ~ Ei t

Since (x+1)~ t is a product of t factors x+1, we may begin to determine the values of
bc t by multiplication as follows:
x+1
w1
x+1
(x"2) +x
(X"2) +x+x+1
x4l
(X"2) +x+x+1
X "3)+H(x"2)+(x"2) +x
(X"3)+(x"2)+ (x72)+(x72) +x+x+x+1
or
(1*x73)+(3*x72)+(3*x"1) +(1*x"0)

—

A term x"s occurs each time that x is chosen from exactly s of the t factors x+1, and the
weight (i.e., binomial coefficient) to be assigned to x*s is therefore the number of ways
that s things may be chosen from t things. This may be illustrated using the complete
classification table #: i. 27t :

x=: 10 [ t=: 3

cct=: #: 1. 2"t

cct; (x"cet) i (,. p);(+/,p=: */"1 x"cct)

000l 1 1 1 111331
001 1 1 10 10
010 110 1 10

01 1] 1 10 10| 100

1 00|10 1 1 10

10 1|10 1 10| 100

1 10|10 10 1] 100

11 1|10 10 10|1000

(x+1) "t
1331

In choosing s elements from t, the first may be chosen in t ways, and the next in t-1
ways, and so on. Therefore, the number of choices for positions are t-i.s, and the
product */t-i.s gives the number of possible sequences. Since each of the !s
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permutations of any set of elements occurs among the sequences, the number of
distinct selections is obtained by dividing */t-i.s by !s. For example:

lt-i.s8=: 3 [ t=: 5
54 3
(*/t-i.s) % !s
10
In discussing binomial coefficients we will therefore make use of a dyadic case
(subsiding integers) of the function Si=: (Ei@+: - 1) (=/i.). Thus:
(8 Si 5) ; (8 5 8i 5) ; (5 Si 5) Subsiding integers
8 7654(87 65454321
54321

The factorial function ! is the product over the sequence 5 Si 5, and the number of
combinations of t things chosen s at a time (denoted by s!t) is the quotient of the
products over the rows of (s, t) Si t.For example:

t=: 8 5 81 5
t oy (*/"1 t) ; (%/*/"1 t) ; (5! 8) ; (Ei !/ Ei) 5
8 7 6 5 4]16720 12056561 1 1 1 1 1
54321 01234 5
0013610
0001410
000071 5
000O0O0 1

The appearance of this table differs markedly from Pascal’s triangle as shown in Table
155 of GKP, and it will be important to understand the relation of ! to the corresponding
function defined by GKP5.1. We will first state the major differences, and then examine
the consequences, including consequences for a number of the theorems of GKP. Thus:

a) A polynomial coefficient may be extended by zeros without changing its
significance, and such extension of the first n binomial coefficients yields a square
matrix such as that shown above. Such a matrix can be used in significant ways; for
example, the inverse yields the alternating binomial coefficients, as shown below.

b) The table (E1i !/ Ei) 10 is the transpose of Table 155 of GKP, which would be
given by the “passive” choose=: !~ . The function ! comes from the definition in
GKP5.1 by interpreting the Lower index as the Left argument, and choose comes
from the opposite choice.

c) The extension of ! to the case of two negative arguments (based on the gamma
function) gives non-zero values where the extension in GKP gives zeros.

The binomial coefficients function Bc is defined by Bc=: i. !/ i.. The table it
produces exhibits interesting properties under matrix inverse and the matrix product

X=: +/ * . For example:
($.m) ;, m; (mXm) ; (m Xm X m=: Bc 5)
1 1 1 1 1j1111T1(1 24 8 lo|l 3 9 27 81
0 1 2 3 4|012 3 4|01 412 32(01 6 27 108
0 0 1 3 6/00136|/001 624(001 9 54
0 0 0 1 400014000 1 8000 1 12
o 0 0 0O 1|0 000 1000 O 1000 O 1

The function Epa=: Bc@#
of coefficients it expands

X ] is pre-multiplication by the matrix m. Applied to a vector
it to give the coefficients of a polynomial equivalent to

c p. x+1.For example:
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c ; Epa c=: 31421

3142 1|11 19 16 6 1

(c p. x+1) ; (Epa c) p. x=: 1. ©

11 53 177 455 983 1881 |11 53 177 455 983 1881

(c p. x+t2) ; (Epa Epa c) p. x=: 1. ©

53 177 455 983 1881 3293|53 177 455 983 1881 3293

The reason is that the columns of the matrix of coefficients are the expansions of
successive powers, and the product m X c is the sum of the columns weighted by the
coefficients c. The successive powers of m itself are equally interesting, and display a
pattern that is most easily discerned by dividing (using ordinary element-by-element
division) the powers by m itself:

(<"2 (Epa™:1 2 3 m) "2 m),<((4:"=~/~) * (<:/~)) i.#m

1248161 3 9 27 81|1 4 16 64 256|1 4 16 64 256
0124 8|01 3 92701 416 64(01 4 16 64
0012 4001 3 900 1 4 16|00 1 4 16
cooo01 2000 1 3|00 0 1 40 0 0 1 4
0000 1f00O0 O 1|00 0 O 110 0 0 O 1

The dyadic case of ! may be defined in terms of the monadic case as follows:
outof=: (!'@]I%('@(]1-[))*!Q@[)"0

(4 outof 9) , (4 ! 9)
126 126

The reason can be seen in the following pattern:
(9 Si 4) ; ((9-4) si (9-4)) ; (4 sSi 4)

98 76|54321|4321

Since 4 outof 9 is the product over the first box divided by that over the last, it is also
the product over the first two (!9) divided by the product of the products over the last
two, thatis (!9-4)* (!4).

This definition in terms of factorials provides a basis for a generalization of the dyad ! to
negative and non-integer arguments. First, the factorial is so generalized by basing it on
the gamma function. For example:

19=: 0.5 * i.9
0 0.511.52 2.53 3.514

1 Agrees with factorial on integers
1 0.886227 1 1.32934 2 3.32335 6 11.6317 24
1941
1 1.32934 2 3.32335 6 11.6317 24 52.3428 120
(F+1)*!5 as well as in this behaviour
1 1.32934 2 3.32335 6 11.6317 24 52.3428 120
I=] with alternating infinities at negative integers
1 1.77245 - 3.54491 2.36327 0.945309

When used with negative left arguments, the function ! may involve infinite values, but
if one occurs in the numerator, one will also occur in the denominator. The dyad ! is
defined in [2] to exploit this fact as follows:
For non-negative arguments x!y is the number of ways that x things can be
chosen out of y. More generally, (x!y) is (!y)%(!x)* (!y-x) with the
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understanding that infinities (occasioned by ! on a negative integer) cancel if
they occur in both numerator and denominator.

We will now display the function table of !:
Ta=: / ([ By ] Over )\
Over=: ({.;}.)@":@,
By=: " '&;@,.Q@[ ,. ]
(Si !'Ta Si) 5

5 4 3 2 101234 5
5 1 4 6 4 100000 0
4 0 "1 373 100000 O
3 0 0 1 27100000 O
2 0 0 071 100000 O
"1 0O 0 0 0 100000 O
0 1 1 1 1 111111 1
1| 5 4 3 2 101234 5
2| I5 10 "6 3 100136 10
3] 35 20 10 4 100014 10
4] 770 735 715 75 7100001 5
5| 126 56 21 6 100000 1

GKP5.1 extends the binomial coefficients similarly, except that the case of negative left
arguments (the top five rows in the foregoing table) are defined to be zero. The
definitions therefore differ only in the case where both arguments are negative. Thus:
GKP5 1=: (! * [ >: 0:)"0
GKP5_ 1 /~ S8i 5

0 0 0 0 000000 O

0O 0 0 0 000000 O

0O 0 0 0 000000 O

0O 0 0 0 000000 O

0O 0 0 0 000000 O

1 1 1 1 111111 1
5 4 3 2 101234 5
15 70 "6 3 100136 10
35 20 10 4 10001410
70 735 715 5 100001 5
126 56 21 6 100000 1

Since GKP tables that show Pascal’s triangle and its extension are transposes of those
produced by !, the relation is best illustrated by the following expression:

|:(E1 !/ Si) 5
1 515 35 70 126
1 410 20 35 56
1 3 6 10 15 21
1 2 3 4 5 T 6
11 1 1 1 1
10 0 0 0 0
1 1 0 0 0 0
1 2 1 0 0 0
1 3 3 1 0 0
1 4 6 4 1 0
1 510 10 5 1

We will now explore some of the identities of GKP, denoting the left and right limbs by
L and R, followed by digits to indicate the particular equation. However, we will base the
exploration mainly on the function ! of J, and will therefore expect some deviation from
the identities presented in GKP. Moreover, we will define a table adverb T to make it
more convenient to express the tables produced by various functions, as illustrated by the
expression for the final panel in the following example:

T=: ("0)/~

47
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P

"0/~
]i=: Si 3

3 2 10123
L5 4=: !
R5 4=: (-~ ! 1)"0
(1 L5 4/ i);(1i R5 4/ 1);(R5_ 4 T 1)
1 2 10000 1 2 10000 1 2 10000
01 10000/ 01 10000/ 0 1 10000
0o 0 10000 O 0 10000 O 0 10000
11 11111 1 1 11111 1 1 11111

3 2 10123 3 2 10123 3 2 10123

6 3 10013 6 3 10013 6 3 10013

10 4 10001| 10 4 10001/ 10 4 10001

The use of integers ranging from 3 to

3 illustrates that the definition

of ! allows the

removal of the restriction n>:0 included in GKP5.4. Because ! is defined in terms of the
gamma function, the restriction to integers can also be removed. For example:

,. (L5 4 T i+0.5)

; >./1,(L5 4 T i+0.5)-(R5 4 T 1+0.5)

1 1.5 0.375 0.0625 0.0234375 0.01171875 0.006835938
0 1 0.5 0.125 0.0625 _0.0390625 0.02734375
0 0 1 0.5 0.375 0.3125 ~ 0.2734375
0 0 0 1 1.5 1.875 2.1875
0 0 0 0 1 2.5 4.375
0 0 0 0 0 1 3.5
0 0 0 0 0 0 1
8.67362e 19

The restriction to non-zero s in GKP5.5 can also be removed, due in part to the fact that

0%0 1s defined as 0 in J. Thus:

L5 5=: !

R5 5=: (%~ * !l&<:)

(L5 5 T i);(R5 5 T i); (L5 5 T 1)=(R5 5 T 1)

1 2 10000 1 2 100002111111

0 1 10000 0 1 100002111111

0O 0 10000 0O 0 100002111111

1 1 11111 0O 0 00OO0OO0OO0O|IOOOOOODO
3 2 10123 3 2 101231111111

6 3 1 0013 6 3 1 00131111111
10 4 10001l 10 4 100011111111

As shown by the row of zeros in the last panel, the identity fails in the case of a zero left
argument (a case explicitly excluded in GKP5.5). In the case of GKP5.8 we find a
discrepancy at the mid-point, that is, for arguments 0 0, but can (as expected) remove it

by using GKP5 1 instead of !:
L5 8=: ! [. R5 8=: ([ !
(L5 8 T i); (R5 8 T i); (L5 8

<:@])+('a<:)

T i)=(R5 8 T i)

OO0 WrHrHroOoOoR
clolol NeoloNe)
OO RrPrPrRrOOO
ORFRP NP OOO
PWwWWwk OoOoOOo
[GNONE SNeoReN ol
OO ONOOO

oo OO0
O NROOO
HFWwkrooo
PR R R R
PR PR R
PR PR R
PR RO
PR PR R

PR R R R e

PR PR R e
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GKP5 1 <:@])+(GKP5 1é&<:

GKP5 1

L5 8a
R5 8a

)

(L5 8a T 1);(R5 8a T 1i); (L5 8a T 1i)=(R5 8a T 1)

([

GKP5.9 shows a more interesting discrepancy that is somewhat exacerbated by the use of

the GKP definition:

Ei@Q])

(1!+)

> @+
(L5 9 T 1);(R5 9 T 1); (L5 9 T i)=(R5 9 T 1)

L5 9=:+/Q ([

RS 9

0] !

