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ABSTRACT. In this paper some of the basics of classification theory for abstract
elementary classes are discussed. Instead of working with types which are sets
of formulas (in the first-order case) we deal instead withGalois typeswhich are
essentially orbits of automorphism groups acting on the structure.

Some of the most basic results in classification theory for non elementary
classes are presented. The motivating point of view is Shelah’s categoricity con-
jecture forLω1,ω.

While only very basic theorems are proved, an effort is made to present
number of different technologies: Flavors of weak diamond, models of weak set
theories, and commutative diagrams. We focus in issues involving existence of
Galois types, extensions of types andGalois-stability.

Introduction

In recent years the view thatstability theoryhas wider applicability than the
originally limited context (i.e. first-order stable theories) is getting increasing
recognition among model theorists. The current interest in simple (first-order) the-
ories and beyond signifies a shift in the opinion of many that similar tools and
concepts to those of basic stability theory can be developed and are relevant in a
wider context. Much of Shelah’s effort in model theory in the last 18-19 years is
directed toward development ofclassification theory for non elementary classes. I
feel that the study ofclassification theory for non elementary classeswill not only
provide us with a better understanding of classical stability (and simplicity) theory
but also will develop new tools and concepts that will be useful in projecting new
light on classical problems of “main stream” mathematics.

The purpose of this article is to present some of the basics of classification
theory for non elementary classes. For several reasons I will concentrate in what
I consider to be the most important and challenging framework:Abstract Elemen-
tary Classes, however this is not the only important framework for such a classifi-
cation theory.
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I made an effort to keep most technical details to a minimum, while still having
some deep ideas of the subject explained and part of the overall picture described.
In the last section I discuss direction for future developments and some open prob-
lems.

An interested reader can find more details in Chapter 13 of [Gr ].
I thank Oleg Belegradek for an interesting discussion and suggesting several

examples, Andŕes Villaveces for his comments and Monica VanDieren for com-
ments on a preliminary version.

1. definitions and examples

DEFINITION 1.1. LetK be a class of structures all of the same similarity type
L(K). K is an Elementary classif there exists a first-orderT in L(K) such that
K = Mod(T ).

There arevery manynatural classes that are not elementary:

• Archimedean ordered fields,
• locally-finite groups,
• well-ordered sets,
• Noetherian rings and
• the class of algebraically closed fields with infinite transcendence degree.

Extensions of predicate calculus permit a model-theoretic treatment of the
above:

1. The basic infinitary languages:Lω1,ω ⊆ Lλ+,ω ⊆ Lλ+,µ andL∞,ω. The
earliest work on infinitary logic was published in 1931 by Ernst Zermelo
[Z].

Later pioneering work was done by: Novikoff (1939, 1943), Bochvar
(1940) ([Bo]) and from the late forties to the sixties the main contributors
were: Tarski, Hanf, Erd̋os, Henkin, Chang, Scott, Karp, Lopez-Escobar,
Morley, Makkai, Kueker and Keisler.

Recall

DEFINITION 1.2.
• Lω1,ω contains all the first-order formulas in the languageL and is

closed under propositional connectives, first-order quantification and
the rule:
If {ϕn(x) | n < ω} ⊆ Lω1,ω then∨

n<ω

ϕn(x) ∈ Lω1,ω, `(x) < ω.

If {ϕα(x) | α < λ} ⊆ Lλ+,ω then∨
α<λ

ϕα(x) ∈ Lλ+,ω.

• If {ϕα(x) | α < λ} ⊆ Lλ+,µ with `(x) < µ then∨
α<λ

ϕα(x) ∈ Lλ+,µ
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and for every sequence of variables〈xβ | β < α < µ〉
Qx0Qx1 · · ·Qxβ · · ·ϕ(〈xβ | β < α〉) ∈ Lλ+,µ

for Q ∈ {∀,∃}.
• For a limit cardinalχ:

Lχ,µ :=
⋃
λ<χ

Lλ+,µ.

• L∞,µ is the proper class obtained by lettingλ vary over all cardinals.
I.e. it is

L∞,µ :=
⋃

λ∈Card

Lλ+,µ.

Basic references: ForLω1,ω see H. J. Keisler [Ke2] and forLλ+,µ see
M. A. Dickmann’s [Di] books.

2. Cardinality quantifiers:Andrzej Mostowski in 1957 (see [Mos]) introduced
several cardinality quantifiers. The most popular among them was studied
extensively in the sixties by Gerhard Fuhrken [Fur ] and Jerry Keisler [Ke1].
It is theℵ1-interpretation:L(Q) and extensions likeLω1,ω(Q) where

M |= Qxϕ(x) ⇐⇒ {a ∈ |M | : M |= ϕ[a]} is uncountable.

3. Other second order quantifiers:Measure-theoretic quantifiers, and topolog-
ical logics. Barwise, Makkai, Kaufmann, Flum, Ebbinghaus and Ziegler.

4. Other logics:Monadic logics. Rabin, Gurevich, B̈uchi, Shelah.

There are many more logics, see the volume edited by Jon Barwise and Solomon
Feferman [BaFe].

There is a particularly rich model theory forL(Q). In the last 20 years, this
theory took on a set-theoretic flavor, see: Fuhrken [Fur ], Keisler [Ke1], [Sh 82],
[Gr2] and [HLSh]. For an overview of some of this I recommend Wilfrid Hodges’s
book [Ho1].

A common feature of all the above extensions of first order logic is the failure
of the compactness theorem.

An ordered field〈F,+, ·,≤〉 is archimedean iff

〈F,+, ·,≤〉 |= ∀x
[
x > 0→

∨
n<ω

[x+ . . .+ x︸ ︷︷ ︸
n-times

≥ 1]
]
.

A groupG is periodic iff

G |= ∀x
∨
n<ω

[xn = 1].

DEFINITION 1.3. LetM andN both beL-structures. Suppose thatA ⊆ |M |,
andB ⊆ |N |. A functionf : A → B is called apartial isomorphismiff it is a
bijection and for every relation symbolR(x) and everya ∈ A we have that
a ∈ RM ⇐⇒ f(a) ∈ RN , for every function symbolF (x) we have that
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f(FM (a)) = FN (f(a)) and for every constant symbolc if cM ∈ Dom(f) then
f(cM ) = cN .

A familyF of partial isomorphisms fromM into N has theback and forth
propertyiff
(forward) for everya ∈ |M | and everyg ∈ F there existsh ∈ F such thatg ⊆ h
anda ∈ Dom(h) and
(back) for everyb ∈ |N | for everyg ∈ F there existsh ∈ F such thatg ⊆ h and
b ∈ Rang(h).

Denote this byF : M ∼=p N . We writeM ∼=p N for “there exists a non empty
F such thatF : M ∼=p N ”.

At first glance the following special case of a theorem of Carol Karp may look
a bit surprising:

FACT 1.4 (Karp’s test).LetM andN beL-structures.

M ∼=p N ⇐⇒ M ≡∞,ω N.
Shelah’s plenary talk at the International Congress of Mathematicians in Berke-

ley in 1986 (see [Sh 299] and [Sh tape]) was dedicated to classification theory for
non elementary classes and in particular universal classes.

There are several frameworks for classification theory for non elementary classes.
With the exception of the last item they are listed in (more or less) increasing level
of generality:

• Homogeneous model theory(this was formerly calledFinite diagrams sta-
ble in power). In this context we have a fixed (sequentially) homogeneous
monster modelM and limit the study to elementary submodels ofM and
its subsets. The subject was started by Shelah in 1970 with [Sh3] and con-
tinued by him with [Sh54]. In the last 10-15 years the subject was revived
in several publications. See [Gr3], [Gr4],[HySh1], [HySh2], [GrLe1],
[GrLe3], [Le1], [Le2], [BuLe], [Be] and [Kov1].
• Submodels of a given structure. This is a generalization of homogeneous

model theory. Start with a given modelM (not necessarily homogeneous)
and limit the study to submodels ofM and its subsets. Started in Grossberg
[Gr3], [Gr4]. Further progress is in [GrLe2].
• Excellent classes. An excellent class consists of the atomic models of a first-

order countable theory which satisfy a very strong amalgamation property:
The(ℵ0, n)-goodness for everyn < ω. Shelah introduced them in [Sh87a],
[Sh87b] as a tool to analyzeMod(ψ) whenψ ∈ Lω1,ω under the model the-
oretic assumption thatI(ℵn, ψ) < 2ℵn holds for every positive integern.
Later in [Sh c] Shelah used excellent classes at a crucial point in his proof of
the main gap for first-order theories,(ℵ0, n)-goodness is renamed in [Sh c],
page 616 as(ℵ0, n)-existence property. In section 5 of chapter XII She-
lah essentially show that for countable and superstableT without the dop,
notop is equivalent to the(ℵ0, 2)-existence property which using his resolu-
tion technique from [Sh87b] implies excellence. Lately Kolesnikov [Kov2]
announced ann-dimensional analysis to get new results for simple unstable
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theories. Grossberg and Hart in [GrHa ] developed orthogonality calculus
to the level that permitted deriving the main gap for excellent classes. This
was the first time that a main gap was proved for non elementary classes.
• Universal classes. The prototypical example isMod(ψ) whenψ is anLω1,ω

sentence of the form
∧
n<ω ψn where theψn areΠ1-first-order sentences.

This work began in [Sh 300]. Shelah is currently writing a book [Sh h]
that, among other things, will include a “main gap”-style of theorem for
universal classes.
• Abstract elementary classes. See Definition 1.5 below. This is in my opin-

ion the deepest direction. It is the focal point of this article. Already in
the fifties model theorists studied non elementary classes of structures (e.g.
Jónsson [Jo1], [Jo2] and Fra¨isśe [Fre]). In [Sh88], Shelah introduced
the framework of abstract elementary classes and embarked on the ambi-
tious program of developing aclassification theoryfor abstract elementary
classes. This work was continued in many publications of Shelah (totaling
more than 700 pages) and members of his school.
• Primal framework. This is a generalization of abstract elementary classes

obtained by relaxing the chain axioms (A4 from Definition 1.5 below). See
Baldwin and Shelah’s papers [BS1], [BS2], [BS3] and [Gr5].
• Classification theory over a predicate. Unlike the other frameworks this is

really an extension of first-order model theory, when the notion of isomor-
phism is replaced by a stronger one. While in my opinion this framework
does not precisely fit into what I call classification theory for non elemen-
tary classes, many of the methods are common. The fact that many years
ago Shelah announced a solution for the main gap in this context, while
for AECs such a theorem is not even on the horizon, indicates to me that
this framework is much easier. I suggest to the reader to start with Wil-
frid Hodges’s survey article [Ho2]. Pillay and Shelah’s article [PiSh] is the
beginning. Further work includes [Sh 234] and [Sh 322]. Shelah has writ-
ten several hundreds of (unpublished) pages that continue this up to a Main
gap. This work is not available to me. I suggest that interested people will
contact Shelah directly.

The focus of this article is the framework ofabstract elementary classes. This
framework, in my opinion, has the best balance of generality, a rich and sophisti-
cated theory. The context of AECs is much more general than that of homogeneous
model theory, model theory forLω1,ω or even the framework of submodels of a
given structure.

DEFINITION 1.5. LetK be a class of structures all in the same similarity type
L(K), and let≺K be a partial order onK. The ordered pair〈K,≺K〉 is anabstract
elementary class, AEC for shortiff

A0 (Closure under isomorphism)
(a) For everyM ∈ K and everyL(K)-structureN if M ∼= N then

N ∈ K.
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(b) LetN1, N2 ∈ K andM1,M2 ∈ K such that there existfl : Nl
∼= Ml

(for l = 1, 2) satisfyingf1 ⊆ f2 thenN1 ≺K N2 implies thatM1 ≺K
M2.

