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Chapter 1

INTRODUCTION

Gypsy 1s the unifying element of a complete methodology for
the construction of rigorously verified systems programs. This
methodology provides an integrated way of specifying, designing,
and implementing programs and of wverifying that they always
execute in conformity with their stated specifications, even in
imperfect execution environments. The Gypsy language provides a
precise means of expressing both a program and its specifications
from initial specification through program design,
implementation, verification, and successive modification and
evolution, This integration of programming and specification
facilities into a common language is the most significant single
characteristic of Gypsy. This requires the program designer and
verifier to comprehend only a single syntax and semantics
throughout program development. This also allows program proofs
to be constructed rigorously throughout all stages of
development, thereby bringing maximal benefit to the total

programming process.

The incorporation of specifications and programming
facilities into a single language provides three complementary
approaches to program verification. First, formal proofs that
the program meets specifications can be constructed before any
execution of the program occurs. Second, specifications <can be
validated by actual evaluation at run-time, Third, +trace
facilities provide a convenient mechanism for post-execution
analysis if desired. This establishes a very effective
relationship between program proof and run-time wvalidation of
specifications. Those specifications that are validated at run-
time need not be proved, but can be assumed in the procfs, thus
reducing significantly the size and complexity of the formal
proofs. This, of course, increases program execution time, but
provides the program designer and verifier with a choice of
implementation and verification strategy.

Cne of the common, and often unstated, assumptions of
formal program proofs is that of a perfect execution environment,
For example, the problems of arithmetic on a finite set of
integers often are ignored, Also it invariably is assumed that
if an assignment x:=a is executed, then a successive reference to
the value of x will equal a. In reality, this normally would
imply that a computer memory never will drop a bit in the word(s)
where x 1is stored. In Gypsy the conceptual span of both
specifications and program code has been extended to include
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program execution in imperfect environments. Specifications and
program code concerning data integrity, error monitoring, and
error isolation and recovery are expressed in a unified form
along with the error-free environment statements.

In theory, methods of program proof can be applied to
programs of any size. In practice, however, the provability of a
program depends directly on the degree to which a program can be
decomposed into small, independently provable units. Gypsy
supports this kind of decomposition through facilities for both
operational and data abstraction. The data abstraction is
provided through a general mechanism for access control. These
abstraction facilities can be applied uniformly either to
programs or to specifications, and provide an effective basis for
incremental design and verification of a complete program. Gypsy
further supports this process by providing explicit facilities
for top—down development. This permits higher-level units to be
designed and verified even though some of the lower level details
of their implementations may still be pending.

The original target of Gypsy was the expression of
verifiable programs for communications processing such as those
that might be found at the node of a computer network. This led
to the incorpeoration of verifiable features for expressing
concurrency and process synchronization and for expressing real-
time dependencies. The result has been a high-level language for
the development of general systems programs that can be verified
to execute in conformity with precisely stated specifications.

1.1 Design of Gypsy

Gypsy was developed as an integrated programming and
specification language to support the complete design,
specification, coding and verification of systems software, with
particular emphasis on communications software. Specific goals

were:

* Complete Verifiability. Every feature in the language must
be rigorously verifiable.

¥ Incremental Development. The language must support
modular, incremental program development and verification.
As best possible the language must simplify the
verification process by encouraging small modules with
tightly regulated interactions and by isolating and
minimizing the effects of modifications to previously
verified code. There must also be a facility for partial
expression of program units.

1 =-1.1
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* gystems Programming. The language must support the
development of systems software. There must be facilities
for expressing Process goncurrency and synchronizing
process communication. There must also be facilitiles for
expressing real-time dependencies.

* Imperfect Execution Environments. The language must
support execution in imperfect environments. It must be
possible to detect, isolate, and recover from run-time
anomalies as well as monitor the program state,

* gpecification Capability. The language must provide an
extensive specification capability. For every property
that is to be verified, there must be an adequate means of
expressing it directly in the language. The integration of
formal proof, run-time validation, and monitoring must be
consistent and provide a complete whole.

The design of Gypsy has been a combined process of
~ synthesis and contraction. Starting from Pascal [13] each
existing Pascal construct was carefully analyzed and those which
inhibited verification were modified or removed. The
hierarchical definition structure was eliminated and protection
lists were added to provide a tighter, more flexible environment
for incremental program development and verification. PFacilities
for expressing concurrency, communication, synchronization,
timing constraints, external events, error recovery, and
monitoring were added, paying close attention to the requirements
of the verification methodology. Each construct in the program
code and the specification statements was designed to support the
verification methodology. The program code syntax was modified
to integrate these specification statements into a logically
consistent and hopefully understandable language.

1.2 Designing for Verification

A language which is to facilitate coding and specification
must not only include capabilities necessary for expressing the
problem domain of interest, but must exclude language constructs
whose semantics defeat, or impede, verification. We defer a
discussion of Gypsy's specification statements wuntil a later
section for pedagogical reasons. Their development was, however,
closely interwoven with that of the coding statements.

Verification of program code has only recently become a

prominent factor in programming language design. While Pascal
was influenced by wverification considerations [5], moras

1.1 -1.2
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recently Nucleus (18] and Alphard [23] have been expressly
designed for verification by formal proofs, Gypsy also is
specifically designed for verification, but verification by run-
time validation as well as by formal proof. The first phase in
the design of Gypsy was to develop a "conventional" language
which was free from concepts known to render formal proof
verification difficult. To this end, Pascal [13] was selected
as a model and Gypsy was patterned after Pascal, but with
significant differences.

Routines in Pascal can be nested to arbitrary depths which
creates a hierarchy of nested "non-local" variables., Routines in
Gypsy may not be nested and variables can only be defined within
routines; hence, Gypsy has no non-local variables. This
simplifies verification as well as incremental program
development, which will be discussed in the next section.

Functions in Pascal can take either variable or value
parameters and can only return values of a simple type. 1In
Gypsy, functions are allowed constant and value parameters and
they can return values of any non-buffer type. The restriction
to these kinds of parameters, together with the absence of non-
local wvariables, gquarantees that functions produce no side-
effects. This simplifies verification considerably.

Pascal allows routines to be included as parameters to
other routines; Gypsy does not. This decision was made not
because of the necessity to do dynamic type checking, but because
the extra burden on the verification process did not appear worth

the extra capability.

Certain of Pascal's data types do not appear at all in
Gypsy. These are types "real®, "class"”, "pointer”, and "file",

Pascal has "if", "case", "for", "while®™, “"repeat®™, and
"goto"” statements for execution control, Gypsy has a similar set
of statements, "if", "case", "loop", and "leave™, modified for
proper placement of assertions and to eliminate the need for
bracketing "begin-end" pairs. The "if" statement is conventional
except for a trailing *"end". The "case" statement has an
additional keyword "is™ and an optional "else" <clause. The
"loop®” statement subsumes both the "while® and “repeat"”
constructs as well as the so-called "loop-and-a-half" construct
and infinite 1loops. Termination and looping are controlled by
"leave” statements. Gypsy has no "goto" statement,
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1.3 Designing for Incremental Development

A language that is to support the development and evolution
of verified programs also must consider the practical aspects of
verification. In developing a verified program of any
significant size, it is necessary that the program be written as
a large collection of small, independently verifiable units.
Otherwise, a formal proof easily can expand into a mass of detail
and become unmanageable. Also for proofs to be maximally
effective they should be carried out on a unit-by-unit basis as
the program is developed. Further, it is the nature of systems
programs that they are continuously undergoing evolution and with
each modification some amount of reverification is necessary. It
is, therefore essential that the amount of reverification be kept
to a minimum. For these reasons, we sought language features
which supported unit-by=-unit manipulation, increased unit
independence, and isolated unit interactions.

A Gypsy program consists of a series of "routine”, "macro®,
"constant”, and "type" units; which may appear in any order. If
a reference can not be resolved locally within a particular unit,
a search of the other external unit names is made. When an
unresolved local reference is found to be an external unit name,
then the appropriate information is extracted and the analysis
continued. Access rights to any unit may be stated in an "access
list." These access lists will be checked during the process of
resolving references. The combination of units and access lists
provides a high degree of code independence, plus a tightly

controlled environment.

A routine is a "function®™, a "procedure®, a "process", or a
"program”. A "program” unit defines the initial program
execution point. Routine declarations can only appear at the
unit level; hence, Gypsy does not provide a nested hierarchy.
Besides favoring unit independence, it was felt (1) that a
hierarchical structure failed to provide adequate program
protection without access lists and (2) that with access lists
and without nonlocal variables a hierarchical structure was

unnecessary.

A macro unit binds a parameterized expression to a name.
While macro expansions can be nested, they may not be recursively
expanded as there would be no way to terminate a recursive

expansion.

A constant unit parallels Pascal's = constant declarations
except that a constant may be of any non-buffer type including a
structured type. This provides the means for referencing global
values without allowing global variables or requiring them to be
passed as parameters if they are not to be modified.
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A type unit declares a new type either by itemizing its
value set or by composing existing types. A type unit which
includes an access list 1is the equivalent of an abstract data
structure {71 [151 [23] [3] [9]. The intent of an
abstract data type is to be able to construct a new type and to
restrict access to the components of that type to operations
representative of the type. It should be possible with a proper
implementation to alter the implementation of the abstract type
and the <corresponding operations without impacting the program
which employs the abstract type.

1.4 Designing for Concurrency and Real-Time

Programming languages have traditionally avoided
~ concurrency; there have, however, been exceptions. The Burroughs
family of extended Algol languages [16] provide processes and
process communication, Bliss [21] provides coroutines and
processes, Concurrent Pascal [3] combines processes and
monitors, and Algol 68 [28] provides collateral elaboration of
clauses. Several other 1languages have primitive means of
accessing operating system functions which provide concurrency.
Operating system research has generated a large number of
concurrency and synchronization techniques which we will not
attempt to reference. Two systems, RC4008 [1] and HYDRA
[22], which were significant factors in our decision on how to
specify and implement concurrency. :

Gypsy has a routine type called a "process”, It differs
from a "procedure" only in the types of parameters allowed and in
the manner of its invocation. Processes communicate only through
message buffers [2]. A message "buffer"” is a finite length
gueue on which there are only two operations defined,
"send" (enqueue) and "receive” (dequeue). The queue is manipulated
by a strict FCFS algorithm, Whenever a "send" is made on a full
buffer the sending process is suspended until the condition is
remedied. Likewise, a "receive" on an empty buffer will cause
the process to be suspended. Associated with every buffer is a
semaphore which guarantees mutually exclusive access to the

buffer.

Concurrent processes are initiated by a "cobegin..end”
statement and may or may not terminate. Only when all processes
called within a "cobegin®™ statement terminate will the statement
following the ”cgbegin“ be executed.

Polling is an important function of real-time systems;
henee, it must be possible to poll a buffer without being

1.3 - 1.4
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suspended indefinitely trying to receive from an empty buffer.
Gypsy has an "await"™ statement which allows the simultaneous
waiting on the completion of any one of several buffer
operations. An "await"™ is in many respects a guarded command
[8], except that it has a very restricted set of guards and it
has an optional time=out clause. The time-out clause specifies
what i1s to be done if none of the requested operations completes

by a certain time.

The concept of (real) time 1is provided by "clock”
variables. A clock variable is a special variable which may not
be modified by the program, but which is always changing. There
may be any number of clocks in a program, but there 1is no
guarantee that they will be synchronized. Gypsy programs may be
distributed across many machines and this makes synchronization

virtually impossible.

1.5 Designing for Imperfect Execution Environments

An attribute of real-time software often overlooked in
programming languages 1is the existence of both hardware and
software faults, Fault detection, isolation, and recovery is an
essential function in real-time software and conseguently,
languages for expressing such software should (1) provide
capabilities for fault control programming and (2) provide an
interface to the hardware which allows for the detection,
isolation, and recovery of faults. The work of the Newcastle
group [18] represents virtually all of the previous efforts on

this topic.