Ei@Q])

GKP5 1 +)

(]

GKP5 1 >:@+

L5 9a=:+/Q ([
R5 9a

]

(L5 %2 T 1);(R5 %9a T i); (L5 9a T i)=(R5 %9a T 1)

R B B I B R |

R B B I B R |

R B B I B R |

R B B I B R |

R B B I B R |

[eclololololoNe]

OO OO OO

OO <O oW
— N ™M

OO dHMWOWOLW
—
—HOANM LN

o
[coolololoNe]
[cololololoNe]

[cololololoNe]

OO O oW
— N ™M

OO MWOLW
—

— O — N0

R B B I B R |
[eclolololoNoNe]
R B B I B R |

O ANM LN

=:(+/Q@([ ! Ei@])) "0

L5 10

R5 10

&>
(L5 10 T i);(R5 10 T 1i);

(L5 10 T i)=(R5_10 T i)

+/@([ GKP5 1 Ei@])

L5 10a

GKP5 1&>:

R5 10a

(L5 10a T 1);(R5 10a T 1i);

(L5 10a T i)=(R5 10a T i)
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We will use GKP5.22 to illustrate the treatment of relations among the binomial
coefficients. Using the forms (m,n) L (r,s)and (m,n) R (r,s) for the left and
right limbs, we will first define functions that permit the use of notation similar to that of

GKP:
m=:
n=:
r=:

S=:

{.
{:
{.
{:

GKP uses m+k and n-k to suggest pairs of values that sum to m+n. For this we will

CHl
@l
@]
@]

define and use the following functions:

Ll=: Ei@ (m+n)

L2=: |.QL1

a=: 2 3

b=: 4 5

a (m; n; r; s ; Ll ; L2) b
21314]5/0 1 2 3 45543210

The left and right limbs of GKP5.22 may now be defined as follows:

IL=: (L1 ! r) X (L2 ! s)
X=: +/ . *

R=: (m+n) ! (r+s)

a(R; L ; (L1 ' r) ; L2 ! s) b
1261261 4 6 4 1 0|1 5 10 10 5 1

<"2 (R; L ; [ ; "1/~ 1. 3 2

1{1]0 1(0 1 0 0 2 3(0 1 0 01
5/5|/0 1|2 3 1 1 2 32 3 0 2 3
9190 114 5 126]126(2 3|4 5 1 4 5

The entire theorem can be defined more concisely as follows:

T5 22=: +/Q@(* I~/ EiQ@(+/)@[)

T5 22"1/~i.3 2

)
e
e

B. POWER

Polynomials. The binomials are called coefficients because they often serve as the

SERIES

l.)/@(]

P& (+/)

coefficients c in the expression +/c*x"1 . #c that defines a polynomial:

poly=:
c=: 1
x=: 0

(c poly x); ((x+1)73); (d poly x); ((x+1)"2)

+/@([ * 1 7
331 [ d=:
1234

i.@#@[)
121

"10
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1 8 27 64 125|1 8 27 64 125|1 4 9 16 25|1 4 9 16 25

cp. X
1 8 27 64 125
The last expression above shows the use of the primitive polynomial function p..

The functions pp and ps are called the polynomial product and polynomial sum, whose
uses are illustrated as follows:

pp=: +//.@(*/)
ps=: +/@,:
(c pp d); (c ps d)

1510 10 5 1|2 5 41

((c pp d)&p.; (c&p. * d&p.); (c ps d)&p.; (c&p. + d&p.)) x

1 32 243 1024 3125

1 32 243 1024 3125|2 12 36 80 150(2 12 36 80 150‘

The binomial coefficients can be produced by applying the product function pp to the
argument 1 1 (the coefficients of a polynomial equivalent to the function 1:+1).

1 1ppll
121

pp/ 5#,:1 1
1510 10 51

(pp/\ 5%, :

=
=
~

; (1 leppt:(i.6) 1)

e el
g WN P
oovwr O
o OO
R OO0 O
oo oO

el S S

s WNHFO

oOowr oo

O OO0

R OoOO0OOO

HOoOOoOoOoOO

The product */x-r is equivalent to a polynomial in the argument x, and the function pir
is called a polynomial in terms of roots. Thus:

pir=: */Q@:-~"1 0
r=: 315 2

(r pir x); (r&pir x); (r&pir r)

30000 6|30 000 6(00O00O0

The last result illustrates that the elements of r are the zeros or roots of rspir.

The coefficients of a polynomial equivalent to repir are obtained as a product (pp) of
the factors (-r), .1:

cfr=: pp/Q(-,.1:)
c=: cfr r

c ; (cp. x) ; (r pir x)

30 61 41 11 1|30 0 0 0 6/30 000 6

cfr\ -1 1 1 1 1

e el
g WN P
w
=
R OO0 O
oo oO
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Power series. The expression (g i.n)sp. defines an n-term polynomial with
coefficients generated by the function g; it is called a power series. For example:
g=: %@!
g i. n=:5
1 1 0.5 0.1666667 0.04166667
(g i. n)&p.
11 0.5 0.1666666666666666 0.041666666666666666&pP.

2

oo

((g i. n)&p. ,: 7)) x=: (1. 5H)
1 1.64844 2.70833 4.39844 7
1 1.64872 2.71828 4.48169 7.38906

We define a power series conjunction as follows:
psc=: 1.Q(i.C@([." )) p. ]
5 psc g x

1 1.64844 2.70833 4.39844 7

Taylor’s Theorem (cited on page 163 of GKP) states that coefficient k of a power series
approximation to a function f is the kth derivative of f, evaluated at 0 and divided by
factorial k.

The phrase £ t. k uses the adverb t. to produce the kth Taylor coefficient of the
function £. For example:

~ el 2

0.5
Jce=: ~ t. i. 7

11 0.5 0.1666667 0.04166667 0.008333333 0.001388889
%ce

1126 24 120 720

ce p. x=: 0.2*%1.6
1 1.2214 1.49182 1.82211 2.22549 2.71806

A

X

1 1.2214 1.49182 1.82212 2.22554 2.71828

sin=: 1l&o. [. cos=: 2&o0.

csin=: sin t. 1.7

ccos=: cos t. 1.7

csin, :ccos
01 0 0.1666667 0 0.008333333 0
1 0 0.5 0 0.04166667 0 0.001388889

A wide range of functions (including the circular and hyperbolic functions, exponential,
logarithm, and all polynomials defined by a finite list of coefficients) are representable as
Taylor’s series in the sense that for any specified argument x in the relevant domain and
specified tolerance tol, a value of k can be chosen such that the difference
((f t. i.k)&p.4al@- f) x does notexceed tol. Taylor coefficients can be used to
explore the polynomial equivalents of identities such as sin squared plus cos squared
equals one. Thus:

pp=: +//.@(*/)

0.3 ": csin pp csin
0.000 0.000 1.000 0.000 0.333 0.000 0.044 0.000 0.003

0.000 0.000 0.000 0.000
(csin pp csin) p. x
0 0.0394695 0.1516469 0.3188274 0.5146589 0.7084028
*:@sin x
0 0.0394695 0.1516466 0.3188211 0.5145998 0.7080734
0.3 ": (pp~csin)+ (pp~ccos)

1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000
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1 2 1l&p. t. 1.6
121000

pe~ 1 2 l&p. t. 1.6
14641000000

The coefficients corresponding to one polynomial atop another can be obtained as
follows:
atop=: [ X unit , pp/\@table
table=: >@(<:Q@#@[ $ <@1)
pp=: +//.@(*/)
unit=: #@[ {. 1:
X=: +/ . *
Jc=: a atopb [ a=: 1 21 [ b=:13 31
4 12 21 22 15 6 1

(a&p.)@(b&p.) t. 1. 7
4 12 21 22 15 6 1

c p. x=: 1.5
4 81 784 4225 15876
(agp.)@(b&p.) x
4 81 784 4225 15876

atop f.
[ +/ % (#@[ {. 1:) , (+//.Q(*/)/\Q(>Q(<:Q#Q[ $ <@1)))

Linear functions. f is said to be a linear vector function if £ (c+d) equals (f c)+(f d)
for any vectors c and d. For example:

11=: +/Q@(] * *:@i.@#)"1

12=: +/\@(] * *:@i.@#)"1

c=: 3142 [d=:1331

(11 ¢); (11 d); ((11 c)y+ (11 d)); (11 c+d)

35124(59|59

;0 &.>(12 ¢); (12 d); ((12 )+ (12 d)); (12 c+d)

0] Of 0] O
1] 3 4| 4
17(15(32|32
35124(59|59

Linearity can be expressed more succinctly by the tautology:
taut=: 11l@:+ -: +&l1
(¢ 11@:+ d); (c +&11 d); (c taut d)

59159(1

Any linear function can be expressed as a matrix product in the form X & rm, where rm
is a suitably chosen matrix, or, equivalently, in the form 1m & X, where 1m is the
transpose of rm. The matrix rm may be obtained by simply applying the linear function to
the rows of an identity matrix. Thus:

Id=: i. =/ 1.

Im=: |: rm=: 12"1 Id # c

h=: Im & X

s=: X & rm

, . &.> (Id#c);rm;1lm; (Im X ¢c);(h c);(c X rm); (s c); (12 c)

1 000|00O0O0]1 7 49 343(892( O O O O
01 00J0111f1 5 25 125(358| 1| 1| 1] 1
0010|004 42 3 9 27| 96|17|17(17|17
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|o 001|000 9|12 4 8| 37|35|35|35|35|

Since the sum of polynomials csp. and dsp. can also be expressed as the polynomial
(c+d) &p., it appears that polynomials are somehow linear in their coefficients. For
example:

x=: 75 3 2

;&> ((cp.x);(dp.x);((c p.x)+(d p.x)); ((ctd)p.x))

892151211404 |1404
358 (216 574 574
96| 64| 160| 160
37 27 64 64

This may be shown more clearly as follows:

g=: p.é&x A linear function

ro&.>((g c)i(g d)i((g c)+(g d));(g c+d); (Ilm=:|:g"1 Id#c))

892151211404 |1404|1 7 49 343
358|216 574| 5741 5 25 125
96 64| 160| 160|1 3 9 27
37 27 64 64|11 2 4 8

The matrix 1m may be recognized as the Vandermonde matrix x ~/ i. #x.

C. RATIONAL FUNCTIONS

If the functions £ and g in the quotient g=: f%g are polynomials, then g is called a
rational function. The conjunction over defined below produces a rational function in
terms of its coefficients. Thus:

over=: ([.&p.) % (].&p.)

c=: 146 41

d=: 1 2 1
c over d

1 46 4 1lsp. $ 1 2 1l&p.
c over d z=: i. ©

14 9 16 25 36

d over ¢ z
1 0.25 0.1111111 0.0625 0.04 0.02777778

]ser=: c over d t. i. 10
1210000000

d pp ser
146410000000

The result ser contains the first ten elements of the power series that represents the
rational ¢ over d.

We will now define an adverb REC such that ¢ REC k gives the first k coefficients of the
reciprocal polynomial 1 over c:

1l over 1 1 t. i. 10
1 11 11 11 11 1

REC=: 1 : 'l over x. t. @i.'
1 1 REC 6
1 11 11 1
1 1 1 REC 10
0112358 1321 34 Fibonacci numbers



BINOMIAL COEFFICIENTS S5

The basis for this rather surprising result of Fibonacci numbers (previously defined
recursively) is examined in Chapter 7 of GKP.

Partial fraction expansion. A rational function £%g can be expressed as £ * %Qg. If the
polynomial g is expressed as a product of its roots r, then the reciprocal $*/r can also be
expressed as a weighted sum of the reciprocals of the individual roots, using a process
called partial fraction expansion.

For example, if r=: a, b, c, then the reciprocal t=: 1 % */a,b,c may be expressed
as the sum s=: (x%a)+ (y%b)+ (z%c) for suitable values of x, y, and z. Multiplying
both t and s by a*b*c and equating the results shows that the sum
(x*b*c)+ (y*a*c)+ (z*a*b) must equal 1. The values of x, y, and z can therefore be
obtained as a solution of this linear equation. Thus:

'abc'=: 2 3 4

(a,b,c); (8*/a,b,c); (d=: (b*c), (a*c), (a*b))

2 3 4]10.04166667|12 8 ©

]'xyz'=: %. d See §J
0.04918033 0.03278689 0.02459016

(x,y,2) 7 (+/d*x,y,2) Shows that d is a solution

0.04918033 0.03278689 0.02459016(1

(x%a) + (y%b) + (z%c) Sum equals reciprocal product
0.04166667

The rational fraction expansion can be re-expressed more neatly and more generally in
terms of the vector r. In particular, the multipliers of %, y, and z may each be seen to be
the products over all except the corresponding element of r, a result that is given by the
expression 1 */\. r. Thus:

PFE=: %.Q@(1: */\. 1) Partial fraction expansion

]g=: PFE r=: 2 3 4 5
0.008987418 0.005991612 0.004493709 0.003594967

(g%r); (+/g%r); ($* /1)

0.004493709 0.001997204 0.001123427 0.0007189934|0.008333333|0.008333333

D. MULTINOMIALS

Just as (x+y) ~t can be expressed as a weighted sum of products of powers of x and vy,
so can the power (+/v)~t be expressed as a weighted sum of products of powers of the
elements of the list v:

sgsum=: (+/v)"2 [ v=: 2 3 5 [ c=: 222111
t=: 011,10 11,11 0,00 2,020,:200
t; (vl ) (G, .p)i (,.C) (F/cFp=*/"1 vAT"1l t) ;sgsum

01 1|1 3 5|15|2|100|100
10121 5|10f2
11023 1| 6fz2
0 0 21 1 25|25(1
020119 1| 9|1
200141 1| 4|1

The multinomial (MN) exponents of the elements of v must sum to t, and the table of
exponents and list of coefficients may be obtained as follows (See page 168 ff. of GKP):
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mc=: !@] % */"1Q@!@me MN coefficients
me=: ] (]#~ [ = +/"1@]) all MN exponents
all=: (] #: 1.Q@(*/))@base All in base
base=: [ # 1 + 1: [. m=: 3 [. t=: 2
(

(m base t); (m all t); (m me t); (,. m mc t)

333

NP OOO
O ONREF O
OO ORFrN
PFNNEDNR

NNDNDNNNODNDNNNNNNRPRPRRPPRPRRPPRPOOOOOOOOO
NNNNRPRPRPRPRPOOONNNREPRPRFRPOOONNNRERERPEPOOO
NFRONRFONRFONRFRFONRFRPONRPRPONREFRONRERONREO

Binomials may be treated as special cases of the multinomial:
be=: 2&me [. bc=: 2&mc
(be 4); (,. bc 4)

WP O
O DN W
s oy b

Autonomous definitions can be obtained by using the fix adverb .. Thus:

me f.
T (1 #~ [ = +/"1Q1) (] #: i.@(*/))Q([ # 1 + 1:)

E. SUBFACTORIALS AND STATIONARY POINTS

On page 194 GKP introduces the notion of a subfactorial function:

A permutation is called a derangement if it moves every item, and the
number of derangements of n objects is sometimes denoted by the symbol
‘nj’, read as “n subfactorial.”

