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Abstract 

Analysis of time series used in many areas, one of which is in the field economy. In this research using time series on 

inflation using Shift Invariant Discrete Wavelet Transform (SIDWT).Time series decomposition using transformation 

wavelet namely SIDWT with Haar filter and D4. Results of the transformation, coefficient of drag coefficient wavelet 

and scale that is used for modeling time series. Modeling done by using Multiscale Autoregressive (MAR). In a certain 

area, inflation to it is an important that he had made the standard-bearer of economic well-being of society, the factors 

Directors investors in selecting a kind of investment, and the determining factor for the government to formulate policy 

fiscal, monetary, as well as non-monetary that will be applied. Inflation can be analyzed using methods Shift Invariant 

Discrete Wavelet Transform (SIDWT) which had been modeled for them to use Mulitiscale Autoregressive (MAR) with 

the R2 value 93.62%. 

Keywords: Shift Invariant Discrete Wavelet Transform (SIDWT), Time Series, Multiscale Autoregressive (MAR), 

Inflation. 

1. Introduction  

Accord In a certain area, inflation to it is an important that had made the standard-bearer of economic well-being of 

society, the factors Directors investors in selecting a kind of investment, and the determining factor for the government 

to formulate policy fiscal, monetary, as well as non-monetary that will be applied. In general, inflation can lead to less 

investment in a country, encouraging increase in interest rate, to encourage investment that is speculative, failure 

execution of development, the instability, economic balance of payments and a decline, life and welfare of the people. 

Understanding investors will impact of inflation in high rate of return or profits investment is needed at the time 

investors will choose the kind of investment that will be done. This is because inflation has an impact on the value of 

the money that was invested by investors. High inflation will increase the risk investment projects in the long term 

[Prahutama et al., 2014] 

In the mandate prescribed in the Bank Indonesia Law, the goal of Bank Indonesia focuses on achievement of a single 

objective, that of achieving and maintaining stability in the value of the rupiah. There are two aspects to stability in the 

value of the rupiah, namely stability of the currency in relation to goods and services and stability in relation to the 

currencies of other nations. The first aspect is reflected in the inflation rate, while the second is reflected in the rupiah 

exchange rate against foreign currencies. The purpose in formulating this single objective is to clarify the targets to be 

achieved by Bank Indonesia and the limits of Bank Indonesia's responsibility. This provides for easy measurement of 

whether Bank Indonesia has achieved this objective. In working towards this objective, Bank Indonesia understands that 

achievement of economic growth and inflation control need to be brought into consistent alignment for the sake of 

optimum, sustainable results in the long-term.  

The indicator commonly used to measure the level of inflation is the Consumer Price Index (CPI). Changes in the CPI 

over time are indicative of price movements for packages of goods and services consumed by the public. Since July 2008, 

the packages of goods and services in the CPI basket have been based on the 2007 Cost of Living Survey conducted by the 

Statistics Indonesia (BPS). Following this, BPS monitors price movements for these goods and services in selected cities 

and towns each month, using information from traditional markets and modern retail outlets on specific categories of 

goods and services in each location.The inflation measured in the CPI in Indonesia is divided into 7 expenditure 

categories (based on the Classification of Individual Consumption by Purpose - COICOP). These are: Food Stuffs ; 

Processed Foods; Beverages and Tobacco ;Housing ;Clothing ;Health ; Education and Sports and ; Transportation and 
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Communications. 

Monetary Policy is not just to react to inflationary pressure is going on now, but should respond to inflationary 

pressures that will come. Inflation that is relatively high and to draw up a policy that was able to respond to inflationary 

pressure in the future, so it needs to be the prediction to inflation. The prediction that accurate will give important role 

in determining the policy of the government had an impact on people's welfare, and investment world. This research 

aims to transform using The Shift Invariant Discrete Wavelet Transform (SIDWT). It is hoped that this method can be 

one of the alternative to the government in predicting inflation 

2. The Basic Method 

Wavelet is a name for a small waves that up and down in the same time. For example waves sinus function that move up 

and down the plots of sin (u) with  𝑢 ∈ (−∞,∞) [Percival et al., 2000]  

2.1 Wavelet Function 

Wavelet function is distinguished as two types, namely wavelet father ()and wavelet mother () did not mention any 

kind, said wavelet pointed to wavelet mother [Bruce et al., 1996]. Function wavelet have characteristics: 

      ∫ ∅(𝑥)𝑑𝑥 = 1
∞

−∞
 and ∫ 𝜓(𝑥)𝑑𝑥 = 0                                                                  (1)

