
This is page 111
Printer: Opaque this

4
Unit Root Tests

4.1 Introduction

Many economic and financial time series exhibit trending behavior or non-
stationarity in the mean. Leading examples are asset prices, exchange rates
and the levels of macroeconomic aggregates like real GDP. An important
econometric task is determining the most appropriate form of the trend in
the data. For example, in ARMA modeling the data must be transformed
to stationary form prior to analysis. If the data are trending, then some
form of trend removal is required.
Two common trend removal or de-trending procedures are first differ-

encing and time-trend regression. First differencing is appropriate for I(1)
time series and time-trend regression is appropriate for trend stationary
I(0) time series. Unit root tests can be used to determine if trending data
should be first differenced or regressed on deterministic functions of time
to render the data stationary. Moreover, economic and finance theory often
suggests the existence of long-run equilibrium relationships among nonsta-
tionary time series variables. If these variables are I(1), then cointegration
techniques can be used to model these long-run relations. Hence, pre-testing
for unit roots is often a first step in the cointegration modeling discussed
in Chapter 12. Finally, a common trading strategy in finance involves ex-
ploiting mean-reverting behavior among the prices of pairs of assets. Unit
root tests can be used to determine which pairs of assets appear to exhibit
mean-reverting behavior.
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This chapter is organized as follows. Section 4.2 reviews I(1) and trend
stationary I(0) time series and motivates the unit root and stationary
tests described in the chapter. Section 4.3 describes the class of autoregres-
sive unit root tests made popular by David Dickey, Wayne Fuller, Pierre
Perron and Peter Phillips. Section 4.4 describes the stationarity tests of
Kwiatkowski, Phillips, Schmidt and Shinn (1992). Section 4.5 discusses
some problems associated with traditional unit root and stationarity tests,
and Section 4.6 presents some recently developed so-called “efficient unit
root tests” that overcome some of the deficiencies of traditional unit root
tests.
In this chapter, the technical details of unit root and stationarity tests are

kept to a minimum. Excellent technical treatments of nonstationary time
series may be found in Hamilton (1994), Hatanaka (1995), Fuller (1996)
and the many papers by Peter Phillips. Useful surveys on issues associated
with unit root testing are given in Stock (1994), Maddala and Kim (1998)
and Phillips and Xiao (1998).

4.2 Testing for Nonstationarity and Stationarity

To understand the econometric issues associated with unit root and sta-
tionarity tests, consider the stylized trend-cycle decomposition of a time
series yt:

yt = TDt + zt

TDt = κ+ δt

zt = φzt−1 + εt, εt ∼WN(0, σ2)

where TDt is a deterministic linear trend and zt is an AR(1) process. If
|φ| < 1 then yt is I(0) about the deterministic trend TDt. If φ = 1, then
zt = zt−1 + εt = z0 +

Pt
j=1 εj , a stochastic trend and yt is I(1) with drift.

Simulated I(1) and I(0) data with κ = 5 and δ = 0.1 are illustrated in
Figure 4.1. The I(0) data with trend follows the trend TDt = 5+0.1t very
closely and exhibits trend reversion. In contrast, the I(1) data follows an
upward drift but does not necessarily revert to TDt.
Autoregressive unit root tests are based on testing the null hypothesis

that φ = 1 (difference stationary) against the alternative hypothesis that
φ < 1 (trend stationary). They are called unit root tests because under the
null hypothesis the autoregressive polynomial of zt, φ(z) = (1 − φz) = 0,
has a root equal to unity.
Stationarity tests take the null hypothesis that yt is trend stationary. If

yt is then first differenced it becomes

∆yt = δ +∆zt

∆zt = φ∆zt−1 + εt − εt−1
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FIGURE 4.1. Simulated trend stationary (I(0)) and difference stationary (I(1))
processes.

Notice that first differencing yt, when it is trend stationary, produces a
unit moving average root in the ARMA representation of ∆zt. That is, the
ARMA representation for ∆zt is the non-invertible ARMA(1,1) model

∆zt = φ∆zt−1 + εt + θεt−1

with θ = −1. This result is known as overdifferencing. Formally, stationar-
ity tests are based on testing for a unit moving average root in ∆zt.
Unit root and stationarity test statistics have nonstandard and nonnor-

mal asymptotic distributions under their respective null hypotheses. To
complicate matters further, the limiting distributions of the test statistics
are affected by the inclusion of deterministic terms in the test regressions.
These distributions are functions of standard Brownian motion (Wiener
process), and critical values must be tabulated by simulation techniques.
MacKinnon (1996) provides response surface algorithms for determining
these critical values, and various S+FinMetrics functions use these algo-
rithms for computing critical values and p-values.
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4.3 Autoregressive Unit Root Tests

To illustrate the important statistical issues associated with autoregressive
unit root tests, consider the simple AR(1) model

yt = φyt−1 + εt, where εt ∼WN(0, σ2)

The hypotheses of interest are

H0 : φ = 1 (unit root in φ(z) = 0)⇒ yt ∼ I(1)

H1 : |φ| < 1⇒ yt ∼ I(0)

The test statistic is

tφ=1 =
φ̂− 1
SE(φ̂)

where φ̂ is the least squares estimate and SE(φ̂) is the usual standard error
estimate1. The test is a one-sided left tail test. If {yt} is stationary (i.e.,
|φ| < 1) then it can be shown (c.f. Hamilton (1994) pg. 216)

√
T (φ̂− φ)

d→ N(0, (1− φ2))

or

φ̂
A∼ N

µ
φ,
1

T
(1− φ2)

¶

and it follows that tφ=1
A∼ N(0, 1). However, under the null hypothesis of

nonstationarity the above result gives

φ̂
A∼ N (1, 0)

which clearly does not make any sense. The problem is that under the unit
root null, {yt} is not stationary and ergodic, and the usual sample moments
do not converge to fixed constants. Instead, Phillips (1987) showed that
the sample moments of {yt} converge to random functions of Brownian

