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Abstract

We present a system that consists of one camera con-
nected to a Personal Computer that can (a) select and
track a number of high-contrast point features on a se-
quence of images, (b) estimate their three-dimensional
motion and position relative to an inertial reference frame,
assuming rigidity, (c) handle occlusions that cause point-
features to disappear as well as new features to appear.
The system can also (d) perform partial self-calibration
and (e) check for consistency of the rigidity assumption,
although these features are not implemented in the cur-
rent release. All of this is done automatically and in real-
time (30Hz) for 40-50 point-features using commercial off-
the-shelf hardware.

The system is based on an algorithm presented by
Chiuso et al. [3] whose properties have been analyzed in
[2]. In particular, the algorithm is provably observable,
provably minimal and provably stable - under suitable
conditions. The core of the system, consisting of C++
code ready to interface with a frame grabber as well as
Matlab code for development, is available at
http://ee.wustl.edu/ ~ soatto/research.html.

We demonstrate the system by showing its use as (1)
an ego-motion estimator, (2) an object tracker, (3) an
interactive input device. All without any modification of
the system settings.

1 Introduction

We are interested in using vision as a sensor for machines
to interact with the environment by moving, tracking,
manipulating objects etc. In order to do so, a machine
must be able to estimate its three-dimensional (3-D) mo-
tion relative to the scene and — to an extent that depends
upon the application — the shape of the scene. The re-
quirement of real-time operation imposes constraints on
the algorithm to be used (it needs to be causal, for we
cannot measure the future) as well as on the representa-
tion of shape (via point features; fancier representations
cannot be handled by current commercial hardware). We
consider, therefore, an N-tuple of points in the three-
dimensional Euclidean space, represented by their image
on a reference plane, y, and their depth along the pro-

jection rays p. Let the points move under the action of a
rigid motion represented by a translation vector 7" and a
rotation matrix R, with linear velocity V' and rotational
velocity @, represented by a skew-symmetric 3 x 3 ma-
trix using the “hat” notation (see [2] for details). We as-
sume that we can measure the (noisy) projection y*(t) =
T (R(t)ybp' +T(t))+n'(t) € R Vi=1...N which cor-
responds to an ideal perspective projection model. This
choice is not crucial and the discussion can be easily ex-
tended to other projection models (e.g. spherical, ortho-
graphic, para-perspective, etc.). By organizing the time-
evolution of the configuration of points and their motion,
we end up with a discrete-time, non-linear dynamical sys-
tem. In [2] it is proven that the following model is mini-
mal, and that the Extended Kalman Filter (EKF) based
on it is stable (in mean-square and with probability one):

yit+1) =yi(t) i=4...N yé‘(O):yO
B =p) =2 N 2(0) = 1t
Tt+1)= exp( O)T)+V(E) T(0)=Tp
Q(t 4 1) = Logso(s)(exp(W(t)) exp((t)))  Q(0) = Qo
V(t+1)=V(t)+ay(t) V(0) =Vy
w(t+1) = w(t) + au(t) w(0) = wo
vi(t) = (exp(Q(t))yO( (1) ) i)

where nw./\f 0,%,) i=1...N.

The notation Logso(s)(R) stands for 2 such that R = %
and is computed by inverting Rodrigues’ formulal. Note
that the indices of yg and p in the state start from 4
and 2 respectively. This is to guarantee that the model
is minimal and stable?.

2 Implementation
The implementation of the EKF based on the above model

is discussed in detail in [3], including partial self-calibration
and handling of occlusions. Here we only describe the

!A Matlab implementation of Logso(s) is included in the soft-
ware distribution.

2There are in the literature similar models that do not include
Yo in the state, for instance [1]. It is shown in [2] that such models
are subminimal, and therefore have a non-zero-mean measurement
error that results in a highly biased estimate.