∞

−∞
 

By dilatation dyadic and translation integer, family wavelet namely 

    ∅𝑗,𝑘(𝑥) = 2
𝑗

2∅(2𝑗𝑥 − 𝑘) and 𝜓𝑗,𝑘(𝑥) = 2
𝑗

2𝜓(2𝑗𝑥 − 𝑘)                                                 (2) 

Function ∅𝑗,𝑘(𝑥) and  𝜓𝑗,𝑘(𝑥)That ortogonal have characteristics of  

∫ ∅𝑗,𝑘(𝑥)
∞

−∞
∅𝑗,𝑘′(𝑥)𝑑𝑥 = 𝛿𝑘,𝑘′, ∫ 𝜓𝑗,𝑘(𝑥)

∞

−∞
∅𝑗,𝑘′(𝑥)𝑑𝑥 = 0, 

∫ 𝜓𝑗,𝑘(𝑥)𝜓𝑗′,𝑘′(𝑥)𝑑𝑥 =
∞

−∞

𝛿𝑗,𝑗′,𝛿𝑘,𝑘′,                                                           (3)  

With 𝛿𝑖,𝑗 = {
1 𝑖𝑓 𝑖 = 𝑗
0 𝑖𝑓 1 ≠ 𝑗

 

Wavelet function can form a base in the L2(R) with L2(R) = *𝑓 | ∫ 𝑓2(𝑥)𝑑𝑥 < ∞+
∞

−∞
. As a result every f ∈ L2(R) can be 

declared as a combination in linear a base that was built by wavelet [Suparti, 2000] 

f(x) = ∑ cJ,kk∈Z ϕJ,k(x) + ∑ ∑ dj,kψj,k(x)                                                    (4)k∈Zj<𝐽  

 

with 

cJ,k = 〈f, ϕJ,k〉 = ∫ f(x)ϕJ,k(x)dx
∞

−∞

 

dj,k = 〈f, ψj,k〉 = ∫ f(x)ψj,k(x)dx
∞

−∞

 

 

The function f produces the form of infinite series , but the function f can be approximated by either using a limited sum 

up the index J , with J large , it can be expressed as the sum of components S scale and detail components D 

 

Fj(x)=∑ cJ,kk∈Z ϕJ,k(x) + ∑ dJ−1,kψJ−1,k(x) + ∑ dJ−2,kψJ−2,k(x)k∈Zk∈Z + ⋯+ ∑ d1,kψ1,k(x)k∈Z = 𝑆𝐽 + 𝐷𝐽−1 + 𝐷𝐽−2 +

     …𝐷1                                                                                       (5) 

to J approaching, then Fj(x) approaches f(x). 

 

2.2 Discrete Wavelet Transform (Dwt) 

Transformation wavelet is divided in two parts of it, which is a continue wavelet transform (CWT) and discrete 

wavelet tranform (DWT) [Lindsay et al., 1996].Transformation wavelet malar from a function 𝑓(𝑥) ∈ L2(𝑅) is defined 

as follows: 
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𝑇𝑤𝑎𝑣𝑓(𝑎, 𝑏) = ∫ 𝑓(𝑥)ψa,b(x)̅̅ ̅̅ ̅̅ ̅̅ ̅

∞

−∞

 𝑑𝑥                                                                           (6) 

There are other forms of the transformation wavelet namely tranformasi discrete wavelet (DWT).  For transformation 

discrete wavelet signals that analyzed assumed that they have been sampled with long interval period [Renauld, 2000]. 

Main purpose of transformation wavelet is changing signals 

2.3 Shift Invariant Discrete Wavelet Transform (SIDWT) 

Shift Invariant Discrete Wavelet Transform (SIDWT) in various literature has some pronunciation for example, Shift 

invariant frames, Maximal Overlap Discrete Wavelet Transform (MODWT), wavelet translation DWT, 

undecimated-Discrete Wavelet Transform. SIDWT have an advantage can be used for each sample size N [Warsito et al., 

2013]. In addition, SIDWT could eliminate the declining data. Then in SIDWT there are N coefficient wavelet and 

becomes coefficient at every level SIDWT. For example, there is a data of time series X, and transformation 

SIDWT will produce vector column W1,W2, … ,WJ0  and VJ0  with each measuring  N. Smoothing coefficient derived 

from the X data derived from repeated multiplication of X with filter scale(�̃�) and wavelet filter(�̃�). 