A1 For allM,N ∈ K if M ≺K N thenM ⊆ N .

A2 LetM,N,M∗ beL(K)-structures. IfM ⊆ N ,M ≺K M∗ andN ≺K M∗
thenM ≺K N .

A3 (Downward L̈owenheim-Skolem) There exists a cardinal
LS(K) ≥ ℵ0 + |L(K)| such that for every
M ∈ K and for everyA ⊆ |M | there existsN ∈ K such thatN ≺K
M, |N | ⊇ A and‖N‖ ≤ |A|+ LS(K).

A4 (Tarski-Vaught Chain)
(a) For every regular cardinalµ and every

N ∈ K if {Mi ≺K N : i < µ} ⊆ K is ≺K-increasing (i.e.
i < j =⇒Mi ≺K Mj) then

⋃
i<µMi ∈ K and

⋃
i<µMi ≺K N .

(b) For every regularµ, if {Mi : i < µ} ⊆ K is ≺K-increasing then⋃
i<µMi ∈ K andM0 ≺K

⋃
i<µMi.

REMARK 1.6. I invite the reader to verify the following important basic ob-
servation: GivenM,N1, N2 ∈ K such thatN1 ≺K N2 and f : N1

∼= M then
there areN ∈ K andg : N2

∼= N such thatM ≺K N andg extendsf .

EXAMPLE 1.7 (elementary classes).LetT be a first-order theory,K = Mod(T )
and≺K the usual notion of elementary submodel. Then〈K ≺K〉 is an AEC with
LS(K) = |L(T )|+ ℵ0.

EXAMPLE 1.8 (ℵ1-saturated models of a f.o. theory).LetT be a complete count-
able superstable and notℵ0-stable,≺K be the elementary submodel relation and
LS(K) = 2ℵ0 . K := {M |= T : M is ℵ1-saturated}. By Theorem III.3.12 of
[Sh c] K is closed under unions (recall that superstability impliesκ(T ) = ℵ0).

Recall (Keisler [Ke2]): for ψ ∈ Lω1,ω a subsetLA of Lω1,ω is a fragment
containingψ iff ψ ∈ LA, LA is closed under: Taking subformulas, first-order
connectives and quantifiers.

DEFINITION 1.9. LetM andN beL-structures. SupposeLA is anL-fragment.
M ⊆TV,LA N iff

1. M ⊆ N and
2. for everya ∈ |M | and everyϕ(y; x) ∈ LA if N |= ∃yϕ(y; a) then there

existsb ∈ |M | such thatN |= ϕ[b; a].
WhenLA consists of only the first-order formulas from the language of the struc-
ture we omit it.

It is the contents of the Tarski-Vaught test thatM is an elementary submodel
of N iff M ⊆TV N .

EXAMPLE 1.10 (Lω1,ω). Letψ ∈ Lω1,ω be a sentence in a countable language
and suppose thatLA ⊆ Lω1,ω is a countable fragment containingψ. Take≺K to
be defined byM ≺K N ⇐⇒ M ⊆TV,LA N.
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Let K := Mod(T ). Clearly 〈K,≺K〉 is an abstract elementary class with
LS(K) = ℵ0.

EXAMPLE 1.11 (Lω1,ω(Q)). T ⊆ Lω1,ω(Q) be a countable theory in a count-
able language and suppose thatLA ⊆ Lω1,ω(Q) is a countable fragment contain-
ingT . 〈K,≺K〉 is an abstract elementary class, whenK = Mod(T ) andM ≺K N
iff M ⊆TV,LA N

1. if a ∈ |M | andM |= Qxϕ(x; a) then there existsb ∈ |N | − |M | such that
N |= ϕ[b; a] and

2. if a ∈ |M | andM |= ¬Qxϕ(x; a) thenϕ(M ; a) = ϕ(N ; a).

In fact AECs are more general thanLω1,ω(Q).
The contents of the following Theorem is that in the Chain Axioms (A4) it is

possible to replace the regular cardinalµ by an arbitrary directed set.

THEOREM 1.12 (Theorem 21.4 of [Gra]). Let〈K,≺K〉 be an AEC and〈Ms :
s ∈ I〉 be a directed system. Then

⋃
s∈IMs ∈ K. Moreover

(a) If Ms ≺K N for everys ∈ I, then
⋃
s∈IMs ≺K N.

(b) Ms ≺K
⋃
t∈IMt, for everys ∈ I.

PROOF. Show directly for finite and countableI. For uncountableI by induc-
tion on|I| using the following:

FACT 1.13. For everyI uncountable directed set. There exists{Iα | α < |I|}
increasing such that eachIα is a directed subset ofI of cardinality |α| + ℵ0 and
I =

⋃
α<|I| Iα.

An early version of 1.12 can be found in Tsurane Iwamura’s paper from 1944
([Iw ]).

NOTATION 1.14. Denote byK<λ the class{M ∈ K : ‖M‖ < λ} and byKλ
the class{M ∈ K : ‖M‖ = λ}. I(λ,K) is the cardinality ofKλ / ∼=.

Some examples from “main stream mathematics”:

EXAMPLE 1.15 (Normed fields).Let

K := {〈F,+, ·, | |〉 | F is an algebraically closed field}

〈F1,+, ·, | |1〉 ≺K 〈F2,+, ·, | |2〉 ⇐⇒ F1 ≤ F2, (∀a ∈ F1)[|a|1 = |a|2]
and the value groups are the equal.

EXAMPLE 1.16 (Local fields).Let 〈F,+, ·, | |〉 be a non archimedean normed
field (i.e. |a + b| ≤ Max{|a|, |b|} for all a, b ∈ F ). It is well known that ([Cass])
R := {a ∈ F : |a| ≤ 1R} is a subring ofF andI := {a ∈ F : |a| < 1R} is a
maximal ideal ofR. The fieldR/I is called theresidue field ofF . A field islocal
iff its residue field is finite.

The classK := {〈F,+, ·, | |〉 : F is local} is an AEC when〈F1,+, ·, | |1〉 ≺K
〈F2,+, ·, | |2〉 is as in the previous example. Another relationK is defined by
dropping the requirement of equal value groups.
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EXAMPLE 1.17 (Noetherian rings).DefineR ≺K S iff R is a subring ofS
andR ≡∞,ω S. Notice that by Karp’s test whenR is Noetherian then alsoS is.

EXAMPLE 1.18 (Rings of finite dimension).LetK be a class of rings. Define
R ≺K S iff R is a subring ofS and ifI ( J are ideals ofR andI ′ ( J ′ are ideals
of S such that

1. I ′ ∩R = I,
2. J ′ ∩R = J and
3. there is no ideal ofR strictly betweenI andJ

then there is no ideal ofS strictly betweenI ′ andJ ′.

EXAMPLE 1.19 (coordinate rings).LetF be a finite field or the rationals. Sup-
posep ∈ F [x1, . . . , xn] is such that{a ∈ Fn | p(a) = 0} is an irreducible va-
riety. For an algebraically closed fieldK ≥ F let Kp be the coordinate ring of
{a ∈ Kn | p(a) = 0}. The following is an AEC:

Kp := {Kp | K is an algebraically closed field extendingF}.

The relation≺K is the subring relation.

Recently motivated by a problem in transcendental number theory, Boris Zilber
discovered the following most interesting example:

1.1. Zilber’s Schanuel structures.
Some of the most intractable problems of number theory involve trascendental

numbers. E.g. it is conjectured but unknown that the numbere+π is trascendental.
Schanuel’s conjecture (see 1.20 below) is a far reaching conjecture that implies the
above (using the identityeiπ = −1) and several other (very difficult) conjectures.

Let

Ke :=
{
〈F,+, ·, exp〉 | F is an algebraically closed field of characteristic zero,

∀x∀y[exp(x+ y) = exp(x) · exp(y)]
}

Kpexp :=
{
〈F,+, ·, exp〉 ∈ Ke | ker(exp) = πZ

}
Zilber introduced the following class:

Kexp :=
{
〈F,+, ·, exp〉 ∈ Kpexp | Satisfying EC, CC and SCH

}
EC is the essentially the requirement that the class is existentially closed.
CC stands forcountable closure property- every analytic subset ofFn of dimen-
sion0 is essentially countable.
SCH stands for

CONJECTURE1.20 (Schanuel).For everyx1, . . . , xn ∈ F if {x1, . . . , xn}
are linearly independent overQ then

tr.degF/Q{x1, . . . , xn, exp(x1), . . . , exp(xn)} ≥ n.
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ForM,N ∈ Kexp the relationM ≺Kexp N is defined asM ⊆ N and

tr.degM/Q{x1, . . . , xn} = tr.degN/Q{x1, . . . , xn}
for everyn < ω and for everyx1, . . . , xn ∈M.

Zilber noticed that〈Kexp,≺Kexp〉 is axiomatizable by a sentence ofLω1,ω(Q)
when the similarity type is that ofL(Ke).

Zilber managed to show using Fraissé’s- type of construction:

FACT 1.21 (Zilber). Kexp is categorical inℵ1

Using difficult field arithmetic (using the theories of fractional ideals in number
fields as well as Weil divisors and the normalization theorem) Zilber managed to
prove the following:

FACT 1.22 (Zilber [Zi1]). Given algebraically closed fieldsL1, . . . , Ln ⊆ C
and elementsa1, . . . , an ∈ C× the multiplicative group of the field

Q(L1, . . . , Ln, a1, . . . , an)

can be presented as

A · T · L×1 · · ·L×n ,
whereA is a free abelian,T is the torsion subgroup (whenn = 0).

Recently Zilber observed that the model-theoretic contents of Fact 1.22 is that
Kexp is an excellent class (in the sense of Shelah [Sh87b]). Recall that an AECK
is excellent ifKℵ0 satisfies a strong amalgamation property.

Using two results of Shelah that were discovered in the late seventies (in
the course of setting the fundations for classification theory for non elementary
classes).1

FACT 1.23 (Shelah [Sh87b]). An excellent class has arbitrarly large models.

FACT 1.24 (Shelah [Sh87b]). Let K be excellent. IfK is categorical in an
uncountable cardinal thenK is categorical in every uncountable cardinal.

Combining the last two together with Fact 1.22 Zilber concluded

COROLLARY 1.25 (Zilber). Kexp has a unique object of cardinality2ℵ0 . Thus
in order to prove Schanuel’s conjecture it suffices to show that the functionexp(x)
defined onC (obtained from the categorical structure) is indeedex.

Zilber also noticed that the structures ofKexp are not sequentially homoge-
neous, thus this class does not fit into the framework ofhomogenous model theory
(previously known asfinite diagrams stable in power). Thus it is a more “mathe-
matical” example than Marcus’s example of a categorical class that is not homo-
geneous from [Ma]. This is also the first example known to me for a categorical
AEC very different from the previous ones.

I think that it is astonishing that model theoretic work that in the past was
viewed by many to be detached from the main body of mathematics which de-
pends heavily on methods of combinatorial set theory can have connections with

1At first Zilber rediscovered in [Zi2] a special case of Shelah’s 1.24.
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”concrete” mathematics, especially transcedental number theory. I am confident
that in the future many other concrete examples will be found.

2. what is the purpose of this?

Develop a classification theory for non elementary classes forK = Mod(T )
whenT is a completeLω1,ω-theory (or maybe some other non first-order theory).

