Classification theory for abstract elementary classes

Rami Grossberg

ABSTRACT. In this paper some of the basics of classification theory for abstract
elementary classes are discussed. Instead of working with types which are sets
of formulas (in the first-order case) we deal instead V@tlois typesvhich are
essentially orbits of automorphism groups acting on the structure.

Some of the most basic results in classification theory for non elementary
classes are presented. The motivating point of view is Shelah’s categoricity con-
jecture forLy, ..

While only very basic theorems are proved, an effort is made to present
number of different technologies: Flavors of weak diamond, models of weak set
theories, and commutative diagrams. We focus in issues involving existence of
Galois types, extensions of types dBdlois-stability

Introduction

In recent years the view thatability theoryhas wider applicability than the
originally limited context (i.e. first-order stable theories) is getting increasing
recognition among model theorists. The current interest in simple (first-order) the-
ories and beyond signifies a shift in the opinion of many that similar tools and
concepts to those of basic stability theory can be developed and are relevant in a
wider context. Much of Shelah’s effort in model theory in the last 18-19 years is
directed toward development offassification theory for non elementary classes
feel that the study oflassification theory for non elementary classgl not only
provide us with a better understanding of classical stability (and simplicity) theory
but also will develop new tools and concepts that will be useful in projecting new
light on classical problems of “main stream” mathematics.

The purpose of this article is to present some of the basics of classification
theory for non elementary classes. For several reasons | will concentrate in what
| consider to be the most important and challenging framewabstract Elemen-
tary Classeshowever this is not the only important framework for such a classifi-
cation theory.
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I made an effort to keep most technical details to a minimum, while still having
some deep ideas of the subject explained and part of the overall picture described.
In the last section | discuss direction for future developments and some open prob-
lems.

An interested reader can find more details in Chapter 1&of.[

| thank Oleg Belegradek for an interesting discussion and suggesting several
examples, Andrs Villaveces for his comments and Monica VanDieren for com-
ments on a preliminary version.

1. definitions and examples

DEeFINITION 1.1. Let K be a class of structures all of the same similarity type
L(K). K is anElementary clas# there exists a first-ordef” in L(K) such that
K = Mod(T).

There arevery manynatural classes that are not elementary:

Archimedean ordered fields,

locally-finite groups,

well-ordered sets,

Noetherian rings and

the class of algebraically closed fields with infinite transcendence degree.
Extensions of predicate calculus permit a model-theoretic treatment of the

above:

1. The basic infinitary languagest,,, . € Ly+ ., € Ly+ , andL . The
earliest work on infinitary logic was publlshed in 1931 by Ernst Zermelo
[Z].

Later pioneering work was done by: Novikoff (1939, 1943), Bochvar
(1940) (Bo]) and from the late forties to the sixties the main contributors
were: Tarski, Hanf, Erdls, Henkin, Chang, Scott, Karp, Lopez-Escobar,
Morley, Makkai, Kueker and Keisler.

Recall

DEFINITION 1.2.

e L., . contains all the first-order formulas in the languageand is
closed under propositional connectives, first-order quantification and
the rule:

If {on(x) | n <w} C L, o then

\/ on(x) € Ly, 0, {(x)<w.

n<w

If {va(x) | @ <A} C Ly, then

\/ @Oz EL)ﬁ'w

a<
o If {va(x) | a <A} C Lyt , with{(x) < pthen
\/ goa E L)\-o—

a<A
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and for every sequence of variables; | 5 < a < )

QroQu1--- Qg (w5 | B <)) € Ly,

for Q € {V,3}.
e For a limit cardinal y:

Lyu = Ly -
A<X
e L., isthe proper class obtained by lettingzary over all cardinals.
l.e.itis

Loow:= |J Ly,
reCard

Basic references: Fak,,, ., see H. J. Keisler{e2] and for L+ , see
M. A. Dickmann'’s Di] books.

2. Cardinality quantifiers:Andrzej Mostowski in 1957 (se@&fos]) introduced
several cardinality quantifiers. The most popular among them was studied
extensively in the sixties by Gerhard Fuhrké&nf] and Jerry Keislere1l].

It is the X;-interpretation:L(Q) and extensions lik&,,, .,(Q) where

M E Qxp(z) <= {a€|M| : M [ ¢la]} isuncountable.

3. Other second order quantifierdleasure-theoretic quantifiers, and topolog-
ical logics. Barwise, Makkai, Kaufmann, Flum, Ebbinghaus and Ziegler.
4. Other logics:Monadic logics. Rabin, Gurevich,iBhi, Shelah.

There are many more logics, see the volume edited by Jon Barwise and Solomon
Feferman BaF¢.

There is a particularly rich model theory fé(Q). In the last 20 years, this
theory took on a set-theoretic flavor, see: Fuhrikeur], Keisler [Kel], [Sh 83,
[Gr2] and [HLSh]. For an overview of some of this | recommend Wilfrid Hodges’s
book Ho1].

A common feature of all the above extensions of first order logic is the failure
of the compactness theorem.

An ordered fieldF, +, -, <) is archimedean iff

(Fy 4, <) ):Vx[m>0—> \/[x—l—...—l—xz 1]].
n<w n-times
A group@ is periodic iff
GEvr\/[2"=1].

n<w

DEFINITION 1.3. Let M and N both beL-structures. Suppose that C | M|,
and B C |N|. Afunctionf : A — Bis called apartial isomorphisniff it is a
bijection and for every relation symb&l(x) and everya € A we have that
ac RM « f(a) € R", for every function symbdl(x) we have that
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f(FM(a)) = FN(f(a)) and for every constant symbeif ¢ € Dom(f) then
F(eM) =N,

A family F of partial isomorphisms fromd/ into N has theback and forth
propertyiff
(forward) for everya € | M| and everyy € F there existg, € F such thaty C h
anda € Dom(h) and
(back) for evenyh € |N| for everyg € F there existd € F such thaty C h and
b € Rang(h).

Denote this byF : M =P N . We writeM =P N for “there exists a non empty
F such thatF : M =P N”.

At first glance the following special case of a theorem of Carol Karp may look
a bit surprising:

FACT 1.4 (Karp's test).Let M and N be L-structures.
M=N <= M=y, N.

Shelah’s plenary talk at the International Congress of Mathematicians in Berke-
ley in 1986 (see$h 299 and [Sh tapd) was dedicated to classification theory for
non elementary classes and in particular universal classes.

There are several frameworks for classification theory for non elementary classes.
With the exception of the last item they are listed in (more or less) increasing level
of generality:

¢ Homogeneous model theqithis was formerly calledrinite diagrams sta-
ble in powe}. In this context we have a fixed (sequentially) homogeneous
monster modeM and limit the study to elementary submodelshdfand
its subsets. The subject was started by Shelah in 1970 &4t§ gnd con-
tinued by him with Bh54. In the last 10-15 years the subject was revived
in several publications. Se&f3], [Gr4d],[HySh1], [HySh2], [GrLel],
[GrLe3], [Lel], [LeZ2], [BuLe], [Be] and [Kov1].

e Submodels of a given structur@his is a generalization of homogeneous
model theory. Start with a given mod®I (not necessarily homogenegus
and limit the study to submodels B and its subsets. Started in Grossberg
[Gr3], [Gr4]. Further progress is irdrLe2].

e Excellent classesAn excellent class consists of the atomic models of a first-
order countable theory which satisfy a very strong amalgamation property:
The (X, n)-goodness for every < w. Shelah introduced them i8h874,
[Sh87H as atool to analyz®&lod(y) wheny € L, ., under the model the-
oretic assumption that(X,,, ) < 2% holds for every positive integer.
Later in [Sh d Shelah used excellent classes at a crucial point in his proof of
the main gap for first-order theorig®}y, n)-goodness is renamed il d,
page 616 ag,,n)-existence property. In section 5 of chapter XIl She-
lah essentially show that for countable and superst@bhgthout the dop,
notop is equivalent to th@y, 2)-existence property which using his resolu-
tion technique from$h87H implies excellence. Lately KolesnikoKpv2]
announced an-dimensional analysis to get new results for simple unstable



CLASSIFICATION THEORY FOR ABSTRACT ELEMENTARY CLASSES 5

theories. Grossberg and Hart iGfHa] developed orthogonality calculus

to the level that permitted deriving the main gap for excellent classes. This
was the first time that a main gap was proved for non elementary classes.
Universal classesThe prototypical example ilod () wheny is anL,,, .,
sentence of the forrd\ , _, ¥, where they,, arell,-first-order sentences.
This work began in$h 30Q. Shelah is currently writing a bookSh h|

that, among other things, will include a “main gap”-style of theorem for
universal classes.

Abstract elementary classeSee Definition 1.5 below. This is in my opin-

ion the deepest direction. It is the focal point of this article. Already in
the fifties model theorists studied non elementary classes of structures (e.g.
Jonsson Jo1l], [Jo2] and Fra’isé [Fre]). In [Sh8Y, Shelah introduced

the framework of abstract elementary classes and embarked on the ambi-
tious program of developing @assification theoryor abstract elementary
classes. This work was continued in many publications of Shelah (totaling
more than 700 pages) and members of his school.

Primal framework This is a generalization of abstract elementary classes
obtained by relaxing the chain axioms (A4 from Definition 1.5 below). See
Baldwin and Shelah’s papeB$1], [BSZ, [BSJ and [Gr5].

Classification theory over a predicat&nlike the other frameworks this is
really an extension of first-order model theory, when the notion of isomor-
phism is replaced by a stronger one. While in my opinion this framework
does not precisely fit into what | call classification theory for non elemen-
tary classes, many of the methods are common. The fact that many years
ago Shelah announced a solution for the main gap in this context, while
for AECs such a theorem is not even on the horizon, indicates to me that
this framework is much easier. | suggest to the reader to start with Wil-
frid Hodges's survey articleHo2]. Pillay and Shelah’s articleéqiSh] is the
beginning. Further work include$h 234 and [Sh 323. Shelah has writ-

ten several hundreds of (unpublished) pages that continue this up to a Main
gap. This work is not available to me. | suggest that interested people will
contact Shelah directly.