The main objective in the formulation SIDWT is to define the transformation that is as DWT .By defining a �̃�   which is 

an 𝑁𝑥𝑁 matrix that contains filter 𝑔 and �̃� is 𝑁𝑥𝑁  matrix containing filter �̃�. Suppose for the first level , known 

𝐿 = 4 and 𝑁 > 4  , then the matrix �̃�1 ordered as follows 

�̃�1,𝑡 ≡ ∑�̃�𝑙

𝐿−1

𝑙=0

𝑋𝑡−𝑙 𝑚𝑜𝑑 𝑁                                                                                  (7) 

t = 0, gained: �̃�1,0 ≡ �̃�0
𝑇𝑋 = ∑ �̃�−𝑙 𝑚𝑜𝑑 𝑁

°𝑁−1
𝑙=0 𝑋𝑙, 

so,  

�̃�0
𝑇 = [�̃�0

° , �̃�𝑁−1
° , �̃�𝑁−2

° , … , �̃�1
° ] 

𝐿 ≤ 𝑁, Filter periodic matter takes the form simple 

�̃�𝑙
° = {

�̃�𝑙 ,   0 ≤ 𝑙 ≤ 𝐿 − 1;
0,    𝐿 ≤ 𝑙 ≤ 𝑁 − 1

 

So the line of the first �̃�1 is  

�̃�0
𝑇 = [�̃�0, 0, … ,0, �̃�𝐿−1, … , �̃�1] 

Because 𝐿 = 4, thus �̃�𝐿−1 = �̃�3 and �̃�𝐿 high-zero until �̃�𝑁−1, with the number of elements that high-zero is 𝑁 − 𝐿. So 

the first line matrix  �̃�1  

[�̃�0 03 03 …3 03 03 03 03 03 �̃�3 �̃�2 �̃�1] 

Second Period when line  �̃�1 when 𝑡 = 1, gained �̃�1,0 ≡ �̃�1
𝑇𝑋 = ∑ �̃�1−𝑙 𝑚𝑜𝑑 𝑁

°𝑁−1
𝑙=0 𝑋𝑙, so inventory 

�̃�1
𝑇 = [�̃�1

° , �̃�0
° , �̃�𝑁−1

° , … , �̃�2
° ]                  

The second line from �̃�1 is 

�̃�1
𝑇 = [�̃�1, �̃�0, 0, … ,0, �̃�𝐿−1, … , �̃�2]  

[�̃�1 �̃�0 03 …3 03 03 03 03 03 03 �̃�3 �̃�2] 

Applied goes on to 𝑡 = 𝑁 − 1, and matrix filter wavelet with the structure  

As follows: 

�̃�1 = 

[
 
 
 
 
 
 
 
 
�̃�0 03 03 …3 03 03 03 03 03 �̃�3 �̃�2 �̃�1

�̃�1 �̃�0 03 …3 03 03 03 03 03 03 �̃�3 �̃�2

�̃�2 �̃�1 �̃�0 …3 03 03 03 03 03 03 03 �̃�3

⋮3 ⋮3 ⋮3  …3 ⋮ ⋮ ⋮ ⋮3 ⋮33 ⋮33 ⋮3 ⋮3

03 03 03 …3 03 03 �̃�3 �̃�2 �̃�1 �̃�0 03 03

03 03 03 …3 03 03 03 �̃�3 �̃�2 �̃�1 �̃�0 03

03 03 03 …3 03 03 03 03 �̃�3 �̃�2 �̃�1 �̃�0]
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�̃�1 drawn up �̃�1,𝑡 ≡ ∑ �̃�𝑙
𝐿−1
𝑙=0 𝑋𝑡−𝑙 𝑚𝑜𝑑 𝑁, �̃�𝑙 will be changed to �̃�𝑙. 

�̃�1 = 

[
 
 
 
 
 
 
 
�̃�0 03 03 …3 03 03 03 03 03 �̃�3 �̃�2 �̃�1

�̃�1 �̃�0 03 …3 03 03 03 03 03 03 �̃�3 �̃�2

�̃�2 �̃�1 �̃�0 …3 03 03 03 03 03 03 03 �̃�3

⋮3 ⋮3 ⋮3  …3 ⋮ ⋮ ⋮ ⋮3 ⋮33 ⋮33 ⋮3 ⋮3

03 03 03 …3 03 03 �̃�3 �̃�2 �̃�1 �̃�0 03 03

03 03 03 …3 03 03 03 �̃�3 �̃�2 �̃�1 �̃�0 03

03 03 03 …3 03 03 03 03 �̃�3 �̃�2 �̃�1 �̃�0]
 
 
 
 
 
