
ISSUES IN THE DESIGN OF STORE BUFFERS

IN DYNAMICALLY SCHEDULED PROCESSORS

Ravi Bhargava and Lizy K. John

The University of Texas at Austin

Laboratory for Computer Architecture
fravib,ljohng@ece.utexas.edu

Abstract

Processor performance can be sensitive to load-store
ordering, memory bandwidth, and memory access la-
tency. A store bu�er is a mechanism that exists in
many current processors to accomplish one or more
of the following: store access ordering, latency hiding,
and data forwarding. Di�erent policies that govern
store bu�er behavior can a�ect overall processor per-
formance. However, the performance impact of vari-
ous store bu�er policies is not clearly analyzed in avail-
able literature. In this paper, we look into various store
bu�er issues such as i) where to place it in the pipeline,
ii) when to remove a store entry from the store bu�er,
iii) when to allow the stores to be retired, and iv) if,
when, and how to set the contention priority of mem-
ory operations. These issues are explained in detail
while design and performance tradeo�s are assessed.
Using a variety of C, C++, and Java benchmarks,
we establish how these design policies in
uence per-
formance. We �nd that the policies for store entry re-
moval and store bu�er pipeline placement have a large
e�ect on the overall performance of a microprocessor.
In addition, we see that smaller, well-designed store
bu�ers can achieve comparable performance to larger,
basic store bu�ers. Combining these results with an
analysis of the benchmarks can help one fully under-
stand the role of the store bu�er and the tradeo�s in-
volved.

1 Introduction

Techniques exist to hide or tolerate the latency of loads
and stores. Executing instructions in an out-of-order
manner helps hide latency. Compilers can assist by
performing loads well before the value is required by
other instructions. Prefetching data and instructions
into the caches is an approach implemented in both
hardware and software to reduce the high-latency o�-
chip memory accesses. Despite these and similar tech-
niques, memory access latency is still considered one
of the primary bottlenecks in processors today.

Almost all modern processors allow dynamic or-
dering of load and store instructions. Non-blocking

caches and bu�ering structures such as write bu�ers,
store bu�ers, store queues, and load queues are typ-
ically employed. We �nd that the manner in which
stores are handled within the store bu�er can im-
pact the performance of processors. In the absence
of adequate literature discussing this impact, we ex-
amine several store bu�er issues, including size, store
removal, store retirement point, store priority shifting,
and virtual store bu�ers. A thorough study of these
policies shows a potential for increased load forward-
ing and decreased load latency with changes in policy.
The challenge is to achieve this performance win with-
out increasing store bu�er related stalls (i.e. stalling
the pipeline since no new stores can be issued) or other
detrimental e�ects. We �nd that the lazy store re-
moval scheme can have a large impact on processor
performance. In addition, we see that smaller, well-
designed store bu�ers can achieve comparable perfor-
mance to larger, basic store bu�ers.

The paper is divided into the following sections.
Section 2 provides more background on store bu�ers
and the issues we are addressing. Section 3 discusses
the store bu�er policies and parameters that we study.
Section 4 discusses our methodology and benchmarks.
Section 5 discusses the results from di�erent store
bu�er con�gurations. Section 6 o�ers a summary and
conclusions.

2 Background

2.1 Related Work

Johnson provides an in-depth discussion of a store
bu�er which holds stores that con
ict with a load for
a data cache interface [10]. The store bu�er maintains
the ordering of the stores and allows stores to be per-
formed only after all previous instructions (including
loads) have been completed. Loads are allowed to by-
pass stores and data forwarding is performed when ap-
propriate. Data forwarding allows a load instruction
to \load" its data from a store instruction located in
the store bu�er. The alternative is to allow the store
to complete and then load the value from memory.
Finally, loads are performed in order with respect to

other loads for simplicity. Johnson's store bu�er is our
base model. Additional work in memory ordering has
been performed by McKee et al [17, 18].

One structure that is similar to the store bu�er is
the write bu�er [15, 21, 23]. Our model is a store bu�er
as in Figure 1 while most of the write bu�er literature
assumes a structure similar to the one in Figure 2.
These write bu�ers are accessed in parallel with the
on-chip cache and have the ability to combine several
stores with contiguous addresses or the same address.
Skadron and Clark discuss the issues and tradeo�s in-
volved in such a write bu�er [23]. Martonosi and Shaw
did a study of the e�ect of compilation techniques on
the performance of a write bu�er [15]. Jouppi [11] and
Bray [2] consider structures they call write caches with
similar properties. The issues addressed in these pa-
pers and similar papers focus on reducing the number
of writes that are performed o�-chip and sometimes
on-chip. It is possible that mechanisms like the write
bu�er can be referred to as a store bu�er [21].

Buffer
Load

Buffer
Store

L2 Cache

.

L1 Data
Cache

Load/Store Units

.

.

Figure 1: Store bu�er model from this paper

Cache

L1 Data

Buffer

Write

Execution Core

L2 Cache

Figure 2: Write bu�er model from literature

Due to conditions such as register spills, stores are
often closely followed by a load to the same address as
the store. Some research use speculation to get maxi-
mum usage out of this relationship [12, 19, 26]. Other

studies use a bu�er, much like a store bu�er, to for-
ward the store data [9, 14]. We study methods to allow
the store bu�er to exploit this property via load for-
warding while maintaining the memory-ordering and
latency-hiding functionality.

2.2 Current Implementations

Commercial processors have been implementing store
bu�ers or similar ideas for many years. Although in-
depth analysis of performance tradeo�s are not readily
available, there are some indications of the type of
policies that are being currently implemented. Words
in quotations indicate processor speci�c terminology.

The Alpha 21264 microprocessor has a 32-entry
speculative store bu�er where a store remains until
it is \retired". A store must �rst enter the specula-
tive store bu�er before its data is sent to the level-one
cache. Stores forward their data to loads when they
are in the speculative store bu�er [13].

The Sun UltraSPARC-IIi processor contains a
load/store unit (LSU). The LSU is responsible for cal-
culating load and store virtual addresses as well as \de-
coupling" loads and stores from the pipeline by using
both a load bu�er and a store bu�er. The pipelines
are not fully decoupled so that the UltraSPARC-IIi
can support precise traps. Stores in the store bu�er
normally have a lower priority than loads in the load
bu�er, but the CPU will eventually raise the priority
when a \lock-out condition" is reached. There is no
mention of the ordering of the loads and stores or of
the possibility of load forwarding. Finally, the LSU al-
lows stores to be combined if they have been marked
with a \write-gathering attribute," but this is not done
automatically (as it would be in a write bu�er) [20].

The Pentium III processor is said to have twelve
store bu�ers, where each store bu�er can temporarily
hold a store to memory. This is essentially one twelve-
entry store bu�er. It allows other instructions to con-
tinue executing while the stores are waiting to be eÆ-
ciently written to memory. These stores can forward
data to waiting reads. The P6 architecture contains
a memory reorder bu�er (MOB) as well. The MOB
works with physical addresses and a�ects memory ac-
cesses that are going to the level-two cache [7, 8].

The AMD K6 has a store queue. Entries are placed
into the store queue with their physical address while
a cache access is being attempted [22].

2.3 Role of Cache Design

The con�guration of the data cache has a relevant role
in the design of the store bu�er. The store bu�er and
the cache may be a�ected by the same address trans-
lations. A machine with a virtually indexed and phys-
ically tagged cache (UltraSPARC-IIi, Alpha 21264,
AMD K6) requires an address translation to take place
in parallel with the cache access. This does not di-
rectly indicate whether the store bu�er is physical or

virtual. A store instruction can be translated for the
cache access, but due to resource constraints never
accesses the cache. This store is placed with its physi-
cal address into the store bu�er. For example, the K6
store bu�er acquires the store instruction's address af-
ter the translation [22].