1The AR(1) model may be re-written as ∆yt = πyt−1 +ut where π = φ− 1. Testing
φ = 1 is then equivalent to testing π = 0. Unit root tests are often computed using this
alternative regression and the S+FinMetrics function unitroot follows this convention.
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motion2:

T−3/2
TX
t=1

yt−1
d→ σ

Z 1

0

W (r)dr

T−2
TX
t=1

y2t−1
d→ σ2

Z 1

0

W (r)2dr

T−1
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Z 1

0
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whereW (r) denotes a standard Brownian motion (Wiener process) defined
on the unit interval. Using the above results Phillips showed that under the
unit root null H0 : φ = 1

T (φ̂− 1) d→
R 1
0
W (r)dW (r)R 1
0
W (r)2dr

(4.1)

tφ=1
d→

R 1
0
W (r)dW (r)³R 1

0
W (r)2dr

´1/2 (4.2)

The above yield some surprising results:

• φ̂ is super-consistent ; that is, φ̂
p→ φ at rate T instead of the usual

rate T 1/2.

• φ̂ is not asymptotically normally distributed and tφ=1 is not asymp-
totically standard normal.

• The limiting distribution of tφ=1 is called the Dickey-Fuller (DF)
distribution and does not have a closed form representation. Conse-
quently, quantiles of the distribution must be computed by numerical
approximation or by simulation3.

• Since the normalized bias T (φ̂− 1) has a well defined limiting distri-
bution that does not depend on nuisance parameters it can also be
used as a test statistic for the null hypothesis H0 : φ = 1.

2AWiener processW (·) is a continuous-time stochastic process, associating each date
r ∈ [0, 1] a scalar random variable W (r) that satisfies: (1) W (0) = 0; (2) for any dates
0 ≤ t1 ≤ · · · ≤ tk ≤ 1 the changesW (t2)−W (t1),W (t3)−W (t2), . . . ,W (tk)−W (tk−1)
are independent normal with W (s)−W (t) ∼ N(0, (s− t)); (3) W (s) is continuous in s.

3Dickey and Fuller (1979) first considered the unit root tests and derived the asymp-
totic distribution of tφ=1. However, their representation did not utilize functions of
Wiener processes.
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4.3.1 Simulating the DF and Normalized Bias Distributions

As mentioned above, the DF and normalized bias distributions must be ob-
tained by simulation methods. To illustrate, the following S-PLUS function
wiener produces one random draw from the functions of Brownian motion
that appear in the limiting distributions of tφ=1 and T (φ̂− 1):
wiener = function(nobs) {

e = rnorm(nobs)

y = cumsum(e)

ym1 = y[1:(nobs-1)]

intW2 = nobs^(-2) * sum(ym1^2)

intWdW = nobs^(-1) * sum(ym1*e[2:nobs])

ans = list(intW2=intW2,

intWdW=intWdW)

ans

}

A simple loop then produces the simulated distributions:

> nobs = 1000

> nsim = 1000

> NB = rep(0,nsim)

> DF = rep(0,nsim)

> for (i in 1:nsim) {

+ BN.moments = wiener(nobs)

+ NB[i] = BN.moments$intWdW/BN.moments$intW2

+ DF[i] = BN.moments$intWdW/sqrt(BN.moments$intW2)

}

Figure 4.2 shows the histograms and density estimates of the simulated
distributions. The DF density is slightly left-skewed relative to the standard
normal, and the normalized bias density is highly left skewed and non-
normal. Since the alternative is one-sided, the test statistics reject if they
are sufficiently negative. For the DF and normalized bias densities the
empirical 1%, 5% and 10% quantiles are

> quantile(DF,probs=c(0.01,0.05,0.1))

1% 5% 10%

-2.451 -1.992 -1.603

> quantile(NB,probs=c(0.01,0.05,0.1))

1% 5% 10%

-11.94 -8.56 -5.641

For comparison purposes, note that the 5% quantile from the standard
normal distribution is -1.645.
The simulation of critical values and p-values from (4.1) and (4.2) is

straightforward but time consuming. The punitroot and qunitroot func-
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FIGURE 4.2. Histograms of simulated DF and normalized bias distributions.

tions in S+FinMetrics produce p-values and quantiles of the DF and nor-
malized bias distributions based on MacKinnon’s (1996) response surface
methodology. The advantage of the response surface methodology is that
accurate p-values and quantiles appropriate for a given sample size can be
produced. For example, the 1%, 5% and 10% quantiles for (4.2) and (4.1)
based on a sample size of 100 are

> qunitroot(c(0.01,0.05,0.10), trend="nc", statistic="t",

+ n.sample=100)

[1] -2.588 -1.944 -1.615

> qunitroot(c(0.01,0.05,0.10), trend="nc", statistic="n",

+ n.sample=100)

[1] -13.086 -7.787 -5.565

The argument trend="nc" specifies that no constant is included in the
test regression. Other valid options are trend="c" for constant only and
trend="ct" for constant and trend. These trend cases are explained be-
low. To specify the normalized bias distribution, set statistic="n". For
asymptotic quantiles set n.sample=0.
Similarly, the p-value of -1.645 based on the DF distribution for a sample

size of 100 is computed as

> punitroot(-1.645, trend="nc", statistic="t")

[1] 0.0945
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Case I: I(1) data
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FIGURE 4.3. Simulated I(1) and I(0) data under trend cases I and II.

4.3.2 Trend Cases

When testing for unit roots, it is crucial to specify the null and alternative
hypotheses appropriately to characterize the trend properties of the data
at hand. For example, if the observed data does not exhibit an increasing
or decreasing trend, then the appropriate null and alternative hypotheses
should reflect this. The trend properties of the data under the alternative
hypothesis will determine the form of the test regression used. Further-
more, the type of deterministic terms in the test regression will influence
the asymptotic distributions of the unit root test statistics. The two most
common trend cases are summarized below and illustrated in Figure 4.3.