A "condition® in Gypsy is an instantaneous event which may
occur during thé execution of a program. There is a large class
of predefined “"conditions®™ which correspond to hardware errors
and dynamic language semantics errors, such as "caseerror”.
Programmers may, in addition, name and signal fault conditions by
using a "signal®™ statement or an “otherwise”™ clause on a
specification (discussed in the next section).

Any statement ending with the word "end”, may optionally
end with a "condition clause" followed by the word "end". The
effect of the condition <clause 1is that whenever a condition
occurs, an immediate branch is taken to the condition <clause, of
the innermost containing statement, which specifies an action for
that condition. Searching for the innermost condition clause may
involve exiting a routine. After the condition clause is
eaxecuyted, control does not return to where it was before the
fault, but instead drops out of the statement whose condition

1.4 - 1.5
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clause was executed. In some sense, a condition clause is a
restricted version of a PL/I "on" condition which resembles one
of Zahn'’s event driven case statements [24].

1.6 Designing for Specification

Gypsy plays the dual role of programming and specification
language. The specification component of the language permits
the precise expression of desired functional properties of key
parts of the program. These properties are stated in terms of
valid states that are to be maintained on the data objects of the
program at various points in the program computation. The
objective of a verification is to show that the computation
always proceeds in conformity with the stated specifications.
The conformity of the program with its specification can 1in most
cases be either proved prior to execution or validated during
execution. The same specification methods are used in both
approaches to verification.

All specifications in Gypsy are stated as boolean-valued
expressions. These specifications are designated to be verified
either by proof, by run-time validation, or simply assumed.
Specifications that are proved or assumed need not be evaluated
at run-time, and therefore, they are permitted to contain special
operations and types that could not otherwise be permitted. For
example, boolean expressions may contain the 1logical guantifiers
"for all®™ and "there exists"™ and refer to rational numbers and

infinite sequences.

The most familiar kinds of specifications used in Gypsy are
the "entry", "exit"™, and "assert"” statements for procedures and
functions. These follow the same form as that introduced by
{12] for ©proving Pascal programs. The "exit® specification ‘is
interpreted in the weak sense, i.e. it holds if the program
terminates.

"Entry”, "exit", and "assert”™ specifications also can be
used with processes. However, processes often are intentionally
programmed never to terminate, and therefore an ‘exit”
specification may be of no value. Specifications can be stated
for non-terminating processes through "block" specifications. A
"block" specification holds whenever the process is suspended by
a buffer operation. This provides a temporary halting point.

Specifications for routines performing buffer manipulations

normally are stated in terms of effects on buffer histories. 1In
the terminology of [6], these are “"mythical variables”, but

1.5 - 1.6
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they are provided in a uniform way rather than being installed by
the programmer. Associated with every buffer b are several
histories that are relevant to specifications and to the proof
methodology. For example, "b.infrom” refers to the sequence of
objects received "in" from the buffer by the process, and
"h,outto®™ is the seguence of objects sent "out” to the buffer

from the process.

Any sequence of "var"™ declarations can be followed by a
"keep” specification. The "keep” expression must be maintained
throughout the immediate scope of the "var"™ declaration. A
procedure or function call releases the "keep”, but the called
unit must reestablish it before returning. This type of
assertion is similar to those wused by [19] for run—-time

validation.

Routines that have access to the internal structure of a
type have both internal and external specifications. This
follows the specification methods of Alphard forms [23].
External specifications are visible to the outside environment;
internal ones are not. The external specifications are the
"entry", "block"™, and "exit" specifications. "Centry", "cblock"”,
and "cexit" are the corresponding internal specifications. The
internal specifications may refer to the internal (concrete)
structure of accessible types; the external specifications may

not.

Two kinds of specifications can be stated for Gypsy type
definitions, "require®™ and "axiom”. The require specification
follows Alphard and is a precondition on the type parameters that
is necessary for the proper creation of an object of that type.
The axiom is a relation among the functions that have access to

the type.

This set of specification methods provides powerful
mechanisms for stating functional properties of programs, and
formal proof methods have been defined for proving each of these
types of properties. The specifications do not, at this time,
directly permit the definition of gquantitative aspects of program
behavior such as resource utilization,
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Chapter 2

BASIC LANGUAGE

Gypsy's basic programming language without extensions for
concurrency, verification, or error handling bears a strong
resemblance to Pascal. There is of course good reason for the
similarity between these two languages; in designing Gypsy every
effort was made to exploit reliable, consistent, and familiar
features of existing languages and in particular of Pascal.
Pascal provided a good, relatively clean starting point, and as
nearly as was possible, its design has been preserved, but
coerced into a framework consistent with the goals of reliable,
secure systems software.

In this chapter of the report the basic programming
features are described. In the succeeding parts of this report
extensions for concurrency, verification, and error handling are

discussed,

2.1 Environment

It will be helpful if we establish at the outset a basic
understanding of the program environment for Gypsy programs,
especially since it is unlike conventional program environments.
Gypsy programs are composed of "units" which are stored in an on-
line data base. These units are separate, but not independent,
modules of code, They may be entered, parsed, proven, etc. in
any order subject only to interdependency constraints. For
instance, a procedure A might be entered at time t8, parsed at
time tl, proven at time t2, assembled at time t3, and executed
at time t4; however, if A calls a function B then the following
interdependencies arise: (1) the function header (not necessarily
the entire function) for B must be entered before time tl, (2)
the external specifications for B must be entered before £2, and
(3) the function body for B must be entered and the entire
function parsed and assembled before t4. The process of
compilation will be described more in section 2.11. The
various times t8, tl, t2, t3, and t4 give rise to the following
terminology "entry-time", "parse~time®”, ‘“proof-time", "assembly-
time", and "run-time", respectively.

Various portions of a Gypsy program are -evaluated at
different "times”™. Consequently, there are different constraints

2 = 2.1
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on essentially identical syntactic constructs depending upon the
evaluation time. For instance, an expression might be evaluated
at parse-time, at proof-time, or at run-time. If it is to be
evaluated at parse-time, then it cannot contain operands which do
not yield parse~-time values, i.e. variables, If it is to be
evaluated at proof-time and never to be actually executed, then
an expression is allowed to contain operations such as
existential quantifiers which would otherwise be forbidden. For
parse~time evaluation, all operations which cannot be reasonably
implemented are disallowed. As various parts of the language are
defined, these distinctions will be discussed with more
particulars, but for now the essential concept of different
evaluation times should be understood.

2.2 Notation

Standard Backus-Naur form uses angular brackets "<" and ">"
to enclose strings of characters representing non-terminals; a
double colon equal sign "::=" as the rewriting operator; and a
vertical bar "|" to denote alternative right hand sides. Strings
of symbols not enclosed in angular brackets represent themselves
and are considered as terminals. The notation used here departs
from BNF by employing curved brackets "{" and "}" along with a
postscript +, *, or ! to mean, respectively, one or more
repetitions, zero or more repetitions, or zero or one repetitions

of the enclosed phrase.

Comments, denoted by double guotes and allowed within non-
terminal names, impart semantic meaning only and may be ignored
for syntactic form. These "meta-comments” are interpreted by
substituting possible values for the quoted string uniformly in
the production to derive an "instantiation" of the production;

for example, for

<assignment> ::= <"mode" variable> := <"mode" expression>

one could substitute various modes, such as integer, boolean,
etc, to derive

<assignment> ::= <integer variable> := <integer expression>
<assignment> ::= <boolean variable> := <boolean expression>

etc.

The backslash "\" has been used in several productions to
gseparate two or more terminal symbols which may be wused
interchangeably. Only one of these terminals may be used in any

2.1 - 2.2
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occurrence of the production, but it doesn't matter which one is
chosen nor must the choice be consistent,

2.3 Character Set

The exact character set will no doubt be determined by the
particular machines involved in implementing Gypsy; however, a
minimum of the 7-bit ASCII standard character set is
recommended. The character set is divided into subsets as

follows:

<symbol> ::= <letter>|<digit>|<score>|<prime>|<opcode> |
<quote>|<blank>|<bracket>|<special>

<letter> ::= # upper/lower case ASCII letter #

<digit> : @111213141516171819

<score> :

<prime> ::= T

<opcode> ::= +|=[*|/I<|>]@l=]l.l,1z:1:

<guote> : "

<blank> :

<bracket>

<special>

®
£
2
°
e
®
°
°
s
°
@
@
e

(hy1{1}
1 other ASCII characters #

i on

=u=/\
mv

8¢ 0@ “ “ a0 “ " " ®

o e

Upper and lower case letters may be used interchangeably in
constructing Gypsy programs. This allows effective use of cases
for enhancing readability without generating typographical
errors.

Square brackets "[® and "]" and parentheses brackets " ("
and ")" may be used interchangeably subject only to the
stipulation that matching brackets must be of the same kind, i.e,
both square or both parentheses brackets. In the remainder of
this report we will use only parentheses, however, the user is
free to substitute square brackets in their place.

If Gypsy is implemented on machines supportmng only lesser
character sets it may be necessary to designate some alternative
character sequences, for instance " (*" and "*)", as well as win
and "}", to designate comments.

2.4 Tokens

The essential tokens are identifiers, numbers, characters,
and strings. Identifiers = must begin with a letter, but

202 - 2.4
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thereafter they may be composed of any combination of letters and
digits. Identifiers may be of any length and, to decrease
compiler dependence, GYpsYy compilers are reguired to
differentiate complete 1identifiers, not just the first "N"
characters as is frequently done.

Identifiers allow two conventions for the sake of
readability. First, upper and lower case letters may be used
interchangeably within names and second, the underscore character
may be used freely within names to separate abbreviations. The
underscore is, however, never allowed to either begin or end an
identifier name, The underscore used by itself has a special
meaning which is explained in section 2.5.6.

The set of numbers are the unsigned integers. While the
syntax allows arbitrary length numbers, any implementation may
have a maximum allowable value.

Strings are character sequences appearing between a pair of
string markers which are usually double quotes, but which may be
one or more alternate special characters spe01f1ed unique to the
partiecular implementation. Within a string a pair of consecutive
markers- will be interpreted as a single character of the string
and not’ the string terminator. This allows for the insertion of

quotes in quoted strings.

Single characters are indicated by a single gquote placed
immediately before the desired character. By using a different
notation for a single character than for a string containing one
character, any possible type ambiguity is avoided.

Strings of characters enclosed in comment markers, "{" and
mi® will be interpreted as comments. All comments are removed
during compilation and have no effect on the resulting
compilation or verification. Comments may appear in any context,

except within tokens.

<token> s:= <id>|<number>|<character>|<string>|<comment>
<id@> ::= <letter> {{<letterdigitscore>}* <letterdigit>}!
<number> ::= {<digit>}+

<character> ::= <prime> <symbol>

<string> ::= <quote> {<symbol>}* <guote>
<letterdigitscore> ::= <letterdigit>|<score>
<letterdigit> ::= <letter>|<digit>

<comment> ::= { #string not containing { or }# 1}

Example:

SymbolTable | Hash_Table 169 "string” x' 'x
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2.5 Types

Type units consist of a type header followed by a type
body. In the succeeding sections of this chapter, simple and
compound types will be discussed; more complex type declarations
will be postponed until Chapter 3. In the syntax given
below there are several forward references, such as access list
(section 2.11.2), type parameters (section 3.1.1), pending
(section 3.4}, and type specifications (section 3.6.1).
For the present these can be ignored as they are not necessary
for simple programs.

<type unit> ::= <"type" type header> =
<"type"” type body>|pending

<"type" type header> ::= type {<access list>}!
<"type type name" id> {<formal type parameter list>}!
{<access list>}!

<"type" type body> ::= <"type" type declaration>|
begin {<type spec> ;}* <"type" type declaration> end|
begin {<type spec> ;}* pending end

2.5.1 Simple Types

The simple types in Gypsy consist of the scalar types,
which include boolean, plus two special predefined simple types:
rational and character. Type rational is distinguished for two
reasons (1) its value set is composed of numbers rather than
identifiers and (2) its value set 1is by definition unbounded.
Type character is distinguished for only the former reason.