For our study, we assume a physically indexed and
physically tagged data cache like that found in the
Pentium and AMD K7 architectures. In this style of
cache, the address translation takes place prior to the
access of the cache [5]. Once again, this type of cache
does not imply the use of a virtual or physical store
bu�er.

3 Store Bu�er Policies

Although the store bu�er's purpose appears straight-
forward, there are several interesting design decisions
to be made. In this section, we look into several pos-
sible policies that govern the behavior of the store
bu�er. Included in our discussion are the policies of
store priority switching, store removal, and the store
retirement point, which are related, but deserve sep-
arate discussions. A virtual store bu�er is also ex-
plained. note that we refer to the term active entry
as any entry in the store bu�er that is in use and cur-
rently contains a store in any state.

Store Retirement Point The retirement point of
a store refers to the point in the life of a store instruc-
tion where it attempts to write its data in memory.
Most processors do not allow this to happen until all
previous instructions are complete. This helps insure
that the stores will be sent to memory in order and
eases the exception handling process.

Once a store instruction has its address calculated,
has its data, becomes non-speculative, and is situated
in the store bu�er, the store may retire. However,
there is no need to retire a store as soon as it is ready.
Instead, store instructions may accumulate in store
bu�er entries and retire when a certain level of active
store entries is reached. This is similar to the concept
of a highwater mark in write bu�er design. Delayed
retirement helps by increasing the opportunity for for-
warding. However, it can lead to more store bu�er
stalls. The interaction with loads and the e�ects on
the L1 cache hit rates will determine the e�ectiveness.

Store Removal Once a store has retired, it may
be removed from the bu�er, but this is not always
necessary. It might be bene�cial to keep the store
data active in the store bu�er for the purpose of load
forwarding. The act of removing the active store bu�er
entry from the store bu�er will be referred to as store
removal. Once removed, the store bu�er entry can no
longer be accessed by any loads, and one additional
empty slot is available in the store bu�er.

One positive e�ect of this policy is an increase in
the average occupancy of the store bu�er and there-
fore an increase in load forwarding. One problem with
having such a \lazy" removal policy is the potential of
�lling the store bu�er. We also need to indicate with
tags which stores have retired but are still active in the
store bu�er. Another problem with building up active
entries is the possible increase in disambiguation time.

Store Priority Switching Cache contention arises
when there are multiple available memory instructions
and a �nite amount of ports or gateways into the �rst
level of memory. Typically among loads, the oldest
load that is ready to access memory (i.e. address suf-
�ciently calculated) has the highest priority. Among
stores, only the oldest store is permitted to access the
memory, given that it is non-speculative, has its data,
and the e�ective address is suÆciently calculated.

The policy for selecting among the stores and
among the loads is clear, but what happens if both a
load and a store are ready to access memory in some
given clock cycle? One, the load is given a higher pri-
ority, or loads �rst. Two, the store is given priority,
or stores �rst. Three, the oldest instruction is given
priority, or oldest �rst.

There is also the option to change the priority
scheme dynamically as implemented in the
UltraSPARC-IIi. For instance, the default priority
could be loads �rst. Once the level is equal to or above
some threshold level, the policy then switches to stores
�rst. The desired e�ect is to reduce the number of
store bu�er stalls and therefore improve the perfor-
mance of the processor.

Virtual Store Bu�er The data in store bu�ers
may be accessed by loads before or after the address
translation stage of the store. A virtual store bu�er
is accessed before translation using a virtual address.
Therefore, to access a virtual store bu�er no address
translation is required. A load can receive data from
the store bu�er without having its address translated,
saving the address translation cycles. In the case of
a physical store bu�er, both the load and the store
must have their addresses translated before a load can
properly access the data available in the store bu�er.

Aliasing, or the synonym problem, is an important
issue when using virtual addresses to tag the data in
a store bu�er. Although this problem is infrequent,
it does need to be dealt with. These types of prob-
lems have been tackled in virtually indexed caches.
Software and hardware solutions exist [5, 9, 28]. The
UltraSPARC-IIi simply says that \software handles
aliasing" with respect to its virtually indexed cache.
For a virtual store bu�er, a hardware solution would
be required. Using virtual addresses requires an easy
method to distinguish unique processes and then in-
clude this ID as part of the address tag. This is com-
mon in some of the 64-bit RISC processors, but quite

a challenge in the x86 family of processors. So, the In-
tel Pentium Pro MOB and the AMD K6 store bu�er
exclusively use physical addresses.

4 Evaluation Methodology

4.1 Microprocessor Model

To analyze the impact of the store bu�er in a dynam-
ically scheduled out-of-order processor environment,
we use a detailed, execution-driven, cycle-level, tim-
ing simulator that models all resource contention as
well as speculative execution. Shade, a simulation tool
from Sun [4], is the front-end of the simulator. It takes
any SPARC executable (source code not necessary) as
input and then drives the execution core with a dy-
namic stream of instructions. Therefore, the simula-
tor uses the SPARC instruction set architecture [27]
and handles the SPARC nuances in a proper fashion,
e.g. register windows, conditional instructions, condi-
tion code registers, and delay slots. Our model is a
four-wide machine, i.e. four-wide issue, decode, exe-
cute, and retire. These and other speci�c parameters
may be found in Table 1.

Table 1: Simulated Architecture Parameters

Data memory

� L1 Data Cache: 4-way, 64KB, 1-cycle access
� L2 Uni�ed cache: 4-way, 1MB, +7 cycles
� Non-blocking 2 MSHRs and 1 port
� D-TLB 128-entry, 1-cycle hit, 30-cycle miss
� Store bu�er: 32-entry w/load forwarding

loads access in 1-cycle
� Main Memory In�nite, +22 cycles

Fetch Engine

� L1 Instr cache: 4-way, 64KB, 1-cycle hit
� Branch Predictor: 16k gshare predictor

3-cycle misprediction penalty
� Branch target bu�er Perfect
� I-TLB Perfect

Execution Core

� Functional unit # exec. lat. issue lat.
Load/store 4 1 cycle 1 cycle
Simple Integer 8 1 1
Int. Mul/Div 3 3/20 1/19
Simple FP 3 3 1
FP Mul/Div/Sqrt 2 3/12/24 1/12/24

� Separate 64-entry FP and INT reorder bu�er
� 12 reservation station entries/func. unit
� Fetch width: 16 instructions
� Decode width: 4 instructions
� Issue width: 4 instructions
� Execute width: 4 instructions
� Retire width: 4 instructions

The simulator uses a separate 64-entry reorder
bu�er (ROB) and register �le for
oating point and in-
teger instructions respectively, as in the UltraSPARC.
Stores are allocated entries in the ROB due to rea-
sons discussed by Johnson [10]. The branch predic-

tor uses the gshare prediction scheme as described by
McFarling [16]. When there is a branch mispredic-
tion, instructions are fetched along the wrong path.
These instructions are executed as accurately as pos-
sible based on the recent history of execution [1].

The cache hierarchy model is derived from
cachesim5 which is available with the Shade tool set.
The L1 instruction cache and data cache are write-
back, write-allocate caches with a block size of 32
bytes. They use the LRU replacement algorithm. The
L1 data cache is physically indexed and physically
tagged. The L2 cache is a uni�ed, write-back, write-
allocate cache with a block size of 64 bytes, and uses
the LRU replacement scheme. The data cache can
handle up to two outstanding requests due to the pres-
ence of two miss status holding registers (MSHR).

