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Abstract

Semantic interoperability among Semantic Web (SW) languages is an important feature in

knowledge engineering in the Semantic Web era. Recent research, however, has shown some issues

on the compatibility between the semantics of the standard SW annotation language RDF (as well as

its ontological extension RDFS) and that of the standard SW ontology language OWL DL. To address

these issues, existing approaches either limit the extension of RDF(S) to only a property-related subset

of OWL together with a weaker semantics [53], [54] or weaken the semantic connection between

individual interpretations and class interpretations of URIs (and hence lose some intuitive inference)

[12]. This paper proposes a novel modification of RDF(S) as a firm semantic foundation for many of

the latest Description Logics-based SW ontology languages, including OWL DL. Its metamodeling

architecture is very similar to that of UML and it imposes no limitation on its extensibility to more

expressive Description Logics (such as OWL DL and OWL-Eu). As a result, the introduction of

RDFS(FA) solidifies RDF(S)’s proposed role as the base of theSemantic Web and facilitates key

knowledge engineering tasks, such as ontology reuse, in knowledge-based systems.
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I. INTRODUCTION

The vision of the Semantic Web (SW) is to augment the syntactic Web with semantic

markup, so that resources are more easily interpreted by programs (or ‘intelligent agents’).

Encoding semantic markups will necessitate the Semantic Web adopting an annotation lan-

guage. To this end, the W3C (World Wide Web Consortium) community has developed a

recommendation called Resource Description Framework (RDF) [30]. The development of

RDF is an attempt to support effective creation, exchange and use of annotations on the Web.

Annotations alone, however, do not establish the semanticsof what is being marked-

up. In response to this need for more explicit meaning, ontologies [15], [55] have been

proposed to provide shared and precisely defined terms and constraints to describe the meaning

of resources through annotations — such annotations are called machine-understandable

annotations. The advent of RDF Schema (RDFS) [6] represented an early attempt at a SW

ontology language based on RDF. RDF and RDFS, or simply RDF(S), are intended to provide

the foundation for the Semantic Web [32, Sec. 7.1]. As the constructors that RDFS provides

for constructing ontologies are very primitive, more expressive SW ontology languages have

subsequently been developed, such as OIL [21], DAML+OIL [24] and the W3C standard

Semantic Web ontology language OWL [2],1 which are all based on Description Logics

(DLs) [1].

Knowledge-based systems in the Semantic Web era can/shouldmake use of the power of

the Semantic Web languages and technologies, in particularthose related to ontologies, to

support key tasks such as information retrieval and extraction ([16], [3], [33], [57], [29], [52],

[9]), and information integration ([4], [34], [31]). In theOWL DL ontology language, an

ontology corresponds to a DL knowledge base; i.e., an ontology contains not only knowledge

about important concepts and relationships in a given domain, but also data (instances of

these concepts and relationships) in the domain. Exploiting this logical foundation allows

for the explication of information (or knowledge) that is only implicitly represented in the

ontology; in practice this can be achieved with the help of ontology inference engines, such

as FaCT [22], RACER [18], Pellet [49], FaCT++ DL [13], KAON2 [28] and FaCT-DG [39].

Interestingly, for a given set of data (knowledge about individuals and their relationships),

1There are three sub-languages of OWL, i.e., OWL Lite, OWL DL and OWL Full; cf. Section II-B for more details.
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different information can be inferred given different contexts (background knowledge about

classes and properties). Furthermore, with the help of semantically compatible SW languages,

it is possible and desirable to infer useful information based on important knowledge (possibly

described in different SW languages) that is often distributed across the Web and/or intranet(s).

Indeed, semantic interoperability among SW languages, as addressed in this paper, is a crucial

feature of knowledge engineering in the Semantic Web era. Without semantic interoperability,

it is difficult or even impossible for Web resources to be shared and interpreted by programs

in a meaningful way.

In order to allow for semantic interoperability, SW languages should at least be “compat-

ible” with each other. RDF(S) has a key role in supporting such compatibility by providing

a common basis on which more expressive SW languages can be built. Recent research,

however, has revealed some problematical issues when trying to extend the RDF(S) se-

mantics [19] to specify the meaning of OWL constructors; these issues include ‘too few

entailments’, ‘contradiction classes’ and ‘size of the universe’ ([44], [45], [27]), all of which

stem from the unusual characteristics of RDF(S) (cf. Section II-A). Furthermore, Motik [36]

has shown that even adding onlyALC (a DL much simpler than OWL DL) constructors

to the metamodeling architecture of RDFS would already leadto undecidability. In short,

the intended foundation of the Semantic Web and SW ontology languages does not seem

to provide for the desired extensibility and semantic compatibility. This could seriously

discourage potential users from adopting Semantic Web standards [5]. To address these issues,

existing approaches either limit the extension of RDF(S) toonly a property-related subset of

OWL with a weaker semantics ([53], [54]), or weaken the semantic connection between the

individual interpretation and class interpretation of a given URI [12], hence failing to propagate

important inferences from metaclasses to classes (see Section VII for more details).

This paper proposes a novel modification of RDF(S) which provides a solid semantic

foundation for many of the latest Description Logic-based SW ontology languages, and

imposes no limitation on its extension to more expressive Description Logics (such as OWL

DL and OWL-Eu [42]). After reviewing the design of RDF(S), and the needs of various

applications and (potential) users, the following requirements for a sub-language of RDF(S)

have been identified:
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1) Ontologies in this sub-language should be RDF graphs.

2) It should enable the use of class URIrefs as property values, which is a feature of RDFS

that is required in many applications [38].

3) It should provide a metamodeling architecture compatible with the layered metamodel-

ing architecture of UML (Unified Modelling Language) [10], as UML is probably the

most well known and widely accepted metamodeling architecture.

4) Its semantics should be compatible with the semantics of OWL DL [46].

This paper makes the following contributions:

1) After formally introducing the semantics of RDF(S) and OWL, it reviews in detail the

syntactic and semantic mismatches between RDF(S) and OWL DL(Section III). This

indicates people need two different inference engines to reason with RDF(S) and OWL

DL ontologies. These mismatches motivate why we need a strong connection between

RDF(S) and OWL DL.

2) It presents a sub-language of RDF(S), called RDFS(FA),2 which satisfies the above

requirements (Section IV to VI). In terms of the RDFS(FA) language, it substantially

extends the conference version of the paper [41] with the following aspects: (i) It

also covers datatypes and annotation properties, which areboth useful in Semantic

Web applications [42], [51], [38]. (ii) For the first time, itintroduces the notion of

RDFS(FA) ontologies, which makes it much easier to compare the RDFS(FA) and OWL

DL ontology languages, and makes the bidirectional mapping(to be mentioned below)

between them possible. (iii) It provides some rules of thumbon to help authors/users of

RDFS(FA) ontologies quickly get the strata/layer number right. Although such numbers

can/should be encapsulated by tools, this turns out to be very helpful because people

can now easily play with their RDFS(FA) ontologies.

3) Most importantly, it identifies a bidirectional one-to-one mapping between RDFS(FA)

axioms in strata 0-1 and OWL DL axioms, which enables RDFS(FA)-agents and OWL-

DL-agents to communicate with each other (Section V). This also provides a significant

insight on how to reason with RDFS(FA) as well as its extension OWL FA [43]. Such

reasoning techniques make it possible to use one single inference engine to reason

2‘FA’ for ‘Fixed layered matamodeling Architecture’.
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with RDFS(FA), OWL DL and OWL FA ontologies. This could significantly improve

semantic interoperability of knowledge systems of the Semantic Web era.

4) Furthermore, it shows that introducing RDFS(FA) as a sub-language of RDF(S) clarifies

the vision of the Semantic Web and solidifies RDF(S)’s proposed role as the foundation

of the Semantic Web (Section VI).

5) Finally, it provides a discussion of related work,3 and compare them with the RDFS(FA)

approach (Section VII).

In short, we believe that the introduction of RDFS(FA) solidifies RDF(S)’s proposed role

as the foundation of the Semantic Web, and facilitates key knowledge engineering tasks, such

as ontology reuse, in knowledge-based systems.

II. BACKGROUND

In this section provides a brief overview of the Semantic Webstandards RDF(S) and OWL.

A. RDF and RDFS

Resource Description Framework (RDF) [30] is built upon earlier developments such as

the Dublin Core [11] and the Platform for Internet Content Selectivity (PICS) [50] content

rating initiative. An RDF statement (or RDF triple) is of theform: [subject property object .].

RDF-annotated resources (i.e., subjects) are usually named by Uniform Resource Identifier

references (URIrefs). RDF annotates Web resources in termsof named properties. Values of

named properties (i.e., objects) can be URIrefs of Web resources or literals, viz. representations

of data values (such as integers and strings). A set of RDF statements is called anRDF graph.