A scalar type is defined by a parenthesized 1list of
identifiers., Bach identifier in the 1list is defined to be a
value of the new type and whenever the identifier appears
subsequently it will be recognized as a value of the newly
defined type. The order in which the identifiers appear within
the 1list is significant and 1is interpreted as the ordering
relation for the new type. For example,

type DaysOfWeek = (Mon, Tues, Wed, Thurs, Fri, Sat, Sun):

defines a new scalar type named DaysOfWeek which has seven values
Mon, Tues, etc. and for which there is an implicit ordering such
that Tues < Wed, etc..

In defining a new scalar type all of the identifiers

appearing in the declaration must be unique over the scope of any
instantiation of the type. Thus, two types may have conflicting

2.5 = 2.5.1
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value names provided that there never occurs instantiations of
both types within any scope. The scope of declarations will be
discussed more carefully in section 2.11.1.

The type boolean which consists of only two values is
predefined by the following scalar definition:

type boolean = (false, true);
The reader is reminded that ordering is significant.

Type rational is precisely the rational numbers (i.e.,
numbers of the form "n/m*, where "n" and "m" are "integers" and
"m" is not zero). Type integer is defined to be the numeric
values sewr, =3, =2, -1, 8,1, 2, 3, ... and is by definition
unbounded. In Gypsy the integers are conceived as special
rational numbers which have the property that "m=1". This
"special™ relationship will be discussed again in section

2.5.3.

Type character can be defined as a scalar type, and indeed
is, but because of the special treatment of its value set it will
be distinguished and not referred to as a scalar type. For

example:

type character = (BREAK, SOH, ..., ~, DEL); i.e. the
standard 7-bit ASCII character code set.

Unfortunately, the character code set is machine dependent.

<"simple type" id> ::= rationallinteger|character|
<"scalar type" id>

<"scalar type" id> ::= boolean|<"scalar type name" id>

<"scalar” type declaration> ::= ( <"scalar value" id>
{, <"scalar value®™ id>}* )

Example:

type MonthsOfYear = (Jan, Feb, Mar, Apr, May, Jun, Jul,
Aug, Sep, Oct, Nov, Dec);

type Color = (Red, Blue, Yellow):

type Politician = (Rep, Sen, VPres, Pres);

2.5.2 Simple Values

- The simple values are precisely the numbers, the
characters, and the scalar values which were defined by scalarx

type declarations.

2.5.1 - 2.5.2
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Every type possible in Gypsy 1is composed from the simple
types; hence the set of possible wvalues in Gypsy programs
consists of all possible legal compositions of the simple values.
A discussion of the possible compositions is deferred to section
2.5.6.

<"simple” wvalue> ::= <"rational” value>]
<"character” wvalue>|<"scalar” value>
<"rational™ value> ::= <"integer® value>|
<"integer” value> / <"integer®” value>
<"integer” value> ::= <number>|- <number>
<"character™ value> ::= <character>|<"character value" id>
<"scalar" value> ::= <"scalar value" id>

Example:

2/3 1001 "a® wRnw BREAK Mon Pres

2.5.3 Modes and Restrictions

In Gyp8y a type is composed of a mode, or basic value set,
and a possibly empty set of restrictions upon that mode, which
serves to define a subset of the basic value set. All scalar
types, as well as all predefined types, are considered initially
unrestricted; hence, the simple types defined in section 2.5.1
are all unrestricted and of mode simple. Note that unrestricted
is not synonymous with infinite. ‘

A type restriction 1is a means of defining a type from an
existing mode by restricting the mode's value set. Type integer
is defined as a special restriction of mode rational which
requires that the divisor portion of the rational be precisely
one and thus be omitted. Hence, type integer 1is of mode
rational, but restricted to those values which are "whole”
numbers. This kind of restriction is unigue to the integers.

For simple types the most prevalent means of defining a
restricted value set is by a range restriction. This 1is
accomplished by specifying a subrange of the existing value set.
While range restrictions may be advantageous for any simple mode,
they are required of all run-time integer wvariables (proof=time
integer variables need not be restricted).

A range restriction is appended to the simple type name and
is specified by a pair of expressions in brackets, for example:

type byteint = integer(-128 .. 128);

2.5.2 = 2.5.3
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Both expressions must evaluate to values of the prescribed type
with the first wvalue (left) being less than or egqual to the

second value (right).

There are a number of implications for range restrictions.
It is assumed that whenever the compiler cannot guarantee that
values will stay within that range (which is generally the case),
then code will be generated to perform the necessary checks
during execution. If the value cannot be stored conveniently
(for instance, in a single word) such that the storage unit is
large enough to satisfy the specified value set, then this
condition will be reported as an error, Conversely, it is
assumed that the value will be stored in as small a storage unit
as is both possible and consistent with reasonable referencing

efficiency.

The range expression pair need not necessarily evaluate at
parse-time; however, their modes must be decidable. When the
range is unknown at parse-time the compiler will generate storage
for the worst case it can handle. If the run-time evaluation
results exceed the worst case then a run-time error will result.

In the case of the two predefined "special®™ simple types,
rational and character, whose value sets are uniguely
distinguishable and for which the mode can be deduced from the
mode of the expressions, the mode identifier only supplies
redundant information and may be omitted if desired. Whenever
there is any ambiguity over the modes of the expressions, then
the mode must be explicitly supplied.

A type "int"™ is predefined to be the largest range of
integer values representable as a single addressable object on a
particular machine, for example on the DEC-1# int would be

defined as:

type int = integer (=2%*35,.2%*35-1);

<"simple” type declaration> ::= {<"simple type name" id>}!
<"simple® range>

<"simple" range> ::= ( <"simple” expression> ..
<"simple” expression> )

Example:

type Summer = MonthsOfYear(Jun .. Aug);
type Weekday = DaysOfWeek(Mon .. Fri);
type Letters = ("a" .. "z");
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2.5.4 Type References

A type reference is a reference to a previously defined
mode possibly accompanied by some additional restrictions. 1In
the simple case a type reference is simply the name of a type.
The alternatives are the name of a simple type followed by a
restriction, the restriction only (if the type can be deduced,
see section 2.5.3), or the name of a parameterized type with an
expression list specifying the actual restrictions (see section
3.1.1).

<"type" type reference> ::= <"type type name" id>|
<"type type name" id> <"type" range>|<"type" range> |
<"type type name" id> <actual type parameter list>

<"type" formal type reference> ::=
<"type" type reference>|<"type type name" id>
<actual/formal type parameter list>

<actual type parameter list> ::= ( <actual type parameter>
{, <actual type parameter>}* )| {empty]

<actual type parameter> ::= <expression>|{empty}

2.5.5 Compound Types

The compound types are records and arrays. Records allow
the composition of dissimilar objects as fields of a larger
object by specifically naming each component field. The
advantage to a record definition as opposed to separate
declarations of the individual fields is that the compound object
now has a name and may be manipulated as a compound object as
well as by its individual fields.

Field names need only be unique within individual records
and may be reused in subseguent record definitions. The field
names for a record mode become defined in any scope when there is
declared an instantiation of that mode in that scope, except
under special circumstances described in section 2.11.2.

It is helpful at this point if a distinction is made
between "base®” names and "modifier” names. A base name refers
to the entire object, while a modifier name gualifies =2 base
reference to refer to a subcomponent of the entire object. Base
names may appear by themselves, but modifier names are never
allowed to appear except in conjunction with their corresponding
base names. Given these definitions there is one rule regarding
name unigueness: All base names used within any routine must be

unigue.

2.5.4 - 2.5.5
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What names are base names? Base names are type names,
constant names, scalar value names, variable names, parameter
names, and routine names. Fields within records are modifier
names. Record definitions have the same general form that simple
type declarations have, namely a type header followed by a type
body. Within the type body there are a number of 1local field
declarations each itself composed of a field header followed by a
type declaration.

In allocating storage for records, fields will be packed as
tightly as is consistent with efficient referencing and without
breaking fields across unnatural boundaries. The compiler will
be left the ultimate decision as to the organization of all
storage allocations. V

<"record of typel...typen" type declaration> ::=
record ( <"typel" field declaration>
{; <"typei" field declaration>}* )

<"type” field declaration> ::= <("type” field header>
: <"type" type declaration>

<"type" field header> ::= <"type field name” id>
{, <"type field name" id>}* .

Example:

type Date = record {(
Month : MonthsOfYear;
Day : (l1..31):
Year : (1906..2600) ):

type TaxRecord = record {
SocSecNo : integer (9..999999999);
Income, Tax : integer (=190**12,.,18*%12);
DateFPiled : record{(MM, DD, YY : (1..99)) }:

Arrays provide for the repetition of identically typed
objects by providing an index value set from which each member is
associated with an item of the named type. This provides a means
of referencing each item within the array. Gypsy allows only one
dimensional arrays; however, it is permissible to declare arrays

of arrays of ... etc.

Type array declarations are declared in an analogous manner
to previous type declarations. The index set is indicated by a
type r=ference and the array will contain one element for every
value of the index type set. Recalling that the integers are
infinite, this means that an array declaration could be
potentially infinite. Arrays which are to be allocated during
run-time must necessarily be bounded. This is accomplished by
bounding the index type (assuming it is not already bounded).
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Storage for arrays, 1like records, will be allocated as
concisely as is consistent with efficient referencing. Since the
normal means of referencing arrays is by indexing, attention will
be paid to allowing efficient index computation,

<Marray typel of type2"” type declaration> ::=
array { <"typel" type reference> ) of
<"typel" type declaration>

Example:

type Name = array(integer(l..20)) of character;

type Matrix = array((l..N)) of array ((l..N)) of (1..N):
type CharTab = array(character) of character;

type Table = array ((8..63)) of integer(9..1000);

type TaxRecArray = array((l1..N}) of TaxRecord;

2.5.6 Value Compositions

Values of every definable type (except buffers, see section
3.2.1) may be constructed from simple values (defined in
section 2.5.2). Simple types as well as compound types may be
composed; furthermore, in most contexts the type name is
unnecessary and may be omitted. Value composition will be
particularly useful in wvariable declarations (see section

2.7).

The set of values for any compound type is precisely the
set of compound values composed by selecting every possible
combination of component values, 1i.e. the Cartesian or cross
product of the component wvalues. To construct values for the
compound types the type name is used as an operator for composing
components of the correct component types. The format of a
compound value composition 1is the type name followed by a
bracketed list of the component values in order and separated by
commas. For example,

Date(Jan,5,1976)

composes a record of type "Date”™ from the component expressions
"Jan®, "S5%®, and "1976" which are of the correct corresponding
types "MonthsOfYear®™, "(1..31)", and " (1966:20068)"., Similarly,

Name("GH'Nyﬁ'ﬂPﬂ’ﬂsﬂ'ﬂYﬂ'” ﬂ'ﬂ ® w w w w ®W %
® ® @ % 98 B ¥ ® wW w9 w0 W 8 0 !" ® l’! W O’I N)'
§ 14 14 14 14 14 & 14 ¢

creates a value of type "Name" from twenty components of type
"character”®.

2.5.5 = 2.5.6
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The last example illustrates the need for a shorthand
notation for expressing a repeated value, This need is met by
the pseudo operator "#*:%, The expression x *: y is interpreted
as x repetitions of the expression y with each adjacent pair
separated by a comma, i.e. Y,¥,Vreoc.Ve Thus the same example
could be written

Name("G","Y",“P","S","Y",IS*:" n>

For types composed of unnamed types (arrays of arrays of
-s. oOr records of records of ...) a composition will take a
corresponding form; in particular, it will have an unnamed type
composition within the named type composition. The unnamed
composition is allowed only because its type is discerned from
its position within the encompassing type composition. An
unnamed composition is indicated by a "_" (underscore) appearing
immediately before a bracketed expression list which is contained
within the named type composition.