The base store bu�er model has 32-entries. Stores
are retired once all previous instructions have com-
pleted. They are removed from the store bu�er upon
completion of their memory access (no lazy removal).
Loads are always given priority over stores during mem-
ory interface contention. Loads may bypass stores
while stores are always in-order. Loads are permitted
to perform out-of-order with respect to each other.

4.2 Benchmarks

For our study, we conduct simulation experiments on
Sun UltraSPARC machines. We use programs from
three sets of benchmarks to evaluate the store bu�er
schemes. Descriptions of the benchmarks and the in-
puts we use are in Table 2.

Table 2: Benchmark Descriptions

Program Description of Program

SPEC CINT95: C programs

compress95 Compresses large text �les

gcc Compiles pre-processed source

go Plays the game Go against itself

ijpeg Performs jpeg image compression

li Lisp interpreter

m88ksim Simulates the Motorola 88100 processor

vortex Builds, manipulates 3 interrelated databases

SPEC JVM98: Java Programs

compress A popular LZW compression program

jess NASA's CLIPS rule-based expert systems

db IBM data management benchmarking software

javac JDK Java compiler from Sun Microsystems

mpegaudio Core MPEG-3 audio decoding algorithm

mtrt Dual-threaded ray tracing program

jack Real parser-generator from Sun Microsystems

Suite of C++ Programs

deltablue Incremental data
ow constraint solver

eqn Type-setting program for math. equations

idl SunSofts IDL compiler 1.3

ixx IDL parser generating C++ stubs

richards Operating system simulation benchmark

The �rst set of benchmarks is the SPEC95 integer
suite [25]. These commonly used C benchmarks are a
good point of reference. The next set of benchmarks

is a C++ suite developed for the purpose of study-
ing object-oriented workloads, speci�cally the e�ects
of virtual functions on performance [3, 6]. These two
suites of benchmarks are compiled with gcc 2.8.1. with
full optimizations (-O4) and are statically linked. The
�nal group of benchmarks are the Java benchmarks
from SPEC [25]. The Java byte codes are executed by
the Sun Java Virtual Machine (JVM) version 1.1.3.
All thread management is handled by the JVM. Some
relevant numerical characteristics such as number of
dynamic instructions, percentage of loads, and per-
centage of stores of each benchmark may be found in
Table 3.

Table 3: Basic Characteristics of the Benchmarks

Benchmark Dynamic Instr % Loads % Stores

gcc 261.1M 19.00 10.15

compress95 383.2M 17.95 15.20

go 477.6M 22.20 7.56

ijpeg 495.4M 17.19 6.54

li 166.0M 22.32 10.18

m88ksim 122.0M 15.61 8.70

vortex 494.7M 18.90 9.57

compress 496.4M 31.78 10.09

db 86.6M 20.97 7.91

jack 495.3M 28.86 9.77

javac 198.7M 22.55 8.10

jess 259.0M 23.68 8.54

mpegaudio 497.6M 30.98 9.48

mtrt 490.3M 26.06 9.52

deltablue 40.7M 25.70 6.29

eqn 47.1M 17.76 9.64

idl 82.8M 22.55 2.74

ixx 29.6M 15.53 7.93

richards 66.0M 28.20 8.38

Benchmarks are run until completion or until 500 million instruc-
tions are decoded. Dynamic Instr is the number of instructions
executed dynamically (does not include SPARC annulled instruc-
tions or wrong path instructions).

We analyze several programs from each suite. Due
to time considerations, not every program from each
benchmark may be used, each program may not be
run under every con�guration, and programs are ter-
minated if and when they reach 500 million instruc-
tions.

5 Results and Analysis

Several experiments were performed varying the indi-
vidual store bu�er policies for the base-line physical
store bu�er. Pipeline placement is found to have the
greatest impact on the overall performance of the pro-
cessor. The lazy store removal policy has the great-
est impact on processor performance. Priority switch-
ing is found to have negligible impact at almost all
thresholds. Finally, varying store retirement policies
provides some of the same bene�ts as a lazy store re-
moval policy, but with a higher penalty.

The optimal 32-entry store bu�er in the design
space examined is a virtual store bu�er with lazy store

removal using a threshold of 24 active entries, no prior-
ity switching, and the original store retirement policy.
The next section provides more details and analysis
on how this con�guration is determined.

The performance characteristics of the base model
are presented in Table 4. We use the base model store
bu�er as a reference when ascertaining the impact of
the store bu�er policies.

5.1 Per Policy results

In Figure 3, the four policies and one combination are
summarized based on their variation in IPC from the
base model. A virtual store bu�er policy (V) has the
most signi�cant impact on IPC followed by a lazy store
removal policy (LR24) and a late store retirement pol-
icy (RP16). Priority switching (P24) had little e�ect
in most cases. We examined di�erent thresholds for
these policies in prior simulations and found these to
be the best of those examined.

Figure 4 summarizes how the con�gurations a�ect
load traÆc to the L1 data cache. The single param-
eter with the greatest impact on load traÆc is lazy
store removal. Late store retirement does not provide
as much load traÆc reduction. A virtual store bu�er
alone provides only a small improvement. When a
lazy store removal policy is added to a virtual store
bu�er, it has a synergistic e�ect where the combined
improvement in IPC is more than the sum of the in-
dividual improvements. A more in-depth analysis of
these policies follow.

Impact of Lazy Store Removal. This policy of
store removal alone has an overall positive e�ect on the
processor. Each benchmark analyzed has an increased
IPC, ranging from a negligible performance increase
in m88ksim to 3.3% IPC improvement in richards.
The average store bu�er occupancy rises to about 23
entries. Another e�ect of this policy is a substantial
increase in the amount of load forwarding and there-
fore a reduction in load requests sent to memory. The
amount of load traÆc is reduced by an average of
12.5%, ranging anywhere from 3.3% to 28.6%.

Unfortunately, all of these saved loads do not trans-
late directly to performance increase. Since the load
operations must have the same address as a recent
store to perform load forwarding, almost all of the
loads being forwarded would have been hits in the level
one cache (which has only one-cycle latency). Expen-
sive loads, like L1 misses, are not usually caught by the
store bu�er. The simulated memory system also pro-
vides two MSHR's to further hide access latencies. In
addition, a dynamically scheduled processor's ability
to tolerate loads varies from load to load and program
to program [24]. It is possible that the loads that are
avoided due to increased load forwarding are ones that
can tolerate latency.