RDF Schema (RDFS) can be seen as a first try to support expressing simple ontologies with

RDF syntax. In RDFS, predefined Web resourcesrdfs:Class, rdfs:Resource andrdf :Property

can be used to declare classes, resources and properties, respectively. RDFS predefines the

following meta-properties that can be used to represent background assumptions in ontologies:

rdf : type, rdfs: subClassOf , rdfs: subPropertyOf , rdfs:domain and rdfs: range. At a glance,

RDFS is a simple ontology langauge that supports only class and property hierarchies, as

3Including interesting recent work such as [53], [54] and [12], which was not available when RDFS(FA) was first proposed
[41].
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Fig. 1. A simple interpretation ofV = {a,b,c} (from [19])

well as domain and range constraints for properties. According to the RDF Model Theory

(RDF MT) [19], however, it is more complicated than that.

RDF MT provides semantics not only for RDFS ontologies, but also for RDF triples. RDF

model theory is built onsimple interpretations.4 Given a set of URI referencesV, a simple

interpretationI of V is defined by (i) an non-empty setIR of resources, called thedomain

(or universe) of I, (ii) a set IP, called theset of propertiesin I, (iii) a mapping IEXT ,

called theextension function, from IP to the powerset ofIR × IR, and (iv) a mappingIS

from URIrefs in V to IR ∪ IP. Given a triple[s p o .], I([s p o .]) = true if s,p,o ∈ V,

IS(p) ∈ IP, and〈IS(s), IS(o)〉 ∈ IEXT (IS(p)); otherwise, I([s p o .]) = false. Given a

set of triples S, I(S)= false if I( [s p o .]) = false for some triple[s p o .] in S, otherwise

I(S) = true. I satisfiesS, written as I|= S if I(S) = true; in this case, we say I is a simple

interpretation of S. Figure 1 presents a simple interpretation I of V = {a,b,c}, where the

URIref b is simply interpreted as a property becauseIS(b) = 1 ∈ IP, andIEXT (IS(b)),

the extension ofIS(b), is a set of pairs of resources that are inIR, i.e.,{〈1, 2〉,〈2, 1〉}. Since

〈IS(a), IS(c)〉 ∈ IEXT (IS(b)), I([a b c .]) = true; hence, we can conclude that I satisfies

[a b c .].

Based on simple interpretations, RDF MT provides semanticsfor RDF triples and RDFS

4To simplify presentation, in this paper we do not cover blanknodes, which are identified by local identifiers instead of
URIrefs.
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statements by RDF-interpretations and RDFS-interpretations, respectively. These interpreta-

tions are simple interpretations that satisfy extra semantic conditions and axiomatic state-

ments.Intuitively, RDF-interpretations require thatIP to be a subset ofIR; i.e., all properties

are resources. Similarly, RDFS-interpretations require that all classes are resources. Further-

more, RDFS-interpretations introduce the class extensionfunction ICEXT , which works as

follows: A class URIref is firstly mapped (byIS) to a resource inIR and then is further

mapped (byICEXT ) to a set of resources which are instances of this class.

Definition 1 (RDF-Interpretation ) Given a set of URI referencesV and the setrdfV, called

the RDF vocabulary, of URI references in the rdf: namespace, an RDF-interpretation of V

is a simple interpretation I ofV ∪ rdfV that satisfies:

1) for p∈ V ∪ rdfV, IS(p) ∈ IP iff 〈IS(p), IS(rdf:Property)〉 ∈ IEXT (IS(rdf:type)),

2) all the RDF axiomatic statements.5 �

Condition 1 of Definition 1 implies that each member ofIP is a resource inIR, due to the

definition of IEXT ; in other words, RDF-interpretations requireIP to be a subset ofIR.

RDF axiomatic statements mentioned in Condition 2 are RDF statements about RDF built-in

vocabularies inrdfV; e.g., [rdf : type rdf : type rdf :Property .] is an RDF axiomatic state-

ment. According to Definition 1, any RDF-interpretation I should satisfy [rdf : type rdf : type

rdf :Property .], viz. IS(rdf : type) should be inIP.

Finally, the semantics of RDFS statements written in RDF triples is given in terms of

RDFS-Interpretations. In particular, the following Condition 1) indicates that a ‘class’ is not

a strictly necessary but convenient semantic construct [19] because the class extension function

ICEXT is simply a ‘syntactic sugar’ and is defined in terms ofIEXT .

Definition 2 (RDFS-Interpretation ) Given rdfV, a set of URI referencesV and the set

rdfsV, called theRDFS vocabulary, of URI references in the rdfs: namespace, an RDFS-

interpretation I ofV is an RDF-interpretation ofV ∪ rdfV ∪ rdfsV which introduces

• a setIC, called the set of classes in I, and

• a mappingICEXT (called theclass extension function) from IC to the set of subsets ofIR,

and satisfies the following conditions (let x,y,u,v be URIrefs in V ∪ rdfV ∪ rdfsV)6

5Readers are referred to [19] for the list of the RDF axiomaticstatements.
6We only focus on the core RDFS primitives here.
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1) IS(x) ∈ ICEXT (IS(y)) iff 〈IS(x), IS(y)〉 ∈ IEXT (IS(rdf:type)),

2) IC = ICEXT (IS(rdfs:Class)) andIR = ICEXT (IS(rdfs:Resource)),

3) if 〈IS(x), IS(y)〉 ∈ IEXT (IS(rdfs:domain)) and 〈IS(u), IS(v)〉 ∈ IEXT (IS(x)), then IS(u) ∈

ICEXT (IS(y)),

4) if 〈IS(x), IS(y)〉 ∈ IEXT (IS(rdfs:range)) and 〈IS(u), IS(v)〉 ∈ IEXT (IS(x)), then IS(v) ∈

ICEXT (IS(y)),

5) IEXT (IS(rdfs:subPropertyOf)) is transitive and reflexive onIP,

6) if 〈IS(x), IS(y)〉 ∈ IEXT (IS(rdfs:subPropertyOf)), thenIS(x),IS(y) ∈ IP andIEXT (IS(x)) ⊆

IEXT (IS(y)),

7) IEXT (IS(rdfs:subClassOf)) is transitive and reflexive onIC,

8) if 〈IS(x), IS(y)〉 ∈ IEXT (IS(rdfs:subClassOf)), thenIS(x),IS(y) ∈ IC and

ICEXT (IS(x)) ⊆ ICEXT (IS(y)),

9) if IS(x) ∈ IC, then〈IS(x), IS(rdfs:Resource)〉 ∈ IEXT (IS(rdfs:subClassOf)),

and satisfies all the RDFS axiomatic statements.7 �

Handling classes in this way can be counter-intuitive (cf. Proposition 3).

Proposition 3 The RDFS statements[rdfs:Resource rdf : type rdfs:Class .] and

[rdfs:Class rdfs: subClassOf rdfs:Resource .] are true in all RDFS-interpretations.

Proof: For [rdfs:Resource rdf : type rdfs:Class .]:

1) According to the definition ofIS and Definition 1, for any resource x, we haveIS(x)

∈ IR. Due to IR = ICEXT (IS(rdfs:Resource)) and Condition 1 in Definition 2,

〈IS(x), IS(rdfs:Resource)〉 ∈ IEXT (IS(rdf : type)). Sincerdf :Property is a built-in

resource, we have〈IS(rdf :Property), IS(rdfs:Re- source) 〉 ∈ IEXT (IS(rdf : type)).

2) Due to [rdf : type rdfs: range rdfs:Class.] (an RDFS axiomatic statement),〈IS

(rdf :Property), IS(rdfs:Resource)〉 ∈ IEXT (IS(rdf : type)) and Condition 4 in Def-

inition 2, we haveIS(rdfs:Resource) ∈ ICEXT (IS(rdfs:Class)). Therefore, for any

RDFS-interpretation I, we have I|= [rdfs:Resource rdf : type rdfs: Class .].

For [rdfs:Class rdfs: subClassOf rdfs:Resource .]: According to the definition ofIC, every

class is its member, includingIS(rdfs:Class), viz.IS(rdfs:Class) ∈ IC. Due to Condition 9 of

7Again, readers are referred to [19] for a list of the RDFS axiomatic statements, which includes, e.g.,
[rdf:type rdfs:range rdfs:Class .].
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Abstract Syntax DL Syntax Semantics
Class(A) A AI ⊆ ∆I

Class(owl:Thing) > >I =∆I

Class(owl:Nothing) ⊥ ⊥I = ∅

intersectionOf(C1, C2, . . .) C1 u C2 (C1 u C2)
I = CI

1 ∩ CI
2

unionOf(C1, C2, . . .) C1 t C2 (C1 t C2)
I = CI

1 ∪ CI
2

complementOf(C) ¬C (¬C)I = ∆I \ CI

oneOf(o1, o2, . . .) {o1}t {o2} ({o1}t {o2})I = {o1
I , o2

I}

restriction(R someValuesFrom(C)) ∃R.C (∃R.C)I = {x | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}
restriction(R allValuesFrom(C)) ∀R.C (∀R.C)I = {x | ∀y.〈x, y〉 ∈ RI → y ∈ CI}
restriction(R hasValue(o)) ∃R.{o} (∃R.{o})I = {x | 〈x, oI〉 ∈ RI}
restriction(R minCardinality(m)) > mR (> mR)I = {x | ]{y.〈x, y〉 ∈ RI} ≥ m}
restriction(R maxCardinality(m)) 6 mR (6 mR)I = {x | ]{y.〈x, y〉 ∈ RI} ≤ m}

restriction(T someValuesFrom(u)) ∃T.u (∃T.u)I = {x | ∃t.〈x, t〉 ∈ T I ∧ t ∈ uD}
restriction(T allValuesFrom(u)) ∀T.u (∀T.u)I = {x | ∃t.〈x, t〉 ∈ T I → t ∈ uD}
restriction(T hasValue(w)) ∃T.{w} (∃T.{w})I = {x | 〈x,wD〉 ∈ T I}
restriction(T minCardinality(m)) > mT (> mT )I = {x | ]{t | 〈x, t〉 ∈ T I} ≥ m}
restriction(T maxCardinality(m)) 6 mT (6 mT )I = {x | ]{t | 〈x, t〉 ∈ T I} ≤ m}
ObjectProperty(S) S SI ⊆ ∆I × ∆I