In order that modes may be checked completely at parse~time
the "repetition" expression must evaluate at parse-~time.

<"simple” composition> ::= <"simple type name® id>

( <"simple" expression> )!|_ ( <"simple" expression> )
<"record of typel...typen" compositicn> ::=

<"record of typel...typen type name" id> (

<"typel" Fomponent> {, <"typei" component>}* )|

_ ( <"typel” component> {, <"typei" component>}* )
<"array typel of type2" composition> ::=

<"array typel of type2 type name” id> (

<"type2" component> {, <"type2" component>}* )|

_ ( <"type2" component> {, <"type2" component>}* )
<"type" component> ::= {<"integer"™ expression> *:}!

<{"type"” expression>

Example:

Matrix(N *: (N *: 9))
TaxRecord (123456789, 43758, 13773, _(4, 15, 1976))

2.5.7 Mode Eguivalence

=

Two modes are said to be equivalent if and only if after
recursively substituting all user defined modes for their
corresponding types and all formal type parameter types for their
corregponding formal parameter names, then the resulting modes
are identical. For example, the following pairs are mode

equivalent:

2.5.6 - 2.5.7
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array ((1..5)) of int and array ((1..18)) of int
Date and record(x:MonthsOfYear; y,z:int)

2.6 Constants

A constant is a name which is bound to a particular value
in its declaration and which retains that value throughout the
scope of the declaration. Again, a complete discussion of scope
is deferred until section 2.11.1.

A constant declaration consists of an identifier followed
by a constant expression. Whenever the mode of the expression is
not explicitly provided (as is the case with a value composition
or a function call) and the mode of the expression is not
"rational®, "character”, "boolean”, or "string” (section
3.1.2), then the optional type reference is required.

In Gypsy, constant declarations can occur either as units
themselves or as local declarations within routine units. Only
when they appear as units is it permissible to associate an
access list with the constant and only constant units are
required to evaluate at parse-time. Local constant declarations
need not necessarily evaluate prior to run-time.

Constant units may be entered and referenced in any order;
however, they are not allowed to recursively reference each

other.

<constant unit> ::= <("type" constant header>
{: <"type" type reference>}! = < "type" expression>]
<"type" constant header> : <"type” type reference>
= pending

<local constant> ::= const <"type constant name® id>
{: <"type" type reference>}! = <"type" expression>]
const <"type constant name" id> :
<"type" type reference> = pending

<"type" constant header> ::= const {<access list>}!
<"type constant name” id>

Example:

const NDaysInYear : integer = 365;
const MaxHours = 48;
const Christmas = Date(Dec, 25, 1976);

2.507 - 296
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2.7 Variables

A variable is an object of a prescribed type which may be
assigned different values of the prescribed type arbitrarily
ften., A variable is declared by a variable declaration which
consists of a list of identifiers followed by a type reference,
The effect of the declaration 1is to allocate storage of
sufficient size to hold the value set for the type indicated and
to associate a name with that storage. Subsequent references to
that variable are references to the value stored in the allocated
storage of the prescribed type. A variable declaration is
sometimes referred to as an instantiation of the specified type.

Any variable may be initialized at the time of its
declaration by an initialization expression. This initialization
will be performed every time that the variable is allocated. If
the expression can be evaluated at parse~time (i.e. consists of
only values and constants) then initialization is simple and
efficient; otherwise, the compiler will generate code to evaluate
the expression and perform the proper initialization.

Whenever the initialization expression provides redundant
type information, i.e. the variable type (including restrictions)
can be deduced from the expression (as is the case with a value
composition or function call), then the type reference may be
omitted. It is never the case that both the type reference and
the variable initialization may be omitted.

<local variable> ::= <"type" variable header>
{: <"type" type reference>}! {:= <"type"” expression>}!|
<"type" variable header> : <"type" type reference>
= pending

<"type" variable header> ::= var <"type variable name” id>
{, <"type variable name®™ id>}*

Example:

var Day : DaysOfwWeek;

var i, j, k : integer(l..N) :
var Switch : boolean := false
var SyTab := Table(64%:8);
var TaxFile : TaxRecArray;

= 1

2.7.1 Variable Reference

A variable reference is a reference to a portion of the
storage assigned to and associated with a variable name. The

2.7 - 2.7.1
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syntax and semantics of the variable reference are related to the
type specified in the variable declaration.

Syntactically, variable references are identical in all
contexts: however, semantically, there is a distinction between
evaluation and assignment references., In the former <case the
result of the reference is the value contained at the location
associated with the reference; while 1in the latter case the
result of the reference is the location itself., It 1is precisely
this distinction that prevents function references from occurring
in the context of an assignment reference.

Simple variables can only be referenced in their entirety;
while, compound variables can be referenced both in their
entirety and by their subcomponents.

Record components are referenced by following the record
reference with the desired field name separated by a dot

(period).

Array components are referenced by index expressions of the
prescribed mode written in brackets immediately following the
array reference. The value resulting from the evaluation of the
index expression must satisfy the restrictions defined for the
index type. The compiler will generate code whenever necessary
to assure that the restrictions are not violated.

<"type" variable reference> ::= <"type variable name"” id>|
<"record of ...type..." variable reference> .
<"type field name” id>|
<"array typel of type" variable reference> (
<"typel® expression> )

Example:

i

Day

Switch

SyTab

SyTab (i)

TaxFile(i+j) .DateFiled.MM

2.8 Expressions

An expression consists of a simple wvalue, a value
compoesition, a constant, a variable reference, a function call,
or an operational formula; each of which may itself be composed

of expressions.

2.7.1 - 2.8
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As was mentioned in section expressions may appear in.
several contexts and depending upon the context they will be
evaluated at different times and will be allowed different
operations. As the standard operations and functions are
introduced in the following sections, those operations allowable
only for proof-time evaluation will be pointed out,

In Gypsy, it is always possible to determine the mode of an
expression from the modes of 1its components without additiocnal
context information. This means that Gypsy enforces rigid type
matching and performs no coercions.,

<"type” expression> ::= <"type" wvalue>|
<"type" composition>|<"type constant name" id>|
<"type" variable reference>|
<"type" primed variable reference>|
<"type" function call> ( <"type" expression> )

2.8.1 Punction Calls

The syntax and semantics of a function call are almost
identical to that of a routine call with the obvious distinction
that one appears as a statement and the other as an expression
returning a value. A more complete discussion of functions,
their parameters and their restrictions, will be given in later
sections (2.18.1 and 2.16.3).

<"type®” function call> ::= <"type function name" id>
{<actual parameter list>}!

<actual parameter list> ::= ( <actual parameter>
{, <actual parameter list>}* )

<actual parameter> ::= <expression>|<"condition name" id>

2.8.2 standard QOperations

In this section the standard predefined operations for
simple and compound types are presented.

Operators are functions which are distinguished by their
infix syntactic form as opposed to the conventional parenthesized
functional form. Because of the lack of parentheses, an
operator's parameters may appear ambiguously specified. 1In order
to resolve this ambiguity, precedence relations are defined on
all operators which effectively parenthesize any expression.
These precedences are summarized in Appendix B.

2.8 - 2.8.2
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Whenever it is desired that the evaluation of an expression
involving operators be performed in a manner other than that
specified by the precedence relations, the order can be indicated
by explicit parenthesization of the expression. In addition it
may be desirable in some cases to include extra parentheses to
increase readability.

The rational operators are: negation, addition,
subtraction, multiplication, truncated division, modulus, and
exponentiation. In addition to the customary operator symbols
Gypsy provides a corresponding set of reserved words which may be
used interchangeably to suit personal taste.

<"rational"” expression> ::= plus\+ <"rational®™ expression>|
minus\~- <"rational" expression>|
<"rational®™ expression> power\**
<"rational” expression>|<"rational” expression>
plus\+ <"rational” expression>|
<"rational” expression> minus\-
<"rational” expression>|<"rational” expression>
times\* <"rational” expression>|
<"rational" expression> divide\/
<"rational” expression>|<"integer” expression>
div\// <"integer" expression>|
<"integer" expression> modulus\mod
<"integer™ expression>

Example:

i+ % 2 % k
i+ ((J ** 2) * k)
i plus j power 2 times k

Each of the above expressions is equivalent.

The relational operators are defined for simple types only.
The definition of the relations is defined on the implicit
ordering of the value set induced by their definitions. 1In
addition to the traditional relational operators eqg, ne, 1lt, le,
gt, and ge, there is an "in" operator which evaluates true if and
only if the value of the 1left operand 1is within the range
specified by the right operand.

The operations equal and not equal are the only standard
operations which apply to compound types. Two arrays are egual
if and only if they are of the same mode, restrictions, and all
of their values are identical. Two records are equal if their
modes are egquivalent and each pair of corresponding components

are equal,

<"boolean” expression> ::= <("simple® expression> eg\=
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<{"simple” expression>|<"simple" expression> ne\<>
<"simple"” expression>|<"compound” expression> eg\=
<{"compound” expression>|<"compound” expression> ne\ <>
<"compound” expression>|<"simple” expression> 1t\<
<{"simple"” expression>|<"simple" expression> le\<=
{"simple” expression>|<"simple” expression> gt\>
<{"simple” expression>|<"simple” expression> ge\>=
<"simple” expression>|<"simple"” expression> in

{"simple” range>
Example:

3 < 7

nan < llz!l
Wed >= Wed
false < true
ﬂA’l < l!all

5 in (1..18)

All of the above relations are true.

The boolean operators are not, or, and, implication, and

equivalence, Note that because of precedence
operators = and egv are not equivalent.

relations the

<"boolean” expression> ::= not <"boolean” expression>i
<"boolean” expression> or <"boolean” expression>]
<"boolean" expression> and <"boolean” expression>|
<"boolean" expression> imp\-> <"boolean” expression> |
<"boolean" expression> iff\eqv <"boolean” expression>

Example:
Switch imp i < j
i< j iff j > i

The quantifier operators given in this section
only in proof-time evaluations and will be of
specification statements are introduced in

are allowed
no use until
section 3.6.

However we introduce them now Jjust to hold their place in the
precedence hierarchy. The two operators are the traditional
logic existential and universal quantifiers. Both operators have

a local variable definition as part of their semanti

<"boolean® expression> ::= some <"type variabl
{, <"type variable name” id>}* :

all <"type variable name”™ id>

{, <"type variable name" id>}* :

¢ definition,

e name” id>

<"simple"” type reference> , <"boolean" expression>]|

<{"simple” type reference> , <"boolean" expression>

2.8.2
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Example:
all x,ysinteger(1..N), M(x)(y) = @

The above example translates: for all x and ¥, integers in
the range 1 to N, M(x)(y) = 8.

The conditional expression 1is fully bracketed and hence
reguires no operator precedence rule,

<"type" expression> ::= if <"boolean" expression>
then <"type" expression> else <"type" expression> fi

Example:

if a < b then b else a fi

2.8.,3 Standard Functions

There are two sets of predefined functions that are
available in Gypsy. These are the order, bound, and conversion
functions. The order functions, pred and succ, return the
predecessor and successor values of the parameter value. The
order functions, min and max, return the smaller and larger,
respectively, of a pair of simple values.

<"simple"” expression> ::= pred ( <"simple" expression )|
succ ( <"simple" expression> )|
min ( <"simple"” expression> , <"simple” expression> ) |
max ( <"simple" expression> , <"simple™ expression> )

Example:
pred("b") = "3"
succ (Mon) = Tues
succ{succipred(2))) = 3
min(3,5) = max(1,3)

The bound functions, upper and lower, return the largest
and smallest values of the named type.

<"simple” expression> ::= lower ( <"simple type name" id>
. ) lupper ( <"simple type name® id> )

Example:

upper (booclean) = true
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The conversion functions, ord and scale, convert the values
of any simple type to the corresponding integer values and vice
versa. Since ord can deduce the type from the expression it does
not require the type name in order to perform the conversion;
whereas, scale requires the desired type name.