The focus of this article is the framework albstract elementary classeEhis
framework, in my opinion, has the best balance of generality, a rich and sophisti-
cated theory. The context of AECs is much more general than that of homogeneous
model theory, model theory fak,, ., or even the framework of submodels of a
given structure.

DEeFINITION 1.5. Let K be a class of structures all in the same similarity type
L(K), and let<x be a partial order onC. The ordered paifC, <) is anabstract
elementary class, AEC for shoft

A0 (Closure under isomorphism)

(a) For everyM € K and everyL(K)-structure N if M = N then
N e K.
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(b) LetNy, Ny € K and My, M € K such that there exisfy : N; = M,
(for 1 = 1, 2) satisfyingf; C fo thenN; < No implies thatM; <«
M.
Al ForallM,N € Kif M <x N thenM C N.
A2 LetM, N, M* be L(K)-structures. IfAM C N, M <x M*andN <x M*
thenM <x N.
A3 (Downward bwenheim-Skolem) There exists a cardinal
LS(K) > Ng + | L(K)| such that for every
M € K and for everyA C |M]| there existsN € K such thatNV <
M, |[N| 2 Aand||N| < |A| + LS(K).
A4 (Tarski-Vaught Chain)
(a) For every regular cardinal: and every
N e Kif {M; <¢x N : i < p} C Kis <g-increasing (i.e.
i <j= M; <x M;) thenUKuMi ek andUKM M; <x N.
(b) For every regulan, if {M; : i < pu} C K is <g-increasing then
Ui<“ M; € Kand My < Ui<u M;.

REMARK 1.6. | invite the reader to verify the following important basic ob-
servation: GivenM, N1, No € K such thatV; <x Ns and f : Ny = M then
there areN € K andg : No = N such thatM < N andg extendsf.

ExAMPLE 1.7 (elementary classes)etT be afirst-order theory)C = Mod(7')
and < the usual notion of elementary submodel. TkiEn<y) is an AEC with
LS(K) = | L(T)| + Ro.

ExAMPLE 1.8 (;-saturated models of a f.o0. theoryf)etT be a complete count-
able superstable and noYy-stable,<x be the elementary submodel relation and
LS(K) = 2%, K :={M =T : M isR;-saturated. By Theorem 11.3.12 of
[Sh d K is closed under unions (recall that superstability implig€d”) = X).

Recall (Keisler Ke2]): for v € L,, . a subsetL 4 of L, ., is afragment
containingv iff ¢» € Ly, L4 is closed under: Taking subformulas, first-order
connectives and quantifiers.

DEFINITION 1.9. Let M and N be L-structures. Supposk, is anL-fragment.
M Cry,p, N iff
1. M C N and
2. for everya € | M| and everyp(y;x) € L4 if N = Jyp(y;a) then there
existsh € | M| such thatV = ¢[b; a.
WhenL 4 consists of only the first-order formulas from the language of the struc-
ture we omit it.

It is the contents of the Tarski-Vaught test thidtis an elementary submodel
of N iff M Cry N.

ExampLE 1.10 L., ). Lety € L, ., be a sentence in a countable language
and suppose that 4 C L,,, ., is a countable fragment containing Take<x to
be defined by <x N <= M Cry,, N.
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Let £ := Mod(7T). Clearly (I, <x) is an abstract elementary class with
LS(K) = No.

EXAMPLE 1.11 Ly, »(Q)). T C L, »(Q) be a countable theory in a count-
able language and suppose thag C L., .,(Q) is a countable fragment contain-
ingT'. (K, <) is an abstract elementary class, whién= Mod(T") andM <x N
iff M gTV,LA N

1. ifa e |M|and M = Qzy(x;a) then there exists € |[N| — | M| such that

N = ¢[b; a] and

2. ifae |M|andM = —-Quzy(x;a) thenp(M;a) = p(N;a).

In fact AECs are more general thén, .,(Q).

The contents of the following Theorem is that in the Chain Axiom$)(it is
possible to replace the regular cardipdby an arbitrary directed set.

THEOREM1.12 (Theorem 21.4 ofgra]). Let(K, <x) be an AEC andM; :
s € I) be a directed system. Thef_; M, € K. Moreover
(@) If My <x N foreverys € I, thenJ,.; Ms <k N.
(b) My <x U, My, for everys € 1.

PROOF Show directly for finite and countable For uncountablé by induc-
tion on|I| using the following:

FACT 1.13. For every!l uncountable directed set. There exifls | o < |I|}
increasing such that each, is a directed subset df of cardinality |«| + Y and

I = Ua<|]\ Ia.
O
An early version of 1.12 can be found in Tsurane Iwamura’s paper from 1944

([w]).

NOTATION 1.14. Denote byK . the class{M € K : ||M|| < A} and by/Cy
the class{M € K : ||M|| = A}. I(A, K) is the cardinality of<Cy / =.

Some examples from “main stream mathematics”:
EXAMPLE 1.15 (Normed fields) Let
K :={(F,+,-,]]) | F is an algebraically closed fiel¢

(F1, 4, 1) <k (F2, +,+ | [2) <= F1 < F, (Va € F1)lal1 = |al]
and the value groups are the equal.

ExamMPLE 1.16 (Local fields).Let (F, +, -, | |) be a non archimedean normed
field (i.e.|a + b| < Max{]al, |b|} for all a,b € F). Itis well known that[Casg)
R:={a€F : |a| <1g}isasubringoffandl :={a € F : |a| < 1g}isa
maximal ideal ofR. The fieldR/I is called theresidue field off". A field islocal
iff its residue field is finite.

TheclassC := {(F,+,-,| |) : Fislocal}isan AECwherFy,+,-,||1) <k
(F2,+,-,| |2) is as in the previous example. Another relatibnis defined by
dropping the requirement of equal value groups.
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ExAMPLE 1.17 (Noetherian rings)Define R <x S iff R is a subring ofS
andR =, S. Notice that by Karp’s test wheR is Noetherian then als§'is.

ExampLE 1.18 (Rings of finite dimension)Let IC be a class of rings. Define
R < Siff Risasubring ofS and ifI C J are ideals ofR and I’ C J' are ideals
of S such that

1. I'NnR=1,

2. JNR=Jand

3. there is no ideal oR strictly betweerl and J

then there is no ideal of strictly between” and.J’.

ExAamMPLE 1.19 (coordinate rings)Let F' be a finite field or the rationals. Sup-
posep € Flz1,...,x,] is such thatfa € F" | p(a) = 0} is an irreducible va-
riety. For an algebraically closed fiel& > F' let K, be the coordinate ring of
{a € K™ | p(a) = 0}. The following is an AEC:

K, = {K, | K is an algebraically closed field extenditg}.
The relation< is the subring relation.
Recently motivated by a problem in transcendental number theory, Boris Zilber

discovered the following most interesting example:

1.1. Zilber's Schanuel structures.

Some of the most intractable problems of number theory involve trascendental
numbers. E.g. itis conjectured but unknown that the nuraher is trascendental.
Schanuel’s conjecture (see 1.20 below) is a far reaching conjecture that implies the
above (using the identity'™ = —1) and several other (very difficult) conjectures.

Let

Ke = {<F, +,-,exp) | Fis an algebraically closed field of characteristic zero
VaVylexp(z +y) = exp(x) - exp(y)]}
Kpeap = {(F,+,-, exp) € K, | ker(exp) = 7Z}
Zilber introduced the following class:
Keap := {(F,+,",exp) € Kpeap | Satisfying EC, CC and SCH

EC is the essentially the requirement that the class is existentially closed.
CC stands focountable closure propertyevery analytic subset df"* of dimen-
sion0 is essentially countable.

SCH stands for

CONJECTUREL.20 (Schanuel)For everyxy,... ,x, € F if {z1,...,z,}
are linearly independent ovép then

tr.degp/o{T1, .- s Tn,exp(T1), ... ,exp(wy)} > n.
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For M, N € K.y the relationM <., NV is defined as\/ C N and

tr.degn /i1, - - T} = tr.degngirt, - .., Tn}
for everyn < w and for everyry, ... ,z, € M.

Zilber noticed that e, <k.,,) IS axiomatizable by a sentence bf, .,(Q)
when the similarity type is that df(/C..).
Zilber managed to show using Fraé&s type of construction:

FAacT 1.21 (Zilber). K., is categorical ink;

Using difficult field arithmetic (using the theories of fractional ideals in number
fields as well as Weil divisors and the normalization theorem) Zilber managed to
prove the following:

FACT 1.22 (Zilber EZil]). Given algebraically closed fields,, ... , L, C C
and elements,, ... ,a, € C* the multiplicative group of the field

@(Ll,... ,Ln,al,... ,an)
can be presented as
A-T- le LY

n?

whereA is a free abelian is the torsion subgroup (when= 0).

Recently Zilber observed that the model-theoretic contents of Fact 1.22 is that
Kezp is an excellent class (in the sense of SheBid7). Recall that an AEGC
is excellent ifCy, satisfies a strong amalgamation property.

Using two results of Shelah that were discovered in the late seventies (in
the course of setting the fundations for classification theory for non elementary
classes}.

FacT 1.23 (Shelah$h87l). An excellent class has arbitrarly large models.

FacT 1.24 (Shelah$h87H). Let K be excellent. IfC is categorical in an
uncountable cardinal theft is categorical in every uncountable cardinal.

