
American Journal of Software Engineering, 2015, Vol. 3, No. 1, 1-5
Available online at http://pubs.sciepub.com/ajse/3/1/1
© Science and Education Publishing
DOI:10.12691/ajse-3-1-1

A Combined Model with Test Prioritizing for Testing an
Event Driven Software

Baskaran Periyasamy*, R. Ashok kumar

1SNS College of Engineering, Coimbatore
*Corresponding author: baskarcse06@gmail.com

Received December 19, 2014; Revised January 15, 2015; Accepted January 20, 2015

Abstract Event-Driven Software (EDS) can transform the state based on incoming events; common examples are
GUI, Web and Embedded applications. These EDSs pose a confront to testing because there are a large number of
promising event sequences that users can raise through a user interface. This system provides the single model that is
generic enough to study Graphical User Interface (GUI), Web and Embedded applications collectively. It uses the
model to describe general prioritization criteria that are appropriate to EDS applications. The ultimate goal is to
evolve the model and use it to extend a unified theory of how well all EDS should be tested. The project shows that
the GUI, Web-based and Embedded applications, when recast by means of the new model, show related
performance. This criterion that gives precedence to all pairs of event contacts did well for GUI, Web and Embedded
applications; another condition that gives priority to the minimum number of parameter value settings did weakly for
all. In this system by considering the prioritization criteria the order of test cases that are to be executed for the EDS
application will be generated. These results emphasize the principle that these three subclasses of applications should
be modeled collectively.

Keywords: Event-Driven Software, GUI, EDS, user interface, test prioritization, parameter, test case, test
sequence

Cite This Article: Baskaran Periyasamy, and R. Ashok kumar, “A Combined Model with Test Prioritizing
for Testing an Event Driven Software.” American Journal of Software Engineering, vol. 3, no. 1 (2015): 1-5. doi:
10.12691/ajse-3-1-1.

1. Introduction
Event-Driven Software (EDS) is a group of software

that is rapidly presents in every where. All EDSs obtain
sequences of events (e.g., messages and mouse-clicks) as
input, change their state, and turn out an output (e.g.,
events, system calls, and text messages). Examples
include Web applications, graphical user interfaces,
network protocols, device drivers, and embedded software.
The challenge of coming up with a single model of these
applications that sufficiently confines their event-driven
nature, yet abstracts left elements that are not important
for functional testing. The unlucky deficiency of such a
model has kept the advancement of imparted testing
procedures and calculations that may be utilized to test the
classes of uses. It has likewise kept the advancement of an
imparted set of measurements that may be utilized to
assess the test consequences of these sorts of uses. Second
is the inaccessibility of subject applications and devices
for scientists.

On focusing the first challenge; i.e., try to develop a
single abstract model for GUI, Web and Embedded
application testing. To provide focus, restrict the model to
extend the previous work on test prioritization techniques
for GUI, Web and Embedded applications testing. This
allows to adapt the replica to prioritization-specific

problems as well as to recast the earlier prioritization
criteria in a form that is general enough to influence the
single model. In the future, this model can be extended to
other testing problems that are shared by EDS applications.
Ultimate goal is to generalize the model and to extend a
theory of how EDS should be tested. The specific
extensions of this work include: the first single model for
testing stand-alone GUI, Web-based and Embedded
applications, a joint prioritization function based on the
abstract model, and shared prioritization criteria. The
results show that GUI, Embedded and Web-based
applications, when recast by means of the model, showed
comparable performance, emphasizing the principle that
these modules of applications should be modeled and
studied collectively. Other results show that EDS
applications perform in a different way, which has twisted
opportunities for evolving the model and further
experimentation. In future work, further generalize the
model by assessing its applicability and helpfulness for
other software testing actions, such as test creation. This
work also makes extensions to test prioritization study.
Many of the prioritization criteria progress the rate of
error detection of the test cases over arbitrary orderings of
tests. The future model also build up hybrid prioritization
criteria that merge numerous criteria that work fine
independently and assess whether the hybrid criteria effect
in more efficient test orders.

2 American Journal of Software Engineering

2. Test Prioritization
Because of the client driven nature, GUI, Embedded

and Web frameworks routinely experience changes as a
component of their upkeep process. New forms of the
applications are frequently made as an aftereffect of bug
fixes or prerequisites adjustment. In such circumstances,
countless cases may be accessible from testing past forms
of the application which are frequently reused to test the
new form of the application. Because of time obligations,
an analyzer should regularly select and execute a subset of
these experiments. Experiment prioritization is the
procedure of planning the execution of experiments as
indicated by some rule to fulfill an execution objective.