<"simple” expression> ::= scale ( <"integer” expression> ,

<"simple” type reference> )
<"integer" expression> ::= ord ( <"simple” expression> )}

Example:

gcale (3 ,Days0OfWeek) = Mon
ord{false) = 8

2.9 Statements

Statements in Gypsy are either simple or compound.
Compound statements are statements which are structured

compositions of other statements.

<statement list> ::=

pending|pending
<statement> ::= <simple statement>]|<compound statement>
<{simple statement> ::= <assignment statement>|

<routine call statement>|<leave statement>|

<buffer statement>]|<clock statement>]

{statement spec>|<signal statement>
<compound statement> ::= <if statement>|

<case statement>|<loop statement>|

<begin statement>]|<cobegin statement>|<await statement>
<end clause> ::= end|<when clause>

{<statement> ;}* {<statement>}!]
sl

2,9.1 Assignment Statements

The assignment statement assigns a new value to a variable
thereby changing its value for subsequent references. For

assignment to be properly defined:

1. The left~hand side must evaluate to a wvariable
reference,

2. The mode of both sides must be identical, and

3., The wvalue of the right-hand side must satisfy the
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restrictions associated with the 1left-hand side wvariable
reference. Whenever restrictions effect the size of the storage
allocated, then the left- and right-hand restrictions must match
exactly. For range restrictions it 1is only necessary that the
right=-hand value be within the limits of the 1left-hand

restrictions.

4. The set of access restrictions placed on the type of the
left-hand variable must be properly contained in the set of
access restrictions for the right-hand expression.

Whenever it is not possible to check at parse-time that the
restrictions will be be preserved by the assignment, then code
will be generated to check the values during execution. If these
run-time checks produce violations of the restrictions, then an
appropriate error condition "assignerror” will be signaled.

<assignment statement> ::= <"type" variable reference> :=
<"type®” expression>

Example:
Day := Thurs;
SyTab := Table(64 *: =1);

i := 13 // SyTab(j + SyTab(k))
M(1)(3) == k;

2.9.2 Routine Call Statements

A routine call statement serves to execute the body of the
named routine after replacing all references to the formal
parameters (defined in the procedure header) by the actual
parameters (supplied with the procedure call). The
correspondence is defined by matching the two lists pairwise in
the order of appearance. A complete discussion of parameters is
deferred to section 2.16.1.

<routine call statement> ::= <"routine name” id>
<actual parameter list>

Example:

p(x, ¥, 2)3;

2,9.3 Leave Statements
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The leave statement is used in connection with the loop
statement to construct various loop termination tests. It states
that the innermost loop statement is to be exited.

<leave statement> ::= leave
Example:

leave;

2.9.4 If-Then-=Else Statements

The if=-then-else statement has the traditional meaning:
evaluate the boolean expression and perform the then clause if
true and the else clause if false. By the addition of the end
symbol the dangling else problem is avoided and the then and else
clauses may use statement lists instead of single statements.

<if statement> ::= if <"boolean” expression> then
<statement list> {else <statement list>}! <end clause>

Example:

if
day = Sun;
then
weeks := weeks + 1:
day := Mon;
else
day := succ(day);
end;

2.9,5 Case Statements

The case statement provides an alternative to repeated if-
then-else statements when there are several alternatives. The
expression is evaluated to yield a value which then specifies at
most one case clause to be executed. An optional else clause
specifies what action 1is to be performed if none of the listed
alternatives is met. If the else clause is omitted then one of
the alternatives must always be met or a run-time error will
result. The case labels must all be values of the same mode as
the case expression and they must all be evaluatable at parse-

time.

<case statement> ::= case <"simple” expression>
{<"simple” is clause>}+ {<else clause>}! <end clause>
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<"simple” is clause> ::= is <"simple” value>
{, <"simple” value>}* : <statement list>
<else clause> ::= else : <statement list>

Example:

case tax_bracket

is under_20k: taxes:= (20 * income) // 100;

is between_20k_38k: taxes:= (25 * income) // 166;
is between_30k_58k: taxes:= (30 * income) // 108;
else: taxes:= 1income;

end;

2.9.6 Loop Statements

The loop statement provides for all kinds of 1looping. By
combining a loop statement with a leave statement (section 2.9.3)
in wvarious ways the usual "while"”, "until", "repeat”, etc.
statements can be constructed. Besides the increased flexibility
of being able to place the loop test anywhere desired, separating
the loop construct from its terminating condition creates a
natural position for inserting a loop invariant immediately
ahead of the termination test. Loop invariants will be discussed
in section 3.6.2. After processes have been introduced is
section 3.2.5, it will also be wuseful to construct 1loops
without termination tests.

<loop statement> ::= loop <statement list> <end clause>

Example:

loop {infinite loop}
receive m from x;
send m to y;

end;

loop {until b do ... }
£f b then leave end:
= f£(x);

i
b
X x + 1

end:

loop L {repeat ... until b}
b = £(x); I . .

b4 X + 1

if b then leave end;

end:;

i e=m - 13 {quicksort A(m..n)} {n loops and a half}
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) < v then leave end;

7
) > v then leave end;

then leave end:
)

2.9.7 Begin Statements

In Gypsy the begin statement is unnecessary as a statement
bracket because each of the other compound statements has been
designed to allow a statement list instead of a single statement.
However, there are one significant role for the begin statement
in Gypsy: it 1is useful in the handling of exception conditions

{section 2.7).

<begin statement> ::= begin <statement list> <end clause>

2.18 Routines

For the remainder of the current chapter, a routine is
either a procedure, a function, or a program. In section
3.2.5, a fourth type of routine, a process, will be
introduced. A routine is invoked by a routine call statement
(2.9.2) and causes a private copy of the code for the routine to
be executed with the . formal parameters linked to the supplied
actual parameters. In any actual implementation the actual code
for the routine may be reentrant, but the data must be allocated
uniquely with each invocation. This will become more important
in section 3.2.5 after processes are defined.

Syntactically, the various routines differ only in their
headers, but semantically there are significant differences.
Each type of routine will be discussed individually in succeeding
sections after a general discussion of parameters.

<routine unit> ::= <routine header> = <routine body>]|
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<routine header> = pending

<routine header> ::= <procedure header>|<function header>|
<process header>|<program header>

<routine body> ::= begin {<external spec> ;}!
{<internal spec> :}! {<local declaration> ;}*
{<local spec> ;}! <statement list> <end clause>

<local declaration> ::= <local variable>|<local condition>|
<local constant>|<local macro>|{<local clock>

2.18.1 Parameters

There are three parameter passing 1limitations in Gypsy.
All parameters are passed by reference from the calling
environment, but depending upon the passing limitations specified
in the formal parameter list parameters are treated differently
in the routine environment.

Parameters which are designated as "var" parameters are
conventional call-by-reference parameters. They may be. both
referenced and assigned and any assignment alters their value
both locally and in the calling environment.

Parameters which are designated "const"” parameters are
call-by-reference parameters for which no alteration will be
allowed in the routine environment, In short, they may be
referenced but not assigned. This corresponds to the treatment of
constants,

Parameters which are designated "copy"” parameters are the
conventional call-by-value parameters. In the environment of the
formal parameter a copy will be made of the actual parameter upon
routine entry. All subsequent references to the formal parameter
are references to the copy of the actual parameter, not the
actual parameter. The copy may be both referenced and assigned,
but alterations will not effect the value of the actual
parameter.

Whenever, the parameter limitations are not specified, the
limitation "const®™ is assumed.

The allowable parameters in any routine call ‘are variable
references, non-variable-reference expressions, and conditions
(not discussed until section 3.7). Whenever a non=-variable
reference is passed as an actual parameter the compiler will
create storage for a value of the corresponding type and generate
code to evaluate the non-variable reference storing the value
into the created location. A reference to that location 1is then
passed by reference. Since it would be impossible to recover any
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result value placed at that location, the corresponding formal
parameter in any call must be limited to ®const” or “"copy”.

The address spaces of "var”® parameters are never allowed to
overlap other "var® or "const”™ parameters. In practice
enforcement of this restriction will sometimes require run-time

checks.

If a formal parameter type includes restrictions then these
restrictions must be matched identically by the restrictions on
the actual parameter type. However, if the formal parameter type
is unrestricted then the formal parameter inherits the
restrictions on the actual parameter type, which may vary from
call to call. There are two ways of indicating that the formal
type is unrestricted and that the actual restrictions are to be
inherited: by the omission of the restriction and by the presence
of a parameter declaration in place of the restriction. In both
cases, the formal parameter inherits the actual parameter’s
restrictions; however, 1in the latter case the values of the
restrictions are given names which may be used in the body of the
routine., If an inherited restriction is subsequently used in a
variable declaration which involves run-time allocation, then the
restricted variable must meet any and all implementation
restraints imposed on storage allocation. It will be necessary
to perform this check at run-time.

If a formal parameter type includes an access 1list, then
the access 1list for the formal parameter must be properly
contained in the access 1list of the corresponding actual
parameter (for an explanation of access 1lists see section

2.11.2).

Names introducted within a formal parameter list either as
a routine parameter name or as a type parameter name are bound
for the entire routine and hence, must be unigue from other names
over the scope of the routine.

<formal parameter> ::= {<limitation>}!
<"type variable name® id> {,
<"type variable name® id>}* :
<"type®™ formal type reference)|
cond <"condition name™ id> {, <"condition name® id>}*
<limitation> ::= varlconst|copy
<formal parameter 1list> ::= ( <formal parameter>
{; <formal parameter>}?* )
<actual/formal type parameter list> ::=
{ <actual/formal type parameter>
{, <actual/formal type parameter>}* )

<actual/formal type parameter> ::=
<actual type parameter>|<"type variable name®™ id> s
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Example:
var Xx:integer

const m:Matrix
copy c:Color

2.18.2 Procedure Routines

Procedures form the basic unit for modular decomposition of
programs,

<procedure header> ::= procedure {<access list>}!
<"procedure name” id> <formal parameter list>

Example:

procedure exchange(var x, y:int) =
begin
var i:int;
i:=x;
X:=ys
ye=1i;
end;

2.16.3 Function Routines

A function differs from a procedure in that it is
referenced in the context of an expression and it returns a
value. In addition, functions are not allowed "var" parameters.
This restriction combined with the fact that there are no global
variables insures that functions do not produce side effects.
The lack of side effects not only aids verification, but
eliminates the necessity to define the order of expression
evaluation beyond that defined by the precedence relations. This
improves the potential for code optimization.

Functions are allowed to return values of any type. The
result of a function is the current value of the reserved
variable "result® which is automatically declared to be of type

matching the type of the function.

<function header> ::= functlon {<access list>}!
<'type function name®™ id> {<forma1 parameter list>}!

: <"type" type reference>

Bxample:

2.16.1 - 2.18.3
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function Square(x:int):int =
begin
result := x **% 2.
end:

2,19,4 Program Routines

There must be one and only one program routine in every
assembled Gypsy program, Execution begins at the first
executable statement in this program routine. A program routine
can have only "var” parameters and only "var" parameters of type
buffer or structures of type buffer (buffers will not be
introduced until section 3.2.1). A program is treated as a
special procedure which is called only once and which when exited
causes the entire program to be terminated.

<program header> ::= program {<access list>}!
<"program name"” id> <formal parameter list>

2.1l Gypsy Program

A Gypsy program is a series of units, each separately
compiled and then collectively assembled into a complete program.
A unit 1is a type unit, a constant unit, a routine unit, or a
macro unit (section 3.3). Units may be entered in any
order which allows for either top-down or bottom-up structured
program development and facilitates readability by allowing a
logical rather than functional ordering of the program.

Gypsy is designed to facilitate, but is not restricted to,
interactive incremental program development. Units are compiled
in the following fashion:

1. All currently defined unit names are entered into a data
base along with their accompanying declarations. Each unit name

must be unigue.