We try to imitate the rich and productive theory for elementary classes.
Eventually this will have applications in “mainstream” mathematics.
What is classification theory?

We want to be able to answer every question aboutKλ / ∼=.
Basic test questions:

1. Givenλ ≥ LS(K) isKλ 6= ∅?
2. DoesKλ 6= ∅ imply Kλ+ 6= ∅?
3. DoesI(λ+,K) = 1 imply thatI(λ,K) = 1?
4. What are the possible functionsλ 7→ I(λ,K)?
5. Under what condition onK is it possible to find a nice dependence relation

on subsets of everyM ∈ K?

In pure model theory the Łoś Conjecture (see [Lo]) was a major driving force:

CONJECTURE2.1 (Łós conjecture 1954 and Morley 1965).Let T be a first-
order theory. If there existsλ > |T |+ ℵ0 such thatI(λ, T ) = 1 thenI(µ, T ) = 1
holds for everyµ > |T |+ ℵ0.

In 1965 Morley [Mo1] confirmed the conjecture for theories in a countable lan-
guage. For his proof Morley discovered the notions of Morley rank, prime model
over a set and implicitly strongly minimal formulas. Important progress was made
earlier by Ehrenfeucht and Mostowski as well as by Vaught. At the end of his
article [Mo1] Morley raised the question whether his categoricity theorem holds
for theories in uncountable languages. Several people recognized it as an impor-
tant problem. Fredrick Rowbottom [Ro] and J. P. Ressayre [Re] made important
progress toward a complete solution. In 1970, in addition to building on earlier
work, Shelah invented superstable theories, weakly minimal formulas and local
rank to prove the conjecture for all first-order theories.

There is a need for good test-questions to measure progress in classification
theory for non-elementary classes. Around 1977 Shelah proposed a conjecture that
would serve as a benchmark for progress of the theory and may serve as a guide
for future developments:

CONJECTURE2.2 (Shelah’s conjecture).LetT be a countable theory inLω1,ω.
If there existsλ ≥ iω1 such thatI(λ, T ) = 1 thenI(µ, T ) = 1 holds for every
µ ≥ iω1 .

There is a similar conjecture for AEC generalizing the above conjecture. See
Conjecture 3.6 in the next section.

Based on experience with the first-order version it is likely that any attempt to
prove 2.2 will produce a rich and powerful machinery. Indeed the partial results
obtained so far indicate that this is the case.
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A word about examples: Essentially all known examples for categorical classes
are derived from first-order ones.

Generic example:Let T be a countable first-order theory categorical inℵ1.
SupposeM |= T of cardinalityℵ1, pick a countableA subset of|M |.
LetL′ := L(T ) ∪ {P} whenP is a new unary predicate.

ψT,A :=
∧
T ∧ ∀x[P (x)→

∨
a∈A

x = a]

By the proof of Morley’s theorem,ℵ1-categoricity ofT implies that also
Th(〈M,a〉a∈A) is categorical in everyλ ≥ ℵ1. This is an example of an
Lω1,ω-theory categorical in all uncountable cardinals.

The only exceptions are the example of coordinate rings (Example 1.19) which
is categorical in every uncountable cardinal, Marcus’s example and Ziber’s Shanuel
structures.

I think it is too early at this stage of the theory to formulate a Zilber-like con-
jecture of the nature of all categorical AECs or even the categoricalLω1,ω-theories,
but perhaps there is a classifcation of the classes categorical classes above the Hanf
number.

Conjecture 2.2 is very open. There are more than 500 published pages dedi-
cated for partial results. Among them are:

1. Keisler (1971), using a two cardinal theorem that improves Vaught’s the-
orem, has shown that under the additional assumption of the existence of
sequentially homogeneous model the conjecture is true. Unfortunately,
Shelah observed that using a construction of Leo Marcus [Ma], Keisler’s
additional assumption does not follow from categoricity. Thus Keisler’s
strategy, while being very elegant, is a dead end.

2. Shelah (1978) in [Sh87a] and [Sh87b] building on [Sh48] proved a form
of the conjecture under the additional assumption ofI(ℵn+1, T ) < 2ℵn+1

for everyn < ω. Such a class of structures is called anexcellent class.
Grossberg and Hart [GrHa ] proved the main gap for excellent classes.

3. Lessmann ([Le1]) proved the conjecture for countable finite diagrams, us-
ing a Baldwin-Lachlan style argument by introducing the necessary prege-
ometries via a new rank function.

4. Makkai and Shelah [Sh285] proved a downward version of the conjecture
under the additional assumption that bothλ andµ are above a strongly
compact cardinal, andλ = χ+. It is a major open problem of [Sh 702] to
get rid of the assumption thatλ is a successor. There are nicely behaved
forking and orthogonality calculi for this.

5. Kolman-Shelah [KoSh] and Shelah [Sh472] contain partial going down re-
sults forλ above a measurable cardinal with the additional assumptions that
K has the amalgamation property andλ is a successor cardinal.

6. [Sh 394] deals with classes that satisfy the amalgamation property. Sev-
eral important concepts are introduced and a downward categoricity is con-
cluded without using a large cardinal assumption as in [KoSh].
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7. In [ShVi] Shelah and Andŕes Villaveces embarked on an even more am-
bitious program: Deal with the categoricity conjecture for classes with
slightly weaker model and set-theoretic assumptions. Namely, they assume
GCH and work with classes that have no maximal models (this is a weaken-
ing of the amalgamation property). Recently more progress on this direction
was made by Monica VanDieren [Va].

8. Inspired by a question of mine, whether it is possible to generalize the re-
sults of [Sh48] and [Sh88] for uncountable cardinals (or forPCκ classes for
uncountableκ). E.g. generalize [Sh48] from ℵ1 to arbitraryλ. the problem
is that both in [Sh48] and [Sh88] the assumption that the categoricity is the
successor ofℵ0 was used heavily in a form of applying a weak compactness
phenomenon (in the form of undefinability of a well ordering inLω1,ω). I
suspected that this attempt must produce new model-theoretic machinery.
It turns out that I was right. In several massive papers Shelah answered
that question and more. This appears in [Sh 576] (125 pages), [Sh 600] (82
pages), and [Sh 603] (20 pages). In particular he has shown (under weak
GCH and no large cardinals) that ifK is categorical in bothλ andλ+ then
I(λ++,K) < 2λ

++
=⇒ Kλ+++ 6= ∅.

9. Depending heavily on [Sh 576] Shelah in [Sh 705] is developing the analog
theory of excellent classes (from [Sh87b]) for AECs. The current draft of
the paper has more than 120 pages in it.

In 1986 I proposed

CONJECTURE2.3 (Intermediate Łós conjectures).Letψ ∈ Lω1,ω

1. If ψ is categorical in someλ ≥ iω1 , thenMod(ψ) has the amalgamation
property in everyµ ≥ iω1 .

2. If Mod(ψ) has the amalgamation property for allµ ≥ iω1 , thenψ categor-
ical in someλ ≥ iω1 implies thatψ categorical inχ for everyχ ≥ iω1 .

In section 6 it will be shown that the amalgamation property permits a nice
theory of types.

In [KoSh] Oren Kolman and Shelah derive the amalgamation property from
the assumption thatψ is categorical above a measurable cardinal. Lately Shelah
and Villaveces in [ShVi] have shown that ifK has no maximal models (i.e. every
M ∈ K has a proper≺K-extension inK) the weak GCH implies that every model
can be extended to an amalgamation base.

[Sh 394] is dedicated to progress toward #2. It contains a proof of a downward
version of the categoricity conjecture under the assumption that the class has the
amalgamation property.

WHY?
What could be the benefits of such a theory? Looking at the first-order exam-

ple the notions of independence, several model-theoretic rank functions, forking,
orthogonality calculus, regular types, pre-weight, prime models etc. all have found
concrete applications in algebra, generalizing Krull’s dimension theory from com-
mutative algebra.

1. Clarify the above notions:
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“Studying only the model theory of first-order logic would be
analogous to the study of real analysis never knowing of any but
the polynomial functions; core concepts like continuity, differ-
entiability, analyticity, and their relations would remain at best
vaguely perceived. It is only the study of more general functions
that one sees the importance of these notions, and their different
roles, even for the simple case.”-Jon Barwise, page 15–16 of
[BaFe].

2. It is beautiful and difficult mathematics.
3. Effect on model theory for first-order theories. Already [Sh87a] and [Sh87b]

had a profound effect on the proof of main gap for first-order theories. Es-
pecially good sets and stable systems. See the last 5 sections of Chapter
XII in [ Sh c] and what Shelah named the book’s main theorem-Theorem
XII.6.1. I expect that a similarn-dimensional analysis will be used to better
our understanding of simple unstable first-order theories. Also classification
theory over a predicate benefited much from this.

4. Many interesting concepts of classical mathematics are not first-order
(Archimedean, Noetherian and any chain conditions. etc).

5. Potential applications in classification theory of finite models. See Baldwin
and Lessmann [BaLe] and Lessmann [Le3].

3. basic facts

The following is the notion of pseudo-elementary (or projective) class.

DEFINITION 3.1. LetL1 ⊇ L and letT1 be a first-order theory inL1, suppose
thatΓ is a set ofT1-types without parameters. We denote by

PC(T1,Γ, L) = {M ¹ L : M |= T1 andM omits all types fromΓ }.
DEFINITION 3.2. A classK of structures is called aPC-classif there exists an

expansionL1 of L(K), a first-order theoryT1 in L1 and a set ofT1-typesΓ such
thatK = PC(T1,Γ, L(K)). When|T1| + |Γ| + ℵ0 = µ we say that the class is
PCµ.

In the special case whenL1 = L(K) we writeEC(T,Γ) for PC(T,Γ, L(K))
and say that the classK is anEC-class.

THEOREM 3.3 (C.C. Chang 1968).If T is a theory inLµ+,ω of cardinality
≤ µ thenMod(T ) is PCµ.

Similarly to Birkhoff’s presentation theorem for varieties/equational classes,
there is a syntactic presentation theorem which generalizes Theorem 3.3:

THEOREM 3.4 (Shelah’s presentation theorem).
If (K,≺K) is an AEC, then there existsµ ≤ 2LS(K) such thatK is a PCµ class.
AlsoK≺K := {(N,M) | M ≺K N} is a PCµ class, forL(K≺K) consisting of a
single unary predicate symbol.

A proof uses Theorem 1.12, details can be found in [Sh88] or in Chapter 13 of
[Gr ].
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Using Morley’s result on the bound on computing Hanf numbers this imme-
diately gives a corollary that is surprising and difficult to prove directly from the
definitions, but is a trivial consequence of Shelah’s presentation theorem.

COROLLARY 3.5. Let(K,≺K) be an AEC. IfKλ 6= ∅ for someλ ≥ i
(22LS(K)

)+

thenKχ 6= ∅ holds for allχ ≥ LS(K).

A generalization of Conjecture 2.2 to AECs appears in [Sh 702]:

CONJECTURE3.6 (Shelah’s conjecture for AEC).LetK be an AEC. If there
existsλ ≥ i(2LS(K))+ such thatI(λ,K) = 1 thenI(µ,K) = 1 holds for every
µ ≥ i(2LS(K))+ .

Now we introduce the appropriate generalization of elementary embedding.

DEFINITION 3.7. For M,N ∈ K a monomorphismf : M → N is called a

K-embeddingiff f [M ] ≺K N . Denote this by writingf : M
K
↪→ N . When the

identity ofK is clear it is omitted and we writef : M ↪→ N .