Combining the last two together with Fact 1.22 Zilber concluded

COROLLARY 1.25 (Zilber). K., has a unique object of cardinalig*c. Thus
in order to prove Schanuel’s conjecture it suffices to show that the funetiofx)
defined orC (obtained from the categorical structure) is inde€d

Zilber also noticed that the structures /6f,,, are not sequentially homoge-
neous, thus this class does not fit into the framewotkarhogenous model theory
(previously known aginite diagrams stable in powgrThus it is a more “mathe-
matical” example than Marcus’s example of a categorical class that is not homo-
geneous fromNla]. This is also the first example known to me for a categorical
AEC very different from the previous ones.

| think that it is astonishing that model theoretic work that in the past was
viewed by many to be detached from the main body of mathematics which de-
pends heavily on methods of combinatorial set theory can have connections with

LAt first Zilber rediscovered ini2] a special case of Shelah’s 1.24.
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"concrete” mathematics, especially transcedental number theory. | am confident
that in the future many other concrete examples will be found.

2. what is the purpose of this?

Develop a classification theory for non elementary classe&’ fer Mod(7T')
whenT is a completel,,, .-theory (or maybe some other non first-order theory).
We try to imitate the rich and productive theory for elementary classes.

Eventually this will have applications in “mainstream” mathematics.

What is classification theory?

We want to be able to answer every question atlout ==.

Basic test questions:

1. Given\ > LS(K)is Ky # 0?

2. Doesky # 0 imply K+ # 0?

3. DoesI(A1,K) = 1 imply thatI(\, K) = 1?

4. What are the possible functions— I(\, K)?

5. Under what condition oit is it possible to find a nice dependence relation
on subsets of every/ € £?

In pure model theory the Conjecture (sed_p]) was a major driving force:

CONJECTUREZ2.1 (Las conjecture 1954 and Morley 19659)et 7' be a first-
order theory. If there exists > |T'| + X such that/(\,T) = 1 thenI(p,T) =1
holds for every, > |T'| 4+ N,.

In 1965 Morley Mo1] confirmed the conjecture for theories in a countable lan-
guage. For his proof Morley discovered the notions of Morley rank, prime model
over a set and implicitly strongly minimal formulas. Important progress was made
earlier by Ehrenfeucht and Mostowski as well as by Vaught. At the end of his
article [Mo1] Morley raised the question whether his categoricity theorem holds
for theories in uncountable languages. Several people recognized it as an impor-
tant problem. Fredrick RowbottonRp] and J. P. Ressayr&kf] made important
progress toward a complete solution. In 1970, in addition to building on earlier
work, Shelah invented superstable theories, weakly minimal formulas and local
rank to prove the conjecture for all first-order theories.

There is a need for good test-questions to measure progress in classification
theory for non-elementary classes. Around 1977 Shelah proposed a conjecture that
would serve as a benchmark for progress of the theory and may serve as a guide
for future developments:

CONJECTUREZ2.2 (Shelah’s conjecture).etT be a countable theory if,, ..
If there exists\ > 3, such that/(\,7') = 1 thenI(u,T) = 1 holds for every
= D

There is a similar conjecture for AEC generalizing the above conjecture. See
Conjecture 3.6 in the next section.

Based on experience with the first-order version it is likely that any attempt to
prove 2.2 will produce a rich and powerful machinery. Indeed the partial results
obtained so far indicate that this is the case.
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A word about examples: Essentially all known examples for categorical classes
are derived from first-order ones.

Generic examplelet T be a countable first-order theory categoricakin
SupposeéV! = T of cardinalityX;, pick a countabled subset of M |.
Let L' := L(T) U {P} whenP is a new unary predicate.

YA = /\T/\Vx[P(a:) — \/ xr = al

a€A

By the proof of Morley’s theoremy; -categoricity ofI’ implies that also
Th({M,a).ca) is categorical in every > X;. This is an example of an
L, «,-theory categorical in all uncountable cardinals.

The only exceptions are the example of coordinate rings (Example 1.19) which
is categorical in every uncountable cardinal, Marcus’s example and Ziber's Shanuel
structures.

| think it is too early at this stage of the theory to formulate a Zilber-like con-
jecture of the nature of all categorical AECs or even the categadrigal -theories,
but perhaps there is a classifcation of the classes categorical classes above the Hanf
number.

Conjecture 2.2 is very open. There are more than 500 published pages dedi-
cated for partial results. Among them are:

1. Keisler (1971), using a two cardinal theorem that improves Vaught's the-
orem, has shown that under the additional assumption of the existence of
sequentially homogeneous model the conjecture is true. Unfortunately,
Shelah observed that using a construction of Leo Marbes| [ Keisler's
additional assumption does not follow from categoricity. Thus Keisler’'s
strategy, while being very elegant, is a dead end.

2. Shelah (1978) in§h874d and [Sh87H building on [Sh4§ proved a form
of the conjecture under the additional assumptiod (0%,1,7") < 2Rn+1
for everyn < w. Such a class of structures is called excellent class
Grossberg and Har@rHa] proved the main gap for excellent classes.

3. Lessmann {[e1]) proved the conjecture for countable finite diagrams, us-
ing a Baldwin-Lachlan style argument by introducing the necessary prege-
ometries via a new rank function.

4. Makkai and Shelah [Sh285] proved a downward version of the conjecture
under the additional assumption that bothand ;. are above a strongly
compact cardinal, andl = x . It is a major open problem ofh 703 to
get rid of the assumption that is a successor. There are nicely behaved
forking and orthogonality calculi for this.

5. Kolman-ShelahKoSh] and Shelah$h473 contain partial going down re-
sults for\ above a measurable cardinal with the additional assumptions that
K has the amalgamation property akis a successor cardinal.

6. [Sh 394 deals with classes that satisfy the amalgamation property. Sev-
eral important concepts are introduced and a downward categoricity is con-
cluded without using a large cardinal assumption a&ogh].
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7. In [ShVi] Shelah and Andrs Villaveces embarked on an even more am-
bitious program: Deal with the categoricity conjecture for classes with
slightly weaker model and set-theoretic assumptions. Namely, they assume
GCH and work with classes that have no maximal models (this is a weaken-
ing of the amalgamation property). Recently more progress on this direction
was made by Monica VanDiereNd].

8. Inspired by a question of mine, whether it is possible to generalize the re-
sults of [Sh4§ and [Sh8§ for uncountable cardinals (or fd?C; classes for
uncountables). E.g. generalize3h4§ from R, to arbitrary)\. the problem
is that both in h4§ and [Sh8§ the assumption that the categoricity is the
successor ok was used heavily in a form of applying a weak compactness
phenomenon (in the form of undefinability of a well orderingfip, ). |
suspected that this attempt must produce new model-theoretic machinery.
It turns out that | was right. In several massive papers Shelah answered
that question and more. This appearsSh 574 (125 pages),$h 60Q (82
pages), and3h 603 (20 pages). In particular he has shown (under weak
GCH and no large cardinals) thatkf is categorical in botth and\™ then
I()\++,K:) < 2)‘++ — ,C/\+++ 75 0.

9. Depending heavily orgh 574 Shelah in Bh 703 is developing the analog
theory of excellent classes (fror8fi871) for AECs. The current draft of
the paper has more than 120 pages in it.

In 1986 | proposed

CoNJECTUREZ2.3 (Intermediate t® conjectures)Lety € L, .,

1. If ¢ is categorical in some > J,,, thenMod(¢)) has the amalgamation
property in every:, > 3, .

2. If Mod(¢)) has the amalgamation property for all> 3, , thent categor-
ical in some\ > 3, implies thaty categorical iny for everyy > 3, .

In section 6 it will be shown that the amalgamation property permits a nice
theory of types.

In [KoSh] Oren Kolman and Shelah derive the amalgamation property from
the assumption that is categorical above a measurable cardinal. Lately Shelah
and Villaveces in $hVi] have shown that ifC has no maximal models (i.e. every
M € K has a proper -extension inC) the weak GCH implies that every model
can be extended to an amalgamation base.

[Sh 394 is dedicated to progress toward #2. It contains a proof of a downward
version of the categoricity conjecture under the assumption that the class has the
amalgamation property.

WHY?

What could be the benefits of such a theory? Looking at the first-order exam-
ple the notions of independence, several model-theoretic rank functions, forking,
orthogonality calculus, regular types, pre-weight, prime models etc. all have found
concrete applications in algebra, generalizing Krull's dimension theory from com-
mutative algebra.

1. Clarify the above notions:
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“Studying only the model theory of first-order logic would be
analogous to the study of real analysis never knowing of any but
the polynomial functions; core concepts like continuity, differ-
entiability, analyticity, and their relations would remain at best
vaguely perceived. Itis only the study of more general functions
that one sees the importance of these notions, and their different
roles, even for the simple caseJon Barwise, page 15-16 of
[BaFd.
2. Itis beautiful and difficult mathematics.
3. Effecton model theory for first-order theories. Alrea8874d and [Sh874
had a profound effect on the proof of main gap for first-order theories. Es-
pecially good sets and stable systems. See the last 5 sections of Chapter
Xl in [ Sh d and what Shelah named the book’s main theorem-Theorem
XI11.6.1. | expect that a similan-dimensional analysis will be used to better
our understanding of simple unstable first-order theories. Also classification
theory over a predicate benefited much from this.
4. Many interesting concepts of classical mathematics are not first-order
(Archimedean, Noetherian and any chain conditions. etc).
5. Potential applications in classification theory of finite models. See Baldwin
and LessmanrHale] and Lessmannfe3].

3. basic facts
The following is the notion of pseudo-elementary (or projective) class.

DeFINITION 3.1. LetL; O L and letTy be afirst-order theory irl.;, suppose
thatI' is a set ofl -types without parameters. We denote by

PC(Th,I',L)={M | L : M = T; and M omits all types froni" }.