2. A particular routine 1is selected for compilation (or
verification).

3. As the compilation proceeds, names from parameters and
local declarations are entered into the routine environment. In
addition, whenever a declaration involving a type produces an
unresolved reference, then the global data base is searched
looking only at wunit names. If the reference can be resolved,
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then the rest of the declaration is retrieved from the data base
and incorporated into the current global environment. Once a
given wunit has been retrieved, subsequent references will be
satisfied locally without additional references to the data base.
If a reference can be resolved by more than one unit definition,
then the ambiguity produces a compilation error. Note that
scalar type value names cannot be referenced directly without the
type name being first referenced.

4. Any references not resolvable by accessing the data base
as prescribed above are undefined references and are reported as

errors.

5. Once the compilation is complete, the environment is
erased before the compilation of the next routine. Any code
generated is retained in the data base for later assembly into a
complete Gypsy program. In an advanced implementation of Gypsy
much of the environment information will also be retained in the
data base to facilitate queries concerning unit

interrelationships.

The advantages to the above compilation procedure are: lack
of a required physical ordering of units, separate one-pass
compilation of a given unit, and globally available routine and

type names.
<Gypsy program> ::= {<unit> ;}+

<unit> ::= <type unit>]|<routine unit>]
<const unit>]|<macro unit>

2.11,1 Scope

The scope of a name is related to the kind of entity that
it names. In this section the scope of each different nameable
entity will be discussed.

All type declarations are units; hence they are potentially
globally defined. 1In the environment of any routine, type names
are not automatically defined, but they are available for
definition if they are referenced and there is no local
declaration for the name, Whenever, and not before, there is a
reference to the type, then the type name will become defined in
the 1local environment along with all subcomponent names
associated with the type, unless access is explicitly restricted

{see section 2.11.2). ’

Coﬁstant, routine, and macro units are treated analogously,
They are potentially globally available, but they are not defined
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in the 1local environment until they are referenced. In all
cases, references will be resolved locally whenever possible
before looking globally. This allows for local renaming of unit
names, Routines, etc. may also have restricted access (see

section 2.11.2).

Once a unit name is referenced and subsequently becomes
defined within a unit environment, then it has scope over the

entire unit.

Parameter names have scope over the routine in whose header
they appear.

Local declarations have scope over the begin statement in
which they are declared.

Subcomponent names and scalar value names have scope egual
to that of their type names, except as controlled by access
restrictions discussed in section 2.11.2.

Given the above scope rules, the uniqueness rule for names
is as follows: within any scope all base names (section 2.5.5)
must be unique (i.e, all names must be unique except for

modifier names),

2,11.2 Access Protection

An access list serves to limit access by explicitly stating
the allowed accesses. By using an access 1list to restrict
access, it is possible to provide all the protection customarily
provided by a hierarchical language structure as well as the
protection provided by “"abstract® data structures plus more
generalizable control without any of the accompany ing
unpleasantries. In this section, only the very rudimentary
access protection concepts will be discussed.

An access list may accompany any unit declaration. It may
appear in either of two positions within the unit header. First
it may appear ahead of the unit name. In this position it names
exhaustively those routines allowed to reference the unit name.
For routines, it lists those routines which are allowed to call
the routine; for types, it lists those units which are allowed 1o

declare variables of that type; etc.

The second position in which an access list may occur is
immediately preceeding the "=" symbol in the unit header. 1In
this position, it restricts access to the information available
in the unit body. For other than type units this offers no
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apparent significance and hence is not allowed, but for types it
allows the declaration of variables of a specified type without
being allowed knowledge of the internal structure of the object.
The effect is the construction of an "abstract" type.

An abstract type consists of an "abstract” object with a
set of operations which manipulate the "abstract” object. The
abstract object is actually implemented via other types, but only
the operations defined on the abstract object are allowed to know
the particulars of the implementation. Hence, the abstract type
appears to be an indivisible "primitive" type in the language.

Access lists are always optional and when omitted it is
assumed that every unit has complete access capabilities.

In compiling a routine, when it is necessary to search the
data base for a unit name the effect of the access lists 1is as

fol;ows:

1., If the access list appears ahead of the unit name and
the routine being compiled is not included in the access list,
then the name as well as its declaration are hidden from the

routine and will appear undefined.

2. If the access list appears on the end of the header and
the routine being compiled is not included in the access list,
then the information available in the header is available to the
routine, but information internal to the declaration remains
hidden. Hence, subcomponent names do not get defined and
references to them will produce errors. Likewise, references
through functions, operators, or indices require knowledge of the
internal structure which 1is unavailable; hence, they generate

errors.

<access list> :2:= <®unit name® id>
{, <"™unit name® id>}*

Example:

: type intstack <push,pop,top> =
record(st:array({(l..16)) of int;
pt:int);

procedure push(var s:intstack; e:int;
var overflows:boolean) =
begin
overflow := false;
s.pt = s.pt + 1;
if s.pt <= 18
then s.st(s.pt) := e
else overflow := true
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end
end;

By defining combinations of types employing identical modes
and restrictions, but with different access lists, it is possible
to selectively 1limit a routines access capabilities, For
example, suppose routine A declares a stack. It then has
available the routines push, pop, and top for manipulation of the
stack. Further suppose that routine B, which 1is called by A,
should only reference routine top and that we would 1like to
restrict B is such a way that the compiler can assure wus that
this is indeed the case. This is accomplished by the following

example,
Example:

procedure A(...) =
begin
var s: intstack:
B(s);

end:

type rintstack<top> = intstack;

procedure B(x: rintstack) =
begin
iéﬁly top(x) legal here}

end:

The semantics of actual/formal parameter pairs with
different access lists is simply that the access list associated
with the actual parameter type must contain the access list
associated with the formal parameter type.

2.12 Further Examples

The following examples are a collection of routines which
define and manipulate a hash table. The example was borrowed
from the Buclid Report [14]. The example solution presented
here uses a few features which have yet to be discussed, but it
is believed that these features are generally understandable.

type CyclicScan(init,next,value,stop> =
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record
(initial: boolean;
value,start,limit: bounds) ;

function <search,delete,insert> init(item: int;

size: bounds): CyclicScan =

begin
result.initial:=true;
result.value:=hash(item,size);

;result.start:=result.value;

result.limit:=size;

end;

procedure ¢search,delete,insert> next(var i:CyclicScan) =
begin
if i.initial then i.initial:=false
else
if i.value=i.limit
then i.value:=1l
else i.value:=i.value+l
end:
end;
end;

function <search, delete, insert>
val(i: CyclicScan): bounds =
begin
result := i.value;
end;

function <search, delete, insert>
stop(i: CyclicScan): boolean =
begin
result := (not i.initial) and
(i.,value = i.start)
end;

const large: integer = pending;
type bounds = integer (1l..large);

function hash(item: int;
size: bounds): bounds = pending;

type HashTable(size: bounds) - -
<initHash, earih,delete;insert> =
array (integet {1..s81ze)} of record
(flag: (fresh, full,deleted);
key: int):

function initHash(table: HashTable (size: bounds))

2.12



ICSCA-CMP~1

: HashTable(size) =
begin

result := HashTable(size *: _(fresh, 9))
end;

function search(key: int; ,
table: HashTable(size:bounds)): boolean =
begin '
var i: CyclicScan:=init(key,size);
result:=false;
loop
next (i):
if stop{i) then leave end;
case table(val(i)).flag
is fresh: leave;
is full: if table(val(i)).key=key
then result:=true;
leave:;
end:
is deleted: ;
end;
end:
end;

procedure delete(key: int;
var table: HashTable(size:bounds}) =

begin
var i: CyclicScan:=init(key,size);
loop
next(i):;
if stop(i) then leave end:
case table(val(i)).flag
is full: if table(val(i)).key=key
then table(val{i)).flag:=deleted;
leave;
end;
is fresh: leave:
is deleted: ;
end;
end;
end;

procedure insert(key: int;
var table: HashTable(size:bounds)) =
begin
var i: CyclicScan:=init(key,size):
if not search(key,table) then
loop

next (i) ;
if stop(i) then leave end:
case table(val(i)).flag
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+is fresh,deleted:
table(val(i)).flag:=full;
table(val(i)) .key:=key;
leave;
is full:
end;
end;
if stop(i) then error("table full") end;
end;
end:;
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Chapter 3
VERIFIABLE SYSTEMS LANGUAGE

In <Chapter 2, the basic language without extensions for
concurrency, verification, or error handling was defined. In
this chapter of the report these extensions will be developed.
Together, the combination of Chapter 2 and the present chapter
are considered the minimal definition of Gypsy.

The features included in this section stem primarily from
two sources: those developed through operating systems
applications to support concurrency and those developed to
support verification of programs written in Gypsy. No feature
has been included in Gypsy for which there was not alsc included
some facility to support verification of its properties.

3.1 Extended Types

In addition to the "conventional® types defined in Chapter
2, Gypsy provides an extensive set of "ligt" types. These
coupled with facilities for "abstract™ and "parameterized® types
provide the necessary support for program verification as well as
Structured programming.

3.1.1 Type Parameters

Parameterized type declarations allow for construction of
generic types which have analogous definitions. There are two
categories of type parameters: modes and restrictions (recall
that a type consists of both a mode and a set of restrictions).
Only restriction parameters will be allowed,

Syntactically, type parameters are introduced in the type
header almost identically to the way routine parameters are
introduced. The most significant difference is that type
parameters need no limitations; hence, no "var" etc,

designations.

To 4illustrate the usage of type parameters, recall the
s8tack declaration in section 2.11.2. wWithout the ability to
parameterize the type, stack type was declared with a fixed sized
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array. This definition can be made more flexible by leaving the
array size unspecified, to be supplied as a restriction in a
subsequent declaration. For example,

type intstack(n:integer)<push,pop,top> =
record (
st:array{((l..n)) of integer;
pt:(8..n));

might be used in the subseguent declarations:

var s:intstack (58):;
var t:intstack(166);

Now observe the corresponding change in procedure push.

procedure push(var s:intstack(n:);
e:integer; var overflow:boolean) =
begin
overflow := false;
s.pt := s.pt + 1;
if s.pt <= n
then s.st(s.pt) = e
else overflow := true
end
end;

Since restriction type parameters only effect restrictions
and not modes, there is little problem in generating code for
routines manipulating these parameterized types.

<formal type parameter list> ::= ( <formal type parameter>
{; <formal type parameter>}* )

<formal type parameter> ::= <"simple variable name® id>
{, <"simple variable name" id>}*
: <"simple” formal type reference>

A reference to a parameterized type looks like a routine
call, i.e. the type name followed by an actual parameter list.
However, there are some differences. In certain instances
parameters in type instantiations may be omitted. Whenever all
the parameters are omitted, then the entire parameter list may be
omitted. Thus,

intstack{):
intstack:

var 8
var s

@
®
®
e

both of the above are egquivalent.

3.1.1
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Parameters may be omitted under the following
circumstances:

1. Formal parameter types need not be completely specified
and thus may have missing restriction parameters, The missing
parameter values will be extracted from the corresponding actual

parameters.,

2. Variables wused within formal proof specifications may
have missing parameters. 1In each case all values for the given
mode will be implied. For integers this implies an infinite

number of values.,

3.1.2 List Types

The list types - sequences, strings, sets, and bags -~ were
included of necessity for program specification, but they are
generally useful types and are available for wvariable

declarations as well.