T
a
b
le
4
:
P
erfo

rm
a
n
ce

o
f
th
e
B
a
se

M
o
d
el

B
e
n
c
h
m
a
rk

IP
C

%
F
o
rw

L
d
s

L
d
H
it
R
a
tio

S
t
H
it
R
a
tio

S
B
S
ta
ll
%

A
v
g
S
B

A
d
d
r
T
ra
n
s

c
c
1

2
.2
8

1
1
.8
7

9
8
.7

9
7
.9

0
.4
3

5
.8
1

7
7
.6
M

c
o
m
p
re
ss9

5
1
.9
0

1
4
.6
0

9
8
.1

9
3
.2

1
3
.1
4

1
1
.0
5

1
3
.2
M

g
o

1
.6
1

8
.0
2

9
9
.9

9
9
.5

0
.0
3

2
.7
1

1
9
6
.3
M

ijp
e
g

2
.0
6

2
.3
7

9
9
.6

9
8
.9

1
.8
9

5
.7
8

1
2
4
.1
M

li
2
.3
8

1
1
.1
3

9
5
.9

9
8
.9

0
.1
2

6
.8
8

5
2
.3
M

m
8
8
k
sim

2
.5
4

3
2
.5
1

9
9
.7

9
7
.0

4
.5
7

6
.2
5

2
9
.2
M

d
b

2
.3
0

1
4
.2
2

9
8
.6

9
6
.9

0
.7
5

6
.6
5

2
5
.0
M

ja
c
k

2
.5
8

2
4
.9
7

9
9
.3

9
8
.9

4
.3
7

1
6
.9
4

1
9
1
.4
M

ja
v
a
c

2
.2
0

1
4
.4
8

9
8
.4

9
7
.5

0
.4
2

6
.6
1

6
1
.2
M

je
ss

2
.1
3

1
3
.5
1

9
8
.1

9
7
.7

0
.2
6

6
.7
1

8
3
.8
M

m
p
e
g
a
u
d
io

2
.7
5

2
4
.6
2

9
9
.7

9
9
.5

1
.4
1

1
3
.1
1

2
0
1
.0
M

m
trt

2
.3
9

1
5
.2
4

9
9
.2

9
8
.2

0
.1
5

8
.6
6

1
7
3
.3
M

d
e
lta

b
lu
e

1
.2
8

3
.9
2

8
6
.4

7
8
.3

0
.8
4

3
.9
7

1
2
.9
M

e
q
n

2
.4
8

9
.6
5

9
9
.9

9
9
.7

0
.0
5

6
.3
3

1
3
.2
M

id
l

2
.4
5

4
.7
9

9
8
.1

9
7
.5

0
.7
3

2
.1
2

2
0
.3
M

ix
x

2
.3
3

1
3
.1
8

9
8
.3

9
7
.2

3
.5
3

5
.9
3

7
.1
M

ric
h
a
rd
s

1
.8
7

1
2
.8
3

9
9
.9

9
9
.9

0
.0
1

5
.9
0

2
3
.1
M

IP
C

is
in
stru

c
tio

n
s
p
e
r
c
y
c
le
.
%

F
o
r
w
L
d
s
is
th
e
p
e
rc
e
n
ta
g
e
o
f
a
ll
lo
a
d
s
th
a
t
a
re

fo
rw
a
rd
e
d
.
L
d
H
it
R
a
tio

is
th
e
L
1
d
a
ta

c
a
c
h
e
h
it
ra
tio

fo
r
lo
a
d
in
stru

c
tio

n
s.
S
t
H
it
R
a
tio

is
th
e
L
1
d
a
ta

c
a
c
h
e
h
it
ra
tio

fo
r
sto

re
in
stru

c
tio

n
s.
S
B
s
ta
ll
%

is
th
e
p
e
rc
e
n
ta
g
e
o
f
a
ll
p
ro
c
e
sso

r
c
y
c
le
s

w
ith

a
sto

re
b
u
�
e
r
sta

ll.
A
v
g
S
B

is
th
e
a
v
e
ra
g
e
n
u
m
b
e
r
o
f
a
c
tiv

e
e
n
trie

s
in

th
e
sto

re
b
u
�
e
r.

A
d
d
r
T
ra
n
s
is
th
e
to
ta
l
n
u
m
b
e
r
o
f
a
d
d
re
ss

tra
n
sla

tio
n
s.

-2 -1 0 1 2 3 4 5 6 7 8 9 10

gcc

comp95

go

ijpeg

li

m88k

vortex

comp

db

jack

javac

jess

mpeg

mtrt

delta

eqn

idl

ixx

rich

Percent Change vs. Base Model

P
24

R
P

16
LR

24
V

LR
24.V

33.6%

18.7%

F
ig
u
re

3
:
E
�
ects

o
f
Iso

la
ted

S
to
re

B
u
�
er

P
o
licies

o
n
IP
C

P
2
4
sw
itc
h
e
s
h
ig
h
p
rio

rity
fro

m
lo
a
d
s
to

sto
re
s
a
t
2
4
a
c
tiv

e
e
n
trie

s.
R
P
1
6
is
a
sto

re
b
u
�
e
r
w
ith

sto
re

re
tire

m
e
n
t
p
o
in
t
o
f
1
6
a
c
tiv

e
e
n
trie

s.
L
R
2
4
is
a
sto

re
b
u
�
e
r
w
ith

la
z
y
sto

re
re
m
o
v
a
l
a
t
2
4
a
c
tiv

e
e
n
trie

s.
V
is
a
v
irtu

a
l
sto

re
b
u
�
e
r.

L
R
2
4
.
V
is
a
v
irtu

a
l
sto

re
b
u
�
e
r
w
ith

la
z
y
sto

re
re
m
o
v
a
l
a
t
2
4
a
c
tiv

e
e
n
trie

s.

-30

-25

-20

-15

-10-505

gcc

comp95

go

ijpeg

li

m88k

vortex

comp

db

jack

javac

jess

mpeg

mtrt

delta

eqn

idl

ixx

rich

Percent Change vs Base Model

P
24

R
P

16
LR

24
V

LR
24.V

F
ig
u
re

4
:
E
�
ects

o
f
Iso

la
ted

S
to
re

B
u
�
er

P
o
licies

o
n
L
1
L
o
a
d
T
ra
Æ
c

P
2
4
sw
itc
h
e
s
h
ig
h
p
rio

rity
fro

m
lo
a
d
s
to

sto
re
s
a
t
2
4
a
c
tiv

e
e
n
trie

s.
R
P
1
6
is
a
sto

re
b
u
�
e
r
w
ith

sto
re

re
tire

m
e
n
t
p
o
in
t
o
f
1
6
a
c
tiv

e
e
n
trie

s.
L
R
2
4
is
a
sto

re
b
u
�
e
r
w
ith

la
z
y
sto

re
re
m
o
v
a
l
a
t
2
4
a
c
tiv

e
e
n
trie

s.
V
is
a
v
irtu

a
l
sto

re
b
u
�
e
r.

L
R
2
4
.
V
is
a
v
irtu

a
l
sto

re
b
u
�
e
r
w
ith

la
z
y
sto

re
re
m
o
v
a
l
a
t
2
4
a
c
tiv

e
e
n
trie

s.

It
is
in
terestin

g
to

n
o
te

th
a
t
th
e
p
ercen

ta
g
e
o
f
cy
-

cles
w
ith

a
sto

re
b
u
�
er

sta
ll
va
ries

v
ery

little,
if
a
t
a
ll.

A
lth

o
u
g
h
th
e
n
u
m
b
er

o
f
av
era

g
e
en
tries

in
th
e
sto

re
b
u
�
er

h
a
s
in
crea

sed
,
m
a
n
y
o
f
th
em

(esp
ecia

lly
th
e

o
ld
er

o
n
es)

a
re

sto
res

th
a
t
h
av
e
a
lrea

d
y
b
een

retired
to

m
em

o
ry.

T
h
erefo

re,
th
ey

ca
n
b
e
p
u
rg
ed

q
u
ick

ly
if

n
ecessa

ry.

Im
p
a
c
t
o
f
S
to
r
e
P
r
io
r
ity

S
w
itc
h
in
g
.

S
w
itch

in
g

p
rio

rity
fro

m
loa

d
s
�
rst

to
sto

res
�
rst

a
t
a
th
resh

o
ld
o
f

2
4
d
o
es

n
o
t
h
av
e
a
sig

n
i�
ca
n
t
e�
ect

o
n
p
erfo

rm
a
n
ce

in
sto

re
b
u
�
ers.

In
m
o
st
ca
ses,

it
red

u
ces

th
e
p
ercen

ta
g
e

o
f
cy
cles

w
ith

a
sto

re
b
u
�
er

sta
ll,

b
u
t
it
is
co
m
m
o
n

fo
r
th
e
IP
C
to

a
ctu

a
lly

d
ecrea

se
co
m
p
a
red

to
o
u
r
b
a
se

m
o
d
el.
F
o
r
ex
a
m
p
le,

th
e
J
ava

p
ro
g
ra
m

j
a
c
k
h
a
d
a
la
rg
e

p
ercen

ta
g
e
o
f
sto

re
b
u
�
er
sta

ll
cy
cles

in
th
e
b
a
se
m
o
d
el,

4
.3
7
%
.