The following page of GKP presents several definitions, three of which we will
paraphrase as follows, using the alternating sum (-/) to obviate the powers of negative
one:

SFl=: |@(-/)Q(!QEL * Ei ! ])
SF2=: ! * —/Q@%Q!QE1

SF3=: [: <.0&= + %Q@2: + ! & "@Q1:
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(SF1,SF2,SF3)"0 1.9

1 1 1
0 0 0
1 1 1
2 2 2
9 9 9
44 44 44

265 265 265
1854 1854 1854
14833 14833 14833

The elements of a permutation that do not move appear as single cycles in its cycle
representation. For example:

p=: 6 321405
C. p

213 1|4]6 5 0

and p is not a derangement because elements 2 and 4 do not move. We will use the cycle
representation to determine the number of stationary points in a permutation as follows:

NSP=: +/Q@(1l: = #@>@C.)"1
D=: 0: = NSP
(NSP , D) p
20
allp=: (i.Q@! A. i.)"0 All permutations of order of argument
(] ; C. ; ,.@NSP ; ,.@D) allp 3
01 2 310
02 110 1 2 0
10 2 110
12 0(]0 21 1
2 01 111
21 0|1 O 2 0
0
2 01
0
210
1
1 20

We will use D to define a direct count of derangements as follows:
(SF4=: +/@D@allp) i. 8

1 01 2 9 44 265 1854

The distribution of the number of stationary points in a set of permutations is given by:
DNSP=: +/@ (NSP =/ Ei@{:@$)

DNSP@allp i. 7
1 0 0 0 0 0 0 Thisis the table of the function h that follows GKP5.59
0 1 O 0 00O
1 0 1 0 00O
2 3 0O 1 00O
9 8 6 0 1 00
44 45 20 10 0 1 O
265 264 135 40 15 0 1

F. FALLING AND RISING FACTORIALS (STOPES)

We will now re-examine the matter of falling factorials, introduced in §2E (finite
calculus). The expression x(x-1)(x-2) ... (x-m+1) is used in GKP2.43 to define a falling
factorial of order m. The adverb g defined below provides a set of functions s g such
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that x s g t yields a t-element grid beginning with x and changing in steps of size s .
The product over such a grid is called a factorial function in GKP. Thus:

g=: 1 : '"[ +x."_ *i.@]"'

X=: 6

t=: 4

(*/y)i(y=: x 1 g t) Falling factorial
360(6 5 4 3

(*/y);(y=: x 1 g t) Rising factorial

3024|167 8 9

(*/y): (y=: x 0 g t) The power function

1296|6 6 6 6

(*/y)i(y=: x 1lr2 g t) Fractional step

2047.5|6 6.5 7 7.5

(*/y); (y=: x 031 g t) Imaginary step

90091260|6 631 632 633

These products are “variants” of the power function *, and in J are provided by the fit
conjunction ! ., using " ! .s, or the equivalent adverb stope=: ~!.. Thus:

stope=: "!.
(x ~1. 1 t);(x _1 stope t);(x 0jl1 stope t)

3601360190031260

Because the factors descend or ascend in steps like a stope in a mine, we call ~!.s a
stope function, and extend the notion of a polynomial as a weighted sum of powers to
stope polynomials that are weighted sums of stope functions. Such a polynomial is
provided by the variant p. ! .s, where s specifies the step size. We therefore define an
adverb whose (left) argument specifies the step size in the stope function used. Thus:

sp=: 1 : 'p.!.x.'
_1lsp
p.!. 1
c=: 14641 [ d=:11525101
x=: 01 2 3

(c 0 sp x);(c1spx);(c 101spx);(d_1sp x)

1 16 81 256|1 65 261 685( 1 1 11 16 81 256

5 16 65
21 81 261
73 256 685

As illustrated by the agreement of the first and last panels above, two different stope
polynomials can be made to agree by a suitable choice of coefficients. The coefficients d
are obtained as a linear function of c, using the transformation t developed in the
discussion of the finite calculus in §2E. This may be re-expressed in terms of the
conjunction ! . as follows:
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s=: (i. ~/ 1i.) %. (1. ~'. 1/ i)

t=: s@# X ]

d=: t c
p-&.>((s 4);(%.s 4);c;d; (c p. x);(dp.!. 1 x))
1000120 0 OJ1] 1 1 1
01 1 1|0 1 1 214115 16| 16
0 013{00 1 36|25 81| 81
000 1[0 0 0 1]4|10(256]|256
1 1

We will now extend Vandermonde matrices to stopes in a manner analogous to the
extension of polynomials, and use them to define a conjunction from for the coefficients
of the linear transformation illustrated above:

from=: 2 : '"~l.y./~Q@i. %. "l.x./~@1i."

1 from O Falling factorial coefficients from power
~.0/~@i. %. M. 1/~@1. coefficients

m=: 1 from 0 # c

d=: m +/ . * c

;y-&.>(x ;7 c; (cp. x) 5 d; (dp.!. 1 x); m
0f1 1 1 11 0 000
1{4] 16(15] 16f(0 1 1 1 1
216 81|25 8110 0 1 3 7
3(4(256(10(256|0 0 0 1 6

1 1 00001

As remarked in §2E, the matrices for the transformations 1 from 0 and
0 from 1 are simply related to Stirling numbers of the first and second kind. Stirling
numbers are extensively discussed in Chapter 6 of GKP, and references are made to
related transformations such as 1 from 1 (falling factorial from rising factorial):

1 from 1 (7)

1000 O 0 0
012 6 24 120 720
0 01 6 36 240 1800
0 00112 120 1200
0000 1 20 300
0000 O 1 30
0000 O 0 1

G. HYPERGEOMETRIC FUNCTIONS

GKP5.76 defines the hypergeometric as a sum over the products of two lists for all k not
less than zero. The first list is the quotient of products over the rising factorials of two list
parameters denoted by a and b, and the second is the powers of the argument z divided
by corresponding factorials.

To confine the matter to finite lists, we will introduce a further argument t, and treat only
the values of k specified by i. t. The definitions will be used in the form t a hy b z,
where hy is a conjunction. Thus:

X=: +/ . *

rf=: 1 : '"(,x.)"_ ~1.1/ i.e[’ The , x. treats scalars as lists
Ll=: 2 : '"x.rf %$&(*/) y.rf' A conjunction

L2=: (1.@[ "~ 1) % (!@1.@[)

hy=: L1 X L2 A conjunction

For example:
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a=: 2 35 [ b=: 65
t=: 4 [ z=: 7
a Ll b
(2 35" ~l.1/ 1.@[) %&(*/) (6 5" ~L.1/ i.@[)
lyl=: £t a L1 b z
1 1 1.71429 4.28571

ly2=: t L2 z
1 7 24.5 57.1667

yl X y2
295

t a hy b z
295

t ahyb"0i. 8
1 3.57143 12.1429 31 64.4286 116.714 192.143 295
Other cases noted in GKP can be tested as follows:

(10) 1 hy 1 "™ 0 i. 6
1 2.71828 7.38871 20.0634 54.1541 143.689

~iL 6
1 2.71828 7.38906 20.0855 54.5982 148.413
(10) '"" ' hy ''" "0 i. 6

1 2.71828 7.38871 20.0634 54.1541 143.689
ly=: 2r10 * 1. 6

0 0.2 0.4 0.0 0.8 1
(10) 1 1 hy 1 "™ 0 y

1 1.25 1.66649 2.48488 4.46313 10

Q

% 1-y
1 1.25 1.66667 2.5 5
(10) 1r2 1 hy 1 " 0 y
1 1.11803 1.29096 1.57863 2.15355 3.52394

s (l-y)"1lr2
1 1.11803 1.29099 1.58114 2.23607

(10) 1r2 1 hy 1y
1 0.8944272 0.7745982 0.6325735 0.450624 0.1854706

S (1+y) "1xr2

1 0.9128709 0.8451543 0.7905694 0.745356 0.7071068
y * (10) 1 1 hy 2 " 0y

0 0.2231435 0.5108196 0.915551 1.57887 2.92897

Moo l+y
0 0.1823216 0.3364722 0.4700036 0.5877867 0.6931472

The primitive hypergeometric conjunction H. produces a rank-0 dyadic function
equivalent to a hy b, and a monadic case that is its limit for an unlimited number of
terms. For example:

10 ' H. '' i. 6

1 2.71828 7.38871 20.0634 54.1541 143.689
'"'H. "' i. 6

1 2.71828 7.38906 20.0855 54.5982 148.413
~ilo6

1 2.71828 7.38906 20.0855 54.5982 148.413
(j_. 8) vy, 3

014 8.5 13 16.375 18.4 19.4125
vy g, v 3

20.0855
((*.@-. % =) -: 1 1 H. 2) x=:3./0.01*>:?2 40$50
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Abramowitz and Stegun [7] provide an extensive collection of hypergeometric identities,
using the Pochhammer notation (a), [referred to on page 48 of GKP] and the notation
F(a, b; c; z) for (a,b) H. c z.Forexample:

L15 1 7=: 1r2 1r2 H. 3r2 @-@*: Page 556 of A&S

Cl5 1 7=: (%:@>:@*: * 1 1 H. 3r2)@-@*:

RI1I5 1 7=: % * ~.@(] + %:@>:Q@*:)

lz=: 1rl10 * 1 + i. 3 3
0.1 0.2 0.3
0.4 0.5 0.6
0.7 0.8 0.9
(L1517, C151 7 ,: R15 1 7) z

0.9983408 0.9934506 0.9855768
0.9750883 0.9624237 0.9480415
0.9323808 B B
0.9934359 0.9749374

0.916862 0.8873108
0.8506062 .

.9478269
.8640129

O O

0.9983408 0.9934506 0.9855768

0.9750883 0.9624237 0.9480415

0.9323808 0.9158353 0.898741

As shown in the definition of the conjunction hy, noun arguments to the equivalent
primitive conjunction H. serve as arguments to the rising factorial function; verd argu-
ments to H. act directly upon the integers i . n. For example:

k=: 1. 5
lz=: k % 10
0 0.1 0.2 0.3 0.4
(1: H. 1: z) ,: * z Exponential
1 1.10517 1.2214 1.34986 1.49182
1 1.10517 1.2214 1.34986 1.49182
sinh=: 56&o0. Hyperbolic sine
28] k Alternate 0 and 1
01 010
(2&| H. 1: z) ,: sinh =z
0 0.1001668 0.201336 0.3045203 0.4107523
0 0.1001668 0.201336 0.3045203 0.4107523
sin=: ls&o. Sine
(2&] H. 1: &. 3. z) ,: sin z Under mult by 051

0 0.09983342 0.1986693 0.2955202 0.3894183
0 0.09983342 0.1986693 0.2955202 0.3894183

H. AGGREGATES AND DIFFERENCES

Applied to a list, the functions a and d defined below provide aggregates and differences,
respectively, and are partial inverses of one another. For example:

a=: +/\

Xx=: &2 >: 1. 6

25551113635

61
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el [ L[

Since the result of d x has fewer elements than x, it cannot (as illustrated above) possess
a strict inverse. We redefine d as the inverse of a as follows:

d=: a *: 1
r=:x;(a x);(d x);(d a x);(a d x);(dd x); (d":3 x)

;. &.>

1] 1| 1f 1f 1f1|1
41 5| 3| 4] 421
9114 5| 9| 9(2|0
16130 7]16]16|2|0
25]155] 9125(25(2|0
36(91(11(36(36(2]0

The effect is to retain the leading element of x as the leading element of d x. Since both

a and d are linear functions, the (mutually inverse) matrices that represent them are:
(a"l ; d"1) I=: =/~ 1. 6

cooooOor
cCoOOoOoOR
cCoOoOR P
cCoRrR PP
O R R REE
el el
coooOoOr
cCoo0OoOR
cooRr RO
\
cor R OO
o OO0
PR OOOO

The difference operator of GKP2.42 can be represented by the following adverb:
g=: 1 : '-/@x.Q@(1L 0" +/ 1)
x=: 1 + 1i. 6

&> ((7&2); (082 g); (7&3) 7 (7&3 )7 (&3 g 9)) x
11 3 1 7112
41 5 8] 19|18
of 71 27| 37|24
16| 9] 64| 61|30
2511125 91|36
36|13|216(127 (42

However, we will instead define a conjunction DD such that £ DD s gives the divided
differences with spacing s; in particular, DD 1 will be equivalent to the adverb

g above:
DD=: 2 : '-/@x.@((y.,0)" +/ 1) S y." '
sg=: "&2
u=:((sq DD 1);(sq DD 1r2);(sq DD 1);(sq DD le 8)) x
, &> U An approximation to the derivative
3 2.5 1] 2
5[ 4.5 3| 4
71 6.5 5| 6
9| 8.5| 7| 8
11]10.5] 9|10
13]12.5]11(12

I. GENERATING FUNCTIONS

A dyadic function d is said to be an approximating function for a function £ on a given
domain if for any specified positive tolerance t it is possible to find an integer n such that
the difference (nsd |@- £) x is less than t for any argument x in the domain. For
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example, %@ !k is the kth Taylor coefficient for the exponential, and the polynomial
%@!Q@[ p. ]isan approximating function for it. For example:

d=: (3@!@i.@[ p. 1)"0

(7 d x) ,: ~ x
2.71806 7.35556 19.4125 48.5556
2.71828 7.38906 20.0855 54.5982

(78 9d/ %), *~x

1 2.71806 7.35556 19.4125 48.5556
1 2.71825 7.38095 19.8464 51.8063
1
1

=

2.71828 7.3873 20.0092 53.4317

2.71828 7.38906 20.0855 54.5982
If the polynomial h@i.@[ p. 1 is an approximating function for £, then h is said to be
a generating function for f.