ObjectProperty(S′ inverseOf(S)) S− (S−)I ⊆ ∆I × ∆I

DatatypeProperty(T ) T T I ⊆ ∆I × ∆D

TABLE I

OWL CLASS AND PROPERTY DESCRIPTIONS

Definition 2, 〈IS(rdfs:Class), IS(rdfs:Resource)〉 ∈ IEXT (IS(rdfs: subClassOf)); hence,

for any RDFS-interpretation I, we have I|= [rdfs:Class rdfs: subClassOf rdfs:Resource.]

The two RDFS statements in Proposition 3 suggest a strange situation, at least for some

people, of rdfs:Class and rdfs:Resource as discussed in [40]: on the one hand, rdfs:Resource

is an instance of rdfs:Class; on the other hand, rdfs:Class is a sub-class of rdfs:Resource.

Hence is rdfs:Resource an instance of its sub-class? Some users find this counter-intuitive

and thus hard to understand — this tricky relationships in RDF(S) ontologies indicate that

RDF(S) is more complicated than it appears. Therefore, it isdesirable to have a sub-language

of RDF(S) that provides a more intuitive semantics, at leastfor its metamodeling architecture.

B. OWL

OWL is a standard (W3C recommendation) for expressing ontologies in the Semantic

Web. The OWL language facilitates greater machine understandability of Web resources than

that supported by RDFS by providing additional constructors for building class and property

descriptions (vocabulary) and new axioms (constraints), along with a formal semantics. The

OWL recommendation actually consists of three languages ofincreasing expressive power:
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OWL Lite, OWL DL and OWL Full.OWL LiteandOWL DLare, like DAML+OIL, basically

very expressive Description Logics (DLs); they are almost8 equivalent to theSHIF(D+)

andSHOIN (D+) DLs.9 OWL Full provides the same set of constructors as OWL DL, but

allows them to be used in an unconstrained way (in the style ofRDF). It is easy to show

that OWL Full is undecidable, because it does not impose restrictions on the use of transitive

properties [23]. Therefore, OWL DL is the most expressive decidable sub-language of OWL.

Let C, RI, RD and I be the sets of URIrefs that can be used to denote classes, abstract

properties, datatype properties and individuals respectively. An OWL DL interpretationis a

tupleI = (∆I , ∆D, ·I , ·D) where the individual domain∆I is a nonempty set of individuals,

the datatype domain∆D is a nonempty set of data values,·I is an individual interpretation

function that maps

• each individual namea ∈ I to an elementaI ∈ ∆I ,

• each class nameCN ∈ C to a subsetCNI ⊆ ∆I ,

• each abstract property nameRN ∈ RI to a binary relationRNI ⊆ ∆I × ∆I and

• each datatype property nameTN ∈ RD to a binary relationTNI ⊆ ∆I × ∆D,

and ·D is a datatype interpretation function, which can be extended to provide semantics for

OWL DL class and property descriptions shown in Table I, where A ∈ C is a class URIref,

C, C1, . . . , Cn are class descriptions,S ∈ RI is an individual-valuedproperty URIref,R is

an individual-valuedproperty description ando, o1, o2 ∈ I are individual URIrefs,u is a data

range,T ∈ RD is a data-valuedproperty and] denotes cardinality.

An OWL DL ontology can be seen as a DL knowledge base [27], which consists of a set

of axioms, including class axioms, property axioms and individual axioms.10 Table II presents

the abstract syntax, DL syntax and semantics of OWL axioms.

We conclude this section by a brief summary about the main differences, in terms of

expressive power, between RDF(S) and OWL DL. RDF(S) is less expressive than OWL DL

in that (i) it does not provide any constructors to constructclass or property descriptions,

and (ii) RDF(S) does not provide as many axioms about classes, properties and individuals

8They also provide annotation properties, which Description Logics don’t.
9SHOIN (D+) provides two more class constructs thanSHIF(D+), i.e., the nominals (O) and number restriction

(N ).
10Individual axioms are calledfacts in [48].
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Abstract Syntax DL Syntax Semantics
Class(A partial C1 . . . Cn) A v C1 u . . . u Cn AI ⊆ CI

1 ∩ . . . ∩ CI
n

Class(A completeC1 . . . Cn) A ≡ C1 u . . . u Cn AI = CI
1 ∩ . . . ∩ CI

n

EnumeratedClass(A o1 . . . on) A ≡ {o1} t . . .t {on} AI = {o1
I , . . . , oIn}

SubClassOf(C1, C2) C1 v C2 CI
1 ⊆ CI

2

EquivalentClasses(C1 . . . Cn) C1 ≡ . . . ≡ Cn CI
1 = . . . = CI

n

DisjointClasses(C1 . . . Cn) Ci v ¬Cj , CI
1 ∩ CI

n = ∅,
(1 ≤ i < j ≤ n) (1 ≤ i < j ≤ n)

SubPropertyOf(R1, R2) R1 v R2 RI
1 ⊆ RI

2

EquivalentProperties(R1 . . . Rn) R1 ≡ . . . ≡ Rn RI
1 = . . . = RI

n

ObjectProperty(R super(R1) ... super(Rn) R v Ri RI ⊆ RI
i

domain(C1) ... domain(Ck) > 1R v Ci RI ⊆ CI
i × ∆I

range(C1) ... range(Ch) > v ∀R.Ci RI ⊆ ∆I × CI
i

[Symmetric] R ≡ R− RI = (R−)I

[Functional] Func(R) {〈x, y〉 | ]{y.〈x, y〉 ∈ RI} ≤ 1}
[InverseFunctional] Func(R−) {〈x, y〉 | ]{y.〈x, y〉 ∈ (R−)I} ≤ 1}
[Transitive]) Trans(R) RI = (RI)+

DatatypeProperty(T super(T1)...super(Tn) T v Ti T I ⊆ T I
i

domain(C1)...domain(Ck) > 1T v Ci T I ⊆ CI
i × ∆D

range(d1)...range(dh) > v ∀T.di T I ⊆ ∆I × dD

i

[Functional]) Func(T ) ∀x ∈ ∆I .]{t | 〈x, t〉 ∈ T I} ≤ 1
AnnotationProperty(R)
Individual(o type(C1) . . . type(Cn) o : Ci, 1 ≤ i ≤ n o

I ∈ CI
i , 1 ≤ i ≤ n

value(R1, o1) . . . value(Rn, on) 〈o, oi〉 : Ri,1 ≤ i ≤ n 〈oI , oIi 〉 ∈ RI
i , 1 ≤ i ≤ n

SameIndividual(o1 . . . on) o1 = . . . = on o
I
1 = . . . = o

I
n

DifferentIndividuals(o1 . . . on) oi 6= oj , 1 ≤ i < j ≤ n o
I
i 6= o

I
j , 1 ≤ i < j ≤ n

TABLE II

OWL DL AXIOMS

as OWL DL provides (cf. Table II). On the other hand, RDF(S) supports axioms about meta-

classes and meta-properties, which OWL DL does not support.OWL Full provides all the

above constructors and axioms, including the metamodelingof RDF(S). However, OWL Full

is not decidable, thanks to its metamodeling [36].11

III. M ISMATCH BETWEEN RDF(S) AND OWL DL

This section discussesboth the syntactic and semantic mismatches between RDF(S) and

OWL DL.

From the syntax aspect, OWL DL heavily restricts the syntax of RDF(S), viz. some RDF(S)

annotations are not recognisable by OWL DL-compatible agents. The RDF/XML syntax form

of an OWL DL ontology isvalid, iff it can be translated (according to the mapping rules

provided in [47]) from the abstract syntax form of the ontology. Actually, it is far from an

easy task to check if an RDF graph is an OWL DL ontology [27].

11There are other reasons why OWL Full is not decidable; e.g., non-simple properties arenot disallowed in number
restrictions. The point here is that even if non-simple properties were disallowed in number restrictions, OWL Full would
still be undecidable.
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From the semantics aspect, OWL DL has an RDF MT-style semantics, in which (including

built-in) classes and properties are treated as objects (orresources) in the domain. In order to

make it equivalent to the direct semantics of OWL DL presented in the previous section, the

domain of discourse is divided into several disjoint parts.In particular, the interpretations of

classes, properties, individuals and OWL/RDF vocabulary are strictly separated. Therefore,

classes and properties, unsurprisingly,cannotbe treated as ordinary resources as they are in

RDF MT. In other words, even those RDF(S) statements which are valid OWL DL statements

do not share the same meaning in an RDF(S) ontology and an OWL DL ontology.