DEFINITION 3.2. A classK of structures is called & C-classif there exists an
expansionL; of L(K), a first-order theoryl} in L; and a set off} -typesI” such
that C = PC(T3,T', L(K)). When|T1| + |I'| + Xy = p we say that the class is
PC,.

In the special case whely, = L(K) we write EC(T,T) for PC(T,T", L(K))
and say that the clask is anEC-class.

THEOREM3.3 (C.C. Chang 1968)lf T'is a theory inL .+ , of cardinality
< pthenMod(T') isPC,,.

Similarly to Birkhoff’s presentation theorem for varieties/equational classes,
there is a syntactic presentation theorem which generalizes Theorem 3.3:

THEOREM 3.4 (Shelah’s presentation theorem).
If (K, <x) is an AEC, then there exists < 29(%) such thatk is a PC,, class.
AlsoL=x := {(N,M) | M <x N}is aPC, class, forL(KX~r) consisting of a
single unary predicate symbol.

A proof uses Theorem 1.12, details can be found&ingg or in Chapter 13 of
[Gr].
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Using Morley’s result on the bound on computing Hanf numbers this imme-
diately gives a corollary that is surprising and difficult to prove directly from the
definitions, but is a trivial consequence of Shelah’s presentation theorem.

COROLLARY 3.5. Let(K, <x) be an AEC. IfC, # () for some\ > :(22LS(IC)
thenC,, # () holds for ally > LS(K).

)-‘r

A generalization of Conjecture 2.2 to AECs appearsSih 703:

CONJECTURE3.6 (Shelah’s conjecture for AEC)Let K be an AEC. If there
existsA > 3(2L5<;@)+ such that/(\, ) = 1 thenI(u, ) = 1 holds for every
1= Jiarsey-

Now we introduce the appropriate generalization of elementary embedding.

DEFINITION 3.7. For M, N € K a monomorphisnf : M — N is called a

K-embeddingff f[M] <x N. Denote this by writingf : M & N. When the
identity ofC is clear it is omitted and we writé : M — N.

DEFINITION 3.8. Let (K, <) be an AEC, and lef,,x > A > LK) be
cardinals.

1. We say that a modéll € K, is a (u, k)-amalgamation basé for every
My e Ke, My € Kyand fy: M & M, for ¢ = 1,2, there existsV € K so

that there arey; : M, & N andg, : My & N satisfyinggi o f1 = go20 fo.
Namely, the following diagram is commutative:

M, - N

e

M T My
N is called anamalganof M, M, Ms, f1, fo.
Whenx = p = A\ we say thatV/ is anamalgamation base
2. M € Ky is an(< u, < k)-amalgamation baséf for every\ < p; < u,

A<k <K M €Ky, My e Kyyandfp: M cﬁ M, for ¢ = 1,2, there
exists an amalgamV of M, N1, Ns, f1 and fs.

3. K satisfies thg \, i, x)-amalgamation propertiff every M € K, is an
(1, k)-amalgamation base.

4. K satisfies the\-amalgamation propertyf every M € K, is an amalga-
mation base.

It is a corollary of the Robinson consistency theorem that i Mod(T") for
some complete first-order theory th&hhas the\-amalgamation property for all
A >N+ |L(T).

K has the JEP iff for everyt,, My € K, there areV € K andK-embeddings

fo:i M, &N,
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REMARK 3.9. Note that for first-order theories an even stronger amalgama-
tion property holds. Every model is an amalgamation base for arbitrarily large
models. l.e. remove the requirements that the mallglsave the same cardinal-
ity as M. The stronger amalgamation property is usedVa], but we will work
here with that from the previous definition (when both extensions are of the same
cardinality as the base.)

Already in 1956 B. nsson studied abstract elementary classes with the amal-
gamation and JEP properties. This influenced Morley and Vaught to introduce
saturated modelsNfoV]). Shelah was the first irgh8§ to consider AEC in the
context ofclassification theory Implicitly indicating that the methods of stabil-
ity/classification theory are not limited to elementary classes only and potentially
have a broader applicability than first order.

In the proof of Morley’s categoricity theorem (as well as in Shelah’s general-
ization to uncountable theories) saturated models play a central role. At first one
shows that saturated models exists (at least at the categoricity caxflarad using
the uniqueness of them it suffices to show that having an uncountable non-saturated
model implies the existence of a non-saturated modg] aontradicting categoric-
ity. Non elementary classes in their very nature are connected to omitting types, so
working with saturated models is not reasonable.

It turns out thamodel homogeneitg a good replacement for saturation. In that
it generalizes saturation (for elementary classes) and we have the analog existence
and uniqueness theorems.

DEFINITION 3.10. Let K be an AEC.

1. LetA > LS(K). We say thail/ is \-model homogeneouf for all N <x
N’ € K.y such thatN <y M there existsf : N’ &M such thatf |
|N| = id)n.-

2. M is said to bemodel homogeneouff M is || M ||-model homogeneous.

It is an exercise (using the compactness theorem) to show:

PROPOSITION3.11. Let K be an elementary class. Far> LS(K) andM €
K.
M is saturated iffM is model homogeneous.

By imitating the argument of the proof of existence of saturated models one
can show:

THEOREM3.12 (existence)Let K is an AEC and\ > LS(K). Suppose that
22 = \*. Further assume that,+ is not empty. IfC has thex\-amalgamation
property, then there exists a model homogenedus K, +.

THEOREM 3.13 (better existence)Suppose thak’ be an AEC such thai >
LS(K) satisfieg, = p~*andK, is not empty. IfC has the(< x, 11)-amalgamation
property, then for allV € KC,, there existsVl ~x N, M € K, which is model ho-
mogeneous.
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THEOREM 3.14 (uniqueness)Let K be an AEC. Suppose thit, is categori-
cal for some\ > LS(K). If M and N are model homogeneous member&gf,
thenM = N.

There are uniqueness theorems that follow from weaker assumptions.

While model homogeneity is very nice, model homogeneous models are nat-
ural to consider only whe#C has the amalgamation property. l.e. Suppose that
K is categorical i\ and K has no maximal models. The model of cardinality
is model homogeneous i has the(< u, u)-amalgamation property for every
W< A

A substitute called y, o)-limit model was introduced injoSh] and where
used in a substantial way to obtain the amalgamation property (from categoricity
above a measurable cardinal), limit models reappeared al&€hi894 under the
assumption thaiC has the amalgamation property. Further study of limit mod-
els (without requiring the amalgamation property) is in Shelah and Villaveces in
[ShVi]. The uniqueness: Any tw(u, o)-limit models are isomorphic for different
o's was proved only lately by Monica VanDieren who has introduced and offered a
characterization of the correct notion of model homogeneity for classes not requir-
ing amalgamation in\fa]. Since most of this article deals with classes that have
the amalgamation property | will not discugs, o)-limit models here.

4. the beginning of classification theory for AEC

In his JSL list of open problems from 1975 Harvey Friedman reproduced a
question that started classification theory for non elementary classes.

QUESTION4.1 (Baldwin’s problem 1975)Does there exists a countable sim-
ilarity type and a countabld” C L(Q) (in theX; interpretation) such thai’ has
a unigue uncountable model (up to isomorphism)?

Since the Downward &wenheim Skolem theorem holds fb(Q), Baldwin’s
guestion is equivalent to “Does there exists a countable similarity type and a count-
ableT C L(Q) such thatl" is categorical inY; but does not have a model of
cardinalityN,?”

The question is important since it suggested for the first time a connection
between categoricity in a cardinal and existence of models in its successor.

A natural extension (generalizing(Q) by an AEC and more importantly re-
placing® by an arbitrary)):

QUESTION4.2. Let K be an AEC and\ > LS(K). Doescategoricityin A*
of K imply existenceof a model of cardinalitp\ ™+ ?

The following is a relatively simple example of a family of deep results that
was motivated by Baldwin’s question.

THEOREMA4.3. Suppos&* < 2. For an AECK which fails to have the
A-amalgamation property. [f(\, ) = 1 andA > LS(K) thenI(AT,K) = 22",

Section 8 of this paper is dedicated to the a proof of Theorem 4.3.
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The set-theoretic assumptian < 22" is known as theweak continuum
hypothesissince it follows from2* = A*. However instead of using cardinal
arithmetic we use a “diamond-like” combinatorial principle known as the Devlin-
Shelah’s weak diamond:

FACT 4.4 (Devlin-Shelah) If 2% < 2" then there are\™ pairwise disjoint
stationary subsets of " such that for any of these sefsthe principIeCI>§+(S)
holds, whereb3_ (S) is:

Forall F: *">2 — 2 there existy : AT — 2 so that for everyf : AT — 2 the set
{6 € S|F(f1d)=g(0)} is stationary.

For more details se®[5] or section 13.5 of Gr] or Chapter 13 of §h f].
The use of the weak diamond is essential, the statement of Theorem 4.3 is false
underM Ay, + 2% > R;:

FACT 4.5. There exists an AEGC with LS (K) = Ng such that
1. K is categorical inX,
2. Ky, # 0 and
3. The amalgamation property fails ity .
We have that
MAy, +2% >R = I(X,K) = 1.

This class is obtained by essentially considering the countable substructures of
the random bipartite graph whose left sideviand right side iss; . The categoricity
proof is similar to Baumgartner's Bau]) proof of the uniqueness af,-dense
orders.

| will conclude this section with a typical application of the weak diamond to
AEC, this is not a particular case of Theorem 4.3 but rather a different theorem.
The following theorem is a simple prototype of several more sophisticated results
(e.g. [ShVi] and [Va]). A structureM < K, is calleduniversal modeiff for every
N € K, there exists &-embedding fromV into M.

THEOREMA4.6. Suppos&* < 2. For an AECK which fails to have the
A-amalgamation property. If(A\,K) = 1 and X > LS(K) thenk,+ does not
have a universal model.