3. Related Works
Programming is progressively being created/ kept up by

numerous, regularly topographically disseminated engineers
working simultaneously. Therefore, fast criticism based
quality confirmation systems, for example, every day
constructs and smoke relapse tests [1], which help to
discover and kill abandons right on time amid
programming improvement and support, have ended up
critical. Here addresses a significant shortcoming of current
smoke relapse testing methods, i.e., their powerlessness to
naturally (re)test graphical user interfaces (Guis).

A few commitments are made to the range of GUI
smoke testing [1]. Initially, the necessities for GUI smoke
testing are recognized and a GUI smoke test is formally
characterized as a specific succession of occasions.
Second, a GUI smoke relapse testing procedure called
Daily Automated Regression Tester (DART) that
computerizes GUI smoke testing is introduced. Third, the
transaction between a few attributes of GUI smoke test
suites including their size, flaw identification capacity,
and test prophets is exactly concentrated on. The results
demonstrate that: 1) the whole smoke testing procedure is
doable regarding execution time, storage room, and
manual exertion, 2) smoke tests can't cover certain parts of
the application code, 3) having far reaching test prophets
may compensate for not having long smoke experiments,
and 4) utilizing certain prophets can compensate for not
having substantial smoke test suites [1].

An UML model of Web applications is proposed for
their abnormal state representation. Such a model is the
beginning stage for a few investigations, which can help in
the appraisal of the static site structure. Besides, it drives
Web application testing, in that it can be misused to
characterize white box testing criteria and to semi-
naturally create the related experiments.

The proposed procedures were connected to a few
certifiable Web applications [2]. Results propose that a
programmed backing to the check and approval exercises
can be greatly advantageous. Indeed, it promises that all
ways in the site which fulfill a chose model are
appropriately practiced before conveyance. The abnormal
state of robotization that is attained in experiment era and
execution builds the quantity of tests that are led and
rearranges the relapse checks.

Event driven software (EDS) is a broadly utilized class
of programming that takes groupings of occasions as
information, changes state, and yields new occasion

arrangements. Dealing with the extent of tests suites for
EDS is troublesome as the quantity of occasion mixes and
arrangements become exponentially with the quantity of
occasions [3]. Another testing strategy that develops
programming connection testing. Customary programming
collaboration testing deliberately analyzes all t-path
cooperations of parameters for a project.

Here, expands the idea to t-path cooperations over
successions of occasions. The method applies to numerous
classes of programming; that concentrate on that of EDS.
As an evidence of-idea, prioritize existing test suites for
four GUI based projects by t-way collaboration scope.

By Comparing the rate of fault detection with that of
several other prioritization criteria. Results show that
prioritization by interaction coverage has the fastest rate of
fault detection in half of our experiments, making the most
impact when tests have high interface coverage.

Web applications have quickly turned into a basic piece
of business for some associations. Be that as it may,
expanded utilization of web applications has not been
responded with comparing increments in dependability.
Special attributes, for example, speedy turnaround time,
coupled with developing fame spur the requirement for
proficient and viable web application testing methods [4].
A few new test suite prioritization methods for web
applications and look at whether these techniques can
enhance the rate of issue location for three web
applications and their previous test suites. Prioritize test
suites by test lengths, recurrence of appearance of appeal
groupings, and orderly scope of parameter-qualities and
their associations. Trial results demonstrate that the
proposed prioritization criteria frequently enhance the rate
of flaw location of the test suites when contrasted with
arbitrary requesting of experiments. As a rule, the best
prioritization measurements either (1) consider recurrence
of appearance of arrangements of appeals or (2)
deliberately cover mixes of parameter-values as right on
time as would be prudent.

The fundamental reason of cooperative testing [5] and
examination is that devices and apparatus clients regularly
have their individual qualities and shortcomings, and
comparably diverse apparatuses ordinarily have their
particular qualities and shortcomings; empowering co-
operation [10] among these substances can give
opportunities to improve their qualities and assuage their
shortcomings, separately.
FRRAME WORK FOR EVENT DRIVEN
SOFTWARE TESTING

 American Journal of Software Engineering 3

4. Prioritization Criteria
Parameter-Value Interaction Coverage Technique

The 1-way and 2-way parameter value interface
coverage techniques, select tests to scientifically cover
parameter value interactions between windows.
1-way:

In this way, a next test to maximize the number of
parameter values that do not appear in previously selected
tests is selected. We can assure that the faster systematic
coverage of parameter settings may expose faults earlier.
For OrderSuite, we instantiate f(x) to return the set of
parameter values in test case x, F(S) to return the set of
parameter values accessed by all test cases in sequence S;
⊕ is the function discussed earlier.
2-way:

The 2-way criterion selects a next test to maximize the
number of 2-way parameter value interactions between
windows. We hypothesize that interactions of parameters
set to values on dissimilar windows may render faults. For
OrderSuite, we instantiate f(x) to return the set of 2-way
parameter value interactions among windows accessed by
test case x; F(S) is similar, apart from that it works on the
sequence S; ⊕ is the function used earlier.
Input Parameters:
Suite: Test suite to be prioritized (symbolizeed as a set);

f: Function returns criteria essentials of a single test
case;

F: Function returns criteria elements in sequence of test
cases;
⊕: Operation combines results of f and F; returns

number;
Output:

OrderedSequence: Priority controlled sequence
containing all tests;
Computation:

S EMPTY;
T Suite;
REPEAT
tBestNextTestCase(S,T,f,F,⊕);
SInsertAtEnd(S,t);
TT – t;
UNTIL (T= = Ø);
OrderedSequenceS;

Ordersuite Function
Input Parameters:

S:Priority controlled sequence of test cases selected so
far;

T:Set of remaining test cases;
f: Function returns criteria elements in a single test;
F: Function returns criteria elements in sequence of

tests;
⊕:Operation combines results of f and F; returns

number;
Output:

 t: a test case from T;
Computation:
Bestnexttestcase Function

MaxMININT;
fs F(S);
FORALL x ϵ T { yf(x) ⊕ fs;
IF((Max<y)||(Max= =y)&&(RANDOM() ≤ 0.5)){
 Maxy;

 t x; } }
RETURN(t);

Count-Based Criteria
Another factor essential to test cases for event-driven

systems is the inherent enslavement between the variety
and number of window artifacts it accesses and the
amount of code covered on executing these test cases.
Unique Window Coverage:

Here, we prioritize tests by giving preference to test
cases that cover the most unique windows that previous
tests have not covered. We hypothesize that faults will be
exposed when we visit windows and that we should visit
all windows as soon as possible. For OrderSuite, we
instantiated f(x) to return the set of windows accessed by
test case x; F(S) is similar, except that it operates on the
sequence S; ⊕ is the function used earlier.
Action Count-Based:

In this rule, we prioritize tests by the quantity of
activities in each one test (copies included). An activity is
a grouping that sets one or more parameter values in a
solitary window. The prioritization incorporates selecting
the experiments, with inclination given to those that
incorporate the most number of activities, Action-Ltos.
For Ordersuite, we instantiated f(x) to furnish a
proportional payback of activities (additionally including
copies) experiment x; in light of the fact that this rule does
not think about experiments that have as of now been
chosen,

F(S)=0; ⊕ returns its first parameter, i.e., the value of
f(x). Action-StoL gives priority to test cases with the
smallest number of actions. For OrderSuite, f(x)=
Negative of the f function used in Action-LtoS.
Parameter-Value Count-Based:

Experiments contain settings for parameters that clients
set to particular qualities. We prioritize tests by the
quantity of parameters that are situated to values in an
experiment (copies included). We theorize that
experiments that set more parameters to values are more
prone to uncover flaws. This incorporates selecting those
tests with the biggest number of parameter quality settings
in a test initially, called PV-Ltos.

For OrderSuite, we instantiated f(x) to return the
number of parameters that are set to values (also counting
duplicates) in test case x; again, F(S)=0 and ⊕ returns its
first parameter, i.e., the value of f(x). We also prioritize in
the reverse manner by selecting those tests with the
smallest number of parameter value settings first, called
PV-StoL. Here too, f(x)= Negative of the f function used
in PV-LtoS.
Frequency-Based Criteria

The subsequent three criteria differ in how they view
the frequency of the occurring of window sequence in a
test case, and thus produce different prioritized orders.

Most Frequently Present Sequence (MFPS) of
Windows:

In this we have to categorize the most regularly present
sequence of windows, si, in the test suite and order test
cases in diminishing order of the number of times that si
appears in the test case. Then, from among the test cases
that do not exercise si even once, the most frequently
present sequence, sj, is identified, and the test cases are
ordered in diminishing order of the number of times sj
appears in the test case.
All Present Sequence (APS) of Windows:

4 American Journal of Software Engineering

In APS, the frequency of occurrence of all sequences is
used to order the test suite. For each sequence, si, in the
application, beginning with the most frequently present
sequence, test cases that have highest occurrences of these
sequences are chosen for execution before other test cases
in the test suite. So, that we can find the best sequence of
tests for an application.
Weighted Sequence of Windows (Weighted-Freq):

We count the number of times each unique sequence of
windows appears. The test case has a impacted value
based on the summing up of the product of the amount of
times each distinctive sequence of windows emerges in
the test case.
Test Suite Prioritization:

The function for the test selection process is presented
as follows. Order Suite takes four parameters:
• The suite to be ordered—note that this is a set.
• A function f that takes a single test case as input and

returns a set of elements that are of interest to the
criterion being used as the basis for prioritization.