 
 

 

So the first of SIDWT can be written in the equation: 

[
�̃�𝟏

�̃�𝟏

] = [
�̃�1

�̃�1

] 𝑥 = �̃�1𝑿,  with   �̃�1 = [
�̃�1

�̃�1

] 

and 𝑃1
𝑇 is orthonomal matrix.Thus, to reconstruct the data X of coefficients SIDWT if decomposition is done on the first 

level , ie : 

 

𝑿 = �̃�1
−1 [

�̃�𝟏

�̃�𝟏

] = �̃�1
𝑇 [

�̃�𝟏

�̃�𝟏

] = [
�̃�1

�̃�1

]

𝑇

[
�̃�𝟏

�̃�𝟏

]            (15) 

 

because P orthogonal matrix [Kingsbury, 2000], then �̃�1
−1 = �̃�1

𝑇  

Second level of matrix �̃�2 with size 𝑁𝑥𝑁 (applied also to matrix �̃�2 with replacing �̃� with �̃�) 

�̃�2 = 

[
 
 
 
 
 
 
 
 
�̃�0 03 03 03 03 03 �̃�3 03 �̃�2 03 �̃�1 03

03 �̃�0 03 03 03 03 03 �̃�3 03 �̃�2 03 �̃�1

�̃�1 01 �̃�0 03 03 03 03 03 03 03 �̃�2 03

⋮3 ⋮3 ⋮3  ⋮3 ⋮ ⋮ ⋮ ⋮3 ⋮33 ⋮33 ⋮3 ⋮3

03 03 03 �̃�3 03 �̃�2 03 �̃�1 03 �̃�0 03 03

03 03 03 03 �̃�3 03 �̃�2 03 �̃�1 03 �̃�0 03

03 03 03 03 03 �̃�3 03 �̃�2 03 �̃�1 03 �̃�0]
 
 
 
 
 
 
 
 

 

2.4 Multiscale Autoregressive (MAR) 

With the multiscale decomposition like wavelet, there are benefits provided by the automatically components separate 

data, such as components trend and irregular component on the data. But this method can be used to perform the 

prediction on the data remains stationer and those who do not heavy duty. For example a signal 𝑋 = (𝑋1,
𝑋2, … , 𝑋𝑡) and assumed that they will be rediction values 𝑋𝑡+1.  

𝑊𝑗,𝑡−2𝐽(𝑘−1) and  𝑉𝐽,𝑡−2𝐽(𝑘−1)With 𝑘 = 1,2, … , 𝐴𝑗  and 𝑗 = 1,2, … , 𝐽 

First Point that must be understood is to know how many and drag coefficient of drag coefficient wavelet which is used 

in every scale. A Model that prediction that used in this research focuses on the model Autoregresive (AR) [Renauld et 

al., 2000]. A process autoregressive with orders p known as AR(p) can be written down  

�̂�𝑡+1 = ∑ �̂�𝑘

𝑝

𝑘=1

𝑋𝑡−(𝑘−1)                                                                                 (9) 

 By using coefficient of decomposition wavelet [Gencay et al., 2001] explained that the prediction AR model 

to Multiscale Autoregressive. 

�̂�𝑡+1 = ∑ ∑ �̂�𝑗,𝑘

𝐴𝑗

𝑘=1

𝑤𝑗,𝑡−2𝑗(𝑘−1) + ∑ �̂�𝐽+1,𝑘

𝐴𝑗

𝑘=1

𝑣𝐽,𝑡−2𝐽(𝑘−1)                                         

𝐽

𝑗=1

(10) 

with: 

𝑎𝑗,𝑘 = Coefficient MAR ( j=1,2, ...,J and k=1,2, ..., 𝐴𝑗) 
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𝐴𝑗  = Order from the model MAR  

𝑤𝑗,𝑡 = Coefficient wavelet of data 

𝑣𝑗,𝑡 = Scale of data 

 

Figure 1. Illustration modeling wavelet J=4 and 𝐴𝑗=2 

3. Research Methodology 

The data used in this research is year-on-year (yoy) of the Indonesian inflation data, since December 2006 up to 

February 2015. The data is divided into two parts, from December 2006 up to December 2013 as in-sample and the 

remaining is out-of-sample. The analysis is started with SIDWT decomposition to find the wavelet coefficients and 

scale coefficients. SIDWT decomposition is done to the stationary data. The data is modeled by using MAR model with 

the appropriate procedure. The choosing of the best MAR model is based on the out-of-sample criteria. 