A sequence is an ordered list to which objects can be added
or removed at either end. A sequence is declared by specifying
the type of the component elements. By definition a sequence can
be arbitrarily long even if the component type is finite since
any value may appear arbitrarily often within the sequence, For
purposes of implementation it is highly desirable that seguences
be bounded as it is then possible to statically allocate storage
for the maximum size of the sequence. Hence, while arbitrary
seguences are allowed within proof=time evaluations, only
restricted sequences are allowed for run-time evaluation,

In Gypsy, sequences are bounded by placing a size
restriction on the declaration. The effect is to bind the
maximum number of elements allowed in the sequence,

<*"sequence of type” type declaration> ::= sequence <size>

of <"|ype®” type declaration>
<size> ::= ( <"integer” expression> ) | {empty}

Example:

type DaysOfYear = sequence (365) of DaysOfWeek:
type BitString(n:integer) = sequence (n) of boolean:
type SixBitString = BitString(6):

A string is a special predefined sequence type.

type string(n:integer) = sequence (n) of character;
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Because it is predefined, the compiler 1is aware of its special
status and depending upon the implementation may implement
strings differently from other sequences.

Bounds for strings are indicated in exactly the same manner
as for sequence types, i.e, by following the string type name by
a size restriction.

Example:
type Message = string(59);

A set is an unordered list in which all duplications have
been collapsed. Sets of any finite type are necessarily finite;
however, they may be extremely large. Hence, Gypsy allows size
restrictions to be placed upon a set declaration to 1limit the
amount of storage actually allocated.

<"set of type" type declaration> ::= set <size> of
<"type" type declaration>

Example:

type SetOfDays = set of DaysOfWeek;
type StartingLineUp = set (5) of integer(1..99);

A bag (also called a multi-set) is an unordered 1list in
which all duplications have been preserved. Hence, a bag is like
a sequence in that even when the component type is finite the bag
is potentially unbounded. Thus bags declared for run-time
evaluation are required to be restricted.

<"bag of type"” type declaration> ::= bag <size> of
<"type" type declaration>

Example:

type BagOfSetOfDays = bag (18@) of SetOfDays;
type BagOfStrings = bag (18) of string(100);

3.1.3 List Values

A value composition for any of the list types is a possibly
empty list of values of the component type. To compose a value
for one of the list types, the type name is used as a function
name with a parenthesized list of values of the correct component
type. This 1is analogous to the manner in which values for
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records and arrays are composed, except that the number of
component values is flexible. If their are no values within the
parentheses, it is interpreted as an empty list.

<"list of type" composition> ::=
{<"list of type type name" id>}! { {<"type"” component>
{, <"type" component>}*}! )
Example:

Message ()
StartingLineUp(11,19,22,14,33)

String values may also be expressed as strings of
characters within quotes.

<"string” value> ::= <string>
Example:

"This is a string value.®
"So is this:™ "x"

3.1.4 List Operations

The operators defined here are extensions of previous
operators, new operators extending previous operator classes, and
new operators in new operator classes. The new operator classes
sequence, set and bag all have precedence equal the class of
integer operators. Within each of the new classes all operators
have equal precedence.

Of the operators defined in section 2.8.2 only equality and
inequality apply to list types as well. Two sequences are egual
if and only if they are of the same length and they contain the
same values in the same order; two sets are equal if and only if
they contain the same values; and two bags are equal if and only
if they contain the same values and for each value they contain
the same number of copies of that value.

<"boolean" expression> ::= <"list" expression> eg\=
<"list" expression>|<"list" expression> ne\<>
<"list" expression>

Example:

Pabe® = "abc®
¥abc® <> "a b c¥
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There are two relational operations which apply to all 1list
types. These are the sub and member relations. The sub relation
evaluates to true i1f one list value is a sublist of another. The
member relation evaluates to true if a component value is a
member of a specified 1list value composed of components of that

component type.

<"boolean" expression> ::= <("list" expression>
sub <"list" expression>|<"type"” expression>
member <"list of type" expression>

Example:

"def" sub "abcdefghij”®
Mon member SetOfDays(Mon, Wed, Fri)

There is one additional sequence operator, called append,
which concatenates two sequences of the same mode.

<"sequence" expression> ::= <"sequence” expression>
append\@ <"sequence" expression>

Example:
"rthis®™ @ "is" @ "a" @ "string.” = "thisisastring.”

There are three additional operations which apply to sets
and bags. These are union, intersection, and difference.

<"set\bag” expression> ::= <("set\bag" expression>
union <"set\bag" expression>|<"set\bag" expression>
intersect <"set\bag” expression>|<"set\bag" expression>
difference <"set\bag" expression>

Example:

SetOfDays (Tues) union SetOfDays(Thurs)

3.1.5 List Functions

Portions of seguenceg are referenced through four
functions: first, last, nonfirst, and nonlast. First returns the
value which is the first wvalue of the given seguence
(conceptually the left hand end of the sequence) and last returns
the value which is the last value of the sequence (i.e. the right
end). Nonfirst and nonlast are the complementary functions to
first and last, respectively. Namely, the nonfirst of a sequence
is the sequence minus its first value and the nonlast is the
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sequence minus its last value. Thus if "s:t® is a sequence
declaration, then these functions satisfy the following
relationships:

t(first(s)) @ nonfirst(s) = nonlast(s) @ t(last(s)) = g

There is one additional sequence function length which returns an
integer value eguivalent to the number of values in the sequence.

<"type" expression> ::= first (
<"sequence of type" expression> ) |last (
<{"sequence of type" expression> )

{"sequence” expression> ::= nonfirst (
<"sequence” expression> ) |nonlast (
<"sequence" expression> )

<"integer" expression> ::= length (
<{"sequence" expression> )

Example:

seql = seg2 iff length(seql) = length(seq2) and
seql sub seqg2 and seq2 sub seql

Gypsy includes one rather unusual function, called ismerge,
which determines if there exists a merge of a bag of sequences
which is equal to a given sequence. This function |is extremely
valuable in writing specifications for concurrent processes.
Because of its existential nature, this function is only allowed
in specifications which will not be executed.

<"boolean" expression)> ::= ismerge (
<{"sequence" expression> ,
<"bag of sequence" expression> )

Example:

ismerge ("abcdefgh”, BagOfStrings(“bcf",“e",“ad",“gh“))

3.2 Concurrent Processes

Gvpsy was specifically designed to support systems
software, particularly communications software, which demands
facilities for describing concurrent execution. To be consistent
with Gypsy's philosophy of allowing nothing in the language which
formal verification could not handle and of providing an
extensive enough programming language that would eliminate the
need to go outside of the language required a powerful, vyet
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tightly controlled, set of language features. These features are
described in the next sections.

3.2.1 Buffer Tvpes

A buffer is a special type of list type which is used only
for interprocess communication. It is the only type of parameter
which may be shared between processes, Furthermore it 1is the
only type of variable which cannot be passed as a "copy"

parameter.

Associated with every buffer variable is a semaphore which
guarantees exclusive access of a single process to the entire
variable during the active execution of any operation on the
buffer variable. There is also a pair of FIFO queues associated
with each buffer. The first is a gqueue of processes waiting for
~exclusive access and the second is a gueue of processes waiting
for some property of the buffer to change (depending upon the

operation).

Buffers may also be used to communicate with the external
environment; a fact which is exploited for input/output (see

section 3.5).

It is important to note that since Gypsy programs may be
distributed across several machines, communicating processes may
or may not reside on the same machine. In either case the
compiler must provide the necessary support for the buffer

operations.

While the syntax appears to allow arbitrary structures
intermixing buffers with other types, the compiler will only
allow T"pure” buffer structures, i.e. if any component of a
structure is a buffer then all components of the structure must
be buffers. This prevents problems that would arise in passing

shared buffer structures.

<"buffer of type" type declaration> ::= buffer <size> of
<"type"” type declaration>

Example:

type MessBuf(n:integer) = buffer (n) of Message:;
var Buf:MessBuf(l):
var m:Message;
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3.2.2 Buffer Procedures

Because of the unusual nature of buffers, several
operations usually available for wvariables are not allowed.
There is no way to explicitly initialize a buffer; however, by
definition all buffers are initially empty and their FIFO gueues
are empty. There are no comparison operations; even egquality is
not defined, Assignment to a buffer variable is not allowed.
The only allowable operations are described below.

Receive and send are the two primitive operations of
process communication. The receive operation

receive m from Buf:

returns in m the first entry of the gqueue associated with Buf
provided Buf is nonempty. However, if Buf is empty the calling
process is indefinitely suspended and placed in a FIFO gueue
pending further entries into Buf. When the process reaches the
first entry of the FIFO gueue and an entry is made in Buf, then
the process is reactivated; it dequeues the first entry in Buf

and returns. Similarly,
send m to Buf;

appends m on the end (last) of the buffer list associated with
Buf provided Buf is not full, If Buf is full then the calling
process is suspended and placed in a FIFO queue pending removals
from Buf. When the process becomes the first entry of the FIFO
queue and Buf is reduced below capacity, then the process is
reactivated; it engueues m and returns.

<buffer statement> ::= send <"type® expression> to
<"buffer of type®™ variable reference)|receive
{"type” variable reference> from
<"buffer of type® variable reference>

At any time that a process is suspended either on a receive
or a send the process is said to be "blocked". The specification
of concurrent processes (section 3.6.3) is based upon
statements about conditions during blocked intervals,

3.2,3 Buffer Histories

Each buffer has associated with it a number of histories
which record the results of the send and receive ocperations
performed on the buffer. For a buffer that is declared as
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var b:buffer(bsize) of btype

the mode of each history associated with b is
1

sequence of btype.

Histories provide a precise way of stating formal specifications
for concurrent processes, and it is not necessary that they be

implemented.

Each buffer is viewed as a record consisting of the
following components

record(allto:sequence of btype;
bufg:sequence (bsize) of btype;
allfrom:sequence of btype)

The allto field is the sequence of all objects sent to the
buffer, bufg is the content of the buffer queue, and allfrom is
the sequence of all objects received from the buffer. Except
during send and receive operations, these components satisfy the

axiom
b.,allto = b.bufg @ b.allfrom.

Upon initial creation of a buffer, all three components are the
empty segquence.

The three buffer components given above are referred to as
"global" histories because they record all transactions, by any
process, on the buffers. For specifications, it also is
necessary to have "local" histories that record just the
transactions of a particular process p on a buffer. There are
two of these histories that can be used, b.infrom and b.outto.
B.infrom is like b.allfrom except that it records only those
objects that are received from b by process p. B.infrom,
therefore, is always a subsequence of b.allfrom. B.outto has a
similar relationship to b.allto. Upon entry to process p, both
b.infrom and b.outto are empty. They exist during the execution
of process p, and do not exist upon exit from p. Examples of
these histories appear in the switching network in Chapter

4'

3.2.4 Buffer Functions

There are two boolean functions empty and full which test
the status of a buffer, but since they are only meaningful when a
procesg is blocked; they can only be used in proof-time blockage

specifications.
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<"boolean™ expression> ::= empty (
<"buffer® variable reference> Y1 €ull ¢
<"buffer®™ variable reference> )

3.2.5 Process Routines

Processes differ from procedures only in the manner of
their invocation and in the limitations on their parameters,
Concurrent processes are invoked by a cobegin statement and are
executed asychronously with all other processes listed within the

cobegin. For instance,

cobegin
Pleoso)
Tleos)
L(oos)

©e W we

end:;

stipulates that the three processes P g, and r are to be
executed concurrently. The calling routine is suspended as a
result of the process calls until either all the processes exit
and return or an exception condition occurs.

Process scheduling is performed by the run-time support
system and is incompletely specified here. The chosen algorithm
must satisfy at least these three criteria: 1. the system must
not block as long as there are still processes capable of being
run, 2. the algorithm must support priority levels, and 3. the
algorithm must be "fair" among equal priorities., The first
stipulation is required for verification; the second stipulation
provides a solution to interrupts; and the last stipulation is
highly desirable of any scheduling algorithm.

Interrupts are handled in Gypsy by gueuing a message to a
high priority process suspended waiting for input from the
interrupting device. The scheduling algorithm must respond by
preempting any lower priority process and immediately scheduling

the interrupt process.

Note: More information on the processing of interrupts will
be supplied in a supporting document on compiler directives

[11}.