• Another function F (related to f above) operates on
the sequence of test cases, S, selected thus far. For
the example discussed in the above paragraph, F(S)
returns the set of all windows covered by the test
cases in sequence S. In this example, F(S) essentially
applies the above f to each element in S and takes a
set-union of the results.

• An operation assigns a “strength” value to the present
test case. For the above example, T is the composed
function (SetCardinality 0 SetDifference), i.e.,
“cardinality of the set difference.” Hence, a test case
that covers up the maximum number of unique
windows not yet covered by the test cases selected
thus far will have the largest value for this function’s
output and hence, “most fit”; it will be selected next
to be inserted in the ordered sequence. If two or more
test cases share the top place for selection, then a
arbitrary choice is made using the RANDOM()
(returns a random real number between 0 and 1)
function in BestNextTestCase.

Function OrderSuite begins with an unordered sequence
and invokes BestNextTestCase until all of the test cases
have been ordered. We will instantiate f, F, and T for each
of the prioritization criteria.

The output will be the creation of test cases in a order
that are to be executed in an application so that the tester
can test the application without problems. This order of
test cases shows us the better way of testing an application
for competent results.
For GUI/Web Page Controls

Embedding file controls :

XML for EDS applications :

Testcase Generatioon

To View details of Parameters for GUI, Web & Embedded
files

5. Conclusion
EDS applications have many comparisons that allow to

create a single model for testing such event-driven

 American Journal of Software Engineering 5

systems. It may support future research to more generally
focus on stand-alone GUI, Web-based and Embedded
applications as an alternative of addressing them as
disjoint topics. Other researchers can use the general
model to apply testing techniques more generally. This
ability to increase prioritization criteria for three types of
event-driven software shows the usefulness of the
combined model for the problem of test prioritization.

The first threat is the validation of the unified model.
Validate the model through the application of test suite
prioritization by using numerous prioritization criteria and
three controls applied to seven applications. While work
contributes an initial validation of the model, the domains
of both testing and EDS are much larger. For instance,
broader testing activities such as test generation and test
suite reduction can further validate the unified model in
the future.

The next major risk to external validity is that running
the data collection and test suite prioritization process on
seven programs and their existing test suites, which we
chose for their availability.

References
[1] A.M. Memon and Q. Xie, “Studying the Fault-Detection

Effectiveness of GUI Test Cases for Rapidly Evolving Software,”
IEEE Trans. Software Eng., vol. 31, no. 10, pp. 884-896, Oct.
2005.

[2] W. Wang, S. Sampath, Y. Lei, and R. Kacker, “An Interaction-
Based Test Sequence Generation Approach for Testing Web
Applications,” Proc. IEEE Int’l Conf. High Assurance Systems
Eng., pp. 209-218, 2008.

[3] A. Andrews, J. Offutt, and R. Alexander, “Testing Web
Applications by Modeling with FSMs,” Software and Systems
Modeling, vol. 4, no. 3, pp. 326-345, July 2005.

[4] S. Sampath, R. Bryce, G. Viswanath, V. Kandimalla, and A.G.
Koru, “Prioritizing User-Session-Based Test Cases for Web
Application Testing,” Proc. IEEE Int’l Conf. Software Testing,
Verification, and Validation, pp. 141-150, Apr. 2008.

[5] Hao, D., Zhang, L., Zhang, L., Rothermel, G., & Mei, H. A
Unified Test Case Prioritization Approach.

[6] Renée C. Bryce, Sreedevi Sampath, Atif M. Memon, "Developing
a Single Model and Test Prioritization Strategies for Event-Driven
Software", IEEE Transactions on Software Engineering, vol.37,
no. 1, pp. 48-64, January/February 2011.

[7] Herbold, S.Grabowski, J. ; Waack, S., “A Model for Usage-Based
Testing of Event-Driven Software, Secure Software Integration &
Reliability Improvement Companion (SSIRI-C), 2011 5th
International Conference.

[8] C. Kallepalli and J. Tian, "Measuring and Modeling Usage and
Reliability for Statistical Web Testing," IEEE Trans. Softw. Eng.,
vol. 27, no. 11, pp. 1023-1036, 2001.

[9] A. M. Memon, "An event-flow model of GUI-based applications
for testing: Research Articles," Software Teststing, Verification
and Reliability, vol. 17, no. 3, pp. 137-157, 2007. (Pubitemid
47354557).

[10] Ashokkumar.R, Baskaran P - A Co-Operative Cluster Based Data
Replication Technique for Improving Data Accessibility and
Reducing Query Delay in MANET - published at: "International
Journal of Scientific and Research Publications (IJSRP), Volume 3,
Issue 11, November 2013 Edition".