4. Results 

The first step is to make a decomposition SIDWT inflation data using using filter Haar and Daublets 4 (D4) with level (j) 

= 4. Decomposition process SIDWT will produce coefficient of wavelet (w) and scale (v) that consists of w1, w2, w3, 

w4, and v4 [Caraka et al., 2015]. Coefficient can be set up to a plot for each filter [Suhartono et al., 2010]. It shows how 

plots through decompositions SIDWT, transformation wavelet able to separate the trend of data [Mallat, 1989]. Can be 

seen from Figure.2 the coefficient coefficient wavelet (w1, w2, w3, w4) is about zero while coefficient becomes the 

coefficient (v4) following the movement a trend data [Suhartono et al., 2010]. Processing will be done by using the 

syntax software R.  

Table 1. Summary of variables SIDWT D4 model 

Predictor Variable Coefficients Pr(>|t|) Result 

𝑋1  1.81846 8.53e-07 No Significant 

𝑋2  -0.34954 0.3725 Significant 

𝑋3  0.56626 0.0381 No Significant 

𝑋4  -0.30860 0.2944 Significant 

𝑋5  1.59386 4.98e-09 No Significant 

𝑋6  -0.06183 0.7954 Significant 

𝑋7  0.86083 4.76e-06 No Significant 

𝑋8  -0.00780 0.9292 Significant 

𝑋9  0.96278 2e-16 No Significant 

𝑋10  0.02724 0.5431 Significant 

First model that has been level (j) = 4 established to include ten variables are as follows: 
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�̂�𝑡+1 = �̂�1,1𝑤1,𝑡 + �̂�1,2𝑤1,𝑡−2 + �̂�2,1𝑤2,𝑡 + �̂�2,2𝑤2,𝑡−4 + �̂�3,1𝑤3,𝑡 + �̂�3,1𝑤3,𝑡−8 + �̂�4,1𝑤4,𝑡 + �̂�4,1𝑤4,𝑡−16 + �̂�5,1𝑣4,𝑡            

+ �̂�5,2𝑣4,𝑡−16 

�̂�𝑛+1 = 1.81846 X1 − 0.34954 X2 + 0.56626 X3 − 0.30860 X4 + 1.59386 X5 − 0.06183 X6

+ 0.86083 X7 −0.00780 X8 + 0.96278 X9 +0.02724 X10  

Regression model after testing can be concluded model suitable used and There are five variables that are not significant, 

because it will be done analysis to include the variables that significantly 𝑋2, 𝑋4, 𝑋6, 𝑋8, and𝑋10 . 

Table 2. Summary of significant variables sidwt D4 model 

Predictor Variable Coefficients Pr(>|t|) Result 

𝑋2  2.64119 0.02059 Significant 

𝑋4  2.74219 1.18e-07 Significant 

𝑋6  2.46093 0.00294 Significant 

𝑋8  0.88701 0.01202 Significant 

𝑋10  0.92311 < 2e-16 Significant 

Model which is composed of five variables are:   

�̂�𝑛+1 = 2.64119 X2 + 2.74219 X4 + 2.46093 X6  + 0.88701 X8  + 0.92311 X10  

In the formula MAR can be written as follows  

�̂�𝑛+1 = 2.64119 w1,𝑛 + 2.74219 w2,𝑛+2.46093w2,𝑛−4  +  0.88701 w3,𝑛+0.92311 w4,𝑛−16 

Regression model after testing can be concluded model suitable used and all parameters significant. Testing assumption 

normality error using tests Shapiro-Wilk can be concluded that the assumed normality error did not follow normal 

distribution. Variance Inflation Factors (VIF) for all the variables less than 10 so that it can be concluded that there was 

no multicollinearity testing assumption heteroscedasticity using Breusch-Pagan tests be concluded that the assumed 

homoscedasticity are met. Testing assumption independency error using Durbin Watson tests can be concluded that 

error independent. 

 

Figure 2. Simulation SIDWT with Inflation Time Series 

Based on Figure.2 simulation SIDWT seen that the training network has his prediction that is quite accurate information 

that is shown by the close target line with the output. R2 value is 0.9362 or 93.62%.  

5. Conclusion 

Inflation can be analyzed using methods that Shift Invariant Discrete Wavelet Transform (SIDWT) which had been 

modeled for them to use Multiscale Autoregressive (MAR) with the R2 value 93.62%. With knew the prediction 

inflation, it is expected to provide a solution to the government to overcome lag response government policy that during 

this to happen. That can be arranged best combination of several policies that are able to respond to inflationary 

pressures that will come. 
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