U
sin

g
th
e
p
rio

rity
sw

itch
in
g
m
o
d
el,

th
is

is
red

u
ced

to
0
.1
3
%
,
b
u
t
th
e
IP
C

d
ecrea

ses
b
y
0
.0
5
%
.

T
h
ere

a
re

tw
o
p
ro
b
a
b
le

rea
so
n
s
fo
r
th
e
p
erfo

rm
a
n
ce

d
ecrea

se.
O
n
e
is

th
a
t
th
e
a
m
o
u
n
t
o
f
lo
a
d
fo
rw
a
rd
-

in
g
h
a
s
b
een

d
ecrea

sed
,
a
llow

in
g
m
o
re

lo
a
d
s
to

a
ccess

m
em

o
ry

a
n
d
in
cu
r
a
lo
n
g
er

la
ten

cy.
T
h
e
o
th
er

rea
-

so
n
is
th
a
t
th
e
red

u
ctio

n
in

cy
cles

w
ith

a
sto

re
b
u
�
er

sta
ll
is
rela

tiv
ely

sm
a
ll.

R
a
isin

g
th
e
th
resh

o
ld
a
t
w
h
ich

th
e
sto

re
p
rio

rity
sw

itch
es

to
2
4
a
ctiv

e
en
tries

a
lso

d
e-

crea
ses

p
erfo

rm
a
n
ce,

b
u
t
b
y
a
lesser

a
m
o
u
n
t.

T
h
e

p
ro
g
ra
m
s
c
o
m
p
r
e
s
s
9
5
a
n
d
i
d
l
w
h
ich

a
lso

h
a
d
sig

n
if-

ica
n
t
sta

ll
cy
cles

d
u
e
to

th
e
sto

re
b
u
�
er

d
id

n
o
t
see

a
n
y
im
p
rov

em
en
t
in

p
erfo

rm
a
n
ce

fro
m

th
is
p
o
licy.

S
to
r
e
R
e
tir
e
m
e
n
t
P
o
in
t.

W
e
ca
n
see

th
a
t
th
e
m
o
d
-

ify
in
g
th
e
sto

re
retirem

en
t
p
o
in
t
resu

lts
in

a
p
erfo

r-
m
a
n
ce

in
crea

se
ov
er

th
e
b
a
se

m
o
d
el.

T
h
e
IP
C
is
in
-

crea
sed

b
y
a
n
av
era

g
e
o
f
0
.9
3
%
,
in
clu

d
in
g
o
n
e
ca
se

o
f

a
n
IP
C
d
ecrea

se.
O
u
r
stu

d
ies

sh
ow

th
a
t
th
e
av
era

g
e

o
ccu

p
a
n
cy

o
f
th
e
sto

re
b
u
�
er
in
crea

ses
fro

m
a
n
av
era

g
e

o
f
less

th
a
n
eig

h
t
in

th
e
b
a
se

m
o
d
el
to

a
n
av
era

g
e
o
f

a
b
o
u
t
1
7
.
T
h
erefo

re,
in
crea

sin
g
th
e
sto

re
retirem

en
t

th
resh

o
ld

im
p
rov

es
th
e
p
o
ten

tia
l
o
f
lo
a
d
fo
rw
a
rd
in
g
,

b
u
t
a
lso

in
crea

ses
sto

re
b
u
�
er

sta
lls.

W
e
�
n
d
th
a
t
th
e

sto
re

b
u
�
er

sta
lls

d
eg
ra
d
e
th
e
p
erfo

rm
a
n
ce

g
a
in

fro
m

th
e
ex
tra

lo
a
d
fo
rw
a
rd
in
g
.

T
h
ere

is
a
n
e�
ect

sim
ila
r
to

th
a
t
o
f
a
la
zy

sto
re

rem
ova

l
p
o
licy

-
a
la
rg
e
in
crea

se
in

lo
a
d
fo
rw
a
rd
in
g
.

T
h
e
d
i�
eren

ce
is
th
a
t
th
e
p
ercen

ta
g
e
o
f
cy
cles

w
ith

a
sto

re
b
u
�
er

sta
ll
n
ow

in
crea

ses
m
o
re

su
b
sta

n
tia

lly.
A

sto
re

ca
n
n
o
t
b
e
co
n
sid

ered
fo
r
rem

ova
l
u
n
til

it
h
a
s

b
een

retired
.
In

th
e
la
zy

rem
ova

l
ca
se,

sto
res

a
re

re-
tired

ea
rly

a
n
d
a
re

fu
lly

p
rep

a
red

to
b
e
p
u
rg
ed

fro
m

th
e
sto

re
b
u
�
er

w
h
en

th
e
th
resh

o
ld

is
rea

ch
ed
.
In

th
e

la
te
retirem

en
t
scen

a
rio

,
sto

res
a
re
less

lik
ely

to
b
e
p
re-

p
a
red

fo
r
rem

ova
l
a
s
th
e
sto

re
b
u
�
er

�
lls

w
ith

a
ctiv

e
en
tries.
T
h
ese

resu
lts

sh
ow

th
a
t
a
llow

in
g
sto

res
to

co
n
ten

d
fo
r
th
e
m
em

o
ry

in
terfa

ce
reso

u
rces

a
s
so
o
n
a
s
p
o
ssib

le

does not hurt performance. If there are several out-
standing stores, they can block the cache from per-
forming important loads, but this does not appear to
be a critical issue to performance. It is more impor-
tant to utilize available L1 bus cycles.

Impact of Virtual Store Bu�er. Implementing a
virtual store bu�er produces the best performance in-
crease of any single policy studied. The IPC for the
benchmarks increased by an average of 4.2%, ranging
from a 0.13% increase to 18.77% increase in richards.
Reducing the address translation step is the primary
reason for the performance gain. The number of trans-
lations is reduced by an average of 5.82%, ranging from
0.96% to 10.89% since it is assumed that a process ID
and virtual address are suÆcient to properly deter-
mine address dependencies.

For each load that is forwarded, the address trans-
lation latency is not incurred (our model allows one
cycle for TLB hits which occur 99% of the time). Load
forwarding increases slightly with a virtual store bu�er
versus the base model, because the load can access the
store bu�er earlier.

Adding Lazy Store Removal to a Virtual Store
Bu�er. Studying several combinations of the dis-
cussed policies, the best processor performance for
a processor with a 32-entry store bu�er is achieved
by making it virtual and implementing the lazy store
removal policy with a threshold of 24. Store retire-
ment should remain at the point indicated in the base
model, once all previous instructions are completed
and the store is non-speculative. Switching store pri-
ority does not need to occur for performance reasons,
although in the UltraSPARC-IIi they felt it was im-
portant to avoid \lock-out conditions."

Lazy store removal increases the number of for-
warded loads, and virtual accessing reduces the num-
ber of address translations that can be saved. If the
best case (33.6% increase for richards and the worse
case (0.54% increase for m88ksim) are ignored, we �nd
that the performance increase available from combin-
ing a virtual store bu�er with lazy removal ranges from
0.79% to 9.57% and an average of 5.11%. The de-
crease in L1 load traÆc and address translations is
substantial. The number of loads that access memory
is reduced by an average of 12.97% while the num-
ber of address translations is reduced by 12.63%. The
address translations include translations for store in-
structions, so they do not reduce at exactly the same
rate as the load traÆc.