Although the above disjointness restriction is not required in the RDF MT-style semantics

of OWL Full, there exist at least three known issues that the RDF–style semantics for OWL

Full needs to solve, and a proven solution has yet to be given.The first issue is about

entailment [44]. Consider the following question: does thefollowing individual axiom

Individual(ex:John

type(intersectionOf( ex:Student ex:Employee ex:European)))

entail the individual axiom

Individual(ex:John

type(intersectionOf( ex:Student ex:European)))?

In OWL DL, the answer is simply ‘yes’, since intersectionOf(ex :Student ex :Employee

ex :European) is a sub-class of intersectionOf(ex :Student ex :European). Since in RDF(S)

every class is a resource, OWL Full needs to make sure of the existence of the resource

intersectionOf(ex :Student ex :European) in every possible interpretation; otherwise, the an-

swer will be ‘no’ which leads to a disagreement between OWL DLand OWL Full. In general,

OWL Full introduces so calledcomprehension principlesto add all the missing resources into

the domain for all the OWL class descriptions. It has yet to beproved that the proper resources

are all added into the universe, no more and no less, and that the added resources will not

bring any side-effects.

The second issue is about contradiction classes [44], [45],[27]. In OWL Full, it is possible

to construct a class the instances of which have nordf : type relationship linked to:

: c owl:onProperty rdf:type; owl:allValuesFrom : d .
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: d owl:complementOf : e .

: e owl:oneOf : l

: l rdf:first : c; rdf:rest rdf:nil.

The above triples require that rdf:type relates members of the class : c to anything but

: c. It is impossible for one to determine the membership of: c. If an object is an

instance of : c, then it is not; but if it is not then it is — this is a contradiction class.

Note that it is not a valid OWL DL class, as OWL DL disallows using rdf : type as an object

property. With naive comprehension principles, resourcesof contradiction classes would be

added to all possible OWL Full interpretations, which thus have ill-defined class memberships.

To avoid the issue, the comprehension principles must also consider avoiding contradiction

classes. Unsurprisingly, devising such comprehension principles took a considerable amount

of effort [27], and no proof has ever shown that all possible contradiction classes are excluded

in the comprehension principles of OWL Full.

The third issue is about the size of the universe [26]. Consider the following question: is

it possible that there is only one object in an interpretation of the following OWL ontology?

Individual(elp:Ganesh type( elp:Elephant))

DisjointClasses( elp:Elephant elp:Plant)

In OWL DL, classes are not objects, so the answer is ‘yes’: Theonly object in the domain

is the interpretation ofelp:Ganesh , the elp :Elephant class thus has one instance, i.e.,

the interpretation ofelp:Ganesh , and theelp :Plant class has no instances. In OWL Full,

since classes are also objects, besideselp:Ganesh , the classeselp :Elephant andelp :Plant

should both be mapped to the only one object in the universe. This is not possible because

the interpretation ofelp:Ganesh is an instance ofelp :Elephant, but not an instance of

elp :Plant; hence,elp :Elephant and elp :Plant should be different, i.e., there should be

at least two objects in the universe. As the above axioms are valid OWL DL axioms, this

example show s that OWL Full disagrees with OWL DL on valid OWLDL ontologies.

Furthermore, this example shows that the interpretation ofOWL Full has different features

than the interpretation of standard First Order Logic (FOL)model theoretic semantics. This

raises the question as to whether it is possible to layer FOL languages on top of RDF(S).
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Fig. 2. The UML-like metamodeling architecture (number of strata = 4) of RDFS(FA)

Consequently, there is a serious mismatch between the semantics of OWL DL and OWL

Full. Even for twoOWL DL ontologiesO1 andO2, O1 OWL Full-entailsO2 doesnot imply

that O1 OWL DL-entailsO2 [47]. Therefore, the semantic connection (at least in termsof

entailment) between OWL DL and OWL Full seems rather weak. Furthermore, [36] shows

that the metamodeling of OWL Full contributes to its undecidability too. In short, OWL Full

has yet integrated RDF(S) and OWL DL in a satisfactory manner.

IV. RDFS(FA)

In this section, we proposeRDFS(FA)(RDFS with Fixed layered metamodeling Architec-

ture), as a sub-language of RDF(S), to restore the desired connection between RDF(S) and

OWL DL. From the lessons we learnt in previous sections and related works (cf. Section VII),

RDFS(FA) should address the following characteristics of RDF(S):

• RDF triples have built-in semantics.

• Classes and properties, including built-in classes and properties of RDF(S) and its sub-

sequent languages such as OWL, are treated as objects (or resources) in the domain.

• There are no restrictions on the use of built-in vocabularies.

Intuitively, RDFS(FA) provides a UML like metamodeling architecture. Let us recall that

RDFS has a non-layered metamodeling architecture; resources in RDFS can be classes, objects

and properties at the same time, viz. classes and their instances (as well as relationships

between the instances) are the same layer. RDFS(FA), instead, divides up the universe of

discourse into a series of strata (or layers). The built-in modelling primitives of RDFS are

separated into different strata of RDFS(FA), and the semantics of modelling primitives depend
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on the stratum they belong to. Theoretically there can be a large number of strata in the

metamodeling architecture; in practice, four strata (as shown in Figure 2) are usually enough.

The UML-like meta-modeling architecture makes it easier for users who are familiar with

UML to understand and use RDFS(FA).

In RDFS(FA), classes cannot be objects and vice versa;12 in RDFS, Web resources can be

classes, properties, objects or even datatypes all at once.We argue that RDFS(FA) is more

intuitive than RDFS based on the following observation: when users design their ontologies,

a common concern is to decide whether to model something in the domain as a class or

as an object. This concern suggests that users intuitively tend to assume that classes and

objects should be different from each other. Therefore, layered meta-models seems to be more

intuitive than non-layered meta-models. As the HCI (Human Computer Interaction) aspects

of ontology engineering are relatively unexplored and pretty challenging, further investigation

of this aspect will be interesting and necessary.

In the rest of this section, we will giveformal semantics of RDFS(FA) and ontologies

written in RDFS(FA). We will discuss a strong connection between RDFS(FA) and OWL DL

in Section V. Further discussions of the role RDFS(FA) playsin the Semantic Web, illustrated

by some examples, will be presented in Section VI.

A. RDFS(FA) Semantics

Let us introduce the design philosophy of RDFS(FA), before moving on to the formal

semantics of RDFS(FA).

1) Design Philosophy:The design of RDFS(FA) embodies two main principles. Firstly,

in RDFS(FA), RDF is used (only) as standardsyntax for annotations, i.e., the built-in se-

mantics for RDF triples are disregarded, and new semantics is given to RDFS(FA) triples, or

RDFS(FA) axioms (cf. Section IV-B). Secondly, RDFS(FA) provides various Web resources

with Description Logic-style semantics.

2) Interpretations: The semantics of RDFS(FA) starts with the notation of vocabulary.

Instead of having a mixed vocabulary like that of RDF(S), RDFS(FA) provides a separated

vocabulary as follows. For ease of presentation, this paperdoes not cover blank nodes, which

12Classes can be regarded as mega-objects in upper strata of the metamodeling architecture.
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can be handled similar to the way that URI references are handled.

Definition 4 (RDFS(FA) Vocabulary) An RDFS(FA) vocabularyV consists of a set of

literalsVL, and seven sets of pairwise disjoint URI references, which are VC (class URIrefs),

VD (datatype URIrefs),VAP (abstract property URIrefs),VDP (datatype property URIrefs),

VANP (annotation property URIrefs),VI (individual URIrefs) andVS ={fa:Literal, fa: type1,

fa: type2, . . .}. VC (VAP) is divided into disjointstratified subsetsVC1
, VC2

,. . . , (VAP1,

VAP2,. . . ) of class (abstract property) URIrefs in strata 1,2,. . ., where we use a subscript

i to indicate URI references in the stratum i. The built-in class URIrefs of RDFS(FA) are

fa:Resourcei+1, fa:Classi+2, fa:Propertyi+2, fa:AbstractPropertyi+2, fa:DatatypeProperty

andfa:AnnotationProperty; the built-in abstract property URIrefs of RDFS(FA) arefa: sub-

ClassOfi+2, fa: subPropertyOfi+2, fa:domaini+2 andfa: rangei+2; the built-in annotation prop-

erty URIrefs of RDFS(FA) arefa: label, fa:comment, fa: seeAlso and fa: isDefinedBy; other

built-in URIrefs of RDFS(FA) are those inVS. We use a superscriptb (u) together withVC,

VAP and their stratified subsets, to indicate the correspondingsubsets of built-in (user-defined)

URI references. �

Formally, the semantics of RDFS(FA) individuals, classes,datatypes, abstract properties,

datatype properties and typed literals is defined in terms ofan interpretation as follows. A

datatype mapMd is a partial mapping from datatype URIrefs to datatypes [19].