In this section, as well as in sections 5 and 8, | will use some elementary
facts about stationary sets of ordinals (all can be found in Kunen’s béok¢r
in section 1.8 of r]): Let A be an uncountable regular cardinal. A gétof
ordinals all less than is called aclosed unbounded set (cluiff)for every o < A
there exists3 € C such that3 > « and for every bounded C C we have that
JA € C. AsetS C Misstationaryiff SN C = () for every clubC' C \.

FACT 4.7. Let A be an uncountable regular cardinal. Léf be a structure of
cardinality X\ in a countable language.
1. If{M; < M |i< A} and{N; < M |i < A} are elementary chains which
are increasing and continuous such that = J,_, M; = UJ,., NV; and
| MG + || Ns|| < A, forall i < A, then the sefé < A | Ns = Ms} contains
a closed unbounded subsetof
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2. Suppose thak (M) contains a unary predicat® such thatP is the set
of ordinals less tham\. Then for every continuous increasing elementary
chain{M; < M | i < A} such thatM = J,_, M; and||M;|| < A for all
i < Athe set{§ < X\ | PMs = §} contains a club of..

Instead of using the principl@i+ directly we use another combinatorial prin-
ciple:

DEFINITION 4.8. ©,+ is said to hold if and only if for all
{fy : ne "2 wheref, : At — AT} and for every clukz’ C AT, there exists
n+#ve*2andthereexistsd € Csuchthaty [ 6 =v [ 6, f, | 6 =1, | &
andn[d] # v[d].

In [DS] Devlin and Shelah have shown th@g + follows from <I>§+ (see also
Chapter 13 of Gr]).
Now to the proof of Theorem 4.6:

PROOF By assumption, we may tak€,, N1, N2 € Ky, that can not be amal-
gamated.

Forp € A">9 define a family ofA/, € K so that the following hold:

1. (M| = M1+ €(p)),

2. v<n— M, <x My,

3. whenl(p) is a limit ordinal, M, = U, () Mpia

4. Mo andM -~ cannot be amalgamated ovef,.

Using A-categoricity and the tripl&/y, N1, N, the construction is possible.

Forn € X>2let My, := U, -+ Mya-

Now suppose that/ € ICy+ is universal. Without loss of generality we may
assume thatV/| = A*. By universality for every, € A2 there is alC-embedding
fn M, — M.

Now considerC' := {§ < AT | § = X\(1 + §)}, it contains a club. Using
O, there aren # v € * 2 andé € C as in©,+. Denote byp the largest
common initial segment of andv (itis n [ J). Sincen[d] # v[d] we assume
thatn[é] = 0 andv[é] = 1. Pick M* <x M of cardinality A containing the set
fn[MpAO] U fl/[MpAl]'

Note that the diagram

MpAO f4> M*
n
idT Tfu
M, —a M,
is commutative in contradiction to requiremerin the construction. O

The argument used in the proof of Theorem 4.6 can be used to prove the fol-
lowing useful:
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COROLLARY 4.9. Suppose* < 2*" and K is an AEC WithLS(K) < .
If I(\,K) = 1 and there existg. > X such that/(u, ) = 1 thenK has the
A-amalgamation property.

5. Solution to Baldwin’s question andkC3

Supposd’ C L(Q). GivenM |= T of cardinality®; pick ay € L, ., a Scott
sentence of a countable substructurdofNow letL 4 C L, .,(Q) be a countable
fragment containing” andi. Let K := Mod(A T A v) and letN; <x N iff
N1 Crv,1, No. Itis enough to prove:

THEOREMS5.1. SupposélC, <i) is an AEC which i®Cy,. If K is categori-
cal both in®y and®; theny, # 0.

PROOF Sincel is categorical ink; and closed under union it is enough to
show that

(x) There areNy # N; € Ky, such that
Ng <K Nj.
The following concept is central to the theory:
DEFINITION 5.2.
K3 :={(M,N,a) : M,N € Ky, M <x N,
a € |N| — |M]}.
On K3 define a partial ordering by

(M,N,a) < (M'.N',d') 2L M < M/ A

M#M AN < N ANa=d.
WhenK is categorical in\ then the assumptioki,+ # () implies thatiC3 # 0.

REMARK 5.3. In the next section we will show that the elem@it, NV, a) of
K3 plays a similar role to that ofp(a/M, N) in first-order logic.

Using () and the assumption thd(®;, ) = 1 once more, Theorem 5.1
follows from:

THEOREM5.4. Suppos€k, <) is an AEC which iPCy,. If K is categor-
ical in Ng and the pose(IC3O, <) is not empty and has a maximal element then

Iy, K) = 2%,

Why enough? If every element Iﬁio has an extension defi{¢M,, N,, a) |
a < wi} € Ky,, strictly increasing and continuous. Then the following is a
witness for(x):

U Mo < | Na, sincea ¢ | M.
a<wiy a<wi a<wi
Itis time to recall a fact from the mid sixties that was discovered independently
by Lopez-Escobar (using proof-theoretic methods) and Morley (using model-theoretic
techniques):
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FACT 5.5 (undefinability of well-ordering) Let C* be aPCy,-class such that
L(K*) contains a binary relation< and a unary predicaté’. If there exist
KC* with (P, <®) = (wy, €), then there exist® € K* such that there ifa,, €
P% | n < w} satisfying

BEap <a, foraln<w.
The main step is the following:

LEMMA 5.6 (technical lemma)Suppos€eC, <x) is an AEC which iPCy,,
and X is categorical both i}y andX;. Then for everyM € Ky, there are
{M,, € Ky, n <w} such thatforevery. < w we have thai\/,,.; <x M, and
M = ,co My.

PROOF By categoricity inX it is sufficient to show that there exists a model
M as in the statement.

LetTy,I'1, 15, T’y be at most countable such that
K = PC(T1,Tq, L(K)) and{(|N|, |M|) : M <x N} = PC(T5,T2,{P(x)}).
Since(KC, <x) is an abstract elementary class dfd, # () we can fix an<j-
increasing continuous chain of mod€gld/, € Ky, : « < wi}. Denote by
f w1 — Ky, the mappingy — M,. LetM = M,. For everya € |M]|
leth(a) := Min{{ < wq : a € |M¢|}.

By the reflection principle there exists a regular cardipaufficiently large so
that

H(X) D) {>\+, foh, M, T, 11,15, T, L(K), } and <H(X), €> reflects all
relevant information. Namely

a<wi

(H(x),€) EVa € |[M|[h(a) € w1] AVa < v € wy

(1) [f(a) € PC(T1,I'1, L(K)) A
(f(7), f(a)) € PC(Ty, T2, {P(z)})]
(2) (H(x),€) EVa<yewla<y— fla) <k f(7)]

(H(x),€) FYacwMy <a—y+1<d]] -
(3) VM € Rang(f)[M <k f(a) N M # f(a)] —
3i < a[M <k f(i)]]

(4) (H(x),€) =“(K,<x) isanAEC”

(5) (H(x),€) =“(K,<k) satisfies Theorem 1.12”

(H(x),€) EM = | fla)

©) (H(x),€) = Va € |M][a € f(h(a))]
A (Va € w)[a < h(a) — a & f(a)].
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Let

A = <H(X)7 67 ’M‘awv f7 h7 Q7 Tla TQFL f?y @, P, <>C</\,Lp€T1UT2,p€F1UF2-

Wherel'|, Ty are unary predicates interpreted by the corresponding sets of types,
similarly T; are unary predicates interpretifiy Q is a unary predicate interpreted
by the set of ordinals);, w is a unary predicate interpreted by the set of natural
numbers ang andh are unary function symbols interpreted by the corresponding
functions. ¢, ¢ andp are individual constants interpreted by the corresponding
elements. Now lep; (y) := {T1(y) Ay #q : g€ T},
p2(y) == {L2(y) Ay #q : g €T} and
p3(p) =A{Ti(p) N # ¢ : ¢ € Th},
pa(p) == {Ta(p) Np # ¢ : ¢ € Tp}, finally let
ps(d) = {AG) AJ#C = (<AL

Denote byT; the theory of2. Clearly2l € EC(T3, {p1,p2,ps3,p4,p5}) and
for all B € EC(T3, {p1,p2,ps, pa, ps}) sinceT® = T;, TF = I'; and we have
(using(x)p and(x);) that

Foralla <7 €Q® [f(a) <k f()] A [f(a) € PC(T1,T1, L(K))].

SinceB omitsps we get that® = \, namely we have thatE;B/ >= K,/ =
Since(Q*, €) has order type.™ and from the assumption onan application

of Fact 5.5 toEC(T3, {p1, p2, 3, p4, p5}) produces a model

B € EC(T3, {p1, 2, p3, p1, 5 }) such that there exisfsy,, : n < w} C Q® such

that for everyn < w we have tha8 = a,,+1 < a,. Forn < w let M, := f(ay,).

We conclude with showing that

CLAIM 5.7. There existsV € K3 such thatN =, M,.

