
Real-time 3-D Motion and Structure of Point Features:

a Front-end System for Vision-based Control and Interaction

Hailin Jin Paolo Favaro Stefano Soatto

Washington University, One Brookings Dr. 1127, St. Louis - MO 63130
{hljin,fava,soatto}@essrl.wustl.edu

Abstract

We present a system that consists of one camera con-
nected to a Personal Computer that can (a) select and
track a number of high-contrast point features on a se-
quence of images, (b) estimate their three-dimensional
motion and position relative to an inertial reference frame,
assuming rigidity, (c) handle occlusions that cause point-
features to disappear as well as new features to appear.
The system can also (d) perform partial self-calibration
and (e) check for consistency of the rigidity assumption,
although these features are not implemented in the cur-
rent release. All of this is done automatically and in real-
time (30Hz) for 40-50 point-features using commercial off-
the-shelf hardware.

The system is based on an algorithm presented by
Chiuso et al. [3] whose properties have been analyzed in
[2]. In particular, the algorithm is provably observable,
provably minimal and provably stable - under suitable
conditions. The core of the system, consisting of C++
code ready to interface with a frame grabber as well as
Matlab code for development, is available at
http://ee.wustl.edu/ ˜ soatto/research.html.

We demonstrate the system by showing its use as (1)
an ego-motion estimator, (2) an object tracker, (3) an
interactive input device. All without any modification of
the system settings.

1 Introduction

We are interested in using vision as a sensor for machines
to interact with the environment by moving, tracking,
manipulating objects etc. In order to do so, a machine
must be able to estimate its three-dimensional (3-D) mo-
tion relative to the scene and – to an extent that depends
upon the application – the shape of the scene. The re-
quirement of real-time operation imposes constraints on
the algorithm to be used (it needs to be causal, for we
cannot measure the future) as well as on the representa-
tion of shape (via point features; fancier representations
cannot be handled by current commercial hardware). We
consider, therefore, an N -tuple of points in the three-
dimensional Euclidean space, represented by their image
on a reference plane, y0 and their depth along the pro-

jection rays ρ. Let the points move under the action of a
rigid motion represented by a translation vector T and a
rotation matrix R, with linear velocity V and rotational
velocity ω̂, represented by a skew-symmetric 3 × 3 ma-
trix using the “hat” notation (see [2] for details). We as-
sume that we can measure the (noisy) projection yi(t) =
π

(
R(t)yi

0ρ
i + T (t)

)
+ni(t) ∈ IR2 ∀ i = 1 . . . N which cor-

responds to an ideal perspective projection model. This
choice is not crucial and the discussion can be easily ex-
tended to other projection models (e.g. spherical, ortho-
graphic, para-perspective, etc.). By organizing the time-
evolution of the configuration of points and their motion,
we end up with a discrete-time, non-linear dynamical sys-
tem. In [2] it is proven that the following model is mini-
mal, and that the Extended Kalman Filter (EKF) based
on it is stable (in mean-square and with probability one):




yi
0(t + 1) = yi

0(t) i = 4 . . . N yi
0(0) = yi

0

ρi(t + 1) = ρi(t) i = 2 . . . N ρi(0) = ρi
0

T (t + 1) = exp(ω̂(t))T (t) + V (t) T (0) = T0

Ω(t + 1) = LogSO(3)(exp(ω̂(t)) exp(Ω̂(t))) Ω(0) = Ω0

V (t + 1) = V (t) + αV (t) V (0) = V0

ω(t + 1) = ω(t) + αω(t) ω(0) = ω0

yi(t) = π
(
exp(Ω̂(t))yi

0(t)ρ
i(t) + T (t)

)
+ ni(t)

where ni ∼ N (0, Σn) i = 1 . . . N.
(1)

The notation LogSO(3)(R) stands for Ω such that R = eΩ̂

and is computed by inverting Rodrigues’ formula1. Note
that the indices of y0 and ρ in the state start from 4
and 2 respectively. This is to guarantee that the model
is minimal and stable2.

2 Implementation

The implementation of the EKF based on the above model
is discussed in detail in [3], including partial self-calibration
and handling of occlusions. Here we only describe the

1A Matlab implementation of LogSO(3) is included in the soft-
ware distribution.

2There are in the literature similar models that do not include
y0 in the state, for instance [1]. It is shown in [2] that such models
are subminimal, and therefore have a non-zero-mean measurement
error that results in a highly biased estimate.

“recipe” algorithm in a level of detail that should be suf-
ficient to follow the implementation made available on the
Web, or to implement the algorithm independently.
Initialization Choose the initial conditions yi

0 = yi(0);
ρi
0 = 1; T0 = 0; Ω0 = 0; V0 = 0; ω0 = 0 for i = 1 . . . N

where N is chosen depending upon the performance of
the hardware (N = 50 in our case, a dual PIII 733Mhz
system). For the initial variance P0, choose it to be block
diagonal with blocks Σni(0) given from the analysis of
the feature-tracking algorithm3 corresponding to yi

0, a
large positive number M (typically 100-1000 units of fo-
cal length) corresponding to ρi, zeros corresponding to
T0 and Ω0 (fixing the inertial frame to coincide with the
initial reference frame). We also choose a large positive
number W for the blocks corresponding to V0 and ω0.
The variance Σw(t) is a design parameter that is avail-
able for tuning. Finally, set P (0|0) = P0 and
ξ̂(0|0) .= [y4T