Definition 5 (RDFS(FA) Interpretation) Given an RDFS(FA) vocabularyV, an

RDFS(FA) interpretationw.r.t. a datatype mapMd is a tuple of the formJ = (∆J , ·J ),

where∆J is the domain (a non-empty set) and·J is the interpretation function. Let∆J
A be

the abstract domain (a non-empty set), i a non-negative integer, ∆A
J
i the abstract domain

in stratum i and∆D the domain (a non-empty set) for datatypes in a datatype mapMd, J

satisfies the following conditions:

1) ∆J
A =

⋃
i≥0 ∆A

J
i ,

2) ∆A
J
i+1 = 2∆A

J

i ∪ 2∆A
J

i
×∆A

J

i

3) ∆D ∩ ∆J
A = ∅,

4)
⋃

∀d=Md(u) V (d) ⊆ ∆D, whereV (d) is the value space ofd,
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5) ∆J = ∆J
A ∪ ∆D,

6) ∀a ∈ VI : aJ ∈ ∆A
J
0 ,

7) ∀C ∈ VCi+1
: CJ ⊆ ∆A

J
i ,

8) ∀p ∈ VAPi+1 : pJ ⊆ ∆A
J
i × ∆A

J
i ,

9) ∀n ∈ VANP : 〈x, y〉 ∈ nJ → y ∈ ∆D,

10) ∀r ∈ VDP : rJ ⊆ ∆A
J
0 × ∆D,

11) fa: typei+1
J ⊆ ∆A

J
i × fa:Classi+2

J ,

12) fa:LiteralJ = ∆D,

13) fa:Resourcei+1
J = ∆A

J
i ,

14) ∀C ∈ VCi+1
: CJ ∈ fa:Classi+2

J ,

15) ∀p ∈ VAPi+1 : pJ ∈ fa:AbstractPropertyi+2
J ,

16) ∀r ∈ VDP : rJ ∈ fa:DatatypePropertyJ ,

17) ∀n ∈ VANP : nJ ∈ fa:AnnotationPropertyJ ,

18) fa:Classi+2
J ⊆ fa:Resourcei+2

J and fa:Propertyi+2
J ⊆ fa:Resourcei+2

J ,

19) fa:AbstractPropertyi+2
J ⊆ fa:Propertyi+2

J andfa:DatatypePropertyJ ⊆ fa:Property2
J ,

20) ∀u ∈ VD, if Md(u) = d, then

a) uJ = V (d), whereV (d) is the value space ofd,

b) if v ∈ L(d), then (“v”ˆˆu)J = L2V (d)(v), whereL(d) is lexical space ofd and

L2V (d) is the lexical-to-value mapping ofd,

c) if v 6∈ L(d), then(“v”ˆˆu)J is undefined;13

otherwise,uJ ⊆ ∆D and“v”ˆˆu ∈ ∆D. �

There are some remark on Definition 5. Firstly, the domain (ofuniverse)∆J in RDFS(FA)

is disjointly divided into the abstract domain∆J
A and the datatype domain∆D (cf. Figure 3),

where ∆J
A is further disjointly divided into sub-abstract domains∆A

J
i in different strata

(layers) and∆D is a super-set of the union of the value spaces of all the datatypes inMd.

Secondly, Conditions 12-19 are extra semantic constraintson the built-in URIrefs inVS

and VC. Condition 12 ensures thatfa:Literal is interpreted as the datatype domain∆D,

13The reader is invited to note that there is a tiny difference between OWL and RDF datatyping in handling typed literals
with invalid lexical forms. Like RDFS(FA), OWL datatyping treats them as contradictions; RDF datatyping does not, but
interprets them as some non-data-valued objects.
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Fig. 3. RDFS(FA) interpretation

while condition 13 ensures thatfa:Resourcei+1 is interpreted as the abstract domain∆A
J
i .

Conditions 14-17 ensures that the interpretations offa:Classi+2, fa:AbstractPropertyi+2,

fa:DatatypePropertyi+2 and fa:AnnotationProperty should contain the interpretations of

corresponding URI references. Condition 18 ensure that classes and properties are resources

in corresponding strata; condition 19 ensures that abstract properties and properties in corre-

sponding strata, and that datatype properties are in stratum 2.

Figure 3 illustrates the interpretation of RDFS(FA). Typedliterals (such as“30”ˆˆxsd: inte-

ger) are interpreted as values in the value space corresponding datatypes (such asV (integer)).

All value spaces of datatypes inMd are subset of∆D. The datatype domain is disjoint with the

abstract domain, which is stratified into sub-abstract domains (∆A
J
0 , ∆A

J
1 , etc.). In stratum

0 (the Instance Layer), object URIrefs (e.g.,elp:Ganesh and elp: south-sahara )

are interpreted as objects (i.e., resources in∆A
J
0 ). In stratum 1 (the Ontology Layer), class

URIrefs (such aselp :Elephant andelp :Habitat) are interpreted as sets of objects. Abstract

property URIrefs (such aselp: liveIn) are interpreted as sets of pairs of objects. Datatype

property URIrefs (such aselp: age) are interpreted as a set of pairs where the first resource

(e.g., elp:Ganesh ) is an object, and the second resource is a datatyped value (e.g., the

integer 30). In stratum 2 (the Language Layer), fa:Class2 is interpreted as a set of sets of

objects, andfa:AbstractProperty2 is interpreted as a set of sets of pairs of objects.
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B. RDFS(FA) Ontologies

Informally speaking, an RDFS(FA) ontology is a set of RDFS(FA) axioms, which are

basically RDF triples (in N3 syntax)14 with extra syntactic rules, which (1) disallow arbitrary

use of its built-in vocabulary and (2) enable the use of meta-classes and meta-properties in

specified layers as well as the use of annotation properties.

Definition 6 (RDFS(FA) Ontologies) Given an RDFS(FA) vocabularyV, let i be a non-

negative integer,a, b ∈ VI, D1 ∈ VC1
, C ∈ V

u
Ci+1

, D ∈ VCi+1
, H ∈ VCi+2

, p1 ∈ V
u
AP1

,

p ∈ V
u
APi+1

, q ∈ VAPi+1 r, s ∈ VDP, q′ ∈ V
u
APi+2

, u ∈ VD, X, Y ∈ V
u
Ci+1

∪ V
u
APi+1

,

n ∈ VANP andw ∈ V \ VL.

An RDFS(FA) ontology is a finite, possibly empty, set of axioms of the form:

1) [C fa: subClassOfi+2 D .], calledclass inclusions,

2) [p fa: subPropertyOfi+2 q .], calledabstract property inclusions;

3) [r fa: subPropertyOf2 s .], calleddatatype property inclusions;

4) [p fa:domaini+2 D .], calledabstract property domain restrictions;

5) [r fa:domain2 D1 .], calleddatatype property domain restrictions;

6) [p fa: rangei+2 D .], calledabstract property range restrictions;

7) [r fa: range2 u .], calleddatatype property range restrictions;

8) [a fa: type1 D1 .], calledclass assertions,

9) [a p1 b .], calledabstract property assertions,

10) [a r “v”ˆˆu .], calleddatatype property assertions,

11) [X fa: typei+2 H .], calledmeta class assertions,

12) [X q′ Y .], calledmeta abstract property assertions,

13) [w n “v”ˆˆu .], calledannotation property assertions,

14) [ n rdf : type fa:AnnotationProperty.], calledannotation property declarations.

Axioms of the form of 1) to 7) are calledconceptualaxioms;, those of the forms of 8)

to 12) are calledassertiveaxioms; those of the forms of 13) and 14) are calledannotation

axioms. We say an axiom [s p o .] is in stratum m if m = min (i,j,k), where i, j and k are the

strata numbers of s, p and o, respectively. An interpretation J satisfiesan RDFS(FA) axiom

14Here we use the N3 syntax, instead of the RDF/XML syntax, as itis more compact.
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ϕ, written asJ |= ϕ, if J meets certain semantic condition:

1) J |= [C fa: subClassOfi+2 D .] if CJ ⊆ DJ ;

2) J |= [p fa: subPropertyOfi+2 q .] if pJ ⊆ qJ ;

3) J |= [r fa: subPropertyOf2 s .] if rJ ⊆ sJ ;

4) J |= [p fa:domaini+2 D] if ∀x.〈x, y〉 ∈ pJ → xJ ∈ DJ ;

5) J |= [r fa:domain2 D1 .] if ∀x.〈x, t〉 ∈ rJ → xJ ∈ DJ
1 ;

6) J |= [p fa: rangei+2 D .] if ∀y.〈x, y〉 ∈ pJ → yJ ∈ DJ ;

7) J |= [r fa: range2 u .] if ∀t.〈x, t〉 ∈ rJ → tJ ∈ uJ ;

8) J |=[a fa: type1 C1 .] if aJ ∈ C1
J ;

9) J |=[a p1 b .] if 〈aJ , bJ 〉 ∈ p1
J ;

10) J |=[a r “v”ˆˆu .] if 〈aJ , (“v”ˆˆu)J 〉 ∈ rJ ;

11) J |=[X fa: typei+2 H .] if XJ ∈ HJ ;

12) J |=[X q′ Y .] if 〈XJ , Y J 〉 ∈ q′
J ;

13) J |=[w n “v”ˆˆu .] if (“v”ˆˆu)J ∈ ∆D,

14) J |=[ n rdf : type fa:AnnotationProperty.] if nJ ∈ fa:AnnotationPropertyJ .