The coefficients e for the product function f£*g can be equated to the polynomial product
+//. c */ dofthe coefficients c and d for f and g. Thus:

f=: (c=: 1 2 1)s&p.

g=: (d=: 1 3 3 1)s&p.

x=: 01 2 3 4

,.&.> (f;g9;f*g) x

1 1
8 32
27| 243
64(1024
125|3125

(G2 X WNO R )

N —

Je=: c pp d
1510 10 51

e&p. X
1 32 243 1024 3125

If the coefficients for the functions £ and g are themselves expressible as functions of
their indices, then equating the coefficients for £*g with the polynomial product of the
coefficients for £ and g can establish interesting relations. For example:

t=: 7
c=: %@! i. t Coefficients for exponential ~
d=: c* 172]i.t Alternating coeffs for decaying exponential ~@-

x=: 0.1*0 1 2 3 4
p &> ((cégp.); (dép.) s ((c&p.) * (d&p.))) X

1 1{1
1.10517(0.9048374 |1
1.2214)10.8187308]|1
1.34986(0.7408183 |1
1.49182|0.6703204 |1
<7.3 ": c */ d Print 3 decimal places and box
1.000 1.000 0.500 0.167 0.042 0.008 0.001
1.000 1.000 0.500 0.167 0.042 0.008 0.001
0.500 0.500 0.250 0.083 0.021 0.004 0.001
0.167 0.167 0.083 0.028 0.007 _0.001 0.000
0.042 0.042 0.021 0.007 0.002 0.000 0.000
0.008 0.008 0.004 0.001 0.000 0.000 0.000
0.001 0.001 0.001 0.000 0.000 0.000 0.000

7.3 ": +//. c */ d
1.000 0.000 0.000 0.000 0.000 0.000 0.000
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0.000 0.000 0.000 0.000 0.000 0.000

7.3 ": c pp d
1.000 0.000 0.000 0.000 0.000 0.000 ©0.000
0.000 0.000 0.000 0.000 0.000 0.000

The case of Vandermonde’s convolution (GKP5.27 and page 198) may be treated thus:

bec=: & Adverb for binomial coefficients

(t=: 7) bc 1. 10
1721 3535217100

lJe=: t bc Ei t
1 7 21 353521 71

Ix=: 01 2 34 -3
3 2 101

(c&p. x); ((x+1)7t); ((c&p. * c&p.) X)

2128 1 01 128| 128 1 0 1 128(16384 1 0 1 16384

(x+1) "~ (t+t)
16384 1 0 1 16384

c */ ¢
1 7 21 35 35 21 7 1
7 49 147 245 245 147 49 7
21 147 441 735 735 441 147 21
35 245 735 1225 1225 735 245 35
35 245 735 1225 1225 735 245 35
21 147 441 735 735 441 147 21
7 49 147 245 245 147 49 7
1 7 21 35 35 21 7 1

le=: +//. ¢c */ c
1 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1

c pp C Left side of GKP5.27

1 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1
e&p. X

16384 1 0 1 16384
(t+t) bc i.t+t+l Right side of GKP5.27

1 14 91 364 1001 2002 3003 3432 3003 2002 1001
364 91 14 1

To aid in visualizing the behaviour of the diagonal summation performed by +//. on the
product table ¢ */ d, we will use the diagonal adverb /.with boxed literal arguments,
and a “catenation under box” function instead of summation and product:

c=: ;:'a0 al a2 a3"' [ d=: ;:'b0 bl b2 b3’
cub=: ,&.>

c;<c cub d

allalfa2|a3 alb0|albl|a2b2|a3b3

(c cub/ d) ; <(cub/. c cub/ d)

a0b0|albl|alb2|alb3 a0b0

alb0|albl|alb2|alb3 albl|alb0

a2b0]a2bl|a2b2|a2b3 al0b2|albl|a2b0

a3b0|a3bl|a3b2|a3b3 alb3|alb2|a2bl|a3b0




BINOMIAL COEFFICIENTS

alb3|azb2|a3bl

a2b3|a3b2

a3b3

J.NOTATION

Polynomial in terms of roots and multiplier. The function pir defined in §B can be
replaced by the primitive p.. The phrase (<r) p. x evaluates the polynomial with roots
r; that is, it is equivalent to * /x-r. Moreover, the phrase (m;r) p. x is equivalent to m
* (<r) p. X

Taylor coefficients. The adverb t. produces a function for Taylor coefficients. For
example:
~t. 1.5
1 1 0.5 0.1666667 0.04166667
31 4sp. t. i.5
31400

Format. The phrase 0.7 ": n produces the literal list that represents n to 7 decimal
digits. The phrase 12.7 ": m allots a width of 12 to each column of a matrix m. For
example:

0.7 ": 1pl
3.1415927

12.7 ": m=: o. 1. 2 3

0.0000000 3.1415927 6.2831853

9.4247780 12.5663706 15.7079633

$ 12.7 ": m=: o. i. 2 3
2 36
Reflection in unit circle or sphere. The degenerate case of matrix inverse for a list a
(treated as a one-column matrix) is the solution of a linear equation with coefficients a
and result 1. Geometrically, the result is the reflection of the point with coordinates a in a
unit circle, sphere, or hyper-sphere. Thus:

Jr=: %. a=: 1 2 3
0.07142857 0.1428571 0.2142857

+/r*a
1
Cycles. C. p yields the boxed cycles of a permutation p. The power of a single cycle is
the number of its elements, and the power of a permutation is the LCM of the powers of
the included cycles. For example:

p=: 11 16 0 10 13 1 12 18 19 6 7 9 14 3 15 2 17 5 4 8

] cy=: C. p

152 0 11 9 6 12 1417 5 1 16|18 4 13 3 10 7|19 8

In=: #&>cy

8 4 6 2

Jpow=: *./n
24

Ji=: i. # p

012345678 91011 12 13 14 15 16 17 18 19

p&{ ":pow 1i
012345678 91011 12 13 14 15 16 17 18 19
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Infix and Outfix. The phrase n £\ x applies £ to each infix of x of length n, and
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n £\. x applies it to outfixes. For example:

2 <\ x=:

23456

2 3|3 4|4 5|5 6

2 <\. x=:

23456

4 5 6(2 5 6(2 3 62 3 4

(2 */\ x)

;o (2 */\. x)

6 12 20 30

120 60 36 24
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SPECIAL NUMBERS

A. STIRLING NUMBERS

Stirling numbers of the first kind concern the number of ways to array n objects in k
cycles; those of the second kind concern the number of ways to partition a set of n things
into k non-empty subsets.

By making and examining tables of the first few values, GKP arrive at the following
recursive definitions (GKP6.8, 3):
Sl=:(k=0:) " "((n $:&<: k) + (n-1:)* (n-1:)S$:k) @. (n>0:) " O
S2=:(k=0:) " ((n $:&<: k) + k * (n-1:)S$:k) @. (n>0:) "™ O
n=: [ [. k=: ]
Tables 245 and 244 of GKP are therefore produced as follows:
i=: i. 10
i (s1/;s82/) 1

1 0 0 0 0 0 0 0 0 0f10 0 0 0 0 0 0 00
0 1 0 0 0 0 0 0 00f01 0 0 0 0 0 0 00
0 1 1 0 0 0 0 0 00f01 1 0 0 0 0 0 00
0 2 3 1 0 0 0 0 00f01 3 1 0 0 0 0 00
0 6 11 6 1 0 0 0 0 0f01 7 6 1 0 0 0 00
0 24 50 35 10 1 0 0 00|01 15 25 10 1 0 0 00
0 120 274 225 85 15 1 0 00|01 31 90 65 15 1 0 00
0 720 1764 1624 735 175 21 1 00|01 63 301 350 140 21 1 00
0 5040 13068 13132 6769 1960 322 28 1 0|0 1 127 966 1701 1050 266 28 1 0
0 40320 109584 118124 67284 22449 4536 546 36 1|0 1 255 3025 7770 6951 2646 462 36 1

As remarked in §2F, the matrix of Stirling numbers of the second kind (and its inverse)
provide the transformations of coefficients for the falling factorial polynomial p.!. 1.
As remarked in GKP, the removal of the factor k from the recursion defining S2 yields a
recursion for the binomial coefficients. Thus:

bc=:(k=0:) " ((n $:&<: k) + (n-1:)$:k) @. (n>0:) " O

bc/~ 1.5

e el
B WN PO
ooWwr oo
N Yool
mPooooO

The foregoing recursions are all double in the sense that recursion is applied to each of
the two arguments. In Representations of Recursion [6] it is shown that equivalent single

recursions on vectors may be defined as follows:
Slv=: 1: ([ Slr $:@<:) @. * "™ 0

Slr=: (0:,1) + <:@[ * ],0: " O
S2v=: 1: (Ei S2r $:@<:) @. * " 0O
S2r=: (0:,1) + [ * ],0: " O

bcv=: 1: (bcr@s$:@<:) @. * " 0
bcr=: (0:,1) +(1,0:)
(S1lv;S2v;bcv) i. 5

10 0001 0O0OO0O0O[LO0OOO0OO
01 0000100011000
01 1000110012100
02 310(01 31023310
0611 6 101 7 6 1|1 4641
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As remarked on page 248 of GKP, “... Stirling subset numbers are the coefficients of
factorial powers that yield ordinary powers”. Consequently, the conjunction:

f=: from=: 2 : '""l.y./~Q1. %. "l.x./~@1."
from §5F may be used to produce many of the transformations discussed in GKP6.11-33.
For example:

f=: from=: 2 : 'l .y./~@i. %. ~!.x./~Q@i.'

Snl0=: 1 £ 0 [. SOnl=: 0 £ 1 [. SO1=: O £ 1 [. Slnl=: 1 £ 1
Thr=: ] * 0.1&"Q[ <: |@] Threshold for rounding to zero
1&Thr@|:&.> (Snl0 ; SOnl ; S01 ; Slnl) 6
10 0 0 00T 0 0 0 00|1T 0 0 0 00|1L O 0 0 00
01 0 0 00/0 1 0 0 00/0 1 0 0 00|l0 1 0 0 00
01 1 0 00/0 1 1 0 00/0 1 1 0 000 2 1 0 00
01 3 1 00/0 2 3 1 o000 2 3 1 00/0 6 6 1 00
01 7 6 10/0 6 T1 6 10/0 611 6 10|0 24 36 12 10
011525 10 1|0 24 50 35 10 1|0 24 50 35 10 1|0 T20 240 120 20 1

The successive panels show the matrix of Stirling numbers of the second kind, its inverse
(whose magnitudes equals those of the first kind), numbers of the first kind, and the
transformation to rising factorials from falling factorials (GKP6.14).

Just as GKP determined recursive definitions for the Stirling numbers by exploring linear
relations among entries in a non-recursively defined table, so we might explore linear
relations between a non-recursively defined table such as |: sSn10 and some suitably
shifted variant of it. For example:

sh=: }:"1Q@}:@Ad

Ad=: 1:(<0 0)} 0&,@(0&,.)
a=: |: Snl0 7
1&Thr&.> (] ; sh ; 1 %. sh) a

10 0 0O O 0O0|2 0OO0C O O OOj20O0CO0OCO0O0O0O
601 0 0O 0 00|01 0 O O 0001 0C0O0O0O
601 1 0 0 O00j0OO0O1 O O O0OO0j0O1T 1T O0O0O0C0O0
o1 3 1 0 00001 1 O 00Jj0021000
o1 7 € 1 00001 3 1 00Jj0003100
01152510 10001 7 6 10j0000410
01 31 90 65 15 1|0 0 1 15 25 10 1|0 0 0 0 0 5 1

The results of §5F provide the basis for the following non-recursive functions for the
Stirling numbers:

slnr=: |@|:@("!. 1/~ %. ~/~)@1i."0

s2nr=:[:@("/~ %. ~!. 1/~)ei."0
The identity expressed by GKP6.15 uses the binomial coefficients, and the two limbs
may be expressed as follows:

Be=: i. !/ 1.