Case I: Constant Only

The test regression is
yt = c+ φyt−1 + εt

and includes a constant to capture the nonzero mean under the alternative.
The hypotheses to be tested are

H0 : φ = 1 ⇒ yt ∼ I(1) without drift

H1 : |φ| < 1⇒ yt ∼ I(0) with nonzero mean

This formulation is appropriate for non-trending financial series like interest
rates, exchange rates, and spreads. The test statistics tφ=1 and T (φ̂ − 1)
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are computed from the above regression. Under H0 : φ = 1 the asymptotic
distributions of these test statistics are different from (4.2) and (4.1) and
are influenced by the presence but not the coefficient value of the constant
in the test regression. Quantiles and p-values for these distributions can be
computed using the S+FinMetrics functions punitroot and qunitroot
with the trend="c" option:

> qunitroot(c(0.01,0.05,0.10), trend="c", statistic="t",

+ n.sample=100)

[1] -3.497 -2.891 -2.582

> qunitroot(c(0.01,0.05,0.10), trend="c", statistic="n",

+ n.sample=100)

[1] -19.49 -13.53 -10.88

> punitroot(-1.645, trend="c", statistic="t", n.sample=100)

[1] 0.456

> punitroot(-1.645, trend="c", statistic="n", n.sample=100)

[1] 0.8172

For a sample size of 100, the 5% left tail critical values for tφ=1 and

T (φ̂ − 1) are -2.891 and -13.53, respectively, and are quite a bit smaller
than the 5% critical values computed when trend="nc". Hence, inclusion
of a constant pushes the distributions of tφ=1 and T (φ̂− 1) to the left.

Case II: Constant and Time Trend

The test regression is

yt = c+ δt+ φyt−1 + εt

and includes a constant and deterministic time trend to capture the deter-
ministic trend under the alternative. The hypotheses to be tested are

H0 : φ = 1 ⇒ yt ∼ I(1) with drift

H1 : |φ| < 1⇒ yt ∼ I(0) with deterministic time trend

This formulation is appropriate for trending time series like asset prices or
the levels of macroeconomic aggregates like real GDP. The test statistics
tφ=1 and T (φ̂ − 1) are computed from the above regression. Under H0 :
φ = 1 the asymptotic distributions of these test statistics are different from
(4.2) and (4.1) and are influenced by the presence but not the coefficient
values of the constant and time trend in the test regression. Quantiles and
p-values for these distributions can be computed using the S+FinMetrics
functions punitroot and qunitroot with the trend="ct" option:

> qunitroot(c(0.01,0.05,0.10), trend="ct", statistic="t",

+ n.sample=100)

[1] -4.052 -3.455 -3.153
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> qunitroot(c(0.01,0.05,0.10), trend="ct", statistic="n",

+ n.sample=100)

[1] -27.17 -20.47 -17.35

> punitroot(-1.645, trend="ct", statistic="t", n.sample=100)

[1] 0.7679

> punitroot(-1.645, trend="ct", statistic="n", n.sample=100)

[1] 0.9769

Notice that the inclusion of a constant and trend in the test regression
further shifts the distributions of tφ=1 and T (φ̂−1) to the left. For a sample
size of 100, the 5% left tail critical values for tφ=1 and T (φ̂ − 1) are now
-3.455 and -20.471.

4.3.3 Dickey-Fuller Unit Root Tests

The unit root tests described above are valid if the time series yt is well
characterized by an AR(1) with white noise errors. Many financial time
series, however, have a more complicated dynamic structure than is cap-
tured by a simple AR(1) model. Said and Dickey (1984) augment the basic
autoregressive unit root test to accommodate general ARMA(p, q) models
with unknown orders and their test is referred to as the augmented Dickey-
Fuller (ADF) test. The ADF test tests the null hypothesis that a time
series yt is I(1) against the alternative that it is I(0), assuming that the
dynamics in the data have an ARMA structure. The ADF test is based on
estimating the test regression

yt = β0Dt + φyt−1 +
pX

j=1

ψj∆yt−j + εt (4.3)

where Dt is a vector of deterministic terms (constant, trend etc.). The p
lagged difference terms, ∆yt−j , are used to approximate the ARMA struc-
ture of the errors, and the value of p is set so that the error εt is serially
uncorrelated. The error term is also assumed to be homoskedastic. The
specification of the deterministic terms depends on the assumed behavior
of yt under the alternative hypothesis of trend stationarity as described in
the previous section. Under the null hypothesis, yt is I(1) which implies
that φ = 1. The ADF t-statistic and normalized bias statistic are based on
the least squares estimates of (4.3) and are given by

ADFt = tφ=1 =
φ̂− 1
SE(φ)

ADFn =
T (φ̂− 1)

1− ψ̂1 − · · ·− ψ̂p
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An alternative formulation of the ADF test regression is

∆yt = β0Dt + πyt−1 +
pX

j=1

ψj∆yt−j + εt (4.4)

where π = φ− 1. Under the null hypothesis, ∆yt is I(0) which implies that
π = 0. The ADF t-statistic is then the usual t-statistic for testing π = 0
and the ADF normalized bias statistic is T π̂/(1− ψ̂1 − · · ·− ψ̂p). The test
regression (4.4) is often used in practice because the ADF t-statistic is the
usual t-statistic reported for testing the significance of the coefficient yt−1.
The S+FinMetrics function unitroot follows this convention.