Load traÆc reduction is a direct result of increased
load forwarding. By implementing lazy store removal,
the average number of active entries in the store bu�er
increases, improving the chances for load forwarding.
Making the store bu�er virtual accounts for the ad-
dress translation reduction. For each forwarded load,

there need not be an address translation to complete
the load.

5.2 Policies versus Size

This section investigates the e�ects of store bu�er size
with and without the improvement from the optimal
policies. Figure 5 compares an array of con�gurations
averaged over the three di�erent benchmark suites.
In addition to the original 32-entry size, sizes of four,
eight, and sixteen are simulated. Each of the new
sizes is optimized with the lazy store removal policy
and then made virtual. The objective is to observe
whether a smaller, smarter store bu�er can outper-
form the larger, naive store bu�er. This is important
since it is often the case that access time due to dis-
ambiguation is less for smaller store bu�ers, making
these policies easier to implement.

Figure 5 demonstrates that it is possible for smaller
store bu�ers to approach and, in fact, surpass the per-
formance of a larger store bu�er. The �rst thing to
note from this �gure is that down-sizing to a 16-entry
store bu�er (S16) results in little performance degra-
dation, about 1% overall and a maximum of 4%. The
average store bu�er size for the benchmarks is under
eight active entries per cycle in the base runs. There-
fore, it is not surprising that a store bu�er of 16 is
quite adept at handling the stores when no other poli-
cies are applied. When lazy store removal is added
(S16.LR12), the overall IPC is within 0.33% of the
base model and six benchmarks actually improve over
the base model. If this store bu�er is made virtual
(S16.LR12.V), then all but one of the benchmarks
(m88ksim) improves over the base model 32-entry store
bu�er. The details of the 16-entry con�guration with
respect to the base model are examined later in Fig-
ures 6 and 7.

Figure 5 shows the enhanced four-entry and eight-
entry store bu�ers are not able to outperform larger
store bu�ers on average. The four entry store bu�er
shows a signi�cant performance drop versus the base
model. This is the result of the bu�er being too small.
A store bu�er stall occurs in about one-third of all cy-
cles in this case. The average store bu�er occupancy
per cycle is almost three entries which explains the in-
e�ectiveness of a lazy store removal threshold of two
(S4.LR2). Making the four-entry store bu�er virtual
(S4.LR2.V) is a big improvement, especially for the
C programs, but does not really approach the perfor-
mance of a simple 8-entry bu�er (S8).

The optimal eight entry bu�er (S8.LR5.V), on the
other hand, does approach the performance of a naive
16-entry store bu�er (S16), despite the fact that its
simple con�guration (S8) is signi�cantly worse that
that of the 16-entry store bu�er (S16). Six bench-
marks perform better on the optimal eight-entry bu�er
than the naive 16-entry bu�er and four of those (go,
ijpeg, deltablue, richards) perform better than
the base model.

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

C Java C++

P
er

ce
nt

 C
ha

ng
e

vs
 B

as
e

M
od

el

S4

S4.LR2

S4.LR2.V

S8

S8.LR5

S8.LR5.V

S16

S16.LR12

S16.LR12.V

S32.LR24

S32.LR24.V

a b

k

ji

hg afedcb

k

ji

hgfedcb a c d e f g h

i j

k

a

b

j

i

h

g

f

e

d

c

k

Figure 5: E�ects of Store Bu�er Size and Policy on IPC
SX indicates the size of the store bu�er where X is the number of entries. LRX indicates the lazy store removal threshold where X is the the
threshold. V indicates a virtual store bu�er. These percentages are relative to the 32-entry, physical store bu�er base model.

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

gc
c

co
m

p9
5 go

ijp
eg

 li

m
88

k

vo
rt

ex

co
m

p db

ja
ck

ja
va

c

je
ss

m
pe

g

m
tr

t

de
lta

eq
n id
l

ix
x

ric
h

P
er

ce
nt

 G
ai

n
vs

 B
as

e
M

od
el

S16 S16.LR12 S16.LR12.V
33.6%

Figure 6: Change in IPC for a 16-entry Store Bu�er
S16 is a 16-entry store bu�er. S16.LR12 is a 16-entry store bu�er with lazy store removal at a threshold of 12 entries. S16.V is a 16-entry
virtual store bu�er. S16.LR12.V is a virtual 16-entry store bu�er with lazy store removal at 12 active entries. These percentages are relative
to the 32-entry, physical base model.

-4 -2 0 2 4 6 8 10 12 14 16 18

gcc

comp95

go

ijpeg

li

m88k

vortex

comp

db

jack

javac

jess

mpeg

mtrt

delta

eqn

idl

ixx

rich

Percent Decrease vs Base Model

S
16

S
16.LR

12
S

16.LR
12.V

F
ig
u
re

7
:
C
h
a
n
g
e
in

L
o
a
d
tra

Æ
c
fo
r
a
1
6
-en

try
S
to
re

B
u
�
er

S
1
6
is
a
1
6
-e
n
try

sto
re

b
u
�
e
r.

S
1
6
.
L
R
1
2
is
a
1
6
-e
n
try

sto
re

b
u
�
e
r
w
ith

la
z
y
sto

re
re
m
o
v
a
l
a
t
a
th
re
sh
o
ld

o
f
1
2
e
n
trie

s.
S
1
6
.
V
is
a
1
6
-e
n
try

v
irtu

a
l
sto

re
b
u
�
e
r.

S
1
6
.
L
R
1
2
.
V
is
a
v
irtu

a
l
1
6
-e
n
try

sto
re

b
u
�
e
r
w
ith

la
z
y
sto

re
re
m
o
v
a
l
a
t
1
2
a
c
tiv

e
e
n
trie

s.
T
h
e
se

p
e
rc
e
n
ta
g
e
s
a
re

re
la
tiv

e
to

th
e
3
2
-e
n
try

,
p
h
y
sic

a
l
b
a
se

m
o
d
e
l.

F
ig
u
re
6
b
eg
in
s
a
clo

ser
lo
o
k
a
t
th
e
1
6
-en

try
co
n
�
g
-

u
ra
tio

n
s.
T
h
e
IP
C
n
u
m
b
ers

in
d
ica

te
th
a
t
it
is
th
e
v
ir-

tu
a
l
a
sp
ect

o
f
th
e
1
6
-en

try
sto

re
b
u
�
er

th
a
t
in
crea

ses
p
erfo

rm
a
n
ce

m
o
re

th
a
n
la
zy

sto
re

rem
ova

l.
In

F
ig
u
re

7
,
it
is
a
p
p
a
ren

t
th
a
t
a
lm
o
st

a
ll
o
f
th
e
im
p
rov

em
en
t

in
lo
a
d
tra

Æ
c
is
th
e
resu

lt
o
f
th
e
la
zy

sto
re

rem
ova

l.
S
o
,
th
e
ex
tra

p
erfo

rm
a
n
ce

p
rov

id
ed

b
y
v
irtu

a
l
sto

re
b
u
�
ers

is
strictly

th
e
resu

lt
o
f
a
low

er
la
ten

cy
fo
r
a
c-

q
u
irin

g
lo
a
d
d
a
ta
.
T
h
e
d
eta

ils
o
f
th
e
b
est

co
n
�
g
u
ra
-

tio
n
a
re

p
resen

ted
in

T
a
b
le
5
.

In
th
e
ta
b
le,

a
ll
p
ercen

ta
g
es

a
re

rela
tiv

e
to

th
e
3
2
-

en
try,

p
h
y
sica

l
b
a
se

m
o
d
el.

C
o
lu
m
n
o
n
e
sh
ow

s
th
e

d
i�
eren

ce
in

IP
C
.
In

a
ll
b
u
t
o
n
e
ca
se,

th
is

h
a
lf-size

sto
re
b
u
�
er
o
u
tp
erfo

rm
s
th
e
3
2
-en

try
b
a
se
m
o
d
el.