X=: +/ . *

L6 _15=: s2nr@>:

R6_15=: Ad@(|:@Bc X s2nr)
Thus:

(s2nr; Bc L6 15 ; R6_15) 5

~.

i10000fz1111j20 0 0 0020 0 0 0060
010000123401 0 O 0001 0 0 00O
0601100/0013%6j01 1 0 0001 1 0 00O
01310(0001401 3 1 00|01 3 1 0060
017610000101 7 6 10|01 7 6 10
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|o 1 15 25 10 1|o 1 15 25 10 1|

We will now use these results to define a number of tautologies given in GKP. Note that
the falling factorial and the rising factorial (denoted in GKP by x2 and a similar overbar)
are here denoted by ~!. 1 and ~!.1:

ff=: ~!. 1 [. rf=: ~1.1
XA=: -/ . *
GKP6 14=: ff -: 1&°@] * -@[ rf ]
GKP6_ 15=: (s2nr@>: -: Ad@(|:@Bc X s2nr))"0
GKP6_16=: (slnr@>: -: AdQ@(|:@Bc X~ slnr))"0
GKP6 17=: (s2nr -: [@(]:@Bc XA 1 1&}.@s2nr@>:))"0
GKP6 31=: ((i. =/ 1i.) -: |@(s2nr XA slnr))"0
For example:
x=: 2 3 5

(x GKP6 14 x), (GKP6 15,GKP6 16,GKP6 17,GKP6 31) 5
11111
It may be noted that all of the summations indicated in GKP6.15 and 6.16 are, in
GKP6_ 15 and GKP6_ 16, performed by the matrix product x=: +/ . *. Moreover, each
use of Ad to bring the right limb up to the shape of the left could, if we ignore the matter
of the agreement of the trivial leading row and leading column, be replaced by dropping
the leading row and column from the left limb. For example:

GKP6 15a=: (1 1&}.@s2nr@>: -: [:@Bc X s2nr)"0

Expressions such as the (-1)ts that occurs in GKP6.17 and 6.31 are avoided by using
the “alternating” matrix product xA=: -/ . * instead of X, as illustrated in Theorems
GKP6 17 and GKP6_31.

B. EULERIAN NUMBERS

The recursion for Eulerian numbers defined by GKP6.35-36 can be expressed using the
top and bottom arguments within angles as left and right arguments, respectively. Thus:

E=: (((k + 1:)*((n-1:)E kK))+((n-k)*((n-1:)E(k-1:)))) (k= 0:)Q@.c"0
c=: (n <: 0:) 4. (k < 0:)
n=: [
k=: ]
(i. E/ i.) 5
1 0 00O
1 0 00O
1 1 00O
1 4 100
111 11 1 0

If each occurrence of E in the definition is replaced by $: (self-reference), the resulting
definition can be assigned to any name. Moreover, many of the forks may be replaced by
more compact expressions; for example, (k + 1:)can be replaced by >: @k. Thus:

F=: ((>:Qk*<:@n $: k)+-*S:&<:) (k = 0:)@.c"0
(1. F/ 1i.) 5

1 0 00O

1 0 00O

1 1 00O

1 4 100

111 11 1 0

Such a double recursion can consume enormous amounts of time and space, and we

define an equivalent single recursion that produces an entire vector result as follows:
EV=: 1: (E1i r $:@<:)@.*"0
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r=: (|.Q@[ * 0:,]1) + (>:@Q[ * 1,0:)

EV i. 12

0 0 0 0 0 0 0 0 000
1 0 0 0 0 0 0 0 0 000
1 1 0 0 0 0 0 0 0 000
1 4 1 0 0 0 0 0 0 000
1 11 11 1 0 0 0 0 0 000
1 26 66 26 1 0 0 0 0 000
1 57 302 302 57 1 0 0 0 000
1 120 1191 2416 1191 120 1 0 0 000
1 247 4293 15619 15619 4293 247 1 0 000
1 502 14608 88234 156190 88234 14608 502 1 000
1 1013 47840 455192 1310354 1310354 455192 47840 1013 100
1 2036 152637 2203488 9738114 15724248 9738114 2203488 152637 2036 1 0

Worpitzky’s identity (GKP6.37) involves the binomial coefficients which we saw in the
preceding chapter were produced by the function !~. We will test the identity after first
fixing a definition of the function F so as to have no dependence on the definitions of n
and k as left and right arguments:

EU=: F f.

n=: {.@]

x=: [

k=: {:Q]
WORP=: (n EU/ k) */ (x+/k) !~/ n
a=: 3 4 5

b=: 01 234 ,: 01234
g=: a WORP Db

$q
55355
j=: 1 3;2;0 4
r=: j |: g Run together axes 1 and 3 as well as 0 and 4
Sr
535
+/r
13 9 27 81
1 4 16 64 256
1 5 25 125 625
a (x */ n) Db
13 9 27 81
1 4 16 64 256
1 5 25 125 625

The second order Eulerian functions may be defined similarly, using GKP6.41:
n=:[ [. k=: ]
SOE=: ((>:@k*<:@nS:k)+(+:Q@[->:Qk)*$:&<:) (k=0:)Q.c"0
012 3SOE/ 0123

DO O
O OO
O OO

1
1
1
1860

Representations of Recursion [6] gives the following single recursion for second-order
Eulerian numbers:

fv =: 1: ° (>:QEi1 fr $:@<:) @. *
fr =: ((-~ +:@#) * 0:,1) + ([ * 1,0¢:)
fv"0 i.12
1 0 0 0 0 0 0 0 0 0 00
1 0 0 0 0 0 0 0 0 0 00
1 2 0 0 0 0 0 0 0 0 00
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1 8 6 0 0 0 0 0 0 00
1 22 58 24 0 0 0 0 0 0 00
1 52 328 444 120 0 0 0 0 0 00
1 114 1452 4400 3708 720 0 0 0 0 00
1 240 5610 32120 58140 33984 5040 0 0 0 00
1 494 19950 195800 644020 785304 341136 40320 0 0 00
1 1004 67260 1.0625e6 5.7655e6 1.24401e7 1.10263e7 3.73392e6 362880 0 00
1 2026 218848 5.32616e6 4.4765e7 1.55357e8 2.38905e8 1.62187e8 4.4339%e7 3.6288e6 00
1 4072 695038 2.52439%e7 3.1437e8 1.64838e9 4.0027e9 4.64216e9 2.50748e9 5.68356e8 3.99168e7 0

C. HARMONIC NUMBERS

The harmonic numbers are defined as sums of the reciprocals of integers beginning at 1:
H=: +/Q@%Q@A1I ™ 0 [. Ai=: >:Q1i.

H 3
1.83333
H 1.8
0 1 1.5 1.83333 2.08333 2.28333 2.45 2.59286
0 1 3r2 11r6 25rl2 137r60 49r20 363rl140 Ratios shown in GKP

01 1.5 1.83333 2.08333 2.28333 2.45 2.59286

We will first define functions to obtain the continued fraction representation of a ratio
such as 137r60, and from it the pair 137 60 that represents it. Finally, we will define a
function to add rationals represented as two-element vectors.

The expression 3+%7+%15+%1 yields the value of the continued fraction represented by
the vector 3 7 15 1. Thus:

3+%7+%15+51
3.14159

Cf=: (+%)/

Cf c=: 3 7
3.14159
Successive prefixes of a vector provide improving approximations to the complete
continued fraction, successive pairs bounding the complete result below and above :

Cf\ ¢
3 3.14286 3.14151 3.14159

15 1

Any rational number can be represented exactly by a continued fraction, and any non-
negative number can be approximated by one. The continued fraction representation may
be obtained by repeated use of the following step:

step=: }: , (<. , 1: % ] - <.)@{: Replace last element by the
Ja=: 34%13 integer part, followed by the
2.61538 reciprocal of the fractional part
step a
2 1.625
step step a
21 1.6
step™:0 1 2 3 45 6 a
2.61538 0 0 0 00 0
2 1.625 0 0 00 0
2 1 1.6 0 0 0 0
2 1 1 1.66667 00 0
2 1 1 11.50 0
2 1 1 1 12 0
2 1 1 1 1 2 5.6295el4 Large reciprocal
of
approximate
b=: step”:5 a zero signals end
b ; (Cfb) ; a of useful process

211112|2.61538(2.61538
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The function step can be incorporated in a recursion with an agenda that tests for a large
reciprocal fractional part, and also (to make it usable for arguments such as pi=: o. 1
which would otherwise never terminate) for an upper limit on the number of elements in
the result. Thus:

Cfex=: }: (S$:@step)@. ((16" > #) *. le8&>@[Q@{:)

Cfex a
211112

Cfex pi=: o. 1
37151292 11121311433

(] ; step ; step@step ; Cfex ; Cf@Cfex) a=: 137

o\°

60

2.28333(2 3.52941|2 3 1.88889(2 3 1 1 7 1(2.28333

The rational number that represents a fraction is produced by the following recursively-
defined function:

Ratio=: Rat@(;&l 0)@Cfex " O
Rat=: >@{:  ($:@rstep) Q. (0:<#@>Q@{.)
rstep=: }:QF ; (LQL + L@F * FQ@L) , (FQL)
F=: >@Q{.
L=: >@Q{:
(rstep@(;&1 0) ;Ratio ; %/@Ratio ; Cf) 2 1 5

17 6]2.83333|2.83333

Ratio 137r60
137 60

We will now define a function (non-recursively) to add rationals represented as two-
element vectors:

plus=: red@ (num,den)
red=: ] % +./ Divide by GCD to reduce to lowest terms
num=: [ +/@:* |.@] Sum of products of numerators with denominators
den=: *&{: Product of denominators
2 4 plus 7 8
11 8
(i. 52) ; plus/\i. 5 2
01 0 1
2 3 2 3
4 5 22 15
6 7 244 105
8 911012 315
rec=: 1: ,. ] Catenate leading 1 to represent reciprocals
Ai=: >:Qi. Augmented indices
tab=: plus/\@rec@Ai Table of rational sums

(, .@AL ; rec@Ai ; tab ; ,.@(%/"1l@tab) ; ,.@(+/Q@%\QA1)) 12

111 1 1 1 1 1
211 2 3 2 1.5 1.5
31 3 11 611.83333(1.83333
411 4 25 1212.08333|2.08333
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5(1 5 137 60(2.2833312.28333
6|1 6 49 20 2.45 2.45
711 7 363 140(12.59286(2.59286
81 8 761 28012.71786(2.71786
911 9| 7129 2520(2.82897|2.82897
10|11 10| 7381 2520(2.92897(2.92897
11]1 1183711 27720|3.01988(3.01988
12|1 1286021 27720]13.10321|3.10321

The fact that the harmonic series diverges is established by summing over successive
groups of 27i.k elements. Such grouping can be controlled by a boolean vector as
illustrated below:

u=: 11 01 00010000O0O0O
u< ;. 1lRail5 Boxing of groups

112 3[4 56 7|8 9 10 11 12 13 14 15

lg=: u +/@% ;. 1 Ai 15 Sum over reciprocal of groups
1 0.8333333 0.7595238 0.7253719

(+/q) , H 15 Total of all groups equals the harmonic
3.31823 3.31823

The boolean vector for such a cut can be generated as illustrated below:

(cutpoints=: ;@ (<@}:Q@#:"0Q@(2&"":2@i.))) 5
11010001000000D01100O00O0ODO0OLO0OLOLOLOLOLOLOLOLODO®

D. HARMONIC SUMMATION
A sum of the harmonic numbers may be expressed as a simple product and difference.
This is done in GKP6.67, whose left and right limbs may be expressed as follows:
L=: +/@:H@1i.
R=: (] * H) - ]
L"0 1.7
0 01 2.5 4.33333 6.41667 8.7
R"0 1.7
0 01 2.5 4.33333 6.41667 8.7

The right limb may be defined more neatly by R=: ]*H-1:. Weighted sums (such as
sums of products with the binomial coefficients) can be expressed as a matrix product in
the manner used in the tautologies at the end of §A.

E. BERNOULLI NUMBERS

A sum of powers of the form +/@: ((i.@n) ~ m) can also be expressed as a poly-
nomial in n, and the coefficients are called Bernoulli Numbers. We will approach this
matter by using the adverb CPA (used similarly in §2E) to determine the coefficients. We
will further use the function Ratio of §C to determine these coefficients as rational
numbers, in an effort to identify patterns in their formation.