Choosing the Lag Length for the ADF Test

An important practical issue for the implementation of the ADF test is the
specification of the lag length p. If p is too small then the remaining serial
correlation in the errors will bias the test. If p is too large then the power
of the test will suffer. Ng and Perron (1995) suggest the following data
dependent lag length selection procedure that results in stable size of the
test and minimal power loss. First, set an upper bound pmax for p. Next,
estimate the ADF test regression with p = pmax. If the absolute value of the
t-statistic for testing the significance of the last lagged difference is greater
than 1.6 then set p = pmax and perform the unit root test. Otherwise,
reduce the lag length by one and repeat the process.
A useful rule of thumb for determining pmax, suggested by Schwert

(1989), is

pmax =

"
12 ·

µ
T

100

¶1/4#
(4.5)

where [x] denotes the integer part of x. This choice allows pmax to grow
with the sample so that the ADF test regressions (4.3) and (4.4) are valid
if the errors follow an ARMA process with unknown order.

Example 19 Testing for a unit root in exchange rate data using ADF tests

To illustrate the ADF test procedure, consider testing for a unit root
in the logarithm of the US/CA monthly spot exchange rate, denoted st,
over the 30 year period 1976 - 1996. Figure 4.4 shows st,∆st as well as the
sample autocorrelations for these series. The data and plots are created
with the S-PLUS commands

> uscn.spot = lexrates.dat[,"USCNS"]

> uscn.spot@title = "Log US/CN spot exchange rate"

> par(mfrow=c(2,2))

> plot.timeSeries(uscn.spot, reference.grid=F,

+ main="Log of US/CN spot exchange rate")
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FIGURE 4.4. US/CN spot rate, first difference and SACF.

> xx = acf(uscn.spot)

> plot.timeSeries(diff(uscn.spot), reference.grid=F,

+ main="First difference of log US/CN spot exchange rate")

> xx = acf(diff(uscn.spot))

Clearly, st exhibits random walk like behavior with no apparent posi-
tive or negative drift. However, ∆st behaves very much like a white noise
process. The appropriate trend specification is to include a constant in the
test regression. Regarding the maximum lag length for the Ng-Perron pro-
cedure, given the lack of serial correlation in ∆st a conservative choice is
pmax = 6. The ADF t-statistic computed from the test regression with a
constant and p = 6 lags can be computed using the S+FinMetrics function
unitroot as follows

> adft.out = unitroot(uscn.spot, trend="c", statistic="t",

+ method="adf", lags=6)

> class(adft.out)

[1] "unitroot"

The output of unitroot is an object of class “unitroot” for which there
are print and summary methods. Typing the name of the object invokes
the print method and displays the basic test result

> adft.out

Test for Unit Root: Augmented DF Test
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Null Hypothesis: there is a unit root

Type of Test: t-test

Test Statistic: -2.6

P-value: 0.09427

Coefficients:

lag1 lag2 lag3 lag4 lag5 lag6 constant

-0.0280 -0.1188 -0.0584 -0.0327 -0.0019 0.0430 -0.0075

Degrees of freedom: 239 total; 232 residual

Time period: from Aug 1976 to Jun 1996

Residual standard error: 0.01386

With p = 6 the ADF t-statistic is -2.6 and has a p-value (computed using
punitroot) of 0.094. Hence we do not reject the unit root null at the 9.4%
level. The small p-value here may be due to the inclusion of superfluous lags.
To see the significance of the lags in the test regression, use the summary
method

> summary(adft.out)

Test for Unit Root: Augmented DF Test

Null Hypothesis: there is a unit root

Type of Test: t test

Test Statistic: -2.6

P-value: 0.09427

Coefficients:

Value Std. Error t value Pr(>|t|)

lag1 -0.0280 0.0108 -2.6004 0.0099

lag2 -0.1188 0.0646 -1.8407 0.0669

lag3 -0.0584 0.0650 -0.8983 0.3700

lag4 -0.0327 0.0651 -0.5018 0.6163

lag5 -0.0019 0.0651 -0.0293 0.9766

lag6 0.0430 0.0645 0.6662 0.5060

constant -0.0075 0.0024 -3.0982 0.0022

Regression Diagnostics:

R-Squared 0.0462

Adjusted R-Squared 0.0215

Durbin-Watson Stat 2.0033

Residual standard error: 0.01386 on 235 degrees of freedom

F-statistic: 1.874 on 6 and 232 degrees of freedom, the
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p-value is 0.08619

Time period: from Aug 1976 to Jun 1996

The results indicate that too many lags have been included in the test
regression. Following the Ng-Perron backward selection procedure p = 2
lags are selected. The results are

> adft.out = unitroot(uscn.spot, trend="c", lags=2)

> summary(adft.out)

Test for Unit Root: Augmented DF Test

Null Hypothesis: there is a unit root

Type of Test: t test

Test Statistic: -2.115

P-value: 0.2392

Coefficients:

Value Std. Error t value Pr(>|t|)

lag1 -0.0214 0.0101 -2.1146 0.0355

lag2 -0.1047 0.0635 -1.6476 0.1007

constant -0.0058 0.0022 -2.6001 0.0099

Regression Diagnostics:

R-Squared 0.0299

Adjusted R-Squared 0.0218

Durbin-Watson Stat 2.0145

Residual standard error: 0.01378 on 239 degrees of freedom

F-statistic: 3.694 on 2 and 240 degrees of freedom, the

p-value is 0.02629

Time period: from Apr 1976 to Jun 1996

With 2 lags the ADF t-statistic is -2.115, the p-value 0.239 and we have
greater evidence for a unit root in st. A similar result is found with the
ADF normalized bias statistic

> adfn.out = unitroot(uscn.spot, trend="c", lags=2,

+ statistic="n")

> adfn.out

Test for Unit Root: Augmented DF Test

Null Hypothesis: there is a unit root

Type of Test: normalized test

Test Statistic: -5.193

P-value: 0.4129
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FIGURE 4.5. Log prices on the S&P 500 index, first difference and SACF.