PrROOF. Sincew C Q® and for allk < w and for everyh < w we have
B = k< g,

the setl := {3 € QT : VYn < w[B < a,]} is nonempty and directed. Since
(K, <x)® is an abstract elementary class (BYy3) we have that there exisf§ :=
User f(s). By the definition of V we have that for alh < w N <x M,. So
cleary N € (N, M,. Using the functiorh we show that the last two sets are
equal. Suppose that there existg (), , M, — |N|. By ()5 there exists a first

v € @ such thatz € f(v). Sincea € M, for everyn by minimality we get that

v < ay foralln < w. Sincef is order-preserving we get thfty) < f(aw),
namelyf(y) C M, for all n which is a contradiction to the choice of the element
a. O

SupposeM, N, a) € K, is maximal. Given anys C wi, define{M;
a < w} C Ky, as follows:
1. M3 =w(l+ a),
2. Foralimit, M5 = Uz, M§,
3. fora = 3 + 1, there are two cases:
(a) if B € S, using®y-categoricity takeM/3, | Zx M5 and

aj € |M3, | — |Mj]| sothat(Mj, M§,,,a5) = (M, N, a)
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(b) if B ¢ S, then take a descending decomposition. I. e. apply Lemma
5.6 to the modeMBS to get a descendingM,, | n < w} C Ky, such

that M§ = ,,.,, My. Now defineM 5, , to be M.
Notice that < 3 = M7 Zx Mj.
For each sef let Mg := U, ,,, MS.
CLAIM 5.8. If S; # S, mod D,,, thenM>t 2 M2,
PROOF. LetS; # Sy mod D, andf : M5 = M52 be given. By require-
ment(1) of the construction/*1| = |M*>2| = w;. Observe that
Cr={0<w : (Va<d)[f(a) <d]} isaclub
Using continuity of the chains we get that
Co:={0<wy : fl&: M =M™} isalsoaclub

TakeC := C1; N Cy. SinceC is a club we may assume without loss of generality
that there exist§ € C' N (S; — S2). Sinced € Sy by the construction we have that
(M$", M3, a3") is a maximal element o€ . Since

fla5h) & M;?,
by the assumption ¢ S5 there exists: < w such that

f(a3') & M.
Let N := f~1[M,]. SinceM(;g2 iS a proper substructure df/,, we have that
Mfl C N. Since|N| is a countable subset g/ | there existsy < w; such that
N < M:fl. SinceC N (S; — S2) is unbounded there exisise C N (S — S2)
greater thamax{d,v}. Thus we havé N, M, af") is a properky, -extension

of (Més1 , M(;ill, aésl) contradicting its maximality.
By Ulam’s theorem the claim givel(Xy, ) = 2%, O

O

6. Galois types
Recall the following basic result of elementary model theory:

FACT 6.1. Let € be an uncountable saturated model of cardinality greater
than|L(¢)|. Fora,b e |€]andA C | €| such thatA| < || €||.

tp(a/A) = tp(b/A) <= 3f € Aut4(€) such thatf(a) = b.

Namely the orbit of the element under the group action cfut4(¢) on €
can be identified withp(a/A). The set ofL(K)-formulas satisfied by does not
have the corresponding property for abstract elementary classes. Thus we need a
replacement. A replacement introduced by ShelalSim30Q and since takes a
prominent role in model theory of AECs is to work directly with orbits instead of
set of formulas! This is the notion @alois typeto be defined below. Unfortu-
nately not having formulas (in any logic) creates many technical difficulties.



CLASSIFICATION THEORY FOR ABSTRACT ELEMENTARY CLASSES 23

DEFINITION 6.2. Let M € Ky, We say thatM, N1,a;) and (M, Ny, ag) €
K3, are ~-related written

(M, Ny,a1) ~ (M, Na,az),
if there existsV € K, and K-embeddings
hi: Nt — N and hy: Ny — N,
such that
hi(a1) = ha(ag)
and the following diagram commutes:

h
Ny —>N

g

M?NQ

LEMMA 6.3. Suppose thak’, has the amalgamation property. Faf € K
the relation~ is an equivalence relation o3 .

PROOF Exercise, notice that we use that and IV, are amalgamation bases.
O

DEFINITION 6.4 (Galois types).
1. For (M, N,a) € K3, we let
ga—tp(a/M, N) = (M7 Na a)/ ~ -

This is thetype ofa over M in N.

2. ForM € K, we let
ga-S(M) = { ga-tp(a’/M,N') : (M,N',d') € K3}.

3. Givenp € ga-S(M) and N € K>, we say thap is realizedbya € N, if

there existsV’ < N of cardinality A containing| | U a such that

(M,N',a) € K3 and p= ga-tp(a/M,N’).
Assuming thafCy, has the amalgamation property, the content of Theorem 5.4
is a weak replacement of the compactness theorem:

THEOREM®6.5 (extension property of types)etXC be an AEC which i®Cy, .
Then the assumptioh(X;, K) = 1 implies that for everyl <x N € Ky, and
everyp € ga-S(M) there existsq € ga-S(NN) extendingp.

Thus the assumptions of categoricityXn together withCy, has the amalga-
mation property are a replacement of an easy fact in first-order logic which is a
corollary of the compactness theorem. This is a typical example of “compactness
regained” which appears also in much more complicated results.

DEFINITION 6.6. Let (K, <x) be an abstract elementary class and suppose
that A\ > LS(K). For N € K>, the modelV is A\-Galois saturatedf for every
M < N of cardinality less thar\ and everyp € ga-S(M) is realized inN.
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The contents of the following theorem that for AEC classes that have the amal-
gamation property, model homogeneity and saturation are equivalent properties. It
is further evidence that the notion of Galois type makes sense.

THEOREM®G.7. Let(KC, <x) be an abstract elementary class and suppose that
A > LS(K). Suppose that has the(< A, < \)-amalgamation property then for
M € K>, we have that
M is A-Galois saturated iff\/ is A-model homogeneous.

PROOEF ltis easy to show that homogeneity implies saturation.

Let > LS(K) be such thats < A.

Let N; < Ny € K<, be given such thav; < M.

We may assume thatis the cardinality ofVs. Fix (a; | i < ) an enumeration
of No. Now by induction oni < p define two increasing continuous chains of
models(N}, f; | i < p, 1 € {1,2}) and mappingsf; | i < ) satisfying:

1. Nl(_) = Nl?_fo =idny, N3] = u,

2. N} <x N3,

3. fi: Ni — M and

4. a; € Nit for everyi < p.

Since the chains are continuous we only have to define two models and an
embedding fot = j + 1:

Let M{ := f;[N{]. Using Remark 1.6 led/; be an amalgam aWV; and Af{
over N{ such that\/] - M7 and letg; : NJ = M be an extension of;. Namely
the diagram

N —> M}

a Ju

commutes. .

If gj(a;) € M{ then do nothing.

Otherwise considep := ga-tp(g;(a;), M7, MJ) and use the hypothesis that
M is ug -saturated to ge¥/* € K,,, and to findb € M* such that\i/ < M* < M
and (M, Mj, g;(a;)) ~ (M], M*,b).

Unwinding the definition of- gives: There exists
N** € K, and mapping#1, ho such that the diagram

j_h2 s
Mj; —= N

4

M} —— M~
id
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commutes and in addition we have

ha(gj(aj)) = h1(b). By renaming the elements of** and changing the mapping
hy accordingly we may assume that is the identity. Thus by gluing the last two
diagrams together we get that the diagram

Ng 9 Mg’ _d e
z’dT Tid [hl
j j
N P M{ ——= M*——> M

commute. Now pickVi = Nj andh; D g; such that; : Nj 2 N**,
So we have that

N;

id

idT Thl
N} M*

fi
Commutes. Lef| := h; '[hy[M*]).

Sinceg;(a;) = h1(b) (using also thab € M*) we get thai; € N7*" and from
h; 2 g; and the fact that

N;
\
-
NJ M*

i

commutes we get th;iV{' ) N{. Now we are ready to define the mappifiglet
fi = hl‘1 o (hj | N{). Itis aK-embedding that extend§ as required. Verify
using Axiom A2 thatUK# fi is an embedding aV, over N into M.

([

7. Stability-like properties

REMARK 7.1. Notice that]Ci’ has no maximal element corresponds to “every
type overM can be extended to a type ovkf’ for all M C M’ € K,". The
contents of Theorem 5.4 is thatifis an PCy, class categorical iRy such that
I(R1,K) < 2% every type over a countable model has a proper extension.
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THEOREM7.2 ([Sh 576). Suppos&Cis aPC,-class. Let\ > pu.
If I(\,K) = I(AT,K) = 1andKy++ # 0, thenK3 has no maximal element.

DEFINITION 7.3. (My, My, a) € K3 is minimal iff for every
(M[/),Mé,ag) Z hé(Mo,Ml,a) Z = 1,2

we have thaga-tp(ai, M|, M) = ga-tp(ag, M}, My).
(M}, My,a") > (Mo, M, a) stands for ‘h is an embedding a¥/; into M taking
M, into M/ andh(a) = a’".

The above notion of minimal triple is a generalization of strongly minimal non
algebraic type. We are actually generalizing st&tionarityproperty of strongnly
minimal types. l.e. ifu, ao realize extensions (tg\/))|) of the minimal type ofu
then they types of; andas are equal.

There are several basic existence results of strongly minimal types. l.e.

FACT 7.4. (W. Marsh) IfT" is anXy-stable first-order then there exists a strongly
minimal formula.

It is natural at this stage to introduce the following “obvious” concept:
DEFINITION 7.5. K is stable in\ iff | ga-S(M)| < A for everyM € Ky .
An analog to Marsh’e theorem is the following result:

THEOREM7.6. LetA > LS(K). Supposé&C has the\-amalgamation property
and K3 does not have a maximal triple. If there is no miniraaly, M, a) € K3,
let p := ga-tp(a/My, M) then the following holds:

1. There isM € K, such thatM, < M and

{p' € ga-S(Mp) : p' > p}| > 20o9;
2. There existsV € KCy+ such thatM() < N and
{p € ga-S(M})) : pisrealized inN}| = A*.
Namely,

[{ce N :3IN’' = N,M} < N’ N’ € K,, such that
ga-tp(c/Mg, N') > ga-tp(a/Mo, My)} = A™.

The previous theorem is further evidence that the notion of Galois types is
useful.

The notion of minimal element df3 plays a central role in proving categoric-
ity results. A key to categoricity: Under strong assumptiongone have that if
p € ga-S(M) is minimal then for even, >~ My = M if My C Ms then there
existsa € |Ms| — | M;] realizingp.