DEFINITION 3.8. Let (K,≺K) be an AEC, and letµ, κ ≥ λ ≥ LS(K) be
cardinals.

1. We say that a modelM ∈ Kλ is a (µ, κ)-amalgamation baseiff for every

M1 ∈ Kκ,M2 ∈ Kµ andf` : M
K
↪→M` for ` = 1, 2, there existsN ∈ K so

that there areg1 : M1
K
↪→ N andg2 : M2

K
↪→ N satisfyingg1◦f1 = g2◦f2.

Namely, the following diagram is commutative:

M1
g1 // N

M

f1

OO

f2

// M2

g2

OO

N is called anamalgamofM,M1,M2, f1, f2.
Whenκ = µ = λ we say thatM is anamalgamation base.

2. M ∈ Kλ is an (< µ,≤ κ)-amalgamation baseiff for everyλ ≤ µ1 < µ,

λ ≤ κ1 ≤ κ, M1 ∈ Kκ1 , M2 ∈ Kµ1 andf` : M
K
↪→ M` for ` = 1, 2, there

exists an amalgamN ofM,N1, N2, f1 andf2.
3. K satisfies the(λ, µ, κ)-amalgamation propertyiff everyM ∈ Kλ is an

(µ, κ)-amalgamation base.
4. K satisfies theλ-amalgamation propertyiff everyM ∈ Kλ is an amalga-

mation base.

It is a corollary of the Robinson consistency theorem that ifK = Mod(T ) for
some complete first-order theory thenK has theλ-amalgamation property for all
λ ≥ ℵ0 + |L(T )|.
Kλ has the JEP iff for everyM1,M2 ∈ Kλ there areN ∈ K andK-embeddings

f` : M`
K
↪→ N .
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REMARK 3.9. Note that for first-order theories an even stronger amalgama-
tion property holds. Every model is an amalgamation base for arbitrarily large
models. I.e. remove the requirements that the modelsN` have the same cardinal-
ity asM . The stronger amalgamation property is used in[Va], but we will work
here with that from the previous definition (when both extensions are of the same
cardinality as the base.)

Already in 1956 B. J́onsson studied abstract elementary classes with the amal-
gamation and JEP properties. This influenced Morley and Vaught to introduce
saturated models ([MoV ]). Shelah was the first in [Sh88] to consider AEC in the
context ofclassification theory. Implicitly indicating that the methods of stabil-
ity/classification theory are not limited to elementary classes only and potentially
have a broader applicability than first order.

In the proof of Morley’s categoricity theorem (as well as in Shelah’s general-
ization to uncountable theories) saturated models play a central role. At first one
shows that saturated models exists (at least at the categoricity cardinalλ) and using
the uniqueness of them it suffices to show that having an uncountable non-saturated
model implies the existence of a non-saturated model inλ, contradicting categoric-
ity. Non elementary classes in their very nature are connected to omitting types, so
working with saturated models is not reasonable.

It turns out thatmodel homogeneityis a good replacement for saturation. In that
it generalizes saturation (for elementary classes) and we have the analog existence
and uniqueness theorems.

DEFINITION 3.10. LetK be an AEC.

1. Letλ > LS(K). We say thatM is λ-model homogeneousiff for all N ≺K
N ′ ∈ K<λ such thatN ≺K M there existsf : N ′

K
↪→ M such thatf ¹

|N | = id|N |.
2. M is said to bemodel homogeneousiff M is ‖M‖-model homogeneous.

It is an exercise (using the compactness theorem) to show:

PROPOSITION3.11. LetK be an elementary class. Forλ > LS(K) andM ∈
Kλ.
M is saturated iffM is model homogeneous.

By imitating the argument of the proof of existence of saturated models one
can show:

THEOREM 3.12 (existence).LetK is an AEC andλ ≥ LS(K). Suppose that
2λ = λ+. Further assume thatKλ+ is not empty. IfK has theλ-amalgamation
property, then there exists a model homogeneousM ∈ Kλ+ .

THEOREM 3.13 (better existence).Suppose thatK be an AEC such thatµ >
LS(K) satisfiesµ = µ<µ andKµ is not empty. IfK has the(< µ, µ)-amalgamation
property, then for allN ∈ Kµ there existsM ÂK N,M ∈ Kµ which is model ho-
mogeneous.
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THEOREM 3.14 (uniqueness).LetK be an AEC. Suppose thatKλ is categori-
cal for someλ ≥ LS(K). If M andN are model homogeneous members ofKλ+ ,
thenM ∼= N .

There are uniqueness theorems that follow from weaker assumptions.
While model homogeneity is very nice, model homogeneous models are nat-

ural to consider only whenK has the amalgamation property. I.e. Suppose that
K is categorical inλ andK has no maximal models. The model of cardinalityλ
is model homogeneous iffK has the(< µ, µ)-amalgamation property for every
µ < λ.

A substitute called(µ, σ)-limit model was introduced in [KoSh] and where
used in a substantial way to obtain the amalgamation property (from categoricity
above a measurable cardinal), limit models reappeared also in [Sh 394] under the
assumption thatK has the amalgamation property. Further study of limit mod-
els (without requiring the amalgamation property) is in Shelah and Villaveces in
[ShVi]. The uniqueness: Any two(µ, σ)-limit models are isomorphic for different
σ’s was proved only lately by Monica VanDieren who has introduced and offered a
characterization of the correct notion of model homogeneity for classes not requir-
ing amalgamation in [Va]. Since most of this article deals with classes that have
the amalgamation property I will not discuss(µ, σ)-limit models here.

4. the beginning of classification theory for AEC

In his JSL list of open problems from 1975 Harvey Friedman reproduced a
question that started classification theory for non elementary classes.

QUESTION 4.1 (Baldwin’s problem 1975).Does there exists a countable sim-
ilarity type and a countableT ⊆ L(Q) (in theℵ1 interpretation) such thatT has
a unique uncountable model (up to isomorphism)?

Since the Downward L̈owenheim Skolem theorem holds forL(Q), Baldwin’s
question is equivalent to “Does there exists a countable similarity type and a count-
ableT ⊆ L(Q) such thatT is categorical inℵ1 but does not have a model of
cardinalityℵ2?”

The question is important since it suggested for the first time a connection
between categoricity in a cardinal and existence of models in its successor.

A natural extension (generalizingL(Q) by an AEC and more importantly re-
placingℵ0 by an arbitraryλ):

QUESTION 4.2. LetK be an AEC andλ ≥ LS(K). Doescategoricityin λ+

ofK implyexistenceof a model of cardinalityλ++?

The following is a relatively simple example of a family of deep results that
was motivated by Baldwin’s question.

THEOREM 4.3. Suppose2λ < 2λ
+

. For an AECK which fails to have the
λ-amalgamation property. IfI(λ,K) = 1 andλ ≥ LS(K) thenI(λ+,K) = 2λ

+
.

Section 8 of this paper is dedicated to the a proof of Theorem 4.3.
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The set-theoretic assumption2λ < 2λ
+

is known as theweak continuum
hypothesissince it follows from2λ = λ+. However instead of using cardinal
arithmetic we use a “diamond-like” combinatorial principle known as the Devlin-
Shelah’s weak diamond:

FACT 4.4 (Devlin-Shelah).If 2λ < 2λ
+

then there areλ+ pairwise disjoint
stationary subsets ofλ+ such that for any of these setsS the principleΦ2

λ+(S)
holds, whereΦ2

λ+(S) is:

For all F : λ
+>2→ 2 there existsg : λ+ → 2 so that for everyf : λ+ → 2 the set

{δ ∈ S | F (f ¹ δ) = g(δ)} is stationary.

For more details see [DS] or section 13.5 of [Gr ] or Chapter 13 of [Sh f].
The use of the weak diamond is essential, the statement of Theorem 4.3 is false

underMAℵ1 + 2ℵ0 > ℵ1:

FACT 4.5. There exists an AEC,K withLS(K) = ℵ0 such that

1. K is categorical inℵ0,
2. Kℵ1 6= ∅ and
3. The amalgamation property fails inKℵ0 .

We have that
MAℵ1 + 2ℵ0 > ℵ1 =⇒ I(ℵ1,K) = 1.

This class is obtained by essentially considering the countable substructures of
the random bipartite graph whose left side isω and right side isω1. The categoricity
proof is similar to Baumgartner’s ([Bau]) proof of the uniqueness ofℵ1-dense
orders.

I will conclude this section with a typical application of the weak diamond to
AEC, this is not a particular case of Theorem 4.3 but rather a different theorem.
The following theorem is a simple prototype of several more sophisticated results
(e.g. [ShVi] and [Va]). A structureM ∈ Kµ is calleduniversal modeliff for every
N ∈ Kµ there exists aK-embedding fromN intoM .

THEOREM 4.6. Suppose2λ < 2λ
+

. For an AECK which fails to have the
λ-amalgamation property. IfI(λ,K) = 1 and λ ≥ LS(K) thenKλ+ does not
have a universal model.

In this section, as well as in sections 5 and 8, I will use some elementary
facts about stationary sets of ordinals (all can be found in Kunen’s book [Ku ] or
in section 1.8 of [Gr ]): Let λ be an uncountable regular cardinal. A setC of
ordinals all less thanλ is called aclosed unbounded set (club)iff for every α < λ
there existsβ ∈ C such thatβ > α and for every boundedA ⊆ C we have that⋃
A ∈ C. A setS ⊆ λ is stationaryiff S ∩ C 6= ∅ for every clubC ⊆ λ.

FACT 4.7. Letλ be an uncountable regular cardinal. LetM be a structure of
cardinalityλ in a countable language.

1. If {Mi ≺M | i < λ} and{Ni ≺M | i < λ} are elementary chains which
are increasing and continuous such thatM =

⋃
i<λMi =

⋃
i<λNi and

‖Mi‖+ ‖Ni‖ < λ, for all i < λ, then the set{δ < λ | Nδ = Mδ} contains
a closed unbounded subset ofλ.
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2. Suppose thatL(M) contains a unary predicateP such thatPM is the set
of ordinals less thanλ. Then for every continuous increasing elementary
chain{Mi ≺ M | i < λ} such thatM =

⋃
i<λMi and‖Mi‖ < λ for all

i < λ the set{δ < λ | PMδ = δ} contains a club ofλ.

Instead of using the principleΦ2
λ+ directly we use another combinatorial prin-

ciple:

DEFINITION 4.8. Θλ+ is said to hold if and only if for all
{fη : η ∈ λ+

2 wherefη : λ+ → λ+} and for every clubC ⊆ λ+, there exists

η 6= ν ∈ λ+
2 and there exists aδ ∈ C such thatη ¹ δ = ν ¹ δ, fη ¹ δ = fν ¹ δ

andη[δ] 6= ν[δ].

In [DS] Devlin and Shelah have shown thatΘλ+ follows from Φ2
λ+ (see also

Chapter 13 of [Gr ]).
Now to the proof of Theorem 4.6:

PROOF. By assumption, we may takeN0, N1, N2 ∈ Kλ, that can not be amal-
gamated.

Forρ ∈ λ+>2 define a family ofMρ ∈ Kλ so that the following hold:

1. |Mρ| = λ(1 + `(ρ)),
2. ν l η →Mν ≺K Mη,
3. when`(ρ) is a limit ordinal,Mρ =

⋃
α<`(ρ)Mρ¹α,

4. Mρ̂ 0 andMρ̂ 1 cannot be amalgamated overMρ.

Usingλ-categoricity and the tripleN0, N1, N2 the construction is possible.
Forη ∈ λ+>2 letMη :=

⋃
α<λ+ Mη¹α.