An interpretationJ satisfiesan ontologyO, written asJ |= O, iff it satisfies all the axioms

in O; O is satisfiable(unsatisfiable), written asO 6|= ⊥ ( O |= ⊥), iff there exists (does not

exist) such an interpretationJ .

Given an RDFS(FA) axiomϕ, O entailsϕ, written asO |= ϕ, iff for all modelsJ of O

we haveJ |= ϕ. An ontologyO entailsan ontologyO′, written asO |= O′, iff for all models

J of O we haveJ |= O′. Two ontologiesO andO′ are equivalent, written asO ≡ O′, iff

O |= O′ andO′ |= O. �

We invite the reader to note that RDFS(FA) axioms of the form 1-8 and 11 are RDFS

statements with extra (subscript) information specifyingthe strata that the related resources

belong to. For example, [C fa: subClassOfi+2 D .] requires that the classesC andD should

be on stratum i+1. Furthermore, RDFS(FA) provides the use of three kinds of properties:

abstract properties, datatype properties and annotation properties (cf. RDFS(FA) axioms of the

form 9,12, 10 and 13). Last but not least, let us point out thatrdf : type is used in annotation

property declarations because annotation property are notbound to any stratum.
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@prefix fa: <http://dl-web.man.ac.uk/rdfsfa/ns#>

@prefix elp: <http://example.org/Animal#>

elp:Animal fa:type2 fa:Class2 .

elp:Habitat fa:type2 fa:Class2 .

elp:Elephant fa:type2 fa:Class2 ; fa:subClassOf2 elp:Animal .

elp: liveIn fa:type2 fa:AbstractProperty2 ;

fa:domain2 elp:Animal ; fa:range2 elp:Habitat .

elp:south-sahara fa:type1 elp:Habitat .

elp:Ganesh fa:type1 elp:Elephant ; elp: liveIn elp:south-sahara .

Fig. 4. An RDFS(FA) ontology

The interpretation of class inclusions, property inclusions in stratum 1 as well as class

assertions and property assertions are exactly the same as the corresponding OWL DL axioms

(cf. Section V). RDFS(FA) meta-axioms are very similar to the above, except that they apply

on classes and properties in strata that are higher than stratum 1. RDFS(FA) annotation

property assertions require that values of annotation properties should be data values in the

datatype domain.

Figure 4 shows an example RDFS(FA) ontology. Firstly, the layering structure is clear.

elp :Animal, elp :Habitat, elp :Elephant and elp: liveIn are in stratum 1 (the Ontology

layer), whileelp:Ganesh andelp:south - sahara are in stratum 0 (the Instance Layer).

Secondly, RDFS(FA) disallows arbitrary use of its built-invocabulary. For example, in class in-

clusion axioms, the subjects can only be only user-defined class URIrefs (such aselp :Animal),

which could disallow triples like

fa:Resource1 fa:subClassOf2 elp:Animal .

Furthermore, RDFS(FA) allows users to specify classes and properties in specified strata. For

example, the class inclusion axiom

elp:Elephant fa:subClassOf2 elp:Animal .

requires that bothelp :Elephant andelp :Animal are class URIrefs in stratum 1.

C. Rules of Thumb on Strata Numbers

Writing an RDFS(FA) ontology should be an enjoyable task. Although the numbers of

strata can/should be encapsulated by tools, in this section, we are going to present somerules
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of thumbto help authors of RDFS(FA) ontologies quickly get these numbers of strata right.

We will use RDFS(FA) axioms in Figure 4 to illustrate these rules of thumb.

1) Thefirst rule of thumb is that the subscripts of built-in RDFS(FA) vocabulary represent

exactly the stratum that they are in. For example,fa:Resource1 is in stratum 1 and

fa:Class2 is in stratum 2.

2) Let [s p o .] be an RDFS(FA) axiom. Thesecondrule of thumb is that if pis an instance-

of relationship, then o is one stratum higher than s, and p is in the same stratum as o. For

example, in the axiom [elp:Ganesh fa: type1 elp :Elephant .], elp:Ganesh is an

object in stratum 0 (Instance Layer),elp :Elephant andfa: type1 are one stratum higher,

i.e. in stratum 1; in the axiom [elp :Elephant fa: type2 fa:Class2 .], elp :Elephant is in

stratum 1 and bothfa: type2 and fa:Class2 are in stratum 2.

3) Let [s p o .] be an RDFS(FA) axiom. Thethird rule of thumb is that if p isnot an

instance-of relationship, then s and o should be in the same stratum, and p should be one

stratum higher than s and o. For example, in the axiom [elp :Elephant fa: subClassOf2

elp :Animal .], elp :Elephant and elp :Animal are in stratum 1 andfa: subClassOf2

is in stratum 2; in the axiom [elp:Ganesh elp: liveIn elp: south-sahara .],

elp:Ganesh and elp:south-sahara are objects in stratum 0 (Instance Layer),

while elp: liveIn is in stratum 1.

4) Let [s p o .] be an RDFS(FA) axiom, and s, p and o in strata i, j and k, respec-

tively. The stratum number of the axiom [s p o .] is min(i,j,k), i.e., the smallest

stratum number among those of s, p and o. For example, the axiom [elp:Ganesh

fa: type1 elp :Elephant .] is in stratum 0 and the axiom [elp :Elephant fa: subClassOf2

elp :Animal .] is in stratum 1.

In practice, although users will use some ontology editor toedit their RDFS(FA) ontologies,

keeping these rules of thumb in mind could help them have a better understanding of the

ontologies.

V. RDFS(FA) AND OWL DL

In this section, we show that the interoperability between RDFS(FA) and OWL DL.

It is much easier to layer OWL DL, syntacticallyand semantically, on top of RDFS(FA)
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RDFS(FA) Axioms OWL Axioms (Abstract Syntax) OWL Axioms (RDF Syntax)
[C1 fa:subClassOf2 D1 .] SubClassOf(C1 D1) [C1 rdfs:subClassOf D1 .]
[p1 fa:subPropertyOf2 q1 .] SubPropertyOf(p1 q1) [p1 rdfs:subPropertyOf q1 .]
[r1 fa:subPropertyOf2 s1 .] SubPropertyOf(r1 s1) [r1 rdfs:subPropertyOf s1 .]
[p1 fa:domain2 D1 .] ObjectProperty(p1 domain(D1)) [p1 rdfs:domain D1 .]
[r1 fa:domain2 D1 .] DatatypeProperty(r1 domain(D1)) [r1 rdfs:domain D1 .]
[p1 fa:range2 D1 .] ObjectProperty(p1 range(D1)) [p1 rdfs:range D1 .]
[r1 fa:range2 u .] DatatypeProperty(r1 range(u)) [r1 rdfs:range u .]
[a fa:type1 C1 .] Individual(a type(C1)) [a rdf:type C1 .]
[a p1 b .] Individual(a value(p1 b)) [a p1 b .]
[a r1 “v”ˆˆu .] Individual(a value(r1 “v”ˆˆu)) [a r1 “v”ˆˆu .]
[a fa:type1 fa:Resource1 .] Individual(a) [a rdf:type rdfs:Resource.]
[C1 fa:type2 fa:Class2 .] Class(C1) [C1 rdf:type owl:Class .]
[p1 fa:type2 fa:AbstractProperty2 .] ObjectProperty(p1 ) [p1 rdf:type owl:ObjectProperty .]
[r1 fa:type2 fa:DatatypeProperty .] DatatypeProperty(r1 ) [r1 rdf:type owl:DatatypeProperty .]

TABLE III

THE MAPPING BETWEEN THERDFS(FA)AXIOMS IN STRATA 0-1 AND OWL DL AXIOMS

than on top of RDF(S). In particular, there is a one-to-one bidirectional mapping (as shown

in Table III) between the RDFS(FA) axioms in strata 0-1 and OWL DL axioms in OWL

abstract syntax. For example, the RDFS(FA) class inclusionaxiom [C1 fa: subClassOf2 D1 .]

can be mapped to the OWL class axiom (SubClassOfC1 D1) and vice versa.

In the syntactic level, it is easier to layer OWL DL on top of RDFS(FA) than on top of

RDF(S), due to the above bidirectional mapping. Let us recall that, according to the OWL

Semantics and Abstract Syntax document [48], the mapping between OWL DL axioms, or

OWL axiomsfor short, and RDF(S) statements isonly unidirectional, i.e., from OWL axioms

to RDF(S) statements. For example, we can map the following OWL axiom

(SubClassOfC1 D1)

to the RDF(S) statement

[C1 rdfs: subClassOf D1 .],

with an implicit OWL constraint, viz.,C1 andD1 can only be class URIrefs, but not URIrefs

for properties or individuals, etc. However, the above RDF(S) statement without such (im-

plicit) constraint cannot be correctly mapped to the OWL axiom (SubClassOfC1 D1). In-

terestingly, in the corresponding RDFS(FA) axioms these kinds of implicit constraints are

made explicit via the syntactic constraints of the RDFS(FA)class axioms (cf. Definition 6).