At the current state of affairs there is no nice forking-like relation for AECs
(even under the assumption that they are categorical above the hanf number).

However there are several approximations. Since not even the parallel to Mor-
ley’s theorem is available for AECs one can investigate one of the coarser notions
from the days of stability theory before forking. Below it is shown that a notion
parallel to splitting of types is moderately nicely behaved. For this we make the
following
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HYPOTHESIS7.7. K has the(\, < &, u)-amalgamation property for every
A, k and i, we may assume that there exists a monster mddey monster model
we mean a very large model homogeneous model.

Notice that existence of large Galois-saturated models is also desireable, but
we need more than just amalgamation to prove their existence.

DEFINITION 7.8. SupposeV <x M € K, A > ||N|| a cardinal numberThe
typep € ga-S(M) \-splits overN iff there existsVy, No, h of cardinality A such

that N < Ny < M, h : Ny % Ny and the type® | Ny andh(p | N;p) are

contradictory (= there ifN* is an extension al/ then there is n@ € |[N*| such
thata =p [ N2 Uh(p [ N1)).

It is tempting to call the previoous notion Galois-splitting. However | feel
that doing so will make certain passages unreadable. It is important to recognize
the similarity of Galois-splitting to the ususal first-order splitting as well as the
differences. The key difference that here we don'’t have a formula wittnessing the
splititng, moreover the splitting is evidencedmpdelgather than a finite sequence
of parameters.

THEOREM7.9. Let A > LS(K). Suppose& is stable in\. For everyM €
K> and everyp € ga-S(M) there exists\y < M of cardinality < A such thatp
does not split oven/.

PROOF SupposeN >x M, a € N such thatp = ga-tp(a/M,N) andp
splits overNy, for every Ny <y M of cardinality \.

Let x := min{x | 2X > A}. Notice thaty < A and2<X < \.

We'll define{M, < M | a < x} C K, increasing and continuousi-chain
which will be used to construct/y € K such that

| ga-S(My)| > 2X > X obtaining a contradiction ta-stability.

Pick My < M any model of cardinality.

Fora = (3 + 1, sincep splits overM there areNg o <x M of cardinality A
for £ =1,2andthere isig : Ng1 =1, N2 such that
hg(p I Ng1) # p | Nga. Pick Mg <x M of cardinality A containing the set
[Np.1|U|Npl.

Now for oo < x defineM;; € Ky and forn € “2 define alC-embeddingh,,
such that

lL.O0<a = Mg%;CM;,

2. foralimitlet M} = Uz, M,

. 8<aAne 2 = hnwghn,

4.n€ 2 = hy: M, < M and

S5.a=0+1Ane€ *2 = hyo(Ns1) = hy1(Ng2).

The construction is possible by using theamalgamation property at =
5 + 1 several times. Given € ”2 let N* be of cardinality and f; be such that
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the diagram

f
Mﬂ-i-l L> N*

g

—> M}
Mﬁ hn ,6
commutes. Denote by, the modelfy(Ng2). Sincehg : Ng1 =p, Npo there
is a/C-mappingg fixing Mg such thatg(Ng;) = N2. Using the amalgamation
property now pickNV** € K, and a mapping; such that the diagram

M,@-‘,—l h IN**
idT idT
Ng1 7 Ny
idT Tid
My ————M;

Finally apply the amalgamation property to fiWJr1 € K, and mappingsy, e1
such that

N s ME i
idT TEO
My —g= N

commutes. After renaming some of the elements\ff, , and changing:; we
may assume thafy = idy«.
Let hr]AO = f() andh,ﬂ ‘=e10 fl-

Now forn € X2 let
= |JM; and H,:= [ hya

a<<y a<xy

TakeN;; = My from K, an amalgam ofV and M over M, such that

N —> ]V#<
idT Tid
M, Tf M,
commutes.
Notice that

n#veE X2 = gatp(Hy,(a)/My, Ny) # ga-tp(Hy,(a)/ My, N).
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Thus| ga-S(M;)| > 2X > . O

QUESTION7.10. Is it possible to replac&, in Remark 7.1 with an uncount-
able\?

This is important since a positive answer will require developing a replacement
for the undefinability of well ordering i, .,. The fact that undefinability of well
ordering does not have a natural generalization for uncountable cardinals follows
from an independence result of Jon Barwise and Ken KuBak{i].

Here is a very simple example of a result fro8h[574 in this direction:

THEOREM7.11. Let A > u. SupposeC is an AEC such thatC is PC),
I(\K) =I(A\,K) = 1andK,++ # 0. Thenk3 does not have a maximal triple.

PROOF. (K3 has no max element). Sindé\,K) = 1 andCy+ # 0, it is
enough to show that
if (Mo, M, a) € K3, then there exists

(M[/)7 M{v CL/) Z (M07 Mla a)

such thatMy # Mj.

Suppose for contradiction that/y, M, a) € K3 is a maximal triple.
Define{N; : i« < AT} C K, increasing continuous
and{h; : M1 = N;;1 : i < AT} such thatV; = h;[M,]. Since we want these
sets to be continuous, it is enough to define them at successor stages.Ngiven
wherei < A\, by I(\, K) = 1 there exists an isomorphisi: M, = N;. Since
My < My, we can findV;,; andh; such that, C h; and
h : My = Nj;;1. Note thath;(a) € N;+1 — N;. From the construction we get that
that(N;, Ni+1, hi(a)) € K3 is a maximal triple, for < A™.

Now let N = [J; -\ + IVi.
Then, sincéi;(a) € N;11 — N; foralli < AT and sincg[V; : i < A1} is a chain,
N € Ky+. SinceI (AT, K) = 1 andKy++ # 0, there isN! # N in K+ such that
N <x N1

Pick {Ng, <x N!' : B < At} C K, increasing and continuous such that for
all B < X\*,Ng C Nj but N # Nj. (This is possible sincgV'| # |N|).

Define a functiony : |[N!| — A* as follows:

o(b) = {z if hi(a) =b

0 Otherwise.

Notice that the relatiog(b) = i is a function since we have seen above that

i # j = hi(a) # hj(a).
Applying the reflection theorem from set theory, tebe large enough such
thatV/,, contains the set

{N7 vaMOaMlaa7 (NivNilahi 11 < )‘+>>ga)\+7
“the PC,, definition of "}

and such that the model
B* = <V04567Na NI)MO)Ml)QvKagvi = (Ni)Nilvhi)ua>1
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where@ = \T, reflects the following sentences:

(i) ”{N; : i < A} isincreasing and continuous A&, .”

(i) (Vi € Q)[N; € N} AN; # N}

(iii) "for all i € Q, (N;, Ni+1, hi(a)) is a maximal element ifC3”
(V) g: N —Q

(V) (Vb € NY)(3Fi € Q)((hi(a) = b) — g(b) = 1)

(Vi) N = UieQ N;

(vii) N1 = Uico N}

Let B <x B* of cardinality\ such that)? = ¢, a limit ordinal. (For example,
take{B; <x B* : i < A*} increasing continuous such th&s;|| = A and
QB D i. Then use the fact thgt < AT : § = @5} isa club.)

Now, N8 =, s Na = U5 Na = Ns. Similarly, N'¥ = N},

Denoteas := hs(a).

Claim N1 N (N1)5 = N;. In particularas ¢ N}.

PROOF If a5 € N51 thenas € B. SinceB is closed undey, g(as) € B. But
recall that

Bl(g: N = Q) A(Wbe N
((Fi € Q)(hi = b) — (g(b) = 7))

Sog(as) € Q. Computeg(as) = 0.
SinceB |= ZF~, alsos + 1 € @B, which contradicts the fact that= Q.

If Ns4+1 N N} properly containsVs, then since
as € Nsy1 C Ny, ,, by the fact that ¢ Nj we get that Ny, N; ., |, a5) € K3.
And since then

(N57 N(5+17 a5) < (N(§l7 N61+17 a5)7

we get a contradiction to the assumption that
(N5, Nsi1,as) is a maximal triple. O

O

In [GrVa] Grossberg and VanDieren have shown that for categorical AEC
Morley-sequences exist when the dependence relation is non splitting.

Denote byM < N the statemeniV is universal over) i.e. for every
M’ » M of cardinality | M|| there exists &-embedding from\/’ into N over
M.

DEeFINITION 7.12 (from [GrVa]). Let K be an AEC. The class is calleg
superstabléf there existg, > LS(K) satisfying
1. for everyM € K, there exists/ <} M’ € K, and
2. for everyr = cf(k) < p* whenever(M; € K, | i < k) is <v-
increasing and continuous ande ga-S(M,), there exists < « such that
p does nofu-split overM;.

THEOREM7.13 (from [GrVa]). Supposel is u-superstable for somg >
LS(K) and K has the amalgamation property. Léf € K. ,, A, 1 C M be
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given such thatl| > ut > |A|. Then there existd C I of cardinality ut,
indiscernible overd. MoreoverJ can be chosen to be a Morley sequence oter

Where

DEFINITION 7.14 ([GrVa]). {a; € pu™} is a Morley sequence ovel iff
there exists an<x-chain {M; | i < p*} such thatp; := ga-tp(a;/M;, M;11)
does nofu-split over M, and (a; | i € \) is an indiscernible sequence ovif.

8. proof of Theorem 4.3

Before starting the proof let me point out that we will be using eth Devlin-
Shelah weak diamond. Instead of using the principle we use a principle that
may look little stronger but using a pairing function together with with Fact 4.7 one
can show that it follows fron®, -+ :

We will be using:

There exists a stationary subseof A such that for every

+ + +
Fi: A xS At At g,

there exists a guegs: A™ — 2, such that for every, v, h : AT — AT, the set
{6€S|F(nlovdhld)=g(d)}isstationary.

PROOF OFTHEORM 4.3. Recall that/ (A, £) = 1 andK fails to have the\-
amalgamation property implies thigt, + is nonempty.