Now suppose thatM ∈ Kλ+ is universal. Without loss of generality we may
assume that|M | = λ+. By universality for everyη ∈ λ+

2 there is aK-embedding
fη : Mη →M .

Now considerC := {δ < λ+ | δ = λ(1 + δ)}, it contains a club. Using
Θλ+ there areη 6= ν ∈ λ+

2 and δ ∈ C as in Θλ+ . Denote byρ the largest
common initial segment ofη andν (it is η ¹ δ). Sinceη[δ] 6= ν[δ] we assume
thatη[δ] = 0 andν[δ] = 1. PickM∗ ≺K M of cardinalityλ containing the set
fη[Mρ̂ 0] ∪ fν [Mρ̂ 1].

Note that the diagram

Mρ̂ 0
fη

// M∗

Mρ

id

OO

id
// Mρ̂ 1

fν

OO

is commutative in contradiction to requirement4 in the construction.

The argument used in the proof of Theorem 4.6 can be used to prove the fol-
lowing useful:
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COROLLARY 4.9. Suppose2λ < 2λ
+

andK is an AEC withLS(K) ≤ λ.
If I(λ,K) = 1 and there existsµ > λ such thatI(µ,K) = 1 thenK has the
λ-amalgamation property.

5. Solution to Baldwin’s question andK3
λ

SupposeT ⊆ L(Q). GivenM |= T of cardinalityℵ1 pick aψ ∈ Lω1,ω a Scott
sentence of a countable substructure ofM . Now letLA ⊆ Lω1,ω(Q) be a countable
fragment containingT andψ. Let K := Mod(

∧
T ∧ ψ) and letN1 ≺K N2 iff

N1 ⊆TV,LA N2. It is enough to prove:

THEOREM 5.1. Suppose〈K,≺K〉 is an AEC which isPCℵ0 . If K is categori-
cal both inℵ0 andℵ1 thenKℵ2 6= ∅.

PROOF. SinceK is categorical inℵ1 and closed under union it is enough to
show that

(∗) There areN0 6= N1 ∈ K ℵ1 such that

N0 ≺K N1.

The following concept is central to the theory:

DEFINITION 5.2.

K3
λ := {(M,N, a) : M,N ∈ Kλ, M ≺K N,

a ∈ |N | − |M |}.
OnK3

λ define a partial ordering by

(M,N, a) < (M ′,N ′, a′)
def⇐⇒ M ≺K M ′ ∧

M 6= M ′ ∧N ≺K N ′ ∧ a = a′.

WhenK is categorical inλ then the assumptionKλ+ 6= ∅ implies thatK3
λ 6= ∅.

REMARK 5.3. In the next section we will show that the element(M,N, a) of
K3
λ plays a similar role to that oftp(a/M,N) in first-order logic.

Using (∗) and the assumption thatI(ℵ1,K) = 1 once more, Theorem 5.1
follows from:

THEOREM 5.4. Suppose〈K,≺K〉 is an AEC which isPCℵ0 . If K is categor-
ical in ℵ0 and the poset〈K3

ℵ0
, <〉 is not empty and has a maximal element then

I(ℵ1,K) = 2ℵ1 .

Why enough? If every element ofK3
ℵ0

has an extension define{(Mα, Nα, a) |
α < ω1} ⊆ Kℵ0 , strictly increasing and continuous. Then the following is a
witness for(∗): ⋃

α<ω1

Mα ≺
⋃
α<ω1

Nα, sincea /∈
⋃
α<ω1

Mα.

It is time to recall a fact from the mid sixties that was discovered independently
by Lopez-Escobar (using proof-theoretic methods) and Morley (using model-theoretic
techniques):
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FACT 5.5 (undefinability of well-ordering).LetK∗ be aPCℵ0-class such that
L(K∗) contains a binary relation< and a unary predicateP . If there existsA ∈
K∗ with 〈PA, <A〉 = 〈ω1,∈〉, then there existsB ∈ K∗ such that there is{αn ∈
PB | n < ω} satisfying

B |= αn+1 < αn for all n < ω.

The main step is the following:

LEMMA 5.6 (technical lemma).Suppose〈K,≺K〉 is an AEC which isPCℵ0 ,
andK is categorical both inℵ0 andℵ1. Then for everyM ∈ Kℵ0 there are
{Mn ∈ Kℵ0 n < ω} such that for everyn < ω we have thatMn+1 ≺K Mn and
M =

⋂
n<ωMn.

PROOF. By categoricity inℵ0 it is sufficient to show that there exists a model
M as in the statement.

Let T1,Γ1, T2,Γ2 be at most countable such that
K = PC(T1,Γ1, L(K)) and{〈|N |, |M |〉 : M ≺K N} = PC(T2,Γ2, {P (x)}).
Since〈K,≺K〉 is an abstract elementary class andKω1 6= ∅ we can fix an≺K-
increasing continuous chain of models{Mα ∈ Kℵ0 : α < ω1}. Denote by
f : ω1 → Kℵ0 the mappingα 7→ Mα. LetM :=

⋃
α<ω1

Mα. For everya ∈ |M |
let h(a) := Min{ξ < ω1 : a ∈ |Mξ|}.

By the reflection principle there exists a regular cardinalχ sufficiently large so
that

H(χ) ⊇ {λ+, f, h,M, T1,Γ1, T2,Γ2, L(K), ...} and 〈H(χ),∈〉 reflects all
relevant information. Namely

〈H(χ),∈〉 |=∀a ∈ |M |[h(a) ∈ ω1] ∧ ∀α < γ ∈ ω1

[f(α) ∈ PC(T1,Γ1, L(K)) ∧
〈f(γ), f(α)〉 ∈ PC(T2,Γ2, {P (x)})]

(1)

〈H(χ),∈〉 |= ∀α < γ ∈ ω1[α < γ → f(α) ≺K f(γ)](2)

〈H(χ),∈〉 |=∀α ∈ ω1[∀γ[γ < α→ γ + 1 < α]]→
∀M ∈ Rang(f)[M ≺K f(α) ∧M 6= f(α)]→
∃i < α[M ≺K f(i)]]

(3)

〈H(χ),∈〉 |= “〈K,≺K〉 is an AEC”(4)

〈H(χ),∈〉 |= “〈K,≺K〉 satisfies Theorem 1.12”(5)

〈H(χ),∈〉 |= M =
⋃
α<ω1

f(α)

〈H(χ),∈〉 |= ∀a ∈ |M |[a ∈ f(h(a))]

∧ (∀α ∈ ω1)[α < h(a)→ a 6∈ f(α)].

(6)
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Let

A := 〈H(χ),∈, |M |, ω, f, h,Q, T̄1, T̄2Γ̄1, Γ̄2, ϕ, p, ζ〉ζ<λ,ϕ∈T1∪T2,p∈Γ1∪Γ2 .

WhereΓ̄1, Γ̄2 are unary predicates interpreted by the corresponding sets of types,
similarly T̄l are unary predicates interpretingTl,Q is a unary predicate interpreted
by the set of ordinalsω1, ω is a unary predicate interpreted by the set of natural
numbers andf andh are unary function symbols interpreted by the corresponding
functions. ζ, ϕ and p are individual constants interpreted by the corresponding
elements. Now letp1(y) := {Γ̄1(y) ∧ y 6= q : q ∈ Γ1},
p2(y) := {Γ̄2(y) ∧ y 6= q : q ∈ Γ2} and
p3(ϕ) := {T̄1(ϕ) ∧ ϕ 6= ψ : ψ ∈ T1},
p4(ϕ) := {T̄2(ϕ) ∧ ϕ 6= ψ : ψ ∈ T2}, finally let
p5(j) := {λ(j) ∧ j 6= ζ : ζ < λ}.

Denote byT3 the theory ofA. ClearlyA ∈ EC(T3, {p1, p2, p3, p4, p5}) and
for all B ∈ EC(T3, {p1, p2, p3, p4, p5}) sinceTB

l = Tl, ΓB
l = Γl and we have

(using(∗)0 and(∗)1) that

For allα < γ ∈ QB [f(α) ≺K f(γ)] ∧ [f(α) ∈ PC(T1,Γ1, L(K))].

SinceB omitsp5 we get thatλB = λ, namely we have thatKB
λ /
∼= = Kλ / ∼=.

Since〈QA,∈〉 has order typeλ+ and from the assumption onλ an application
of Fact 5.5 toEC(T3, {p1, p2, p3, p4, p5}) produces a model
B ∈ EC(T3, {p1, p2, p3, p4, p5}) such that there exists{αn : n < ω} ⊆ QB such
that for everyn < ω we have thatB |= αn+1 < αn. Forn < ω letMn := f(αn).
We conclude with showing that

CLAIM 5.7. There existsN ∈ KB
λ such thatN =

⋂
n<ωMn.

PROOF. Sinceω ⊆ QB and for allk < ω and for everyn < ω we have

B |= [k < αn],

the setI := {β ∈ QB : ∀n < ω[β < αn]} is nonempty and directed. Since
〈K,≺K〉B is an abstract elementary class (by(∗)3) we have that there existsN :=⋃
s∈I f(s). By the definition ofN we have that for alln < ω N ≺K Mn. So

clearlyN ⊆ ⋂n<ωMn. Using the functionh we show that the last two sets are
equal. Suppose that there existsa ∈ ⋂n<ωMn − |N |. By (∗)5 there exists a first
γ ∈ Q such thata ∈ f(γ). Sincea ∈ Mn for everyn by minimality we get that
γ ≤ αn for all n < ω. Sincef is order-preserving we get thatf(γ) ≺K f(αn),
namelyf(γ) ⊆ Mn for all n which is a contradiction to the choice of the element
a.

Suppose(M,N, a) ∈ K3
ℵ0

is maximal. Given anyS ⊆ ω1, define{MS
α :

α < ω1} ⊆ Kℵ0 as follows:

1. |MS
α | = ω(1 + α),

2. Forα limit, MS
α =

⋃
β<αM

S
β ,

3. forα = β + 1, there are two cases:
(a) if β ∈ S, usingℵ0-categoricity takeMS

β+1 ºK MS
β and

aSβ ∈ |MS
β+1| − |MS

β | so that(MS
β ,M

S
β+1, a

S
β ) ∼= (M,N, a)
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(b) if β 6∈ S, then take a descending decomposition. I. e. apply Lemma
5.6 to the modelMS

β to get a descending{Mn | n < ω} ⊆ Kℵ0 such

thatMS
β =

⋂
n<ωMn. Now defineMS

β+1 to beM0.

Notice thatα < β =⇒ MS
α ¹K MS

β .

For each setS letMS :=
⋃
α<ω1

MS
α .

CLAIM 5.8. If S1 6≡ S2 mod Dω1 thenMS1 6∼= MS2 .

PROOF. Let S1 6≡ S2 mod Dω1 andf : MS1 ∼= MS2 be given. By require-
ment(1) of the construction|MS1 | = |MS2 | = ω1. Observe that

C1 := {δ < ω1 : (∀α < δ)[f(α) < δ]} is a club.

Using continuity of the chains we get that

C2 := {δ < ω1 : f ¹ δ : MS1
δ
∼= MS2

δ } is also a club.

TakeC := C1 ∩ C2. SinceC is a club we may assume without loss of generality
that there existsδ ∈ C ∩ (S1−S2). Sinceδ ∈ S1 by the construction we have that
(MS1

δ ,MS1
δ+1, a

S1
δ ) is a maximal element ofK3

ℵ0
. Since

f(aS1
δ ) 6∈MS2

δ ,

by the assumptionδ 6∈ S2 there existsn < ω such that

f(aS1
δ ) 6∈Mn.