We begin by defining a function S such thatm S n produces a table of such sums. Thus:
S=: +/@: ((i.@n) ~ m)"O0

m=: [ [. n=: ]

(1.8) S/ (1.8)
012 3 4 5 6 7
001 3 6 10 15 21
001 5 14 30 55 91
001 9 36 100 225 441
001 17 98 354 979 2275
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001 33 276 1300 4425 12201
0 01 65 794 4890 20515 67171
0 01 129 2316 18700 96825 376761

The adverb CPa is used in the expression £ CPA n to give the coefficients of the best fit
polynomial of order n to the function £. Thus:

CPA=: (QEi) %. ~/~QEi [. Ei=: 1.@>:

7&S i. 8
0 01 129 2316 18700 96825 376761

Jc=: 7&S CPA 8
4.61121e 6 0.008617654 0.06273281 0.01870953 0.3002615
0.002196546 0.5830169 0.499976 0.1249993

0 ": cp. i. 8
0 01 129 2316 18700 96825 376761
The ratios that represent a fraction are given by the following suite of functions:
Ratio=: Rat@(;&1l 0)@Cfex " O
Rat=: >Q@{: ($:@rstep) Q. (0:<#@>Q{.)
rstep=: }:Q@F ; (LQ@L + L@F * F@L) , (FQL)
F=: >@{.
L=: >@Q{:
Cfex= .}: ($:@step)@. (((1078)&>@|Q{:)*. (16" > #))
step=: }: , (<. , 1l: % ] - <.)@{:
Applying Ratio to the coefficients representing a single row of the sums produced by
the function S we have the ratios r5 as follows:

c5=: 5&S CPA 6

]r5=: |: Ratio cb5
00 10 5 11
1112112 2 6

(%/d5) p. 1. 6
0 1.38778e 17 1 33 276 1300

GKP provides a table of such ratios that begins as shown below, and recommends
examining them to seek a pattern:

R=: |:@:Ratio

C=: CPA

rO=: R 0&S C 6 [ rl=: R 1&S C 6 [ r2=: R 2&5 C ©
r3=: R 345 C 6 [ r4=: R 4&S C 6 [ rb=: R 5&5S C 6

;. r0;rl;r2;r3;r4;r5

0100000
1111111
0 110000
1221111
01 11000
16 23111
001 1100
114 2411
0 101 110
13013 251
00 10 5 11
1172112 26
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F. FIBONACCI NUMBERS
The recursion for generating Fibonacci numbers given by GKP6.102 may be expressed as
follows:

F=: 0&~: (+/Q:FQ(<:@<: , <:))@.(1l&)"0

F i. 15
0112 358 13 21 34 55 89 144 233 377
We will illustrate the treatment of the theorems following GKP6.102 with the case of
GKP6.108, first defining a dyadic function G such that (n G k)=(F n+k):

G=: F@+

16 _108=: G

R6_108=: (F@] * 1&G@[) + ( 1&G@] * F@[)

<"2 (L6 108 , R6 108)"0/~i.6

oojr1y 1 1y 2 2| 3 3| 5 5
11|11, 2 23 3| 5 5| 8 8
1122 3 3| 5 5| 8 8[13 13
2 2|13 3 5 5 8 8|13 13|21 21
3 3|5 5 8 8|13 13|21 21|34 34
5 5(8 813 13|21 21|34 34|55 55

The expression 1&G@] used in the right limb may invoke F with a negative argument,
and the identity as stated holds only because F produces 1 for negative arguments.

G. CONTINUANTS
The continued fraction, commonly written in the form of GKP6.126, can also be written
in the form (+%) / used in §C for rational approximations to numbers such as 7. Thus:

3+4%7+315+%1
3.14159

cf=: (+%)/

cf c=: 3 7 151
3.14159

cf\ ¢

3 3.14286 3.14151 3.14159

The continuant polynomial may be defined directly from GKP6.127 as follows:
K=: */° ((K@}: * {:) + (KQ@}:@}:))Q@. (¥ > 1:)

(K 6#1) , (F 6+1) I1lustration of GKP6.128
13 13
The products over all possible selections of elements from a list can be expressed as
illustrated below:

b=: #: i. 2 ~ # x=: 2 3 4

b; (x "1 b) ; (. */"1 x*"1 b)

0001111
0011 1 4| 4
0101 31| 3
011|1 3 4|12
100211 2
10121 4| 8
1102 31| 6
1 11|2 3 4|24

Those rows of the complete boolean array b that correspond to “striking out adjacent
pairs” are those in which each unbroken string of zeros has an even number of elements.
These can be identified by the selection function sel, defined and illustrated below:
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sel=: (0:=+./@(2: | (# ;. 1 @(1l&,))))"1
b=: #: i. 2 ~ # x=: 2 34 5

cYoNoNe)
— o oo
O OO -«
PR OO0
oo o
—or o
oo
PP o
oo
oo
o or
=P o
oo
o
o PR
i

sel b
1001000001 001O00O01

prd=: */"1 pow=: x ""1 g=: (sel b) # b
g pow ; (,. prd) ; (+/prd) ; (K x)

00002111 1(157|157
0011|1145 20
1001|2115 10
1100|2311 6
1111|234 5]|120

The equality of the last two results illustrates GKP6.129

The treatment of further theorems will be illustrated by GKP6.133. For the right limb we
will define a dyadic function R whose left argument will specify the partition point
denoted by m in GKP:

R=: (K@{. * K@}.) + K@(<:Q[ {. 1) * R@(>:Q[ }. 1)

2 Ry=: 234567 Right limb with partition point at 2
6961

Ky Left limb
6961

12345R"'01y
6961 6961 6961 6961 6961

06RO 1Yy
28066 7933

These last results (that correspond to degenerate partitions with no elements in one of the
partitions) are anomalous, and merit further examination by the reader.

The relation between K and continued fractions expressed in GKP6.135 may be

illustrated as follows:
(K ; KR}. ; (K % KQ@}.) ; (+%)/) vy

6961(3015]2.30879|2.30879

H. NOTATION

Fix. The adverb f£. fixes the definition to which it is applied, recursively substituting its
definition for each component verb used in the definition.
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GENERATING FUNCTIONS

A. DOMINO THEORY AND CHANGE

The idea of a generating function (GKP §5.4) as a polynomial of variable degree whose
coefficients are generated by a function was introduced in §5I, and illustrated by Taylor
series.

In this chapter GKP uses the problem of tiling a rectangle with 1-by-2 and 2-by-one
rectangles (called horizontal and vertical dominoes) to introduce a generalization of the
idea.

We will use the following boxed arrays to provide graphic displays of tilings analogous
to those shown in GKP:

N=: <i.1 0 [ H=: 1 28<'='" [ V=: 2 1S<"|"
]JA=: V,.H,H A vertical tile followed by a horizontal atop a horizontal
‘ — | -
‘ R
]JB=: N ,. V ,. H, H Prefaced by the null denoted by | in GKP
‘ R
‘ - -

GKP denotes a power (or repetition) of a pattern using an exponent as follows:

Bk
and uses it to denote either horizontal or vertical replication. We define an analogous set
of functions as follows:

plh=: ,. Plus (catenation) horizontally
plv=: , Plus (catenation) vertically
poh=: plh/@(] # ,:Q[) Power (replication) horizontally
pov=: plv/@(] # ,:Q@[) Power (replication) vertically
tih=: poh~ Times (replication) horizontally
tiv=: pov~ Times (replication) vertically

]block=: V plh (H plv H)

(block poh 2) ; (block pov 2) ;<(2 tiv block)

3 tih block pov 2
1T 1 17T 17T 17T 17T 1T 7171
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The first six terms of the expression for T on page 309 of GKP illustrate the combined
use of these facilities:

N plh V plh (V poh 2) plh (H pov 2) plh (V poh 3) plh
(2 tih V plh H pov 2)

GKP suggests that the patterns may be treated as if they are commutative so, for example,
the horizontal tiles (represented by the columns 1 2 and 4 5 and 7 8 of R as defined
below) may be collected at the tail end. Thus:

JR=: V plh (H plv H) plh V plh (H plv H) plh V plh H plv H

036124578 ({"lR

It would be more perspicuous to group the pairs of columns representing a component
pattern so that the permutation would be effected by the index 0 2 4 1 3 5. This is
effected by the following conjunction:

perm=: ;Q@([.&{)Q(].&(<;.1))&.1|:

024135perm11 0110110
[:@;@(0 2 4 1 3 56{@(1L 1 01 1 011 0&(<;.)@Q]z:))

024135perm110110110R

Making Change. The number of distinct ways of making change for a given amount in
Pennies, in Pennies or Nickels, in Dimes or smaller denominations, and so on through
Quarters and Half-dollars is analyzed in GKP to lead to a set of recursively defined
functions shown and used below. The term =s0 that occurs in them accounts for the case
of using no coins of a given denomination:

P=: 1"0

N=: (=60 + 0: (P + $:@(-&05))@Q. (0&<)) "0

D=: (=60 + 0: (N + S$S:Q@(-&10))@. (0&<))"O

Q=: (=0 + 0: (D 4+ S$S:Q@(-&25))@. (0&<))"0

H=: (=60 + 0: (Q + $:@(-&50))@. (0&<))"O

(>;: '"# P PN PND PNDQ PNDQH'); (],P,N,D,Q,:H) i. 16
# 012345%6 789 1011 12 13 14 15
P 1111111111 1 1 1 1 1 1
PN 1111122222 3 3 3 3 3 4
PND 1111122222 4 4 4 4 4 9
PNDQ (1 111122222 4 4 4 4 4 6
PNDQH|1 1 1 1 1 2 22 22 4 4 4 4 4 o6

(>;: '# P PN PND PNDQ PNDQH'); (],P,N,D,Q, :H) 5*%i.11
[ [ 1
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# 0 5 10 15 20 25 30 35 40 45 50
P 11 1 1 1 1 1 1 1 1 1
PN 12 3 4 5 66 7 8 91011
PND 12 4 6 912 16 20 25 30 36
PNDQ (1 2 4 6 9 13 18 24 31 39 49
PNDQH|1 2 4 6 9 13 18 24 31 39 50

The last table above can provide some insight. For example, the value 9 in row PN of
column 40 gives the number of ways for paying forty cents using pennies or nickels. The
corresponding value 25 in the next row (using dimes as well) is this value 9 plus the
values in each of the columns for the amount decremented by multiples of ten (for
dimes), that is, 7 and 5 and 3 and 1. Similar patterns may be found throughout the table.

B. BASIC MANEUVERS

In GKP7.12 the limit (as n approaches infinity) of the polynomial G=: (g i.n) p. ]
is defined to be the generating function for the function g. In other words, g k is the kth
element of the Taylor series for G.

For example, the functions for the exponential, the sine, and the product of the sine and
exponential may be used as generating functions as follows:
gex=: "~ t.
gsin=: 1l&o. t.
gsinex=: (l&o. * *) t.

Jce=: gex 1. 8
11 0.5 0.1666667 0.04166667 0.008333333 0.001388889 0.0001984127

Jcs=: gsin i. 8
010 0.1666667 0 0.008333333 0 0.0001984127
]cse=: gsinex i. 8

011 0.3333333 0 0.03333333 0.01111111 0.001587302

pp=: +//.Q(*/) Polynomial product function

9 {. cs pp ce
011 0.3333333 0 0.03333333 0.01111111 0.001587302 5.42101le 20
In the foregoing, cs and ce may be recognized as the first few elements of the Taylor
series for the exponential and the sine; it should therefore not be surprising that their
product under the polynomial product function should agree so well with the coefficients
of the product of the sine and exponential. Such manipulations are remarked upon in
GKP7.13-7.20.

Polynomial sums, derivatives, and integrals may be treated similarly. Thus:

ps=: +/@Q,: Polynomial sum

dc=: 1:}.]1%i.Q#4 Polynomial derivative
ic=: 0:,1%>:Qi.Q# Polynomial integral
sfd=: ("0) (D.1) Scalar first derivative
dc cs

1 0 0.50 0.04166667 0 0.001388889

(dc cs) p. 0.2*1.6
1 0.9800666 0.921061 0.8253352 0.6967026 0.5402778

léo. sfd 0.2*1.6
1 0.9800666 0.921061 0.8253356 0.6967067 0.5403023

We will now define an adverb pow such that n £ POW x is the application to x of the n-
term approximation to the power series whose coefficients are generated by the function



80

Chapter 7
£, and will illustrate its use on the function f=: !&4 (a function that gives zero for
negative arguments):
f=: &4
POW=: 1 : 'x.@i.Q[ p. 1"
£ POW
f@i.Q[ p. ]

f 2 10123456
001464100

7 £ POW x=: 01 2 3 4
1 16 81 256 625

14641p. x
1 16 81 256 625

(x+1)~4
1 16 81 256 625

3 £ POW x
1 11 33 67 113

146p. x
1 11 33 67 113

The function ns (£ POW) (or, strictly speaking, its limit for large n) is the generating
function for £. We will also define a related adverb that uses a fixed value (9) for n:

G=: ((Qi.) (@9:)) p. ]

f G x
1 16 81 256 625
Table 321 of GKP shows the first few elements of the (coefficients of the) power series
for the reciprocals of certain polynomials. The reciprocal is a special case of a rational
function, and may be treated in the manner developed in §5C:

over=: ([.&p.) % (].&p.)

REC=: 1 : 'l over x. t. @Qi.