By assumption, we may tak¥,, N1, N> € K, that can not be amalgamated.

Forn € A">9 define a family ofM,, € KC so that the following hold:

1. (M| = M1+ €(n)),

2. v<n— M, <x My,

3. when(n) is a limit ordinal, M;, = U<,y Myla:

4. M,-o andM,; cannot be amalgamated ovef;,.

Using A-categoricity and the tripl&Vy, N1, N> the construction is possible.

Divide the proof into two cases, in the first case assume a stronger failure of
the amalgamation and the second is the negation of the first.

Case A:Suppose that there exidt < M € K, so that for everyM/’ extending
M in Ky, there is a pain/° and M extending)/’ so thatd/® and M cannot be
amalgamated ovey.

To requirements 1-4 we add
M, = N and replace (4) by

(4)" M, and M, cannot be amalgamated ov&t
Forn € 22, let M, := U,-\+ Mya-
CLAM 81. n#v = (Mn,a>a€|N‘ F (My, a) e n-

PROOF Let p be the meet ofy andv. If there was an isomorphism between
<Mn,a)a€‘N| and (My, a) ,¢ |, We would have thafl/,, is an amalgam ofi/,
andM - over N, a contradiction to requirement (4). O
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Suppose for the sake of contradiction that
pi=I\",K) < 27

Take{M; | i < u} to be a complete set of representativeskgr. .
Clearly,

~ +
[{(My, a)aeiny/ = - n € 2}
< |{<Mi7a>a€|N| 1< :UJ}|
< pl| M| = p(A) = pAt2t =
p2t < 22

But this is a contradiction to the fact we have many pairwise non-embeddable
models. Notice how we used the assumptidn< 2*" in the final step.

Case B:Suppose for allV and everyM € K, there is an\/’ extendingM so
that for any extensiond/, and M; of M’, My and M; can be amalgamated over
N.

Again, we tweak requirement (4) and replace it by:

(4)if M° andM?! are extensions af/,-o and M,:1, thenM,,, M° and M
can be amalgamated.

To perform the construction at successors, we do the following, to défire
andM, ; from M,;:

Apply X categoricity to fix an isomorphisi : M,, = Ny (the unamalgamable
triple we chose at the beginning).

Using N1, N2 and their preimages pick/* and M ** extensions of\/;, which
cannot be amalgamated ovef;,.

By the assumption of case B, we can takg-, to be an extension af/* so
that any extensions df/,-, can be amalgamated ovef,. Take, similarly for
M**,

LetC:={d <X : 6 = A(1+6)}, notice that it is a club. By Ulam’s theorem
there are{S, C C' : v < A"} stationary sets such that
Y1 #v2 = S, NSy, =0 and forally < A™ we have tha®,+(S,) holds.

For everys < AT such that = \(1 +6), h: § — § andn, v € °2 let

(1 ifh:M, — M,and
Mg

Ji

F(nayv h) = MU T>Ml/0

can be amalgamated.

0 Otherwise.
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By @,+(S,) pick g, : AT — 2 such that
forall n,v € *"2 and everyh : A* — A+ we have that

S,/Y ={6eS, : F(nl1dv|6h|d) =gyd)}
is stationary. FoiX C AT and everys < \™ let

gy(8) ifde S, andd € X

nx|[0] :==
0 Otherwise.

Notice that sincg.S, : v < A1} are pairwise disjoint for any € X there is at
most oney such thaty € S, (maybe none), sqx is well defined. We finish by
showing:

CLAIM 8.2. ForeveryX # Y C A" we have thaf\f,,, % M,, .

PROOF SupposeX # Y C A", h : M,  — M,, . An application of
®y+(8,) tonx,ny andh yields S’ as above.
LetD := {6 < A" | (h [0):0 — d} beaclub. Fory < A* letSY := S’ N D.
Without loss of generality there exisise X — Y. Pické € S;’.
Denote byn the sequencegy | ¢ and byv the sequencegy | 6. Sincey ¢ Y
by the definition of the sequengg we have that)y [§] = 0, namelyr < "0 < ny.
Now considermx[d]. There are two possibilities (according to the value of
nx/[6]):
1. If nx[6] = 1, by the definition ofyx [6] necessarily)x [§] = g¢,(), since
6 € S’ we have that'(n, v, h) = 1. From the definition of” we get that
M, andM,~, can be amalgamated ov&f,. Denote by ! the amalgam
and letf andg be such that the following diagram commutes:

(*)1 MnAO T> Ml
idT fT
My ——> My

Sincen’l < nx, ¥'0 < ny and from the assumption that: A/, —
M, , the following diagram

My —— My,

T

My ——> My

must commute. By axionl4 there existsM? < M,, of cardinality \
such thath(M,1) <x M? andM,-o <x M2



34 RAMI GROSSBERG

Namely the following diagram commutes:
(*)2 Mfyfl T> M?
i
Mn T> MI/AO
Since
Ml
I
N 2
Mu 0 id M
by the second half of requiremefit)’ there areM/® € K, and K-mappingse; :
M — M3 (for I = 1, 2) such that

(¥)s  M'—> M3

o

MVT.MZ

is commutative. Combining«);, (x)2 and(x)s together we get

(*)4 Mo 9 M! e M3

Ak

M?7 MV . M2

idl %

n'1

Thus we have that

h062
M’]Al e M3

Tid Tgoel

My 3= Mo
is commutative, which is a contradiction to the first half of requirenféjit

2. If nx[6] = 0 then we have thay'0 < nx. Sinceh : M, — M,, we get
that M, is an amalgam oM, -, andM, -, over M,, so by the definition of
F we get thatF'(n,v,h | §) = 1. Sinced € S we have thay, (J) = 1
which by the definition ofyx givesnx[0] = 1 and this contradicts the
assumption of this case.
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9. The main problems

In my opinion most of the future results will come from two separate lines of
research, that many years from now will merge.

1. Stability theory for AECs.The most ambitious form of this program can
be stated as follows: Let MT stand for Morley’s categoricity theorem, f.o.
stability for the contents of Shelah’s boolS{j d) and let n.e.categ stand
for the partial results toward Shelah’s categoricity conjecture (the contents
of [Ke2],[Sh4d, [Sh874, [Sh87H, [MakSh], [KoSh], [Sh 394, [Sh473,

[Lel)).
By developing stability theory for AECs | mean solving the equation
(%) f.0. stability x
MT ~ n.e.categ

Examples of progress toward this direction can be foun&hg],
[Sh88, [Sh 30Q, [GrHa], [Gr3],[Gr4], [GrHa],[GrLel],[GrLe2],
[GrLed], [GrSh1], [GrSh2], [GrSh3], [GrSh4],[Lel], [Le2],[Sh 574,
[Sh 604,[ShVi], [GrVa],[Kovl] and [Va].

2. Geometric model theory for AECS his program can be described as an
attempt to solve the following equation:

HZ ?
#) o stability =

where HZ stands for Hrushovski's extension of Zilber's geometric ideas,
andz is a (partial) solution fo(x). There very few results in this direction.
Among them arellel], [GrLe3] and [Le3].

| expect that several interactions @f) and (#) will eventually yield among
other things a solution for Shelah’s categoricity conjecture.

While I am convinced that eventually the theory will have more applications to
main stream mathematics via commutative algebra, algebraic geometry or analytic
structures than model theory of first-order logic, so far there are no applications in
sight.

The greater potential is due to the ability to axiomatize local finiteness and
structures satisfying various chain conditions. It is too early to predict what exactly
these applications will be. It is natural to expect that studying AECs of some
concrete structures (rings and groups) may produce valuable results.

There is one conjecture that may eventually be solved using non elementary
methods. This is Zilber's conjecture (stronger than Schanuel’s conjecture) con-
cerning analytic structure fronZ[]. Namely thatC.,, is the canonical structure
of cardinality2™° in the classH(ex/st).
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The following are major concrete problems in AEC:
1. In Makkai-ShelahMakSh] as well as in §h 394 and [Sh477 patrtial re-

sults toward a categoricity theorem are presented. In both cases the hypoth-
esis is that the class is categorical in a successor cardinal. It is not clear at
all if this is just a technical limitation or a central problem. | suspect itis
central. Probably replacing the assumption that the class is categorical in
At with the assumption of categoricity kis of similar difficulty.

. The categoricity theorem irfsh 394 is a going down theorem. Is there a

going up theorem? The simplest instance of this is:

CONJECTUREY.1. Let £ be an AEC. If there exists > Hanf(K)
such that is categorical in\ thenk is categorical in\*.

. Itis a major open problem to find a nice (forking-like) dependence notion

for AEC. In fact even under the assumption thahas the amalgamation
property and the class is categorical in a cardinal abidue f () this is
open (see Remark 4.10(1) iSh 399).

. One of the technical problems of working in AEC without the amalgama-

tion property is the inexistence of monster models and therefore types over
models can not always be extended to global types. To deal with this Shelah
and Andres Villaveces have introduced i8l{Vi]) an interpolant, which is

the framework of AEC without maximal models, under GCH. They have
managed to show that categoricity implies that every small model (below
the categoricity cardinal) can be extended to an amalgamation base and sev-
eral other basic facts. Some extensions of this work can be foundajn [

As of today there are no categoricity results in this context. It is natural to
expect the following:

CONJECTUREY.2. LetK be an AEC without maximal models and sup-
pose that\ > Hanf(K). If K is categorical in\™ thenK is categorical in
everyu < \.

. Probably the appropriate name for thiseisistence of Hanf number for

amalgamation

CONJECTURES.3. Let £ be an AEC. Suppose (for simplicity?) that
K does not have maximal models. There exists a cardinal nup€y
such that ifC has theu(K)-amalgamation property thefC has the\-
amalgamation property for alh > 1 (KC).
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