Let N := f−1[Mn]. SinceMS2
δ is a proper substructure ofMn we have that

MS1
δ ( N . Since|N | is a countable subset of|MS1 | there existsγ < ω1 such that

N ≺ MS1
γ . SinceC ∩ (S1 − S2) is unbounded there existsξ ∈ C ∩ (S1 − S2)

greater thanmax{δ, γ}. Thus we have(N,MS1
ξ , aS1

δ ) is a properK3
ℵ0

-extension

of (MS1
δ ,MS1

δ+1, a
S1
δ ) contradicting its maximality.

By Ulam’s theorem the claim givesI(ℵ1,K) = 2ℵ1 .

6. Galois types

Recall the following basic result of elementary model theory:

FACT 6.1. Let C be an uncountable saturated model of cardinality greater
than|L(C)|. For a, b ∈ |C | andA ⊆ |C | such that|A| < ‖C ‖.

tp(a/A) = tp(b/A) ⇐⇒ ∃f ∈ AutA(C) such thatf(a) = b.

Namely the orbit of the elementa under the group action ofAutA(C) on C

can be identified withtp(a/A). The set ofL(K)-formulas satisfied bya does not
have the corresponding property for abstract elementary classes. Thus we need a
replacement. A replacement introduced by Shelah in [Sh 300] and since takes a
prominent role in model theory of AECs is to work directly with orbits instead of
set of formulas! This is the notion ofGalois typeto be defined below. Unfortu-
nately not having formulas (in any logic) creates many technical difficulties.
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DEFINITION 6.2. LetM ∈ Kλ, We say that(M,N1, a1) and (M,N2, a2) ∈
K3
λ, are∼-related, written

(M,N1, a1) ∼ (M,N2, a2),

if there existsN ∈ Kλ andK-embeddings

h1 : N1 → N and h2 : N2 → N,

such that

h1(a1) = h2(a2)

and the following diagram commutes:

N1
h1 // N

M

id

OO

id
// N2

h2

OO

LEMMA 6.3. Suppose thatKλ has the amalgamation property. ForM ∈ Kλ
the relation∼ is an equivalence relation onK3

λ.

PROOF. Exercise, notice that we use thatM andN` are amalgamation bases.

DEFINITION 6.4 (Galois types).

1. For (M,N, a) ∈ K3
λ, we let

ga-tp(a/M,N) = (M,N, a)/ ∼ .
This is thetype ofa overM in N .

2. ForM ∈ Kλ, we let

ga-S(M) = { ga-tp(a′/M,N ′) : (M,N ′, a′) ∈ K3
λ}.

3. Givenp ∈ ga-S(M) andN ∈ K≥λ, we say thatp is realizedby a ∈ N , if
there existsN ′ ≺K N of cardinalityλ containing|M | ∪ a such that

(M,N ′, a) ∈ K3
λ and p = ga-tp(a/M,N ′).

Assuming thatKℵ0 has the amalgamation property, the content of Theorem 5.4
is a weak replacement of the compactness theorem:

THEOREM 6.5 (extension property of types).LetK be an AEC which isPCℵ0 .
Then the assumptionI(ℵ1,K) = 1 implies that for everyM ≺K N ∈ Kℵ0 and
everyp ∈ ga-S(M) there existsq ∈ ga-S(N) extendingp.

Thus the assumptions of categoricity inℵ1 together withKℵ0 has the amalga-
mation property are a replacement of an easy fact in first-order logic which is a
corollary of the compactness theorem. This is a typical example of “compactness
regained” which appears also in much more complicated results.

DEFINITION 6.6. Let 〈K,≺K〉 be an abstract elementary class and suppose
that λ > LS(K). For N ∈ K≥λ the modelN is λ-Galois saturatediff for every
M ≺K N of cardinality less thanλ and everyp ∈ ga-S(M) is realized inN .
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The contents of the following theorem that for AEC classes that have the amal-
gamation property, model homogeneity and saturation are equivalent properties. It
is further evidence that the notion of Galois type makes sense.

THEOREM 6.7. Let〈K,≺K〉 be an abstract elementary class and suppose that
λ > LS(K). Suppose thatK has the(< λ,< λ)-amalgamation property then for
M ∈ K≥λ we have that
M is λ-Galois saturated iffM is λ-model homogeneous.

PROOF. It is easy to show that homogeneity implies saturation.
Let µ ≥ LS(K) be such thatµ < λ.
LetN1 ≺ N2 ∈ K≤µ be given such thatN1 ≺M .
We may assume thatµ is the cardinality ofN2. Fix 〈ai | i < µ〉 an enumeration

of N2. Now by induction oni < µ define two increasing continuous chains of
models〈N i

l , fi | i ≤ µ, l ∈ {1, 2}〉 and mappings〈fi | i < µ〉 satisfying:

1. N0
l = Nl, f0 = idN1 , ‖N i

2‖ = µ,
2. N i

1 ≺K N i
2,

3. fi : N i
1 ↪→M and

4. ai ∈ N i+1
1 for everyi < µ.

Since the chains are continuous we only have to define two models and an
embedding fori = j + 1:

LetM j
1 := fj [N

j
1 ]. Using Remark 1.6 letM j

2 be an amalgam ofN j
2 andM j

1

overN j
1 such thatM j

2 ÂM
j
1 and letgj : N j

2
∼= M j

2 be an extension offj . Namely
the diagram

N j
2

gj // M j
2

N j
1

id

OO

fj

// M j
1

id

OO

id
// M

commutes.
If gj(aj) ∈M j

1 then do nothing.
Otherwise considerp := ga-tp(gj(aj),M

j
1 ,M

j
2 ) and use the hypothesis that

M isµ+
2 -saturated to getM∗ ∈ Kµ2 and to findb ∈M∗ such thatM j

1 ≺M∗ ≺M
and(M j

1 ,M
j
2 , gj(aj)) ∼ (M j

1 ,M
∗, b).

Unwinding the definition of∼ gives: There exists
N∗∗ ∈ Kµ and mappingsh1, h2 such that the diagram

M j
2

h2 // N∗∗

M j
1

id

OO

id
// M∗

h1

OO
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commutes and in addition we have
h2(gj(aj)) = h1(b). By renaming the elements ofN∗∗ and changing the mapping
h1 accordingly we may assume thath2 is the identity. Thus by gluing the last two
diagrams together we get that the diagram

N j
2

gj // M j
2

id // N∗∗

N j
1

id

OO

fj

// M j
1

id

OO

id
// M∗

h1

OO

id
// M

commute. Now pickN i
2 Â N

j
2 andhj ⊇ gj such thathj : N i

2
∼= N∗∗.

So we have that

N i
2

hj

&&MMMMMMMMMMMMM

N j
2

id

OO

gj
// N∗∗

N j
1

id

OO

fj

// M∗

h1

OO

Commutes. LetN i
1 := h−1

j [h1[M∗]].
Sincegj(aj) = h1(b) (using also thatb ∈ M∗) we get thataj ∈ N j+1

1 and from
hj ⊇ gj and the fact that

N i
2

hj

''NNNNNNNNNNNNN

N∗∗

N j
1

id

OO

fj

// M∗

h1

OO

commutes we get thatN i
1 ⊇ N j

1 . Now we are ready to define the mappingfi, let
fi := h−1

1 ◦ (hj ¹ N j
1 ). It is aK-embedding that extendsfj as required. Verify

using AxiomA2 that
⋃
i<µ fi is an embedding ofN2 overN1 intoM .

7. Stability-like properties

REMARK 7.1. Notice thatK3
λ has no maximal element corresponds to “every

type overM can be extended to a type overM ′ for all M ( M ′ ∈ Kλ”. The
contents of Theorem 5.4 is that ifK is anPCℵ0 class categorical inℵ0 such that
I(ℵ1,K) < 2ℵ1 every type over a countable model has a proper extension.
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THEOREM 7.2 ([Sh 576]). SupposeK is aPCµ-class. Letλ ≥ µ.
If I(λ,K) = I(λ+,K) = 1 andKλ++ 6= ∅, thenK3

λ has no maximal element.

DEFINITION 7.3. (M0,M1, a) ∈ K3
λ is minimal iff for every

(M ′0,M
′
`, a`) ≥ h`(M0,M1, a) ` = 1, 2

we have thatga-tp(a1,M
′
0,M1) = ga-tp(a2,M

′
0,M2).

(M ′0,M
′
1, a
′) ≥ h(M0,M1, a) stands for “h is an embedding ofM1 intoM ′1 taking

M0 intoM ′0 andh(a) = a′”.

The above notion of minimal triple is a generalization of strongly minimal non
algebraic type. We are actually generalizing thestationarityproperty of strongnly
minimal types. I.e. ifa1, a2 realize extensions (to|M ′0|) of the minimal type ofa
then they types ofa1 anda2 are equal.

There are several basic existence results of strongly minimal types. I.e.

FACT 7.4. (W. Marsh) IfT is anℵ0-stable first-order then there exists a strongly
minimal formula.

It is natural at this stage to introduce the following “obvious” concept:

DEFINITION 7.5. K is stable inλ iff | ga-S(M)| ≤ λ for everyM ∈ Kλ .

An analog to Marsh’e theorem is the following result:

THEOREM 7.6. Letλ ≥ LS(K). SupposeK has theλ-amalgamation property
andK3

λ does not have a maximal triple. If there is no minimal(M0,M1, a) ∈ K3
λ,

let p := ga-tp(a/M0,M1) then the following holds:

1. There isM ′0 ∈ Kλ such thatM0 ¹M ′0 and
|{p′ ∈ ga-S(M0) : p′ ≥ p}| ≥ 2log(λ);

2. There existsN ∈ Kλ+ such thatM ′0 ¹ N and
|{p ∈ ga-S(M ′0) : p is realized inN}| = λ+.

Namely,

|{c ∈ N : ∃N ′ º N,M ′0 ¹ N ′, N ′ ∈ Kλ, such that

ga-tp(c/M ′0, N
′) ≥ ga-tp(a/M0,M1)}| = λ+.

The previous theorem is further evidence that the notion of Galois types is
useful.

The notion of minimal element ofK3
λ plays a central role in proving categoric-

ity results. A key to categoricity: Under strong assumptions onK we have that if
p ∈ ga-S(M) is minimal then for everyM2 Â M1 Â M if M1 ( M2 then there
existsa ∈ |M2| − |M1| realizingp.

At the current state of affairs there is no nice forking-like relation for AECs
(even under the assumption that they are categorical above the hanf number).

However there are several approximations. Since not even the parallel to Mor-
ley’s theorem is available for AECs one can investigate one of the coarser notions
from the days of stability theory before forking. Below it is shown that a notion
parallel to splitting of types is moderately nicely behaved. For this we make the
following
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HYPOTHESIS7.7. K has the(λ,< κ, µ)-amalgamation property for every
λ, κ andµ, we may assume that there exists a monster modelC. Bymonster model
we mean a very large model homogeneous model.

Notice that existence of large Galois-saturated models is also desireable, but
we need more than just amalgamation to prove their existence.

DEFINITION 7.8. SupposeN ≺K M ∈ K, λ ≥ ‖N‖ a cardinal number.The
typep ∈ ga-S(M) λ-splits overN iff there existsN1, N2, h of cardinalityλ such
that N ≺ N` ≺ M , h : N1

∼=
N
N2 and the typesp ¹ N2 and h(p ¹ N1) are

contradictory (= there ifN∗ is an extension ofM then there is noa ∈ |N∗| such
thata |= p ¹ N2 ∪ h(p ¹ N1)).