Coefficients:

lag1 lag2 constant

-0.0214 -0.1047 -0.0058

Degrees of freedom: 243 total; 240 residual

Time period: from Apr 1976 to Jun 1996

Residual standard error: 0.01378

Example 20 Testing for a unit root in log stock prices

The log levels of asset prices are usually treated as I(1) with drift. Indeed,
the random walk model of stock prices is a special case of an I(1) process.
Consider testing for a unit root in the log of the monthly S&P 500 index,
pt, over the period January 1990 through January 2001. The data is taken
from the S+FinMetrics “timeSeries” singleIndex.dat. The data and
various plots are created with the S-PLUS commands

> lnp = log(singleIndex.dat[,1])

> lnp@title = "Log of S&P 500 Index"

> par(mfrow=c(2,2))

> plot.timeSeries(lnp, reference.grid=F,

+ main="Log of S&P 500 index")

> acf.plot(acf(lnp,plot=F))

> plot.timeSeries(diff(lnp), reference.grid=F,
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+ main="First difference of log S&P 500 Index")

> acf.plot(acf(diff(lnp),plot=F))

and are illustrated in Figure 4.5. Clearly, the pt is nonstationary due to
the positive trend. Also, there appears to be some negative autocorrelation
at lag one in ∆pt. The null hypothesis to be tested is that pt is I(1) with
drift, and the alternative is that the pt is I(0) about a deterministic time
trend. The ADF t-statistic to test these hypotheses is computed with a
constant and time trend in the test regression and four lags of∆pt (selecting
using the Ng-Perron backward selection method)

> adft.out = unitroot(lnp, trend="ct", lags=4)

> summary(adft.out)

Test for Unit Root: Augmented DF Test

Null Hypothesis: there is a unit root

Type of Test: t test

Test Statistic: -1.315

P-value: 0.8798

Coefficients:

Value Std. Error t value Pr(>|t|)

lag1 -0.0540 0.0410 -1.3150 0.1910

lag2 -0.1869 0.0978 -1.9111 0.0583

lag3 -0.0460 0.0995 -0.4627 0.6444

lag4 0.1939 0.0971 1.9964 0.0481

constant 0.1678 0.1040 1.6128 0.1094

time 0.0015 0.0014 1.0743 0.2848

Regression Diagnostics:

R-Squared 0.1016

Adjusted R-Squared 0.0651

Durbin-Watson Stat 1.9544

Residual standard error: 0.1087 on 125 degrees of freedom

F-statistic: 2.783 on 5 and 123 degrees of freedom, the

p-value is 0.0204

Time period: from May 1990 to Jan 2001

ADFt = −1.315 and has a p-value of 0.8798, so one clearly does not
reject the null that pt is I(1) with drift.
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4.3.4 Phillips-Perron Unit Root Tests

Phillips and Perron (1988) developed a number of unit root tests that have
become popular in the analysis of financial time series. The Phillips-Perron
(PP) unit root tests differ from the ADF tests mainly in how they deal
with serial correlation and heteroskedasticity in the errors. In particular,
where the ADF tests use a parametric autoregression to approximate the
ARMA structure of the errors in the test regression, the PP tests ignore
any serial correlation in the test regression. The test regression for the PP
tests is

∆yt = β0Dt + πyt−1 + ut

where ut is I(0) and may be heteroskedastic. The PP tests correct for
any serial correlation and heteroskedasticity in the errors ut of the test
regression by directly modifying the test statistics tπ=0 and T π̂. These
modified statistics, denoted Zt and Zπ, are given by

Zt =

µ
σ̂2

λ̂
2

¶1/2
· tπ=0 − 1

2

Ã
λ̂
2 − σ̂2

λ̂
2

!
·
µ
T · SE(π̂)

σ̂2

¶
Zπ = T π̂ − 1

2

T 2 · SE(π̂)
σ̂2

(λ̂
2 − σ̂2)

The terms σ̂2 and λ̂
2
are consistent estimates of the variance parameters

σ2 = lim
T→∞

T−1
TX
t=1

E[u2t ]

λ2 = lim
T→∞

TX
t=1

E
£
T−1S2T

¤
where ST =

PT
t=1 ut. The sample variance of the least squares residual

ût is a consistent estimate of σ
2, and the Newey-West long-run variance

estimate of ut using ût is a consistent estimate of λ
2.

Under the null hypothesis that π = 0, the PP Zt and Zπ statistics have
the same asymptotic distributions as the ADF t-statistic and normalized
bias statistics. One advantage of the PP tests over the ADF tests is that
the PP tests are robust to general forms of heteroskedasticity in the error
term ut. Another advantage is that the user does not have to specify a lag
length for the test regression.

Example 21 Testing for a unit root in exchange rates using the PP tests

Recall the arguments for the S+FinMetrics unitroot function are

> args(unitroot)

function(x, trend = "c", method = "adf",
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statistic = "t",lags = 1, bandwidth = NULL,

window = "bartlett", asymptotic = F, na.rm = F)

The PP statistics may be computed by specifying the optional argument
method="pp". When method="pp" is chosen, the argument window speci-
fies the weight function and the argument bandwidth determines the lag
truncation parameter used in computing the long-run variance parameter
λ2. The default bandwidth is the integer part of (4 · (T/100))2/9 where T
is the sample size.
Now, consider testing for a unit root in the log of the US/CN spot ex-

change rate using the PP Zt and Zπ statistics:

> unitroot(uscn.spot, trend="c", method="pp")

Test for Unit Root: Phillips-Perron Test

Null Hypothesis: there is a unit root

Type of Test: t-test

Test Statistic: -1.97

P-value: 0.2999

Coefficients:

lag1 constant

-0.0202 -0.0054

Degrees of freedom: 244 total; 242 residual

Time period: from Mar 1976 to Jun 1996

Residual standard error: 0.01383

> unitroot(uscn.spot, trend="c", method="pp", statistic="n")

Test for Unit Root: Phillips-Perron Test

Null Hypothesis: there is a unit root

Type of Test: normalized test

Test Statistic: -4.245

P-value: 0.5087

Coefficients:

lag1 constant

-0.0202 -0.0054

Degrees of freedom: 244 total; 242 residual

Time period: from Mar 1976 to Jun 1996

Residual standard error: 0.01383

As with the ADF tests, the PP tests do not reject the null that the log
of the US/CN spot rate is I(1) at any reasonable significance level.
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4.4 Stationarity Tests