For example, the RDFS(FA) class inclusion axiom[C1 fa: subClassOf2 D1 .] (in place of
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[C1 rdfs: subClassOf D1 .]) requires that bothC1 andD1 are class URIrefs in stratum 1. This

explains why the above bidirectional mapping (listed in Table III) is possible.

In the semantic level, it can be shown (by the following theorem) that the above bidirectional

mapping is a semantics-preserving mapping.

Theorem 7 The bidirectional mapping, shown in Table III, between the RDFS(FA) axioms in

strata 0-1 and the corresponding OWL axioms in the OWL abstract syntax is a satisfiability-

preserving mapping.

Proof: Given a datatype mapMd, we only need to show that there exists an interpretation

J satisfying all the listed RDFS(FA) axioms iff there exists an interpretationI satisfying all

the corresponding OWL DL axioms.

For the only-if direction, given an RDFS(FA) interpretationJ = (∆J , ·J ) for V w.r.t.

Md, we can construct an OWL DL interpretationI = 〈∆I , ·I〉 as follows:∆I = ∆A
J
0 and

∆Dowl = ∆Dfa; for each class URIref (in stratum 1)C, CI = CJ ; for each datatype URIref (in

stratum 1)u, uI = uJ ; for each abstract (object) property URIrefp (in stratum 1),pI = pJ ;

for each datatype property URIrefr, rI = rJ .

Now we only need to show that ifJ satisfies an RDFS(FA) axiomφ1 in the first column of

Table III, we haveI satisfies the corresponding OWL DL axiomφ2 in the second column of

Table III. According to the semantics of RDFS(FA) (Definition 5 on page 16) and RDFS(FA)

axioms (Definition 6 on page 19), the semantics of OWL axioms (Tables II), this is trivially

true. Therefore, we only give the proof for the class inclusion axiom to illustrate the proofs for

the rest: ifJ |= [C1 fa: subClassOf2 D1 .], according to Definition 6, we haveC1
J ⊆ D1

J ,

henceC1
I ⊆ D1

I . Thus,I |= SubClassOf(C1 D1).

Similarly, the if direction is trivially true, we only need to show that, in an RDFS(FA)

interpretationJ , we can construct abstract domains for strata higher than stratum 0. Let i≥ 0.

According to the semantics conditions 7, 8, 13 to 19 in Definition 5, we havefa:Classi+2
J =

2∆A
J

i , fa:Property2
J = 2∆A

J
0
×∆A

J
0 ∪2∆A

J
0
×∆D, fa:Propertyi+3

J = 2∆A
J

i+1
×∆A

J

i+1 and∆A
J
i+1 =

fa:Resourcei+2 = fa:Classi+2
J∪fa:Propertyi+2

J . Hence we have∆A
J
1 = 2∆A

J
0 ∪2∆A

J
0
×∆A

J
0 ∪

2∆A
J
1
×∆D and∆A

J
i+2 = 2∆A

J

i+1 ∪ 2∆A
J

i+1
×∆A

J

i+1.

We claim that OWL DL can be semantically layered on top of RDFS(FA). Firstly, [41]
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OWL Modelling Primitives RDFS(FA) Modelling Primitives
owl:Thing fa:Resource1

owl:Class fa:Class2

owl:ObjectProperty fa:AbstractProperty2

owl:DatatypeProperty fa:DatatypeProperty

TABLE IV

OWL DL PRESERVES THE SEMANTICS OF BUILT-IN RDFS(FA)PRIMITIVES

RDFS Modelling PrimitivesRDFS(FA) Modelling Primitives
rdfs: subClassOf fa:subClassOf2

rdfs: subPropertyOf fa:subPropertyOf2
rdfs:domain fa:domain2

rdfs: range fa:range2

TABLE V

OWL DL USESRDFSPRIMITIVES WITH RDFS(FA)SEMANTICS

shows that RDFS(FA) does not have the semantic issues [41], [44], [45], [25] that RDF(S) has,

when we layer OWL on top of it. Secondly, OWL DL reserves the semantics of RDFS(FA)

built-in primitives; e.g., Table IV shows that owl:Thing isequivalent to fa:Resource1, Table V

shows that OWL DL uses some RDFS modelling primitives with RDFS(FA) semantics, instead

of RDFS semantics. Furthermore, OWL DL extends RDFS(FA) in strata 0-1 by introducing

new class descriptions (such as class intersections), new property descriptions (such as inverse

properties) and new axioms (such as functional axioms for properties). Most importantly,

Theorem 7 shows that OWL DL preserves the meaning of the RDFS(FA) axioms in strata

0-1 shown in Table III.

To sum up, RDFS(FA) is syntactically and semantically compatible with OWL DL.

VI. A CLARIFIED V ISION OF THE SEMANTIC WEB

In the previous sections, we have presented RDFS(FA), an alternative to RDFS with a

DL-style semantics, so as to repair the broken link between RDF(S) and OWL.

RDFS(FA), consequently, provides a clarified vision of the Semantic Web: RDF isonly a

standard syntax for SW annotations and languages (i.e., thebuilt-in semantics of RDF triples

is disregarded), and the meaning of annotations comes from either external agreements (such

as Dublin Core) or ontologies (which are more flexible), bothof which are supported by
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Fig. 5. RDFS(FA): class URIrefs as annotation property values

RDFS(FA).

On the one hand, RDFS(FA) allows the use of Dublin Core information properties as

annotation properties. In RDFS(FA), all resources can haveannotation properties, such that

‘anyone can say anything about anything’. Typed literals can be used to precisely represent

values of annotation properties, such as “1999-05-31”ˆˆxsd:date for the dc:date property

and “bk:Lion”ˆˆxsd:anyURI for the dc:subject property. In particular, the use of URIrefs

as values of annotation properties can enable SW applications to make use of URIrefs of

ontology elements, such as classes, in the results of various ontology inferences.

Example 1 RDFS(FA): Class URIrefs as Values of Annotation Properties

This example is from [38]. Suppose we have a set ofBooks about Animals and want to

annotate eachBook with its subject, which is a particular species or class ofAnimals that it

talks about. Furthermore, when retrieving allBooks aboutLions from a repository, we want

Books that are annotated as booksaboutAfricanLions to be included in the results.

We now use the information propertydc: subjectas an annotation property, so as to refer to

class URIrefs (cf. Figure 5). The approach we present here isslightly different from Approach

5 in [38] in that annotations are class URIrefs instead of classes.

@prefix bk: <http://protege.stanford.edu/

swbp/books#>

bk: bookTitle rdf:type fa:AnnotationProperty.

dc: subject rdf:type fa:AnnotationProperty.

bk:AfricanLion fa:type2 fa:Class2; fa:subClassOf2 bk:Lion .

bk:LionsLifeInThePrideBook fa:type1 bk:Book ;
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bk: bookTitle “Lions: Life in the Pride ” ;

dc: subject “bk:Lion”ˆˆ xsd:anyURI .

bk:LionsLifeInThePrideBook fa:type1 bk:Book ;

bk: bookTitle “The African Lion ” ;

dc: subject “bk:AfricanLion”ˆˆ xsd:anyURI .

Here the values ofdc:subject are interpretations of typed literals“bk:Lion”ˆˆxsd:any URI

and “bk:AfricanLion”ˆˆxsd:anyURI, viz. class URIrefsbk :Lion and bk :African Lion, re-

spectively. Since the result of classification of such an RDFS(FA) ontology can be represented

as partial orderings of class URIrefs (such asbk :AfricanLion < bk :Lion < bk :Animal), we

can make use of such result when retrieving all books aboutbk :Lion from a repository, i.e., by

retrieving books that are annotated (throughdc:subject) with bk :Lion and books annotated

with bk :AfricanLion.

Note that it is not proper to use the information properties defined in Dublin Core as

abstract properties (or object properties) in ontologies.Otherwise, there can be unexpected

restrictions or implications on the information properties. For example, if one usesdc: author

as an abstract property in an ontology and there is a (range) constraint in the ontology that

an author should be a person, then it disallows anything but persons, such as organisations,

to be authors. This is against the intended usage ofdc: authorin Dublin Core.

On the other hand, RDFS(FA) is an ontology language that provides a UML-like layered

style for using RDFS. It provides a more intuitive way to use meta-classes and meta-properties,

and it is very easy to understand and use by users who are familiar with UML.

Example 2 RDFS(FA): Meta-classes and Meta-properties

Applications using WordNet [35] to annotate resources, such as images [58], require the use

of meta-classes (such aswns :LexicalConcept) and meta-properties (such aswns: hyponymOf).

wns:LexicalConcept fa:subClassOf3 fa:Class2 .

wns: hyponumOf fa:type3 fa:AbstractProperty3 ;

fa:subPropertyOf3 fa:subClassOf2 ;

fa:domain3 wns:LexicalConcept ;
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fa:range3 wns:LexicalConcept .

wnc:100002086 fa:type2 fa:Class2 ;

wns: hyponymOf wnc:100001740 .

wherewnc :100002086 andwnc :100001740 are WordNet synsets (i.e., classes like ‘Elephant’

and ‘Animal’). The first statement specifies that the classLexicalConcept is a subclass of

the built-in RDFS(FA) meta-classfa:Class2, the instances of which are classes in stratum 1.