It is tempting to call the previoous notion Galois-splitting. However I feel
that doing so will make certain passages unreadable. It is important to recognize
the similarity of Galois-splitting to the ususal first-order splitting as well as the
differences. The key difference that here we don’t have a formula wittnessing the
splititng, moreover the splitting is evidenced bymodelsrather than a finite sequence
of parameters.

THEOREM 7.9. Let λ ≥ LS(K). SupposeK is stable inλ. For everyM ∈
K≥λ and everyp ∈ ga-S(M) there existsM0 ≺ M of cardinality≤ λ such thatp
does not split overM0.

PROOF. SupposeN ÂK M, a ∈ N such thatp = ga-tp(a/M,N) andp
splits overN0, for everyN0 ≺K M of cardinalityλ.

Let χ := min{χ | 2χ > λ}. Notice thatχ ≤ λ and2<χ ≤ λ.
We’ll define{Mα ≺ M | α < χ} ⊆ Kλ increasing and continuous≺K-chain

which will be used to constructM∗χ ∈ Kλ such that

| ga-S(M∗χ)| ≥ 2χ > λ obtaining a contradiction toλ-stability.

PickM0 ≺M any model of cardinalityλ.
Forα = β + 1; sincep splits overMβ there areNβ,` ≺K M of cardinalityλ

for ` = 1, 2 and there ishβ : Nβ,1
∼=Mβ

Nβ,2 such that
hβ(p ¹ Nβ,1) 6= p ¹ Nβ,2. PickMβ ≺K M of cardinalityλ containing the set
|Nβ,1| ∪ |Nβ,2|.

Now for α < χ defineM∗α ∈ Kλ and forη ∈ α2 define aK-embeddinghη
such that

1. β < α =⇒ M∗β ≺K M∗α,
2. forα limit let M∗α =

⋃
β<αM

∗
β ,

3. β < α ∧ η ∈ α2 =⇒ hη¹β ⊆ hη,
4. η ∈ α2 =⇒ hη : Mα

K
↪→M∗α and

5. α = β + 1 ∧ η ∈ α2 =⇒ hη 0̂(Nβ,1) = hη 1̂(Nβ,2).

The construction is possible by using theλ-amalgamation property atα =
β + 1 several times. Givenη ∈ β2 letN∗ be of cardinalityλ andf0 be such that
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the diagram

Mβ+1
f0 // N∗

Mβ

id

OO

hη
// M∗β

id

OO

commutes. Denote byN2 the modelf0(Nβ,2). Sincehβ : Nβ,1
∼=Mβ

Nβ,2 there
is aK-mappingg fixing Mβ such thatg(Nβ,1) = N2. Using the amalgamation
property now pickN∗∗ ∈ Kλ and a mappingf1 such that the diagram

Mβ+1
f1 // N∗∗

Nβ,1

id

OO

g
// N2

id

OO

Mβ

id

OO

hη
// M∗β

id

OO

Finally apply the amalgamation property to findM∗β+1 ∈ Kλ and mappingse0, e1

such that

N∗∗
e1 // M∗β+1

M∗β

id

OO

id
// N∗

e0

OO

commutes. After renaming some of the elements ofM∗β+1 and changinge1 we
may assume thate0 = idN∗ .

Let hη 0̂ := f0 andhη 1̂ := e1 ◦ f1.
Now for η ∈ χ2 let

M∗χ :=
⋃
α<χ

M∗α and Hη :=
⋃
α<χ

hη¹α.

TakeN∗η ÂK M∗χ fromKλ, an amalgam ofN andM∗χ overMχ such that

N
Hη // N∗η

Mχ

id

OO

hη
// M∗χ

id

OO

commutes.
Notice that

η 6= ν ∈ χ2 =⇒ ga-tp(Hη(a)/M∗χ, N
∗
η ) 6= ga-tp(Hν(a)/M∗χ, N

∗
ν ).
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Thus| ga-S(M∗χ)| ≥ 2χ > λ.

QUESTION 7.10. Is it possible to replaceℵ0 in Remark 7.1 with an uncount-
ableλ?

This is important since a positive answer will require developing a replacement
for the undefinability of well ordering inLω1,ω. The fact that undefinability of well
ordering does not have a natural generalization for uncountable cardinals follows
from an independence result of Jon Barwise and Ken Kunen [BaKu].

Here is a very simple example of a result from [Sh 576] in this direction:

THEOREM 7.11. Let λ ≥ µ. SupposeK is an AEC such thatK is PCµ,
I(λ,K) = I(λ+,K) = 1 andKλ++ 6= ∅. ThenK3

λ does not have a maximal triple.

PROOF. (K3
λ has no max element). SinceI(λ,K) = 1 andKλ+ 6= 0, it is

enough to show that
if (M0,M1, a) ∈ K3

λ, then there exists

(M ′0,M
′
1, a
′) ≥ (M0,M1, a)

such thatM0 6= M ′0.
Suppose for contradiction that(M0,M1, a) ∈ K3

λ is a maximal triple.
Define{Ni : i < λ+} ⊆ Kλ increasing continuous
and{hi : M1

∼= Ni+1 : i < λ+} such thatNi = hi[M0]. Since we want these
sets to be continuous, it is enough to define them at successor stages. GivenNi,
wherei < λ+, by I(λ,K) = 1 there exists an isomorphism̄h : M0

∼= Ni. Since
M0 ≺K M1, we can findNi+1 andhi such that̄h ⊆ hi and
h : M1

∼= Ni+1. Note thathi(a) ∈ Ni+1 −Ni. From the construction we get that
that(Ni, Ni+1, hi(a)) ∈ K3

λ is a maximal triple, fori < λ+.
Now letN =

⋃
i<λ+ Ni.

Then, sincehi(a) ∈ Ni+1 −Ni for all i < λ+ and since{Ni : i < λ+} is a chain,
N ∈ Kλ+ . SinceI(λ+,K) = 1 andKλ++ 6= 0, there isN1 6= N in Kλ+ such that
N ≺K N1.

Pick {N1
β ≺K N1 : β < λ+} ⊆ Kλ increasing and continuous such that for

all β < λ+, Nβ ⊂ N1
β butNβ 6= N1

β . (This is possible since|N1| 6= |N |).
Define a functiong : |N1| → λ+ as follows:

g(b) :=

{
i if hi(a) = b

0 Otherwise.

Notice that the relationg(b) = i is a function since we have seen above that
i 6= j =⇒ hi(a) 6= hj(a).

Applying the reflection theorem from set theory, letα be large enough such
thatVα contains the set

{N,N1,M0,M1, a, 〈Ni, N
1
i , hi : i < λ+〉, g, λ+,

“the PCµ definition of K ”}
and such that the model

B∗ = 〈Vα, ε, N,N1,M0,M1, Q,K, g, i 7→ (Ni, N
1
i , hi), a〉,
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whereQ = λ+, reflects the following sentences:
(i) ”{Ni : i < λ} is increasing and continuous inKλ+”
(ii) (∀i ∈ Q)[Ni ⊂ N1

i ∧Ni 6= N1
i ]

(iii) ”for all i ∈ Q, (Ni, Ni+1, hi(a)) is a maximal element inK3
λ”

(iv) g : |N1| → Q
(v) (∀b ∈ N1)(∃i ∈ Q)((hi(a) = b)→ g(b) = i)
(vi) N =

⋃
i∈QNi

(vii) N1 =
⋃
i∈QN

1
i .

LetB ≺K B∗ of cardinalityλ such thatQB = δ, a limit ordinal. (For example,
take{Bi ≺K B∗ : i < λ∗} increasing continuous such that||Bi|| = λ and
QBi ⊇ i. Then use the fact that{δ < λ+ : δ = QBδ} is a club.)

Now,NB =
⋃
α<δNα =

⋃
α<δNα = Nδ. Similarly,N1B = N1

δ .
Denoteaδ := hδ(a).
Claim Nδ+1 ∩ (N1)B = Nδ. In particular,aδ 6∈ N1

δ .

PROOF. If aδ ∈ N1
δ thenaδ ∈ B. SinceB is closed underg, g(aδ) ∈ B. But

recall that

B |=(g : |N1| → Q) ∧ (∀b ∈ N1)

((∃i ∈ Q)(hi = b)→ (g(b) = i)).

Sog(aδ) ∈ Q. Computeg(aδ) = δ.
SinceB |= ZF−, alsoδ + 1 ∈ QB, which contradicts the fact thatδ = QB.

If Nδ+1 ∩N1
δ properly containsNδ, then since

aδ ∈ Nδ+1 ⊆ N1
δ+1, by the fact thata 6∈ N1

δ we get that(N1
δ , N

1
δ+1, aδ) ∈ K3

λ.
And since then

(Nδ, Nδ+1, aδ) < (N1
δ , N

1
δ+1, aδ),

we get a contradiction to the assumption that
(Nδ, Nδ+1, aδ) is a maximal triple.

In [GrVa ] Grossberg and VanDieren have shown that for categorical AEC
Morley-sequences exist when the dependence relation is non splitting.

Denote byM ≺univK N the statementN is universal overM i.e. for every
M ′ Â M of cardinality‖M‖ there exists aK-embedding fromM ′ into N over
M .

DEFINITION 7.12 (from [GrVa ]). Let K be an AEC. The class is calledµ-
superstableiff there existsµ > LS(K) satisfying

1. for everyM ∈ Kµ, there existsM ≺univK M ′ ∈ Kµ and
2. for everyκ = cf(κ) < µ+ whenever〈Mi ∈ Kµ | i ≤ κ〉 is ≺univK -

increasing and continuous andp ∈ ga-S(Mκ), there existsi < κ such that
p does notµ-split overMi.

THEOREM 7.13 (from [GrVa ]). SupposeK is µ-superstable for someµ ≥
LS(K) andK has the amalgamation property. LetM ∈ K>µ, A, I ⊂ M be
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given such that|I| ≥ µ+ > |A|. Then there existsJ ⊂ I of cardinality µ+,
indiscernible overA. MoreoverJ can be chosen to be a Morley sequence overA.

Where

DEFINITION 7.14 ([GrVa ]). {ai ∈ µ+} is a Morley sequence overM0 iff
there exists an≺K-chain {Mi | i < µ+} such thatpi := ga-tp(ai/Mi,Mi+1)
does notµ-split overM0 and〈ai | i ∈ λ〉 is an indiscernible sequence overM0.

8. proof of Theorem 4.3

Before starting the proof let me point out that we will be using eth Devlin-
Shelah weak diamond. Instead of using the principleΦλ+ we use a principle that
may look little stronger but using a pairing function together with with Fact 4.7 one
can show that it follows fromΦλ+ :

We will be using:
There exists a stationary subsetS of λ+ such that for every

F : <λ+

λ+×<λ+

λ+×<λ+

λ+ → 2,

there exists a guessg : λ+ → 2, such that for everyη, ν, h : λ+ → λ+, the set

{δ ∈ S | F (η ¹ δ, ν ¹ δ, h ¹ δ) = g(δ)} is stationary.

PROOF OFTHEORM 4.3. Recall thatI(λ,K) = 1 andK fails to have theλ-
amalgamation property implies thatKλ+ is nonempty.