“recipe” algorithm in a level of detail that should be suf- &; _ o { Y6 }
. . . . Pi-
ficient to follow the implementation made available on the

Web, or to implement the algorithm independently. o . ) 1 L
Initialization Choose the initial conditions y§ = y*(0); The matrix Ilis blqck—dlagonal with blocks Z5 [ -3 ]
ph=1;Ty=0;Q =0; Vo= 0;wo =0 fori=1...N where g’ =m(e"yjp'+T).

where N is chosen depending upon the performance of Regime Whenever a feature disappears, we remove it
the hardware (N = 50 in our case, a dual PIII 733Mhz from the state as during the transient. However, dur-
system). For the initial variance Py, choose it to be block ing regime operation a feature selection module works
diagonal with blocks ¥,,:(0) given from the analysis of in parallel with the filter to select new features so as to
the feature-tracking algorithm® corresponding to yj, a maintain roughly a constant number /N and a distribution
large positive number M (typically 100-1000 units of fo- as uniform as possible across the image plane. We imple-
cal length) corresponding to p?, zeros corresponding to ment this by randomly sampling points on the plane, then
To and Qq (fixing the inertial frame to coincide with the searching around that location for a feature that passes a
initial reference frame). We also choose a large positive “sum of square difference”-type test. Once a new point-
number W for the blocks Corresponding to VO and wp. feature is fOllI’ld, a “subfilter” is initialized. Its evolution
The variance ¥,,(t) is a design parameter that is avail- is given by

able for tuning. Finally, set P(0]0) = Py and Yr(7lr) = y7(7)
(0|0) [y 0y "> yN§> pga cees p{)vv T(,JTv Q%) V0T7 on]T Initialization: prlrlm) =1 5
Transient During the first transient of the filter, we do Pi(r|T) = ni(7) M ]
not allow for new features to be acquired. Whenever a
feature is lost, its state is removed from the model and its Vi (t+1]t) = yi(tlt)
best current estimate is placed in a storage vector. The Frediction: ;(t + 1Jt) = pi(t]t) t>T
transient can be tested, for instance, by a threshold on the Pr(t+1]t) = Pr(t + 1t) + Zw (t)

innovation, a threshold on the variance of the estimates, Update: [ ilgf ey } = { %ZE:E“; ] +
or by a fixed time interval. We choose a combination of

them, with the time interval set to 30 frames, correspond-
ing to the first second of video. The recursion to update and Pr is updated according to the usual Riccati equa-
the state £ and the variance P proceed as follows: Let f tion. After a probation period the feature is inserted into
and h denote the state and measurement model, so that the state.

equation (I) can be written in concise form as Tuning The variance () is a design parameter which
we choose to be block diagonal with the blocks corre-

{ E(t+1) = fE@) +w(t) w(t) ~N(0,Z) (2) sponding to T'(t) and Q(t) equal to zero (a deterministic
Y

. o~ ~ —1 . .
Lot +1) (y'm = m(exp@(0) [exp(@())] T [yimei) - T (0] + T(t)))

(t)=hE®) +n(t)  n)~N(0,XE,) integrator). We choose the remaining parameters using
Prediction: the Periodogram test. In practice, we choose the blocks
é(t 1)) _ FE(D) corresponding to y¢, equal to the variance of the measure-
; i
{ Pt +1[t) = F)PHOFT () + Su ments, and the elements corresponding to'p all equal to
Update: 0,. We then choose the blocks corresponding to V' and w
Et+1t+1)=Et+ 1)+ L(t+1) (y(t +1) — h(E(t + w))) to be diagonal with element o, and then we change o,
P(t+1t+1) =T+ )Pt + 1)TT (t + 1)+ relative to o, depending on whether we want to allow for
+ L+ DIt + D)LT (¢ +1). more or less regular motions. We then change both, rela-
Gain: tive to the variance of the measurement noise, dependin
T(t+1)=1—L(t+1)C(t+1) ) ) ) CCPELAIS
. T 1 on the level of desired smoothness in the estimates.
Lit+1) =P+ 1) CT(t+ 1A (t+ 1) Ack led
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