0 , . . . , yN T
0 , ρ2

0, . . . , ρN
0 , TT

0 , ΩT
0 , V T

0 , ωT
0]T

Transient During the first transient of the filter, we do
not allow for new features to be acquired. Whenever a
feature is lost, its state is removed from the model and its
best current estimate is placed in a storage vector. The
transient can be tested, for instance, by a threshold on the
innovation, a threshold on the variance of the estimates,
or by a fixed time interval. We choose a combination of
them, with the time interval set to 30 frames, correspond-
ing to the first second of video. The recursion to update
the state ξ and the variance P proceed as follows: Let f
and h denote the state and measurement model, so that
equation (1) can be written in concise form as

{
ξ(t + 1) = f(ξ(t)) + w(t) w(t) ∼ N (0, Σw)
y(t) = h(ξ(t)) + n(t) n(t) ∼ N (0, Σn) (2)

Prediction:{
ξ̂(t + 1|t) = f(ξ(t|t))
P (t + 1|t) = F (t)P (t|t)FT (t) + Σw

Update:{
ξ̂(t + 1|t + 1) = ξ̂(t + 1|t) + L(t + 1)

(
y(t + 1)− h(ξ̂(t + 1|t))

)
P (t + 1|t + 1) = Γ(t + 1)P (t + 1|t)ΓT (t + 1)+

+ L(t + 1)Σn(t + 1)LT (t + 1).
Gain:



Γ(t + 1) .= I − L(t + 1)C(t + 1)
L(t + 1) .= P (t + 1|t)CT (t + 1)Λ−1(t + 1)
Λ(t + 1) .= C(t + 1)P (t + 1|t)CT (t + 1) + Σn(t + 1)

Linearization:

F (t)
.
=




I3N 0 0 0 0

exp(̂ω) 0 I3
∂(eω̂T)

∂ω

∂LogSO(3)(eω̂eΩ̂)

∂Ω 0
∂LogSO(3)(eω̂eΩ̂)

∂ω
I3 0

I3




C(t) = Π ·


Ŷ 1 0 . . . R̂1 0 . . . I3
∂Θ̂1
∂Ω 0 0

. . .
. . .

.

.

.

.

.

.

.

.

.

.

.

.

0 . . . Ŷ N 0 . . . R̂N I3
∂Θ̂N

∂Ω 0 0




where we set Ŷ i = eΩ̂

[
I2

0

]
ρi, R̂i = eΩ̂

[
yi

0

0

]
and

3We assume that the tracking error is independent in each point,
and therefore Σn is block diagonal with diagonal equal to 1 pixel
std. in the current implementation.

Θ̂i = eΩ̂

[
yi

0

1

]
ρi.

The matrix Π is block-diagonal with blocks 1
ρi

[
I2 −ŷi

]

where ŷi = π
(
eΩyi

0ρ
i + T

)
.

Regime Whenever a feature disappears, we remove it
from the state as during the transient. However, dur-
ing regime operation a feature selection module works
in parallel with the filter to select new features so as to
maintain roughly a constant number N and a distribution
as uniform as possible across the image plane. We imple-
ment this by randomly sampling points on the plane, then
searching around that location for a feature that passes a
“sum of square difference”-type test. Once a new point-
feature is found, a “subfilter” is initialized. Its evolution
is given by

Initialization:





ŷi
τ (τ |τ) = yi

τ (τ)
ρ̂i

τ (τ |τ) = 1

P i
τ (τ |τ) =

[
Σni(τ)

M

]

Prediction:





ŷi
τ (t + 1|t) = ŷi

τ (t|t)
ρ̂i

τ (t + 1|t) = ρ̂i
τ (t|t)

Pτ (t + 1|t) = Pτ (t + 1|t) + Σw(t)
t > τ

Update:
[

ŷi
τ (t + 1|t + 1)

ρ̂τ (t + 1|t + 1)

]
=

[
ŷi

τ (t + 1|t)
ρ̂τ (t + 1|t)

]
+

+Lτ (t + 1)

(
yi(t) − π(exp(Ω̂(t))

[
exp(Ω̂(τ))

]−1 [
yi(t)ρi(t) − T (τ)

]
+ T (t))

)

and Pτ is updated according to the usual Riccati equa-
tion. After a probation period the feature is inserted into
the state.
Tuning The variance Σw(t) is a design parameter which
we choose to be block diagonal with the blocks corre-
sponding to T (t) and Ω(t) equal to zero (a deterministic
integrator). We choose the remaining parameters using
the Periodogram test. In practice, we choose the blocks
corresponding to yi

0 equal to the variance of the measure-
ments, and the elements corresponding to ρi all equal to
σρ. We then choose the blocks corresponding to V and ω
to be diagonal with element σv, and then we change σv

relative to σρ depending on whether we want to allow for
more or less regular motions. We then change both, rela-
tive to the variance of the measurement noise, depending
on the level of desired smoothness in the estimates.
Acknowledgments

Supported by NSF grant IIS-9876145 and ARO grant DAAD19-

99-1-0139. The authors wish to thank Xiaolin Feng and Pietro

Perona for their generous sharing of their code for feature

tracking.

References
[1] A. Azarbayejani and A. Pentland. Recursive estimation of motion,

structure and focal length. IEEE Trans. Pattern Anal. Mach.
Intell., 17(6):562–575, 1995.

[2] A. Chiuso and S. Soatto. 3-D Motion and structure from 2-D mo-
tion causally integrated over time. Part I: theory. Tutorial lecture
notes. IEEE Conf. on Robotics and Automation, April 2000.

[3] A. Chiuso and P. Favaro and H. Jin and S. Soatto. 3-D motion and
structure causally integrated over time. Part 2: experiments. In
Proc. of the Eur. Conf. on Computer Vision, June 2000 (in press).