By assumption, we may takeN0, N1, N2 ∈ Kλ, that can not be amalgamated.
Forη ∈ λ+>2 define a family ofMη ∈ Kλ so that the following hold:

1. |Mη| = λ(1 + `(η)),
2. ν l η →Mν ≺K Mη,
3. when`(η) is a limit ordinal,Mη =

⋃
α<`(η)Mη¹α,

4. Mη 0̂ andMη 1̂ cannot be amalgamated overMη.

Usingλ-categoricity and the tripleN0, N1, N2 the construction is possible.
Divide the proof into two cases, in the first case assume a stronger failure of

the amalgamation and the second is the negation of the first.
Case A:Suppose that there existN ≺M ∈ Kλ so that for everyM ′ extending

M in Kλ, there is a pairM0 andM1 extendingM ′ so thatM0 andM1 cannot be
amalgamated overN .

To requirements 1-4 we add
M〈〉 = N and replace (4) by

(4)′ Mη 0̂ andMη 1̂ cannot be amalgamated overN .
Forη ∈ λ+

2, letMη :=
⋃
α<λ+ Mη¹α.

CLAIM 8.1. η 6= ν =⇒ 〈Mη, a〉a∈|N | 6∼= 〈Mν , a〉a∈|N |.

PROOF. Let ρ be the meet ofη andν. If there was an isomorphism between
〈Mη, a〉a∈|N | and〈Mν , a〉a∈|N |, we would have thatMν is an amalgam ofMρ̂ 0

andMρ̂ 1 overN , a contradiction to requirement (4).
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Suppose for the sake of contradiction that

µ := I(λ+,K) < 2λ
+
.

Take{Mi | i < µ} to be a complete set of representatives forKλ+ .
Clearly,

|{〈Mη, a〉a∈|N |/ ∼= : η ∈ λ+
2}|

≤ |{〈Mi, a〉a∈|N | : i < µ}|
≤ µ‖Mi‖λ = µ(λ+)λ = µλ+2λ =

µ2λ < 2λ
+
.

But this is a contradiction to the fact we have many pairwise non-embeddable
models. Notice how we used the assumption2λ < 2λ

+
in the final step.

Case B:Suppose for allN and everyM ∈ Kλ there is anM ′ extendingM so
that for any extensionsM0 andM1 of M ′, M0 andM1 can be amalgamated over
N .

Again, we tweak requirement (4) and replace it by:

(4)′ if M0 andM1 are extensions ofMη 0̂ andMη 1̂, thenMη, M0 andM1

can be amalgamated.
To perform the construction at successors, we do the following, to defineMη 0̂

andMη 1̂ fromMη:
Apply λ categoricity to fix an isomorphismf : Mη

∼= N0 (the unamalgamable
triple we chose at the beginning).

UsingN1, N2 and their preimages pickM∗ andM∗∗ extensions ofMη which
cannot be amalgamated overMη.

By the assumption of case B, we can takeMη 0̂ to be an extension ofM∗ so
that any extensions ofMη 0̂ can be amalgamated overMη. TakeMη 1̂ similarly for
M∗∗.

LetC := {δ < λ : δ = λ(1 + δ)}, notice that it is a club. By Ulam’s theorem
there are{Sγ ⊆ C : γ < λ+} stationary sets such that
γ1 6= γ2 =⇒ Sγ1 ∩ Sγ2 = ∅ and for allγ < λ+ we have thatΦλ+(Sγ) holds.

For everyδ < λ+ such thatδ = λ(1 + δ), h : δ → δ andη, ν ∈ δ2 let

F (η, ν, h) :=



1 if h : Mη ↪→Mν and

Mη 0̂

Mη

id

OO

h
// Mν 0̂

can be amalgamated.

0 Otherwise.



CLASSIFICATION THEORY FOR ABSTRACT ELEMENTARY CLASSES 33

By Φλ+(Sγ) pick gγ : λ+ → 2 such that
for all η, ν ∈ λ+

2 and everyh : λ+ → λ+ we have that

S′γ := {δ ∈ Sγ : F (η ¹ δ, ν ¹ δ, h ¹ δ) = gγ(δ)}

is stationary. ForX ⊆ λ+ and everyδ < λ+ let

ηX [δ] :=


gγ(δ) if δ ∈ Sγ andδ ∈ X

0 Otherwise.

Notice that since{Sγ : γ < λ+} are pairwise disjoint for anyδ ∈ X there is at
most oneγ such thatδ ∈ Sγ (maybe none), soηX is well defined. We finish by
showing:

CLAIM 8.2. For everyX 6= Y ⊆ λ+ we have thatMηX 6∼= MηY .

PROOF. SupposeX 6= Y ⊆ λ+, h : MηX ↪→ MηY . An application of
Φλ+(Sγ) to ηX , ηY andh yieldsS′γ as above.
LetD := {δ < λ+ | (h ¹ δ) : δ → δ} be a club. Forγ < λ+ let S′′γ := S′γ ∩D.
Without loss of generality there existsγ ∈ X − Y . Pickδ ∈ S′′γ .

Denote byη the sequenceηX ¹ δ and byν the sequenceηY ¹ δ. Sinceγ /∈ Y
by the definition of the sequenceηY we have thatηY [δ] = 0, namelyνlν 0̂lηY .

Now considerηX [δ]. There are two possibilities (according to the value of
ηX [δ]):

1. If ηX [δ] = 1, by the definition ofηX [δ] necessarilyηX [δ] = gγ(δ), since
δ ∈ S′γ we have thatF (η, ν, h) = 1. From the definition ofF we get that
Mη 0̂ andMν 0̂ can be amalgamated overMη. Denote byM1 the amalgam
and letf andg be such that the following diagram commutes:

(∗)1 Mη 0̂ g
// M1

Mη

id

OO

h
// Mν 0̂

f

OO

Sinceη̂ 1 l ηX , ν 0̂ l ηY and from the assumption thath : MηX ↪→
MηY , the following diagram

Mη 1̂
h

// MηY

Mη

OO

h
// Mν 0̂

id

OO

must commute. By axiomA4 there existsM2 ≺K MηY of cardinalityλ
such thath(Mη 1̂) ≺K M2 andMν 0̂ ≺K M2.
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Namely the following diagram commutes:

(∗)2 Mη 1̂
h

// M2

Mη

OO

h
// Mν 0̂

id

OO

Since

M1

Mν 0̂

f

OO

id
// M2

by the second half of requirement(4)′ there areM3 ∈ Kλ andK-mappingsel :
M l ↪→M3 (for l = 1, 2) such that

(∗)3 M1
e1

// M3

Mν

f

OO

id
// M2

e2

OO

is commutative. Combining(∗)1, (∗)2 and(∗)3 together we get

(∗)4 Mη 0̂ g
// M1

e1
// M3

Mη

id

OO

id
��

h
// Mν

f

OO

id
// M2

e2

OO

Mη 1̂

h

66mmmmmmmmmmmmmmmm

Thus we have that

Mη 1̂
h◦e2 // M3

Mη

id

OO

id
// Mη 0̂

g◦e1
OO

is commutative, which is a contradiction to the first half of requirement(4)′.

2. If ηX [δ] = 0 then we have thatη̂ 0 l ηX . Sinceh : MηX ↪→ MηY we get
thatMηY is an amalgam ofMη 0̂ andMν 0̂ overMη so by the definition of
F we get thatF (η, ν, h ¹ δ) = 1. Sinceδ ∈ S′′γ we have thatgγ(δ) = 1
which by the definition ofηX gives ηX [δ] = 1 and this contradicts the
assumption of this case.
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9. The main problems

In my opinion most of the future results will come from two separate lines of
research, that many years from now will merge.

1. Stability theory for AECs.The most ambitious form of this program can
be stated as follows: Let MT stand for Morley’s categoricity theorem, f.o.
stability for the contents of Shelah’s book ([Sh c]) and let n.e.categ stand
for the partial results toward Shelah’s categoricity conjecture (the contents
of [Ke2],[Sh48], [Sh87a], [Sh87b], [MakSh], [KoSh], [Sh 394], [Sh472],
[Le1]).

By developing stability theory for AECs I mean solving the equation

(∗) f.o. stability
MT

=
x

n.e.categ
.

Examples of progress toward this direction can be found in [Sh3],
[Sh88], [Sh 300], [GrHa ], [Gr3],[Gr4], [GrHa ],[GrLe1],[GrLe2],
[GrLe4], [GrSh1], [GrSh2], [GrSh3], [GrSh4],[Le1], [Le2],[Sh 576],
[Sh 600],[ShVi], [GrVa ],[Kov1] and [Va].

2. Geometric model theory for AECs.This program can be described as an
attempt to solve the following equation:

(#)
HZ

f.o. stability
=

?
x

where HZ stands for Hrushovski’s extension of Zilber’s geometric ideas,
andx is a (partial) solution for(∗). There very few results in this direction.
Among them are [Le1], [GrLe3] and [Le3].

I expect that several interactions of(∗) and(#) will eventually yield among
other things a solution for Shelah’s categoricity conjecture.

While I am convinced that eventually the theory will have more applications to
main stream mathematics via commutative algebra, algebraic geometry or analytic
structures than model theory of first-order logic, so far there are no applications in
sight.

The greater potential is due to the ability to axiomatize local finiteness and
structures satisfying various chain conditions. It is too early to predict what exactly
these applications will be. It is natural to expect that studying AECs of some
concrete structures (rings and groups) may produce valuable results.

There is one conjecture that may eventually be solved using non elementary
methods. This is Zilber’s conjecture (stronger than Schanuel’s conjecture) con-
cerning analytic structure from [Zi ]. Namely thatCexp is the canonical structure
of cardinality2ℵ0 in the classH(ex/st).
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The following are major concrete problems in AEC:

1. In Makkai-Shelah [MakSh] as well as in [Sh 394] and [Sh472] partial re-
sults toward a categoricity theorem are presented. In both cases the hypoth-
esis is that the class is categorical in a successor cardinal. It is not clear at
all if this is just a technical limitation or a central problem. I suspect it is
central. Probably replacing the assumption that the class is categorical in
λ+ with the assumption of categoricity inλ is of similar difficulty.

2. The categoricity theorem in [Sh 394] is a going down theorem. Is there a
going up theorem? The simplest instance of this is:

CONJECTURE9.1. Let K be an AEC. If there existsλ ≥ Hanf(K)
such thatK is categorical inλ thenK is categorical inλ+.

3. It is a major open problem to find a nice (forking-like) dependence notion
for AEC. In fact even under the assumption thatK has the amalgamation
property and the class is categorical in a cardinal aboveHanf(K) this is
open (see Remark 4.10(1) in [Sh 394]).

4. One of the technical problems of working in AEC without the amalgama-
tion property is the inexistence of monster models and therefore types over
models can not always be extended to global types. To deal with this Shelah
and Andres Villaveces have introduced in ([ShVi]) an interpolant, which is
the framework of AEC without maximal models, under GCH. They have
managed to show that categoricity implies that every small model (below
the categoricity cardinal) can be extended to an amalgamation base and sev-
eral other basic facts. Some extensions of this work can be found in [Va].
As of today there are no categoricity results in this context. It is natural to
expect the following:

CONJECTURE9.2. LetK be an AEC without maximal models and sup-
pose thatλ ≥ Hanf(K). If K is categorical inλ+ thenK is categorical in
everyµ ≤ λ.

5. Probably the appropriate name for this isexistence of Hanf number for
amalgamation:

CONJECTURE9.3. Let K be an AEC. Suppose (for simplicity?) that
K does not have maximal models. There exists a cardinal numberµ(K)
such that ifK has theµ(K)-amalgamation property thenK has theλ-
amalgamation property for allλ ≥ µ(K).
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