Computer Science Program, The University of Texas, Dallas

Software Architectural Design:
Introduction

What is Architecture?

Current Practice in Software Architecture
A Model of Software Architecture

Why Software Architecture?

Lawrence Chung

What is Architecture?

the underlying structure of things -
buildings, communication networks, spacecraft, computer, software, nature

[0 Civil engineering

[0 Customer engineer gets customer requirements

functional units: other considerations:

[l Architect starts thinking about architectural styles
architectural styles:
Victorian, Duplex, Condominium, Townhouse, Catheral, Pyramidal, ...

floor plans & elevations for functional units

other considerations:

immense amount of details not present about various detailed design
considerations such as electrical wiring, plumbing, heating, etc.

Lawrence

What is Architecture?

the underlying structure of things -
buildings, communication networks, spacecraft, computer, software, nature

[Civil engineering
(] Designers/Contractors think about detailed design considerations
electrical wiring, plumbing, heating, air-conditioning, carpeting, etc.
[0 Sub-contractors/Construction Workers:

electricians, plumbers, furnace installers, carpenters, locksmith,
brick layers, bathtub technicians, etc.

Reading Assignment: Chapter 1

Lawrence

Current Practice in Software Architecture

Camelot is based on the client-server model and uses remote procedure calls
both locally and remotely to provide communication among applications and servers.

client-server model -> what? -> clients (applications) & server(s) as components

RPCs both locally and remotely -> what -> communication/interaction mechanism

But,
Why client-server model ?
distributed data? distributed processing? cooperative processing?

What’s a client like?
a terminal emulator? + a domain-specific application?

What’s a server like?
a file server? a db server? a transaction server? a CGI server?

Why RPCs? a groupware?
why not sockets? why not MOMs? why not events?
What’s communicated?
data? metadata? control? process? object? multimedia? agent?

Any constraint?
like passive Web browser? like client-centric Java?
like server-centric CGI? like CORBA? like OLE(2)/(D)COM?
uni-/bi-directional communication? multi-paradigm?
multi-platform?

Good software developers have often adopted one or several architectural patterns
but informally and often only implicitly

Lawrence

Current Practice in Software Architecture

0
Abstraction layering and system decomposition provide the appearance of system
uniformity to clients, yet allow Helix [distributed file system] to accommodate a
diversity of autonomous devices. The architecture encourages a client-server model

for the structuring of applications.

abstraction layering and system decomposition
client-server model -> what? -> clients (applications) & server(s) as components

uniform appearance, accommodate a diversity of autonomous devices
for the structuring of applications.
-> why-> rationale

But,
" Why client-se O
o fi‘ r’lgutéa ata" distributed processing? cooperative processing?
What's a client like?
ermmal emulator? + a domain-specific application?

What's a seryer like?
ﬂ seérver? a db server? a transaction server? a CGI server?
a groupware?

What’s the communication mechanism?
MOMs? events?

sockets?
What'’s communicated? . 3 3
ata? metadata? control? process? object? multimedia? agent?

An,
o conitkgli)laslve Web, browser? _like client-centric Java?
like L%Z)/{D COM?

like ,er-ce,ntnc CGI? like C RBA" i
uni-, l/i irectional communication? ti-paradigm

ti-platform?

Good software developers have often adopted one or several architectural patterns
but informally and often only implicitly

Lawrence

Current Practice in Software Architecture

0
We have chosen a distributed, object-oriented approach to managing information.

0 Observations

[0 Software architectures are indeed used, very often but without even knowing it

[0 carries some, and more often than not a lot of, information

[J no explicit description of the structure
No clear basis for communication or reasoning!