The ADF and PP unit root tests are for the null hypothesis that a time
series yt is I(1). Stationarity tests, on the other hand, are for the null that
yt is I(0). The most commonly used stationarity test, the KPSS test, is
due to Kwiatkowski, Phillips, Schmidt and Shin (1992). They derive their
test by starting with the model

yt = β0Dt + µt + ut (4.6)

µt = µt−1 + εt, εt ∼WN(0, σ2ε)

where Dt contains deterministic components (constant or constant plus
time trend), ut is I(0) and may be heteroskedastic. Notice that µt is a pure
random walk with innovation variance σ2ε. The null hypothesis that yt is
I(0) is formulated as H0 : σ

2
ε = 0, which implies that µt is a constant.

Although not directly apparent, this null hypothesis also implies a unit
moving average root in the ARMA representation of ∆yt. The KPSS test
statistic is the Lagrange multiplier (LM) or score statistic for testing σ2ε = 0
against the alternative that σ2ε > 0 and is given by

KPSS =

Ã
T−2

TX
t=1

Ŝ2t

!
/λ̂

2
(4.7)

where Ŝt =
Pt

j=1 ûj , ût is the residual of a regression of yt on Dt and λ̂
2

is a consistent estimate of the long-run variance of ut using ût. Under the
null that yt is I(0), Kwiatkowski, Phillips, Schmidt and Shin show that
KPSS converges to a function of standard Brownian motion that depends
on the form of the deterministic terms Dt but not their coefficient values
β. In particular, if Dt = 1 then

KPSS
d→
Z 1

0

V1(r)dr (4.8)

where V1(r) =W (r)−rW (1) and W (r) is a standard Brownian motion for
r ∈ [0, 1]. If Dt = (1, t)

0 then

KPSS
d→
Z 1

0

V2(r)dr (4.9)

where V2(r) = W (r) + r(2 − 3r)W (1) + 6r(r2 − 1) R 1
0
W (s)ds. Critical

values from the asymptotic distributions (4.8) and (4.9) must be obtained
by simulation methods, and these are summarized in Table 4.1.
The stationary test is a one-sided right-tailed test so that one rejects the

null of stationarity at the 100 · α% level if the KPSS test statistic (4.7) is
greater than the 100 · (1 − α)% quantile from the appropriate asymptotic
distribution (4.8) or (4.9).
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Right tail quantiles
Distribution 0.90 0.925 0.950 0.975 0.99R 1
0
V1(r)dr 0.349 0.396 0.446 0.592 0.762R 1

0
V2(r)dr 0.120 0.133 0.149 0.184 0.229

TABLE 4.1. Quantiles of the distribution of the KPSS statistic

4.4.1 Simulating the KPSS Distributions

The distributions in (4.8) and (4.9) may be simulated using methods similar
to those used to simulate the DF distribution. The following S-PLUS code
is used to create the quantiles in Table 4.1:

wiener2 = function(nobs) {

e = rnorm(nobs)

# create detrended errors

e1 = e - mean(e)

e2 = residuals(OLS(e~seq(1,nobs)))

# compute simulated Brownian Bridges

y1 = cumsum(e1)

y2 = cumsum(e2)

intW2.1 = nobs^(-2) * sum(y1^2)

intW2.2 = nobs^(-2) * sum(y2^2)

ans = list(intW2.1=intW2.1,

intW2.2=intW2.2)

ans

}

#

# simulate KPSS distributions

#

> nobs = 1000

> nsim = 10000

> KPSS1 = rep(0,nsim)

> KPSS2 = rep(0,nsim)

> for (i in 1:nsim) {

BN.moments = wiener2(nobs)

KPSS1[i] = BN.moments$intW2.1

KPSS2[i] = BN.moments$intW2.2

}

#

# compute quantiles of distribution

#

> quantile(KPSS1, probs=c(0.90,0.925,0.95,0.975,0.99))

90.0% 92.5% 95.0% 97.5% 99.0%

0.34914 0.39634 0.46643 0.59155 0.76174

> quantile(KPSS2, probs=c(0.90,0.925,0.95,0.975,0.99))
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90.0% 92.5% 95.0% 97.5% 99.0%

0.12003 0.1325 0.14907 0.1841 0.22923

Currently, only asymptotic critical values are available for the KPSS test.

4.4.2 Testing for Stationarity Using the S+FinMetrics
Function stationaryTest

The S+FinMetrics function stationaryTest may be used to test the null
hypothesis that a time series yt is I(0) based on the KPSS statistic (4.7).
The function stationaryTest has arguments

> args(stationaryTest)

function(x, trend = "c", bandwidth = NULL, na.rm = F)

where x represents a univariate vector or “timeSeries”. The argument
trend specifies the deterministic trend component in (4.6) and valid choices
are "c" for a constant and "ct" for a constant and time trend. The argu-
ment bandwidth determines the lag truncation parameter used in com-
puting the long-run variance parameter λ2. The default bandwidth is the
integer part of (4 · (T/100))2/9 where T is the sample size. The output of
stationaryTest is an object of class “stationaryTest” for which there is
only a print method. The use of stationaryTest is illustrated with the
following example.

Example 22 Testing for stationarity in exchange rates

Consider the US/CN spot exchange data used in the previous examples.
To test the null that st is I(0), the KPSS statistic is computed using a
constant in (4.6):

> kpss.out = stationaryTest(uscn.spot, trend="c")

> class(kpss.out)

[1] "stationaryTest"

> kpss.out

Test for Stationarity: KPSS Test

Null Hypothesis: stationary around a constant

Test Statistics:

USCNS

1.6411**

* : significant at 5% level

** : significant at 1% level
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Total Observ.: 245

Bandwidth : 5

The KPSS statistic is 1.641 and is greater than the 99% quantile, 0.762,
from Table.4.1. Therefore, the null that st is I(0) is rejected at the 1%
level.