This means that now all instances ofLexicalConcept are also classes. In a similar vein, the

second statement defines that the WordNet propertyhyponymOf is a sub-property of the

built-in RDFS(FA) meta-propertyfa: subClassOf2. This enables us to interpret the instances

of hyponymOf as subclass links. Based on the rules of thumb presented in Section IV-C, it

is easy to see thatwnc :100002086 andwnc :100001740 are in stratum 1,wns :LexicalConcept

andwns: hyponymOfare in stratum 2.

We invite the reader to note the difference between the support of meta-classes and meta-

properties in RDFS and RDFS(FA). In RDFS, it is valid to add RDF triples such as

rdfs:Class rdf:type wnc:100002086 .

which makes the relationship betweenwnc :100002086 andwns :LexicalConcept rather confus-

ing. Indeed,wnc :100002086 is an instance ofwns :LexicalConcept, which is an instance of an

instance (rdfs:Class) of wnc :100002086; nevertheless,wnc :100002086 andwns :LexicalConcept

are not necessarily equivalent to each other.

RDFS(FA) disallows asserting thatfa:Class2 is an instance ofwnc :100002086 because

fa:Class2 is a built-in class (cf. Definition 6), so there is no confusion here.

Most importantly, OWL DL can be syntactically and semantically layered on top of RDFS(FA).

In general, introducing RDFS(FA) as a sub-language of RDF(S) makes it more flexible to

layer languages on top of RDF(S). With all these distinguished features, RDFS(FA) surely

solidifies RDF(S)’s proposed role as the base of the SemanticWeb; accordingly, the Semantic

Web tower will become clearer, easier to understand and formalise.
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VII. RELATED WORK

Initially RDF and RDFS had no formal model theory, nor any formal meaning at all. This

made them unlikely foundations for the Semantic Web. As earlier works [37], [7] pointed out,

RDFS has a non-standard and non-fixed layer metamodeling architecture, which makes some

elements in the model have multiple roles in the RDFS specification. Therefore, it makes

even the RDFS specification itself rather confusing and difficult to understand for users. One

of the consequences is that when DAML+OIL is layering on top of RDFS, it uses the syntax

of RDFS only, but defines its own semantics [56] for the ontological primitives of RDFS.

To clear up any confusion, Pan and Horrocks [40] proposed a Fixed layer metamodeling

Architecture for RDFS, reducing the multiple roles of RDFS built-in primitives by stratifying

them into different layers of the metamodeling architecture.

Subsequently RDF Model Theory (RDF MT) [19] gave an official semantics for RDF

and RDFS, justifying the dual roles by treating both classesand properties as objects in

the universe. As RDF(S) is expected to be the foundation of the Semantic Web, solving

its own problems is only the first step of standardising RDF(S). RDF(S) should also be

easily extendable; i.e., other Semantic Web languages should be easily layered on top of

RDF(S). Further research ([44], [45], [27], [41]) pointed out that there are at least three

potential issues if one extends the RDF MT with OWL constructors. Accordingly, Pan

and Horrocks [41] suggested that RDFS could have two kinds ofsemantics, i.e., RDF

MT and the stratified semantics of RDFS(FA). Now both RDF(S) and OWL become W3C

recommendations. However, as we pointed out in Section III,there exist syntactic and semantic

mismatch between RDF(S) and OWL DL. Although OWL Full is believed to be serving as

a connection between RDF and OWL DL, Motik [36] shows that themetamodeling of OWL

Full contributes to its undecidability too. The main purpose of this paper, accordingly, is to

find a strong connection for them. In particular, this paper extends [41] by providing strong

connections between RDFS(FA) and OWL DL; specifically, Theorem 7 shows that there is

a semantic-preserving mapping between them (Section V). Furthermore, this paper provides

some rules of thumb to help authors of RDFS(FA) ontologies toget the strata numbers right

(Section IV-C) and further illustrates in details how RDFS(FA) solidifies RDF(S)’s proposed

role as the base of the Semantic Web (Section VI).
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There are some interesting research on handling the issue ofextending RDF(S) with OWL

constructors. ter Horst [53], [54] shows that RDFS extendedwith a property-related subset of

OWL, namely, FunctionalProperty, InverseFunctionalProperty, sameAs, SymmetricProperty,

TransitiveProperty, and inverseOf. To obtain a complete set of simple entailment rules, a

weaker semantics (‘if-semantics’) is used, rather than theRDF-MT style ‘iff-semantics’

semantics of OWL. In our approach, RDFS(FA) does not impose any restriction on its

extensibility to more expressive Description Logics such as OWL DL and OWL-Eu.

de Bruijn et al. [12] replaces RDF MT with one based on Herbrand and canonical models,

and shows that OWL DL can be built on top of RDF (in terms of the above modified

semantics) if one weakens the semantics connection betweenindividual interpretations and

class interpretations of URIs. This approach is very similar to the π-semantics approach

proposed in [36]; we call this kind of approach the contextual approach. An advantage of the

kind of contextual approach is that, although it modifies thesemantics of RDF, it does not

change its syntax. A disadvantage of this kind of approach isthat the modification of RDF

semantics causes some lose of inference, which we now use an example in [36] to illustrate.

Let us consider the following ontologyO1:

Harry rdf:type Eagle ; rdf:type ¬Aquila .

Eagle owl:sameAs Aquila.

In the contextual approach, sinceEagle andAquila as concepts and as individuals are inde-

pendent,O1 is satisfiable. In the RDFS(FA) approach,15 ontologyO1 looks like:

Harry fa:type1 Eagle ; fa:type1 ¬Aquila .

Eagle owl:sameAs Aquila.

O1 is unsatisfiable because the meta-individual equality axiom [Eagle owl:sameAs Aquila .]

implies two classesEagle andAquila are equivalent, andHarryJ cannot be both in and not

in EagleJ . In other words, given the following ontologyO2:

Harry fa:type1 Eagle .

Eagle owl:sameAs Aquila.

In the RDFS(FA) approach,O2 entails the RDF triple [Harry fa: type1 Aquila .]; in the

15To be more precise, we need OWL FA [43] to representO1 in the RDFS(FA) approach.
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contextual approach, the triple [Harry rdf : type Aquila .] is not entailed byO2.

It is also worth noting that there exist some languages, including HiLOG ([8], [59]),

SKIF [20], Lbase [17] and Common Logic [14], which have a non-standard model theory,

with predicates (such as classes and properties) elements in the domain. They differ from

RDF(S) in that classes are treated as unary predicates, withtheir extensions being subsets of

the domain, and reflection on language syntax is not supported [26]. Motik [36] proposes two

alternative metamodeling approaches for OWL DL, i.e., the contextual approach (discussed

above) and the HiLog approach. Details of the differences between these two metamodeling

architectures and the metamodeling architecture of RDFS(FA) are summarised in [43].

VIII. C ONCLUSION AND OUTLOOK

Semantic interoperability among SW languages is an important feature in knowledge en-

gineering in the Semantic Web era. After showing in detail the syntactic and semantic

mismatches between RDF(S) and OWL DL, we have proposed the RDFS(FA) ontology

language as a sub-language of RDF(S), specifying both its semantics (including both datatypes

and annotation properties) and the kinds of axioms that it provides.

As we have shown in previous sections, RDFS(FA) satisfies thefour requirements we

presented at the beginning of the paper. It covers many useful features of RDF(S), and is

compatible with OWL DL (cf. Theorem 7). The aim of the Semantic Web is to provide

a common framework that allows data to be shared and reused across applications and

enterprises. As a strong connection between RDF(S) and OWL DL, RDFS(FA) can play

a useful role in the Semantic Web. It has been proved that it isimpossibleto extend RDF(S)

to first order logic if we want to have a coherent semantics based on RDF MT [46]; having

RDFS(FA) as a sub-language of RDF(S), therefore, will surely solidify RDF(S)’s proposed

role as the foundation of the Semantic Web. This establishestwo strong connections between

RDF and OWL; i.e., RDFS to OWL Full, and RDFS(FA) to OWL DL. Onepossible way

forward would be to keep both connections, allowing users todecide if they are willing to

use the layering style of RDFS(FA) in return for the benefits of remaining within a decidable

sub-language of OWL.

Future work could include many interesting applications inknowledge engineering. From
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the knowledge representation perspective, it would be possible to have a new sub-language of

OWL — OWL FA [43], which would add useful features of RDFS(FA), such as meta-classes

and meta-properties, into OWL DL. In [43], we also proposed areason technique for use with

RDFS(FA) and OWL FA. From the knowledge maintenance perspective, one could implement

a plug-in for an ontology editor so as to allow users to switchtheir ontologies between

the RDFS and RDFS(FA) modes. Extensions of this work could facilitate communication

between RDFS(FA)-agents and OWL DL-agents. Last but not least, from the knowledge

access perspective, query answering in RDFS(FA) and OWL FA remains an open problem.
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