We will illustrate the matter by the first ten coefficients for a few cases of Table 321:

1 1 REC 10 Case: 1/(1-z)
1111111111

1 1 REC 10 1/(1+2)
1 11 11 11 11 1

1 0 1 REC 10 1/(1-z%)
1010101010

1000 1 REC10 1/(1-z™) for m=4
1000100010

Je=: 1 1 & pp "~: 2 (1)
1 21

c REC 10 1/(1-z)?
12345678910

1 2 REC 10 1/(1-2z)

1248 16 32 64 128 256 512

Je=:'1 1 & pp ": (c=: 3) 1

1 33 1
c REC 10 1/(1-z)° for c=3
1 3 6 10 15 21 28 36 45 55
(1, -c=: 3) REC 10 1/(1-cz)

1 3 9 27 81 243 729 2187 6561 19683
Je=: 1 1 &pp *: (1 +m=: 3) 1
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1 46 41

c REC 10 1/(1-z)™*! for m=3
1 4 10 20 35 56 84 120 165 220

C. SOLVING RECURRENCES

This section treats a general method for non-recursive definition of a function which is
defined by a recursive relationship. The relationship is imposed on a generating function,
the resulting equation is solved to express the generating function as a rational function
whose expansion as a power series gives its coefficients; that is, the values of the
“generated” function. GKP illustrates this method for the Fibonacci numbers, obtaining
the reciprocal polynomial with coefficients 1 1 1 (a result expressed in GKP as z
over 1-z-72).
The conjunction over and the adverb REC of the preceding section may be used to
illustrate this:

(01 over 1 1 1 t. i. 18) ,: (1 _1 _1 REC 18)
011235 813 21 34 55 89 144 233 377 610 987 1597
11235813 21 34 55 89 144 233 377 610 987 1597 2584
If £ is a function whose result on negative integers is zero, then £@ (-&k) appliedto i.n
prefaces the results of £ i.n-k by the results of £ on the first k negative integers. For
example:

f=: l&4d

(f ; f@(-&l) ; f@(-&2)) z=: i. 8

1464100001 464100(00146410

The fact that ( (k#0),c) p. =zisequivalentto (z"k) * c p. =z implies that (for any
function £ whose result for a negative argument is zero) the generating function satisfies
the following relation (which may be executed by first assigning values to the parameters
n, k, and z):

n=: 15 [ k=: 5 [ z=: 1.8

(n fQ@(-&k) POW z) = ((z"k) * (n-k) £ POW z)
11111111

Ignoring k higher order terms, this may be re-expressed as follows:
(n f@(-&k) POW z) = ((z"k) * n £ POW z)

The following illustrates a general relation between a function and its generating

polynomial:
e=: &3
pp=: +//.@(*/)
ps=: +/@Q,:

(e pp £f) 1. 5
1721 353521710

(e ps f) 1. 5
27 951

(e pp f) G z See §B (a version of POW using a fixed value for n)
1 128 2187 16384 78125 279936 823543 2.09715e6

(e G z) * (£ G z)
1 128 2187 16384 78125 279936 823543 2.09715e6

(e ps f) G z
2 24 108 320 750 1512 2744 4608

(e G z) + (£ G z2)
2 24 108 320 750 1512 2744 4608

As remarked in GKP, If g is the function such that g k yields the Fibonacci number
whose index is k, then g must satisfy the following relation:
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g = g@(-&l) + g@(-&2) + =¢&1
assuming that the result of g on negative integers is zero.
The corresponding relation for the generating function is given by any of the following :
g G z) = (z *gGz) +((z"2) * g G z) + z

(
((gGz) * (1L + (-z) + (-272))) =z
( ( z -z

(

gGz)=2z%(1+ (-z) +(-2"2))
gGz)=(01lp.2z) % (1 1 1p. 2z
(g Gz) = (01p.z)*5%(1 1 1p. z)

D. CONVOLUTIONS
The function pp used for the product of polynomials in §2E is a simple example of a
convolution. For example:

pp=: +//.@(*/)

c=: 121 [d=:1331

,. clpp ;7 X/ 5 </.@(*/)) d

1510 10 51

N

331
6 6 2
331

We may also use functions such as Fibonacci in a convolution such as that of GKP7.60:
F=: 0&~: (+/@:F@(<:@<: , <:))@.(1l&)"0

F i. 15
01123581321 34 55 89 144 233 377

L=: # {. +//.@(F */ F)
R=: 1r5"0 * (2: * ] *F@>:) - (>: * F)
((<@L\), . (<@R\)) x=: i. 10

0 0

00 00

001 001

0012 0012

00125 00125
0012510 0012510
0012510 20 0012510 20
0012510 20 38 0012510 20 38
0012510 20 38 71 0012510 20 38 71
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0012510 20 38 71 13o|o 012510 20 38 71 13o|

E. EXPONENTIAL GENERATING FUNCTIONS

As shown in §B, the function gex=: ~ t. is a generating function for the exponential.
For example:
gex=: "~ t.
Jce=: gex i=: 1i. 8
11 0.5 0.1666667 0.04166667 0.008333333 0.001388889 0.0001984127
ce p. z=: 0.1*%1i.11

1 1.10517 1.2214 1.34986 1.49182 1.64872 1.82212 2.01375 2.22554
2.45959 2.71825

~z

1 1.10517 1.2214 1.34986 1.49182 1.64872 1.82212 2.01375 2.22554
2.4596 2.71828

We may also replace the polynomial p. by the equivalent sum over powers, or by a sum
over some other function, using suitably modified coefficients. For example:

p=: +/Q@Q([ * (] ~exp)) " 10

exp=: 1.Q@#Q[

g=: +/Q([ * (] ~ exp) % !@exp) " 1 0

hex=: ! * 7~ t.

he=: hex 1

ce p z

1 1.10517 1.2214 1.34986 1.49182 1.64872 1.82212 2.01375 2.22554
2.45959 2.71825

he g z
1 1.10517 1.2214 1.34986 1.49182 1.64872 1.82212 2.01375 2.22554
2.45959 2.71825
The generating function hex has a particularly simple form that also appears in the case
of related functions such as the sine and cosine, and is therefore called an exponential
generating function. For example:

hex 1

11111111
hsine=: ! * 1l&o. t.
hcosine=: ! * 2&o0. t.

(hex , hsine ,: hcosine) i

11 1 111 1 1
01 0 101 0 1
10 17010 10
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DISCRETE PROBABILITY

A. DEFINITIONS

To illustrate a probability space, GKP defines graphic displays of a set of dice (D), and
the set of all possible pairs of dice (D?):

]D=: <"2 ' *'"{~r=: 3 3$"1 #: 16 68 84 325 341 365

* *|*x x| *x *x|*x *x

* * * *  *

* * * k| Kx Kk |[*x *x

]D2=: { ,&<~ D

* * *  * *  * *  *
* * * * * * * * * * K
* * *  x *  x *  x
* * * * * * | *x *x * | *x x * | *x *x
* * * *  x
* * * * * * *  * * *  * * *  *
* * * * * * | *x *x * | *x *x * | *x *x
* * * * * * * * * * K
* * * * * * *  x* * *  x * *  x
*  x *  x * *  x * * x| *x x * x| *x *x * x| *x x
* * * *  Kx
*  * * x| * * x| % * k| *x X * k| *x X * k| *x X
*  * *  * * *  * * * k| *x X * k| *x % * k| *x X
* * * * * * * * * * K
*  x * x| % * x| % * x| *x *x * x| *x *x * x| *x *x
* ok * ok * *  * * * x| *x *x * k| *x *x * x| *x *x
* X * * X * K * * K *  kx * * k| *x *x
* ok * x| % * k| % * k| *x *x * k| *x % * k| *x %

Although graphic displays may aid visualization, it is more convenient to represent the
elements of a discrete space by integers (suchas 1 2 3 4 5 6 for the number of pips
on a die, or by 1. 6), and define functions to convert to and from graphic displays. Thus:

di=: (d=: {&D) ": 1

dli=: (dl=: d@<:)": 1

(d 32 1);(did3 2 1);(dl 3 2 1);(dli dl 3 2 1)

321 321

next=: 6&|@>:
NEXT=: nexté&.di

next i. 6
123450
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*
*
* % ok
* % ok
*

(D =/ NEXT D) ; (1 =/ next i=: 1i. 6)

[cloloNoN o]
OO OroOoo
OO RrRrOOOo
O OO OOo
POOOOOo
[cloloNoNeoN o]
[cloloNoN o]
QOO OroOoOo
OO RrOOoOOo
el NoNoNeoNe]
POOOOOo
[ecloloNeoNeN o]

The (pseudo-) random number generator ? can be used to experiment with probabilities.
For example:

count=: +/@(sums =/ pos@[) Count of possible outcomes
sums=: +/@>:Q?Q(,$6:) Sums over groups of k dice
pos=: ] }. Ei@(6: * 1) Possible outcomes for k dice
pos 2

234567891011 12

2 count 10000
272 562 815 1125 1390 1696 1336 1066 861 577 300

theoretical=: 1 2 345 6 54321 % 36

<. 1lr2 + 10000 * theoretical
278 556 833 1111 1389 1667 1389 1111 833 556 278
The mean, median, and mode are defined as in GKP, except that when two elements
compete for the median (in the case of an even number of elements) or several compete

for the mode, the result is their mean:
mean=: +/ % #

median=: [: mean (<.,>.)Q@-:Q@<:Q@# { /:~
w=: 127417217506
/i~ W
01 112245¢6777
median w
3
mode=: mean@ ((= >./)Q@: ({."1) # {:"1)Qfreq
freg=: (# , {.)/.~
y=: 2 32 4 35
freq y
2 2
2 3
14
15
~e Y
2 345
mode y
2.5
(mean,median,mode) 3 1 4 1 5
2.8 31
B. MEAN AND VARIANCE

The variance and standard deviation may be defined and used as follows:
var=: mean@*:Q@(] - mean)

sd=: %:@var

85
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(var , 35rl12"™ , sd) 1 2 3 4 5 6

2.91667 2.91667 1.70783

The sample variance is defined as follows:
Svar=: <:Q@# %~ +/Q@*:Q(] - mean)

Svar 1 2 3 4 5 6
3.5

6r5*var 1 2 3 4 5 6
3.5

The foregoing definition of the sample variance may be compared with the definition
given in GKP8.20:
VX=: (+/Q@*: % <:Q@#) - *:Q(+/)% # * <:Q#

(VX , Svar) x=: 7 11 8 54 6 10 8 8 7
4.48889 4.48889

GPKS&8.22 returns to the question of the number of stationary points in a permutation, for
which we defined in §5E the functions:
DNSP=: +/@(NSP =/ Ei@{:@$%)
NSP=: +/Q@(1l: = #@>@C.)"1

Jr=: DNSP 2~ 10000#5
3636 3801 1640 836 0 87

r%+/r
0.3636 0.3801 0.164 0.0836 0 0.0087
These “experimental” results may be compared with the theoretical results obtained by
normalizing the penultimate row of the final table of §5E:

s=: 44 45 20 10 0 1

s$+/s
0.3666667 0.375 0.1666667 0.08333333 0 0.008333333
To experiment with the mean and variance of various functions on various domains, we
define the following adverbs:

M=: mean(@:

V=: var(@:

lJa=: 1+1.8
123 45¢6 78

(*:M, *:V) a

25.5 446.25
32$%$ (*xM, *:vVv, M, sV , 1M, 1V) a
25.5 446.25
0.3397321 0.07550983
4.5 5.25

They may also be applied to the function NSP to yield the results stated in GKP; that is, 1
for both mean and variance when applied to the set of all permutations of a given order,
and approximations to these results for a random set:

(NSP M , NSP V) ?~ 100044
1.079 1.10676

allp=: 1i.@! A. 1.

(1 ; ,.@:NSP ; NSP M ; NSP V) allp 3

1|1

NNR R OO
RPONONRE
O ONRFN
POOR W

C. PROBABILITY GENERATING FUNCTIONS
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If a is a non-negative integer list that sums to 1, then a&PR defines a (discrete)
probability distribution, where PR is defined as follows:

PR=: {~ :: 0:"1 O Result is 0 if indexing of the list fails

U=: 0:, ] %~ ] # 1: List for uniform distribution in 1 to argument
cl0=: U 10

cl0

00.120.12 0.1 0.10.10.10.10.10.10.1

pl0=: c10&PR Uniform distribution function for 1 to 10
(pl10 0 1 2 11 12) ; (+/pl0 2 4 6 8 10)

0 0.1 0.1 0 0]0.5

ce=: U 6
p6=: C6&PR Uniform distribution for 1 to 6 (a fair die)

p6 02 4 6 8 10
0 0.1666667 0.1666667 0.1666667 0 0

The generating function for the distribution d&PR is then G=: d&p.. Thus:
gb=: Cb6&p.
g6 i. 8
0 1 21 182 910 3255 9331 22876
The function £ t. @ i. applied to n yields the first n terms of the Taylor series for £,
and (f t.@i. n)e&p. is therefore the n-term approximation to f. For example:
e7=: ~t.@i. 7
;. el ; (el&p. x) ; (© x=: 1.4)

11 0.5 0.1666667 0.04166667 0.008333333 0.001388889

1 2.71806 7.35556 19.4125

1 2.71828 7.38906 20.0855

We will define an adverb tc such that £ tc m,n, s tests and yields the first Taylor
coefficients of £, beginning with a minimum number m of them, and continuing until the
number reaches n, or their sum reaches s:

te=: 1 : '] }. (, x.t.@#)@]":test™: x.t.@i.@{."

test=: ({.@[ > #@]) *. ({:@[ > +/@1)
;o (P tc 1l 2.718) ; (© tc 1 3 2.718) ; (© tc 5 3 )

1 10.50.1666667 0.04166667 0.008333333 0.001388889

110.5

1 10.50.1666667 0.04166667

It will often be more convenient to use the corresponding conjunction TC, defined as
follows:

TC=: 2 : 'x. tc y.'