T
h
e

n
ex
t
co
lu
m
n
sh
ow

s
th
e
red

u
ctio

n
in

lo
a
d
tra

Æ
c.

E
x
-

cep
t
w
ith

th
e
J
ava

c
o
m
p
r
e
s
s
p
ro
g
ra
m
,
a
ll
b
en
ch
m
a
rk
s

sh
ow

a
n
im
p
rov

em
en
t
in
lo
a
d
tra

Æ
c
to

th
e
d
a
ta

ca
ch
e.

T
h
e
v
irtu

a
l
a
sp
ect

a
llow

s
fo
r
th
e
red

u
ctio

n
in

a
d
d
ress

tra
n
sla

tio
n
s
(co

lu
m
n
th
ree).

T
h
e
fa
ct

th
a
t,
in

co
lu
m
n

fo
u
r,
m
o
st
o
f
th
e
b
en
ch
m
a
rk
s
sh
ow

a
n
in
crea

se
in

av
-

era
g
e
o
ccu

p
a
n
cy

v
ersu

s
a
sto

re
b
u
�
er

o
f
tw
ice

th
e
size

em
p
h
a
sizes

th
e
in
eÆ

cien
cy

o
f
th
e
stra

ig
h
tfo

rw
a
rd

b
a
se

m
o
d
el.

T
h
e
la
st
co
lu
m
n
rep

o
rts

th
e
p
ercen

t
ch
a
n
g
e
in

sto
re

b
u
�
er

sta
ll
p
ercen

ta
g
e.

T
h
is
sim

p
ly

sh
ow

s
th
a
t

ev
en

th
o
u
g
h
th
e
p
ercen

ta
g
e
o
f
sta

ll
cy
cles

in
crea

ses,
p
erfo

rm
a
n
ce

m
ay

still
b
e
im
p
rov

ed
.
T
h
e
sto

re
b
u
�
er

sta
ll
p
ercen

ta
g
e
is
o
ften

q
u
ite

sm
a
ll
to

b
eg
in

w
ith

,
so

slig
h
t
in
crea

ses
in

th
e
a
b
so
lu
te

va
lu
e
o
f
sto

re
b
u
�
er

sta
ll
cy
cles

w
ill

sh
ow

a
la
rg
e
p
ercen

ta
g
e
in
crea

se.

5
.3

B
e
s
t
a
n
d
W
o
r
s
t
B
e
h
a
v
io
r

W
e
w
o
u
ld

lik
e
to

b
rie

y
d
iscu

ss
th
e
b
en
ch
m
a
rk
s
th
a
t

ex
h
ib
it

th
e
b
est

a
n
d
w
o
rst

p
erfo

rm
a
n
ce

in
crea

se
in

o
u
r
o
p
tim

a
l
sto

re
b
u
�
er

sch
em

e.
T
h
e
C
+
+

p
ro
g
ra
m

r
i
c
h
a
r
d
s
a
ch
iev

es
a
3
3
.6
%
IP
C
in
crea

se
w
ith

th
e
la
zy

rem
ova

l
v
irtu

a
l
sto

re
b
u
�
er

v
ersu

s
o
u
r
b
a
se

m
o
d
el.

O
n
e
a
ttrib

u
te

th
a
t
d
istin

g
u
ish

es
r
i
c
h
a
r
d
s
fro

m
th
e

o
th
er
b
en
ch
m
a
rk
s
is
th
a
t
it
h
a
s
o
n
e
o
f
th
e
h
ig
h
est

p
er-

cen
ta
g
e
o
f
lo
a
d
in
stru

ctio
n
s,
2
8
.2
0
%
.
T
h
erefo

re
w
h
en

th
e
lo
a
d
tra

Æ
c
to

L
1
is

red
u
ced

b
y
2
7
.5
%
,
a
la
rg
er

p
ercen

ta
g
e
o
f
th
e
to
ta
l
in
stru

ctio
n
s
in
th
e
p
ro
g
ra
m
a
re

b
ein

g
im
p
rov

ed
.
L
a
zy

sto
re

rem
ova

l
in
crea

ses
th
e
av
-

era
g
e
n
u
m
b
er

o
f
a
ctiv

e
en
tries

in
th
e
sto

re
b
u
�
er

a
n
d

th
e
p
o
ten

tia
l
fo
r
a
sto

re
b
u
�
er
sta

ll.
If
th
e
m
em

o
ry

a
c-

cesses
a
re
o
rd
ered

in
su
ch

a
w
ay

th
a
t
sto

re
b
u
�
er
sta

lls
a
re
ra
re,

it
o
n
ly
h
elp

s
th
ese

p
o
licies.

A
low

p
ercen

ta
g
e

o
f
sto

re
b
u
�
er

sta
ll
cy
cles

(a
lm
o
st

0
%
)
in
d
ica

tes
th
a
t

th
is
m
ay

b
e
th
e
ca
se

w
ith

r
i
c
h
a
r
d
s
(T
a
b
le
4
).

T
h
e
C

p
ro
g
ra
m

m
8
8
k
s
i
m
is

lea
st

a
�
ected

b
y
th
e

sto
re

b
u
�
er

im
p
rov

em
en
ts.

T
h
e
b
est

IP
C
in
crea

se
o
b
-

ta
in
ed

is
0
.5
4
%
.
T
a
b
les

3
a
n
d
4
sh
ow

th
a
t
m
8
8
k
s
i
m

h
a
s
th
e
low

est
p
ercen

ta
g
e
o
f
lo
a
d
in
stru

ctio
n
s
a
n
d
a

h
ig
h
p
ercen

ta
g
e
o
f
sto

re
b
u
�
er

sta
ll
cy
cles

in
th
e
b
a
se

m
o
d
el.

T
h
is
is
th
e
o
p
p
o
site

o
f
r
i
c
h
a
r
d
s
.
In

a
d
d
itio

n
,

w
h
ile

r
i
c
h
a
r
d
s
en
joy

s
a
2
7
%

d
ecrea

se
in

d
a
ta

ca
ch
e

lo
a
d
tra

Æ
c,
m
8
8
k
s
i
m
d
ecrea

ses
th
is
tra

Æ
c
b
y
1
1
.9
%
.

Table 5: Virtual Store Bu�er of Size 16 with Store Removal Threshold of 12

Percent Change versus Base

Benchmark IPC Loads to L1 Addr Trans Avg SB SB stall %

compress95 1.07 -12.06 -9.90 10.77 46.54

gcc 1.92 -6.98 -8.07 96.55 502.30

go 6.91 -15.65 -14.65 274.48 924.49

ijpeg 4.70 -3.20 -2.50 97.92 98.32

li 3.64 -7.01 -7.31 64.43 1059.31

m88ksim -0.42 -9.86 -20.16 88.57 19.84

vortex 1.15 -3.44 -4.58 53.59 101.32

compress 0.88 0.68 -6.59 -6.91 405.45

db 3.37 -4.44 -6.39 73.85 245.27

deltablue 6.12 -8.75 -7.84 181.98 110.66

eqn 1.27 -16.83 -11.47 80.69 9692.08

idl 0.38 -11.11 -12.29 422.84 92.72

ixx 0.46 -8.39 -10.86 93.92 80.48

jack 1.67 -0.23 -7.10 -24.69 83.18

javac 3.87 -4.12 -6.13 73.27 349.14

jess 4.45 -3.81 -5.65 70.92 629.97

mpegaudio 1.19 -0.98 -9.73 -3.32 240.65

mtrt 6.16 -3.01 -5.37 40.12 2793.96

richards 29.59 -17.32 -19.39 88.60 160.15

All numbers are relative to the base model. IPC is the percent change in instructions per cycle. Loads to L1 is the percent change in load
instructions that access the L1 data cache. Addr Trans is the percent change in the number of address translations. Avg SB is the variation
in the average number of active entries in the store bu�er. SB stall % is the variation in the percentage of cycles with a store bu�er stall.