Good software developers have often adopted one or several architectural patterns
but informally and often only implicitly

Lawrence

A Model of Software Architecture

Software architecture:

[] elements (components/parts):
from which systems are built
e.g., process, data, object, agent

interactions (connections/connectors/glues/relationships):

between the elements
e.g., PCs, RPCs, MOMs, events
patterns:
describe layout of elements and interactions, guiding their composition
e.g., # of elements, # of connectors, order, topology, directionality

constraints:

on the patterns (i.e., on components, connectors, layout)
e.g., temporal, cardinality, concurrency, (a)synchronous, etc.

styles:
abstraction of architectural components from various specific architectures.
(Sometimes interchangeably used with patterns)
e.g., Unix OS, OSI protocol layer, Onion ring IS structure -> layering

rationale:
describe why the particular architecture is chosen

Lawrence

A Model of Software Architecture

Example: Sequential Compiler

elements interactions patterns:

source code (characters) connector
a+ x * (1-1) +7 (stream of data)

Lexer process
tokens (name table)
a plus x mult IParen 1 minus 1 rParen plus 7 (stream of data)
Parser process
phrases (name table & abstract syntax tree)
a plus [x mult [1 minus 1]] plus 7
Semantic Analyzer process
correlated phrases
(name table & abstract syntax graph)
a plus [x mult [1 minus 1]] plus 7

imi process
Optimizer (annotated) correlated phrases

(name table & annotated abstract syntax graph)

Coder aplus7 process
load a; load 7; add

Lawrence

A Model of Software Architecture

Example: Sequential Compiler

elements interactions patterns:
source code (characters) onnector
at x * (1-1) +7 stream of data)
Lexer process
tokens (name table)
a plus x mult IParen 1 minus 1 rParen plus 7 (stream of data)
Parser rocess
phrases (name table & abstract syntax tree) P
a plus [x mult [1 minus 1]] plus 7
Semantic Analyzer process
correlated phrases
(name table & abstract syntax graph)
a plus [x mult [1 minus 1]] plus 7

(annotated) correlated phrases
(name table & anrllota;ed abstract syntax graph)
a plus

load a; load 7; add

Optimizer process

Coder process

{connector process}* connector
style: pipe&filter

each element does a local transformation to the input and produces output

each glue serves as a conduit for the data stream,
transmitting outputs of one process to inpts of another

constraints:
processes do not share state with other processes

processes do not know the identity of their upstream and downstream processes
(partial concurrency, or complete degenerate case)

=> Independent processes (other than stream availability)
rationale: simplicity, process independence

Lawrence

A Model of Software Architecture

[] What are disadvantages (& other advantages) of this architecture?
Time, Space, Reusability, Adaptability, etc.
[0 What alternative architectures are possible?

Lexer + Parser

2 Semantic Analyzers (forward reference)
Shared data + sequential

No Optimizer

Concurrent compiler (semantic analyzer || optimizer || coder)

[] What are some other instances of this style?
Unix command processing: e.g., Is|sort|pr|lpr

Lawrence

Common Architectural Styles

Dataflow systems [topic 5: Data Flow]
[Batch sequential
[l Pipe & Filter

Call-and-return systems

[0 Main program & subroutine [topic 4: Modular Decomposition Issues]
[] OO systems [topic 3: ADT]

[Hierarchical layers [topic 5 & 6 & 10 - Data Flow & Repositories & Middleware]
Independent components

[J Communicating processes [topic 11?: Processes]
[0 Event systems [topic 4 & 7 - Modular Decomposition Issues & Events]
Virtual machines
[] Interpreters [] Client-server [topic 9]
[J Rule-based systems
Data-centered systems [topic 6: Repositories]
[0 Databases

[Hypertext systems
[l Blackboards

Process-control paradigms [topic 8: Repositories]

Lawrence

Why Software Architecture?

0 Abstract solution to conquer complexity
functionality and performance (Non-functional requirements)

divide and conquer

0 A shared, semantically-rich vocabulary between SEeers.
E.g., instanceOf (X, pipe & filter)
=>
X is primarily for stream transformation

functional behavior of X can be derived compositionally from
the behaviors of the constituent filters

issues of system latency and throughput can be addressed
in relatively straightforward ways

supports reuse
facilitates (integration) testing

parallel development

system evolvability

... and many other conceptual reasons

Lawrence