4.5 Some Problems with Unit Root Tests

The ADF and PP tests are asymptotically equivalent but may differ sub-
stantially in finite samples due to the different ways in which they correct
for serial correlation in the test regression. In particular, Schwert (1989)
finds that if ∆yt has an ARMA representation with a large and negative
MA component, then the ADF and PP tests are severely size distorted
(reject I(1) null much too often when it is true) and that the PP tests are
more size distorted than the ADF tests. Recently, Perron and Ng (1996)
have suggested useful modifications to the PP tests to mitigate this size
distortion. Caner and Killian (2001) have found similar problems with the
KPSS test.
In general, the ADF and PP tests have very low power against I(0)

alternatives that are close to being I(1). That is, unit root tests cannot
distinguish highly persistent stationary processes from nonstationary pro-
cesses very well. Also, the power of unit root tests diminish as deterministic
terms are added to the test regressions. That is, tests that include a con-
stant and trend in the test regression have less power than tests that only
include a constant in the test regression. For maximum power against very
persistent alternatives the recent tests proposed by Elliot, Rothenberg and
Stock (1996) and Ng and Perron (2001) should be used. These tests are
described in the next section.

4.6 Efficient Unit Root Tests

Assume that T observations are generated by

yt = β0Dt + ut, ut = φut−1 + vt

where Dt represents a vector of deterministic terms, E[u0] <∞, and vt is
a 1-summable linear process with long-run variance λ2. Typically Dt = 1
or Dt = [1, t]. Consider testing the null hypothesis φ = 1 versus |φ| <
1. If the distribution of the data were known then the Neyman-Pearson
Lemma gives the test with best power against any point alternative φ̄. The
power of this optimal test plotted as a function of φ̄ gives an upper bound
(envelope) for the power of any test based on the same distribution of the
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data. An undesirable feature of this power envelope is that it depends on the
specific value of φ̄, so that there is no uniformly most power full test that
can be used against all alternatives |φ| < 1. However, using asymptotic
approximations based on the local-to-unity alternative φ = 1 + c/T, for
c < 0, Elliot, Rothenberg and Stock (2001) (hereafter ERS) derive a class
of test statistics that come very close to the power envelope for a wide
range of alternatives. These tests are referred to as efficient unit root tests,
and they can have substantially higher power than the ADF or PP unit
root tests especially when φ is close to unity.

4.6.1 Point Optimal Tests

The starting point for the class of efficient tests is the feasible test statistic
that is optimal (asymptotically) for the point alternative φ̄ = 1−c̄/T, c̄ < 0.
This test is constructed as follows. Define the T−dimensional column vector
yφ and T × q dimensional matrix Dφ by

yφ = (y1, y2 − φy1, . . . , yT − φyT−1)0

Dφ = (D0
1,D

0
2 − φD0

1, . . . ,D
0
T − φD0

T−1)
0

All of the elements of yφ and Dφ, except the first, are quasi-differenced
using the operator 1−φL. Next, for any value of φ, define S(φ) as the sum
of squared residuals from a least squares regression of yφ on Dφ. That is,

S(φ) = ỹ0φỹφ

where ỹφ = yφ −Dφβ̂φ and β̂φ = (D0
φDφ)

−1D0
φyφ. ERS show that the

feasible point optimal unit root test against the alternative φ̄ = 1− c̄/T has
the form

PT =
£
S(φ̄)− φ̄S(1)

¤
/λ̂

2
(4.10)

where λ̂
2
is a consistent estimate of λ2. ERS derive the asymptotic distri-

bution of PT for Dt = 1 and Dt = (1, t) and provide asymptotic and finite
sample critical values for tests of size 1%, 2.5%, 5% and 10%4.
Through a series of simulation experiments, ERS discover that if φ̄ =

1+c̄/T is chosen such that the power of PT is tangent to the power envelope
at 50% power then the overall power of PT , for a wide range of φ̄ values less
than unity, is close to the power envelope. For a given sample size T, the
value of φ̄ that results in PT having 50% power depends on c̄ and the form
of the deterministic terms in Dt. ERS show that if Dt = 1 then c̄ = −7,
and if Dt = (1, t) then c̄ = −13.5.
The ERS PT statistic may be computed using the function unitroot

with method="ers".

4These critical values are given in ERS Table I panels A and B.



134 4. Unit Root Tests

4.6.2 DF-GLS Tests

In the construction of the ERS feasible point optimal test (4.10), the un-
known parameters β of the trend function are efficiently estimated under
the alternative model with φ̄ = 1 + c̄/T. That is, β̂φ̄ = (D0̄

φ
Dφ̄)

−1D0̄
φ
yφ̄.

ERS use this insight to derive an efficient version of the ADF t-statistic,
which they call the DF-GLS test . They construct this t-statistic as follows.
First, using the trend parameters β̂φ̄ estimated under the alternative, define
the detrended data

ydt = yt − β̂0φ̄Dt

ERS call this detrending procedure GLS detrending5. Next, using the GLS
detrended data, estimate by least squares the ADF test regression which
omits the deterministic terms

∆ydt = πydt−1 +
pX

j=1

ψj∆y
d
t−j + εt (4.11)

and compute the t-statistic for testing π = 0. When Dt = 1, ERS show
that the asymptotic distribution of the DF-GLS test is the same as the
ADF t-test, but has higher asymptotic power (against local alternatives)
than the DF t-test. Furthermore, ERS show that the DF-GLS test has
essentially the same asymptotic power as the ERS point optimal test when
c̄ = −7.When Dt = (1, t) the asymptotic distribution of the DF-GLS test,
however, is different from the ADF t-test. ERS and Ng and Perron (2001)
provide critical values for the DF-GLS test in this case. ERS show that
the DF-GLS test has the same asymptotic power as the ERS point optimal
test with c = −13.5, and has higher power than the DF t-test against local
alternatives.
The DF-GLS t-test may be computed using the function unitroot with

method="dfgls".