6 Conclusions

Due to a lack of literature on the details of the store
bu�er, we took this opportunity to delve into the is-
sues involved in designing a store bu�er for a dynam-
ically scheduled, out-of-order processor. These store
bu�er issues include size, store removal policy, store
retirement point, store priority switching, and virtual
store bu�ers.

� We �nd that incorporating a lazy store removal pol-
icy alone substantially increases the amount of load
forwarding that takes place, yet does not greatly in-
crease the number of store bu�er stalls in a 32-entry
store bu�er. This increase in load forwarding reduces
the number of loads that access memory by 12%. This
leads to a performance improvement (in IPC) ranging
from 0.15% to 6.9%. A 16-entry store bu�er with this
policy can approach and in some cases surpass the per-
formance of a 32-entry store bu�er. This policy has
less e�ect on store bu�ers of four and eight entries.

� Switching from the base model to a virtual store
bu�er model improves performance by reducing the
number of address translations that take place before
useful memory access work can be performed. For-
warded loads now avoid the address translation la-
tency. The IPC increases by an average of 4.1% in
this case.

� By both incorporating lazy store removal and mak-
ing the store bu�er virtual, we �nd that the IPC of the
processor can increase by an average of 5.11% over all
benchmarks for a store bu�er of size 32 and by as
much as 33% in speci�c cases. On average a 16-entry

store bu�er with these policies outperforms a normal
32-entry store bu�er. Even an eight-entry store bu�er
outperforms a 32-entry store bu�er for certain bench-
marks. Four- and eight-entry store bu�ers with this
implementation, on average, approach but do not ex-
ceed the next larger size studied.

There are, of course, many combinations of poli-
cies, con�gurations, and parameters that we did not
explore due to time considerations. It is possible that
some other combination of store removal, store pri-
orities, and a store retirement threshold could create
slightly better performance. What this paper should
convey to the reader is that there are many store bu�er
design decisions to make and the subsequent impact
on performance is not trivial.

References

[1] R. Bhargava, L. K. John, and F. Matus. Accu-
rately modeling speculative instruction fetching
in trace-driven simulation. In Proc of Interna-
tional Performance, Computing, and Communi-
cations Conference, pages 65{71, Feb 1999.

[2] B. K. Bray. Specialized Caches to Improve Data
Access Performance. PhD thesis, Stanford Uni-
versity, May 1993.

[3] B. Calder, D. Grunwald, and B. Zorn. Quanti-
fying behavioral di�erences between c and c++
programs. Technical Report CU-CS-698-94, Uni-
versity of Colorado, Boulder, Jan 1994.

[4] R. F. Cmelik and D. Keppel. Shade: A fast
instruction-set simulator for execution pro�ling.
Technical Report SMLI 93-12 and UWCSE 93-
06-06, Sun Microsystems Laboratories, Incorpo-
rated, and the University of Washington, 1993.

[5] H. G. Cragon. Memory Systems and Pipelined
Processors. Jones and Bartlett Publishers, 1996.

[6] K. Driesen and U. Holzle. The direct cost of vir-
tual function calls in c++. In OOPSLA-96, pages
306{323, Oct 1996.

[7] Intel Corporation. Intel Architecture Software
Developer's Manual, 1997.

[8] Intel Corporation. Intel Architecture Optimiza-
tion Reference Manual, Feb 1999.

[9] L. John, Y. Teh, F. Matus, and C. Chase. Im-
proving memory access performance using a code
coalescing unit. In Proc. International Confer-
ence on Computer Design, pages 550{557, Oct.
1998.

[10] M. Johnson. Superscalar Microprocessor Design.
Prentice Hall, 1990.

[11] N. P. Jouppi. Cache write policies and perfor-
mance. In Proc. 20th International Symposium
on Computer Architecture, pages 191{201, May
1993.

[12] S. Jourdan, R. Ronen, M. Beckerman, B. Shomar,
and A. Yoaz. A novel renaming scheme to exploit
value temporal locality through physical regis-
ter reuse and uni�cation. In 31st International
Symposium on Microarchitecture, pages 216{225,
November 1998.

[13] R. E. Kessler, E. J. McLellan, and D. A. Webb.
The alpha 21264 microprocessor architecture. In
Proc. International Conference on Computer De-
sign, pages 90{95, Oct 1998.

[14] L. A. Lozano and G. R. Gao. Exploiting short-
lived variables in superscalar processors. In Pro-
ceddings of 28th International Symposium on Mi-
croarchitecture, pages 292{302, 1995.

[15] M. Martonosi and K. Shaw. Interactions between
application write performance and compilation
techniques: A preliminary view. In Proc. Work-
shop on Interaction between Compilers and Com-
puter Architectures, pages II.1{6, Feb 1997.

[16] S. McFarling. Combining branch predictors.
Technical Report TN-36, Digital Western Re-
search Labs, Jun 1993.

[17] S. A. McKee, R. H. Klenke, A. J. Schwab, W. A.
Wulf, S. A. Moyer, J. H. Aylor, and C. Y. Hitch-
cock. Experimental implementation of dynamic
access ordering. In Proc. of 27th Hawaii Interna-
tional Conference on Systems Sciences (HICSS-
27), Jan 1994.

[18] S. A. McKee and W. A. Wulf. Access order and
memory-conscious cache utilization. In Proc. Of
First Symposium on High Performance Computer
Architecture, Jan 1995.

[19] A. Moshovos and G. S. Sohi. Streamlining inter-
operation memory communication via data de-
pendence prediction. Proc. 30th International
Symposium on Microarchitecture, pages 235{245,
Dec. 1997.

[20] K. B. Normoyle, M. A. Csoppenszky, A. Tzeng,
T. P. Johnson, C. D. Furman, and J. Mostou�.
Ultrasparc-iii: Expanding the boundaries of a
system on a chip. IEEE Micro, pages 14{24,
Mar/Apr 1998.

[21] L. Schaelicke and A. Davis. Improving i/o perfor-
mance with a conditional store bu�er. In Proc. of
International Symposium on Microarchitecture,
pages 160{169, Dec 1998.

[22] B. Shriver and B. Smith. The Anatomy of a High-
Performance Microprocessor: A Systems Per-
spective. IEEE Computer Society Press, 1998.

[23] K. Skadron and D. W. Clark. Design issues and
tradeo�s for write bu�ers. In Proc. of Third
International Symposium on High-Performance
Computer Architecture, pages 144{155, February
1997.

[24] S. T. Srinivasan and A. R. Lebeck. Load latency
tolerance in dynamically scheduled processors. In
Proc. International Symposium on Microarchitec-
ture, pages 148{159, Nov 1998.

[25] Standard Performance Evaluation Corporation.
Spec benchmarks. http://www.spec.org/.

[26] G. S. Tyson and T. M. Austin. Improving the ac-
curacy and performance of memory communica-
tions through renaming. Proc. 30th International
Symposium on Microarchitecture, pages 218{227,
Dec. 1997.

[27] D. L. Weaver and T. Germond. The SPARC Ar-
chitecture Manual (Version 9). Sparc Interna-
tional, Englewood Cli�s, NJ, USA, 1995.

[28] B. Wheeler and B. N. Bershad. Consistency man-
agement for virtually indexed caches. In Proc.
Fifth International Conference on Architectural
Support for Programming Languages and Operat-
ing Systems, pages 124{136, Oct 1992.