~TC 1 2.7
1 1 0.5 0.1666667 0.04166667
If £ is the generating function for a probability distribution, then its Taylor coefficients
must be non-negative, and must sum to 1. We will exploit these facts to define an adverb
g such that the expression £ g yields all significant Taylor coefficients of f:

g=: TC 1 1

87
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g6 g
0 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667

As a companion to g we will define the adverb G as follows:

G=: &p.

f=: c6 G

f i. 8
0 1 21 182 910 3255 9331 22876

g=: gb g G

g i. 8
0 1 21 182 910 3255 9331 22876
The adverbs tc and g apply only to functions in the domain of the Taylor coefficients
adverb t.; others may be treated by the expression (f r) %. r *~/ i. n, which
yields the coefficients of the n-term polynomial that best fits £ on the range of arguments
r. For example:

r=: 1+i. 20 [ n=: 10

log=: 10&".
4 5%log r
0 0.30103 0.4771213 0.60206 0.69897
0.7781513 0.845098 0.90309 0.9542425 1

1.04139 1.07918 1.11394 1.14613 1.17609
1.20412 1.23045 1.25527 1.27875 1.30103

25 8% c=: (logr) $. r ~/ i. n

0.5689842 0.7840836 0.2696426 0.06350159 0.009729294

0.0009699834 6.22926e 5 2.48047e 6 5.56407e 8 5.36916e 10
45 8% cp.r
0.0001392442 0.3003129 0.4783184 0.6017181 0.6982362
0.778159 0.8456566 0.90346 0.9540612 0.9995265
1.04114 1.07939 1.11437 1.1463 1.1758
1.20374 1.23057 1.25575 1.27837 1.30111
The function g6 is the generating function for the probability distribution of a die and, as
stated in GKP, the function g6*g6 is the generating function for the sum of two dice.
Thus:
g6 x=: 1. 8
0 1 21 182 910 3255 9331 22876
(gb*gb6) x
0 1 441 33124 828100 1.0595e7 8.70676e7 5.23311e8
As stated in GKP8.28, the first derivative of these functions evaluated at 1 gives the
means of the distributions:
((g6 D.1) , (g6*g6)D.1) 1
3.5 7

We may test these results by evaluating the means directly as follows:
mean=: +/ % #

mean d=: 1 2 3 4 5 6
3.5

Jg=: { 2 # <d

1 1|1 2|1 3|1 4|1 5|1 6

2 1|12 2|2 3|2 4|2 5|2 6
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lr=: +/&> g
234 5 o6 7
345 6 7 8
456 7 8 9
567 8 910
678 910 11
7 8 9 10 11 12

mean ,r
7

Similarly for the sum of three dice:

((g6*g6*g6)D.1 (1)) , mean ,+/&>{3#<d
10.5 10.5

GKP8.31 gives the following expression for the variance for two dice:

h2=: g6*g6
(h2 D.2 + h2 D.1 - *:@(h2 D.1)) 1
5.83333

This result agrees with the following direct calculation of the mean of the squares of the
differences from the mean:

mean *: , r — mean , r
5.83333

GKP8.33 uses notation of the form f(1+t) to denote the function f@>:, and the
coefficients of powers of t in the theorem are therefore obtained by applying the
conjunction tc to it. In the case of the function h2=: g6*gé6 (the generating function for
the sums of a pair of dice), this becomes:

h2=: g6*g6

h2@>: tc 1 5
1 7 23.9167 52.5 81.8611
According to GKP8.33, these results should agree with:

('i.5) %~ (h2, (h2 D.1), (h2 D.2), (h2 D.3), (h2 D.4))1
1 7 23.9167 52.5 81.8611
Similarly, the left limb of GKP8.41 (which introduces cumulants) is expressed as h2@",
and the first eight coefficients of the right limb are obtained as follows:

h2@” tc 1 8
1 7 27.4167 77.5833 174.854 330.274 539.393 777.838

D. FLIPPING COINS

We will define the function g as the complement of the function p, and begin by defining
p to be the fair probability for the toss of a coin:

g=: 1: - p

p=: 1xr2"0
The binomial distribution bd is then defined such that k bd n gives the probability of k
heads in n tosses:

bd=: ! * (p ~ [) * (q ~ -~)
bd"0/~1i. 6
1 0.50.25 0.125 0.0625 0.03125
0 0.5 0.5 0.375 0.25 0.15625
0 0 0.25 0.375 0.375 0.3125
0 0 0 0.125 0.25 0.3125
0 0 0 0 0.0625 0.15625
0 0 0 0 0 0.03125
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To explore probabilities for a biased coin we will define an adverb as follows:

B=: 1 : '"! * (x."0 ~ [) * ((1: - x."0) ~ =~)"

T=: ("0) / ~

(lr2 BT ; 1r4 BT ,; 0BT ; 1 BT)i. 4
1 0.5 0.25 0.125|1 0.75 0.5625 0.421875|1 1 1 1|1 0 0 O
0 0.5 0.5 0.375|0 0.25 0.375 0.421875|0 0 0 0|0 1 O O
0 0 0.25 0.375]0 0 0.0025 0.140625|0 0 0 0]J]0 O 1 O
0 0 0 0.125(0 0 0 0.015625|{0 0 0 0]j]0 O O 1

The generating function for the probability that the first head shows up at the kth toss is
given by GKPS8.58 as pz over 1-qz. For a fair coin, this is the rational function
(c&p.) % (ds&p.), where c and d are as shown below. We will use the conjunction over
from §5C as follows:

c=: 0 1r2
d=: 1 1r2
over=: ([.&p.) % (].&p.)

c over d
0 0.5¢p. 3 1 0.5&p.

2 5 % ser=: ¢c over d t. i. 10
0 0.5 0.25 0.125 0.0625
0.03125 0.015625 0.0078125 0.00390625 0.001953125

The probability of exactly n heads is given the nth power of ¢ over d, and its
generating function is therefore given by cn over dn t., where cn and dn are the nth
powers of the coefficients c and d. For example:

pp=: +//.@(*/)
chb=: c&pp™:5 (1)
d5=: d&pp”:5 (1)

c5, :d5
0 0 0 0 0 0.03125
1 2.52.5 1.250.3125 0.03125
3 5% ¢S5 over d5 t. i. 15

0 0 0 0 0
0.03125 0.078125 0.1171875 0.1367188 0.1367188
0.1230469 0.1025391 0.0805600641 0.0604248 0.04364014
The zeros in the first row show that (as expected) there is no probability of five heads for
the cases of 0-4 throws; the first element of the next row is the expected 1r2+5.

For the polynomials that occur in further theorems in this section of GKP it may be
convenient to use functions for both the sums and products of polynomials. For example
the coefficients for the numerator and the denominator of GKPS8.69 [p?q’z® and
P’z +(1+pq?z®)(1-z)] may be obtained as follows:

ps=: +/@,:

num=: 0 0 0 0 0 1r32

den=: num ps 1 0 0 1r8 pp 1 1

3 5 $ num over den t. 1i. 15
0 0 0 0 0
0.03125 0.03125 0.03125 0.02734375 0.02734375
0.02636719 0.02587891 0.02490234 0.02416992 0.02337646

E. HASHING

Among the probability generating functions discussed in this section of GKP, Theorem
8.92 introduces a new problem, the application of a polynomial with coefficients s
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(representing search probabilities) to the results of (atop) a second polynomial with
coefficients ( (m-1),1) %m (where 1%m is the probability of success). For this we will use
the conjunction atop defined in §5B in an example as follows:

]s=: 6#1r6

666667 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667
Jt=: ((m-1),1)%m =: 0.1

9 10
s atop t

. 8857.33 50191.7 113833 129167 73333.3 16666.7

0 1 pp s atop t
0 8857.33 50191.7 113833 129167 73333.3 16666.7

F. NOTATION

Catalogue and Cartesian product. The phrase {b produces boxed lists comprising one
item from each of the boxes of b. The special case of two boxes is analogous to the

Cartesian product. For example:
Jb=: '"AB';'012"'; 'abcd'

AB|012|abcd

{b

AQa |AOb|AOc|AOd

Ala|Alb|Alc|Ald

A2a|AZ2b|A2c|A2d

BO0a|BOb|BOc|BOd

Bla|Blb|Blc|Bld

B2a|B2b|B2c|B2d
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ASYMPTOTICS

GKP defines a sum function and two approximations to it as follows:
S=: +/@(Ei ! 3&*)"0
Sl=: (2: * ] ! 3&*)"0
S2=: ((2: - 4: % 1) * ] ! 38%)"0
(S,S1,:82) (i. 8),100
1 4 22 130 794 4944 31180 198440 8.16329e81

2 6 30 168 990 6006 37128 232560 8.3165e81
6 0 D56 495 3603.6 24752 166114 8.15017e81

GKP9.1 adds the term O with argument 1/n? to the factor 2:-4:%] to indicate that the

approximation S2 gives a “relative error of order 1/n?”. The function O (or “O notation”)

suggests that the difference | @ (S-S2) is dominated by the function 1/n? (that is, ~& 2):
(l1e(s-s2) , *& 2 ,: !@(S-S2) <: & 2) (i. 8),100

_ 10 22 74 299 1340.4 6428 32325.7 1.31217e79
~ 10.250.1111111 0.0625 0.04 0.02777778 0.02040816 0.0001
1 0 0 0 0 0 0 0 0

The zeros in the last row show that this is not entirely true. As defined in §9.2 of GKP,
the O notation implies only that the dominance is asymprotic, true for arguments that
exceed some specified constant lower limit 1im, and for multiplication of the dominating
function by some constant c.

The dominance asserted by the O notation may therefore be characterized by the
expression g >: c&*@(~&n) ored with the condition that the argument exceeds some
specified lower limit. Thus:

<&lowerlim +. g >: c&*Q@("&n)

In other words, the result is true (1) if either the argument is less than the specified limit
or the function g (the difference S-S2 in the foregoing example) is greater than or equal
to the specified constant c times the argument raised to the specified power n.

We now define a conjunction O such that the expression g O (lim,c,n) yields a
tautology if g is indeed asymptotic to zero for the specified parameter values:

O=: 2 : "<&({. y.) +. 1@x. <: (l&{ y.)&*@("&({: yv.))"
t=:(S-S2) 0 50 4 2
t

<&50 +. [Q@(S - S2) <: 4&*Q@("&_2)
t 012345 100
1111110
The approximation to the harmonic numbers given in GKP9.28 is, as stated, of order 1/n®
H=: +/Q@%@>:@1i."0
HA=: (~. + 0.5772156649" + +/@("& 1 2 4 % 2 12 120" ))"0
(H, HA , |@(H-HA) ,: "& 6) 1+i. 6
1

1.5 1.83333 2.08333  2.28333 2.45
1.00222  1.50005 1.83334 2.08333  2.28333 2.45
0.002215665 5.03455¢_5  4.9083e_6 9.11437e_7 2.4400le_7 8.26877¢_8
1 0.015625 0.001371742 0.0002441406 6.4e_5 2.14335¢_5
(H-HA) 01 1 6 1.20 The conjunction O could be mistaken for a zero
1111111111111 1111111
(H-HA) 0 1 1 8 1.20 The approximation is not of order 8
1111111111111 1110000
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In dealing with asymptotics we must, as remarked by GKP, “THINK BIG, when
imagining a variable that approaches infinity”. Consequently, there are few common
asymptotic approximations that can be used to illustrate the conjunction 0 defined here, at
least when run on an underlying computer system that limits the precision to about
sixteen decimal digits. However, the functions that it generates give an alternative view
of the definition of the O notation; in particular, one that brings together (in a difference
function) the two functions concerned. This helps to make clear the question of which of
the several functions denoted by Sn the function in GKP9.1 approximates to order 1/n? :

S=: +/Q@(Ei ! 3&*)"0

Sl=: (2: * ] ! 3&*)"0

S2=: ((2: - 4: % 1) * 1 ! 3&*)"0

(S-S2) O 50 4 2

<&50 +. [Q@(S - S2) <: 4&*Q@("&_2)

Experimentation with further expressions in this chapter will require first translating them
into J. Such translation can be simplified by recognizing the occurrence of polynomials
(commonly in the reciprocal of the argument n). For example, the approximation HA
defined above may be written as csha, where:

ha=: ~.Q@] + [ p. %Q]

c=: 0.5772156649 1r2 1rl2 1rl20

(c&ha ,. HA) i.6
0 1.03367e308

1.00222 1.00222
1.50057 1.50005
1.83354 1.83334
2.08343 2.08333
2.28339 2.28333

Similarly, the right limb of GKP9.29 (excluding the term in O) may be defined as
follows:

d=: 1 1rl2 1r288 139r51840
GKP9 29=: (%:@(2pl&*@]) * S&lx1@] ~ 1) * [ p. %@Q]

(! ,. d&GKP9 29 ,. ! - d&GKP9 29) i. 8
1 0 1
1 0.9997111 0.0002889268
2 1.99999 1.45163e 5
6 6 1.4362e_6
24 24 3.47278e 6
120 120 1.40573e 5
720 720 5.4538le 5
5040 5040 0.0002442346

The phrase %@] that defines the argument to the polynomial of GKP9.29 may also be
expressed as the power ~& 1@1, and other powers of the argument may also be required.
For example, the approximation to 1/n?+2 (page 444 of GKP) requires the reciprocal
square:

le=: 0, 2%i.4
01 24 8

F444=: [ p. "& 2@]

G=: %@(0 1 1l&p.) 1/n?+2 as a polynomial

(G, .e&F444) 1.8

0.5 5
0.1666667 0.15625
0.08333333 0.0906874

0.05 0.05554199
0.03333333 0.03703552
0.02380952 0.02631554
0.01785714 0.01960779
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