4.6.3 Modified Efficient PP Tests

Ng and Perron (2001) use the GLS detrending procedure of ERS to create
efficient versions of the modified PP tests of Perron and Ng (1996). These
efficient modified PP tests do not exhibit the severe size distortions of the
PP tests for errors with large negative MA or AR roots, and they can have
substantially higher power than the PP tests especially when φ is close to
unity.

5For deterministicly trending trend data with ergodic-stationary deviations from
trend, Grenander’s Theorem gives the result that least squares estimates of the trend
parameters ignoring serial correlation are asymptotically equivalent to the generalized
least squares estimates that incorporate serial correlation.
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Using the GLS detrended data ydt , the efficient modified PP tests are
defined as

MZα = (T−1ydT − λ̂
2
)

Ã
2T−2

TX
t=1

ydt−1

!−1

MSB =

Ã
T−2

TX
t=1

ydt−1/λ̂
2

!1/2
MZt = MZα ×MSB

The statistics MZα and MZt are efficient versions of the PP Zα and Zt
tests that have much smaller size distortions in the presence of negative
moving average errors. Ng and Perron derive the asymptotic distributions
of these statistics under the local alternative φ = 1 − c/T for Dt = 1 and
Dt = (1, t). In particular, they show that the asymptotic distribution of
MZt is the same as the DF-GLS t-test.
The statistic MZt may be computed using the function unitroot with

method="mpp".

4.6.4 Estimating λ2

Ng and Perron (2001) emphasize that the estimation of the long-run vari-
ance λ2 has important implications for the finite sample behavior of the
ERS point optimal test and the efficient modified PP tests. They stress
that an autoregressive estimate of λ2 should be used to achieve stable finite
sample size. They recommend estimating λ2 from the ADF test regression
(4.11) based on the GLS detrended data:

λ̂AR =
σ̂2p³

1− ψ̂(1)
´2

where ψ̂(1) =
Pp

j=1 ψ̂j and σ̂2p = (T − p)−1
PT

t=p+1 ε̂
2
t are obtained from

(4.11) by least squares estimation.

4.6.5 Choosing Lag Lengths to Achieve Good Size and Power

Ng and Perron also stress that good size and power properties of the all
the efficient unit root tests rely on the proper choice of the lag length
p used for specifying the test regression (4.11). They argue, however, that
traditional model selection criteria such as AIC and BIC are not well suited
for determining p with integrated data. Ng and Perron suggest the modified
information criteria (MIC) that selects p as pmic = argminp≤pmax MIC(p)
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where

MIC(p) = ln(σ̂2p) +
CT (τT (p) + p)

T − pmax

τT (p) =
π̂2
PT

t=pmax+1
ydt−1

σ̂2p

σ̂2p =
1

T − pmax

TX
t=pmax+1

ε̂2t

with CT > 0 and CT /T → 0 as T →∞. The maximum lag, pmax, may be
set using (4.5). The modified AIC (MAIC) results when CT = 2, and the
modified BIC (MBIC) results when CT = ln(T −pmax). Through a series of
simulation experiments, Ng and Perron recommend selecting the lag length
p by minimizing the MAIC.

Example 23 Efficient unit root tests

To illustrate the efficient unit root tests, consider testing for a unit root
in the 30-day interest rate differential formed from the difference between
monthly US and UK spot exchange rates:

> fd = lexrates.dat[,"USUKS"] - lexrates.dat[,"USUKF"]

> colIds(fd) = "USUKFD"

> fd@title = "US/UK 30-day interest rate differential"

The interest rate differential, its SACF, and the SACF of its first differ-
ence are depicted in Figure 4.6. The graphs clearly show that the interest
rate differential has a high degree of persistence, and that there is little
persistence in the first difference.
The ERS PT test, DF-GLS t-test and Ng-PerronMZt test all with Dt =

1 may be computed using the function unitroot as follows:

> ers = unitroot(fd,trend="c",method="ers",max.lags=12)

> dfgls = unitroot(fd,trend="c",method="dfgls",max.lags=12)

> mpp = unitroot(fd,trend="c",method="mpp",max.lags=12)

Since the optional argument lags is omitted, the lag length for the test
regression (4.11) is determined by minimizing the MAIC with pmax = 12
set by the optional argument max.lags=12. The results of the efficient unit
root tests are:

> ers.test

Test for Unit Root: Elliott-Rothenberg-Stock Test

Null Hypothesis: there is a unit root

Test Statistic: 1.772**
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US/UK 30-day interest rate differential
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FIGURE 4.6. 30-day US/UK interest rate differential.

* : significant at 5% level

** : significant at 1% level

Coefficients:

lag1

-0.07

Degrees of freedom: 244 total; 243 residual

Time period: from Mar 1976 to Jun 1996

Residual standard error: 0.00116

> dfgls.test

Test for Unit Root: DF Test with GLS detrending

Null Hypothesis: there is a unit root

Type of Test: t-test

Test Statistic: -2.9205**

* : significant at 5% level

** : significant at 1% level

Coefficients:

lag1
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-0.07

Degrees of freedom: 244 total; 243 residual

Time period: from Mar 1976 to Jun 1996

Residual standard error: 0.00116

> mpp.test

Test for Unit Root: Modified Phillips-Perron Test

Null Hypothesis: there is a unit root

Type of Test: t-test

Test Statistic: -2.8226**

* : significant at 5% level

** : significant at 1% level

Coefficients:

lag1

-0.07

Degrees of freedom: 244 total; 243 residual

Time period: from Mar 1976 to Jun 1996

Residual standard error: 0.00116

Minimizing the MAIC gives p = 0, and with this lag length all tests reject
the null hypothesis of a unit root at the 1% level.
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