Since there are no global variables, the only variables
that processes can share are parameters; and, since buffers are
the only types of variables which are protected by semaphores,
they are the only alterable parameters allowed to processes,
i.e. the only "var” parameters. This insures that all shared
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variables, except constants, are protected. Other types of
variables may be passed as “"const" or ‘"copy" parameters to

processes.

Processes can invoke functions, procedures, and other
processes; however, processes may not be recursive. When a
process invokes another routine, it invokes a separate copy which
is not shared with any other processes. 1In terms of the run-time
environment, process invocation causes & fork, creating a new
environment for each concurrent process, Each process then
executes other routines by envoking them in their own process
environment. In any actual implementation reentrant code 1is to
be encouraged and will 1limit the number of required copies to
separate copies of the data plus one copy of each routine per

machine.

Note: More information on the distribution of <c¢ode across
machines will be supplied in a supporting document on compiler
directives [11].

<process header> ::= process {<access list>}!
<"process name" id> <formal parameter list>

Example:
process producer (var get, store: Buf) =
begin
var i: Message;
loop
receive i from get;
send 1 to store;
end;
end:

process consumer (var store, put: Buf)
begin
var i: Message;
loop
receive 1 from store;

send i to put;
end:;
end;

program ProducerConsumer (var get, put: Buf)
begin
var store: Buf;
. cobegin
producer (get, store):
consumer (store, put);
end;
end;
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3.2,6 Cobegin Statements

The cobegin statement is used solely to start concurrent
execution of processes. It stipulates that each of the Process
calls contained within it are to be invoked simultaneously. From
an implementation point of view, it stipulates that each process
is to be scheduled for execution and that the calling routine is
to be suspended pending termination of the called processes.

<cobegin statement> ::= cobegin
<extended routine call statement>
{; <extended routine call statement>}* <end clause>

Example:

cobegin
Producer (get, store):
Consumer (store, put);
end;

'3.2.7 Extended Routine Calls

Because it may be desirable to call some number of
identical copies of a process, it is possible to parameterize a
process call and stipulate a range of values to be substituted
for the parameter. This construct is only valid within a cobegin
statement. The local index has scope only over the process call

statement.

<extended routine call statement> ::=
<routine call statement> {<each clause>}!

<each clause> ::= each <"type variable name"™ id>
: <"type" type reference>

Example:

cobegin
Producer (get (i), store(i)) each i:(1..N):
Consumer (store(i), put(i)) each i:(1..N);

end:;

3.2.8 Await Statements

The await statement creates a facility for simultaneously
waiting on more than one buffer operation. This is an essential
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capability for any polling process. The optional after clause
allows the waliting process to resume execution after a specified
time interval even if none of the buffer operations has
completed. The first buffer operation capable of completing will
be performed followed by the corresponding on clause. The
algorithm for selecting between two or more operations capable of
being performed 1is assumed to be "fair”"” so that considerations of
indefinite waiting may be ignored.

<await statement> ::= await {on <buffer statement> :
<statement list>}+ {after <"integer" expression> :
<statement 1list>}! <end clause>

Example:

loop
await
on receive m from x : send m to y;
on receive m from y : send m to x:
after longtime: send "start™ to x;
end;

end:;

3.2.9 Clock Types

A clock variable is a data structure realization of time,
It provides a means of measuring time and of synchronizing
events, In Gypsy, c¢locks are special wvariables which the
programmer is never allowed to alter, but which monotonically

increase periodically.

Since Gypsy programs may be distributed across a network of
computers, where - it would be impossible to synchronize clocks,
and since Gypsy programs are written without regard to how they
will be distributed, there are several stipulations on the usage

of clocks.

1. There are no global clocks (consistent with no global
variables).

2., Clocks cannot be passed as parameters {(caller and callee
may not be on the same machine).

3. Two different clock variables are not guaranteed to be
synchronized (in fact, they may not even increment at the same

rate).

Clock variables are referenced by a special clock statement
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which results in an integer value being assigned to an integer
variable. A clock statement was chosen in lieu of a function in
order to avoid expression order evaluation problems as well as
comparison expressions, such as clock = clock, which are
sensitive to timing.

There is no facility for initializing clocks. Cilocks run
independent of any program or programmer control.

Clock declarations can occur as 1local declarations in
processes, procedures, and programs, but not in functions.

<local clock> ::= clock <"clock variable name" id>
{, <™clock variable name" id>}*

Example:

clock time:

3.2.18 Clock Statements

A clock statement is used to obtain the current time as
recorded by a named clock variable.

<clock statement> ::= log <"integer" variable reference>
at <"clock variable name" id>

Example:

log i at time;

3.3 Macros

A macro provides a means of assigning a name to a
parameterized expression, It is parameterized, but there are no
type declarations for the parameters, Macros are complled by
replacing the <calling reference by the macro body after
substituting the actual parameters for the formal parameters, and
then evaluating the expression in the calling environment. Thus
any free variables in the macro body are bound in the calling
environment.

A macro may appear in any context in which a variable
reference or expression is 1legal, including on the left of an
assignment provided that the macro once replaced evaluates to a

variable reference.
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Macros, like constants, can appear as either a unit or as a
local declaration.

Macro calls may be nested, but recursion is forbidden.

<macro unit> ::= <macro header> = <"untyped” expression>
<local macro> ::= define <"macro name" id>

{( <"untyped variable name” id>

{, <"untyped variable name” 1d>}* )}!

= <"untyped" expression>
<macro header> ::= define {<access list>}!

<"macro name® id> {( <"untyped variable name" id>

{, <"untyped variable name” id>}* )}!

Example:
begin
define Taxes (i) = TaxFile(i).Tax;
i := 1;
loop
if 1 > N then leave end;
TotalTaxes := TotalTaxes + Taxes(i);
i =1 + 1
end:
end:

3.4 Pending

The reader 1is reminded that Gypsy was designed for
structured, interactive, and incremental program development and
verification. A valuable development aid is the “pending”
expression/statement. It allows a partial development of a unit
for which the programmer wishes to postporie complete
specification and/or implementation. The intent is to allow
partial information to be entered into the data base and employed
without the compiler objecting to the missing parts. For
verification it 1is frequently valuable to have the unit header
and certain specifications available even without the actual
code. The language is designed to allow partial compilation of
units even in the presence of pendings; however, there will be no
attempt at code generation and the data base will be marked to
record the presence to the pendings for later prompting.

Example:
type Surprise : SurpriseType = pending;

function Pop(s:intstack(n:)):integer =
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begin
cexit Pop(s) = s.st(s.pt);
pending;

end;

3.5 Input/Output

Input/output in Gypsy is accomplished by process
communication with external processes. The buffers used to
perform this external communication are parameters to the program
routine., These buffers must be declared to match the data format

of the desired devices.

Note: More information on input/output will be supplied in
the supporting document on compiler directives [11]. »

3.6 Specifications

In this report no attempt will be made to develop the
methodology for verifying programs, only the necessary
specification statements will be defined. The proof methodology
will be described in detail in other supporting documents.

Specifications fall into two categories: those that are to
be proved and those that are to be validated. Syntactically,
these two categories are distinguished by the absence or presence
of an T"otherwise™ clause. Whenever the optional clause is
present the specification is to be checked at run-time and if it
should fail to be true, then the named condition is signaled.

More specifically, there are four possibilities for
specifications, These are 1. prove, 2. prove and check, 3.
assume, and 4. assume and check. In addition there are two
shorthand variations which allow the keywords "prove™ and
"assume” to be omitted. These two possibilities are defined by:
"..o. b" is short for "... (prove b)" and "... b otherwise <¢" is
short for ®... (assume b otherwise c)", where *..." is one of the
specification keywords.

Whenever a primed variable reference appears within a
specification statement it is interpreted as the value of the
variable reference upon entry to the routine and are allowed only
in "kegep®, "exit®™, “Tcexit”, and "block® specifications. Primed
variable references are not allowed in run-time expression

evalutions.
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<assertion> ::= <("boolean” expression>|

<"boolean" expression> otherwise <condition>|

( <assertion clause> {; <assertion clause>}* )
<assertion clause> ::= prove <"boolean” expression>|

prove <"boolean"” expression> otherwise <condition>|

assume <"boolean" expression>|

assume <"boolean"” expression> otherwise <condition>
<"type" primed variable reference> ::=

<"type" variable reference>

3.6,1 Type Specifications

There are two kinds of type specifications: requirements
and axioms. - Requirement specifications are necessitated by the
existence of type parameters. They allow the specification of
required properties which must be met in order for the type
definition to be properly defined. An axiom states properties
about the data type which must hold at all times except when the
structure is being manipulated by any of the routines explicitly

named in the type access list.

<type spec> ::= {require <assertion>}!
{axiom <assertion>}!

Example:

type intstack(n:integer) <push, pop, top, empty, equal> =
begin
require n > @;
axiom all s:intstack(n),
not empty(s) imp equal(push(pop(s), top(s)), s);
record(
st:array(integer(l..n)) of integer;
pt:integer(8..n));
end;

3.6.2 Statement Specifications

Statement specifications make assertions about the state of
the program at certain points in the code. These specifications
may be checked by verification prior to execution, validated
during execution, or analyzed after execution depending upon the
type of statement. Assertions state properties which must hold
whenever control passes through that statement in executing the
program. The trace statement calls for a snapshot dump of the
variables involved in the expression at the point of execution
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for the statement. These dumps will be followed by a post-
execution analysis.

{statement spec> ::= assert <assertion>
trace <"boolean" expression>

Example:

procedure concat({var a, b: string) =
loop
assert a @ b = a' @ b’
if length(b) = @ then leave end:
trace length(b) > @;
a := a @ b.first;
b := b.tail;
end:

3,.6.3 Routine Specifications

Routine specifications all have the same basic form. They
differ only in the scope of their definitions. We will comment
about each individually.

"Entry” specifications are valid only upon routine entry;
likewise, "exit" specifications are valid only upon routine exit,
"Block" specifications are true only when a routine is suspended
due to a buffer condition. 1In stating external specifications,
only variables declared outside the block may be referenced.
With respect to parameters, external specifications are only
allowed to reference identifiers declared in the routine header:;
never internal names of their type declarations.

"Centry®, "cblock®, and "cexit®™ specifications (concrete
entry, etc.) perform the same function as "entry”™, ®“block”, and
"exit” specifications except that in addition to the information
available in the routine header they may also reference the type
body definitions referred to in the header, provided of course
that the routine has access rights (see section 2.11.2). The
significance of this '-distinction is that if a routine x
references a routine y in which there are both external and
internal specifications, then the external specifications of vy
may be extracted and used in the proof of x, but not so for the
internal specifications of y.

Both "exit™ and “cexit"™ specifications are allowed a

special case syntax to enumerate the possible exit conditions
that correspond to normal as well as conditioned termination.
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The reserved identifier "normal” is used to identify the normal
case,

A "keep" specification is used to make statements about the
properties of 1local variables which are true after variable
initialization for the duration of their scopes. Unlike other
routine specifications this specification is always valid within
+he routine in which it is declared. The keep does not, however,
follow parameters into the execution environment of a called

routine.

Routine specifications are evaluated in the following
order: entry, centry, {..., cblock, block,} ..., cexit, exit;
where "..." represents routine code and with keep specifications

being evaluated where appropriate.
<external spec> ::= {<entry spec>}! {<block spec>}!
{<exit spec>}!
<entry spec> ::= entry <assertion>
<block spec> ::= block <assertion>
<exit spec> ::= exit <assertion>|exit case
( {is <condition> {, <condition>}* : {<assertion>}!}+ )
<internal spec> ::= {<centry spec>}! {<cblock spec>}!
{<cexit spec>}!
<centry spec> ::= centry <assertion>
<cblock spec> ::= cblock <assertion>
<cexit spec> ::= cexit <assertion>|cexit case
( {is <condition> {, <condition>}* : {<assertion>}!}+ )
<local spec> ::= keep <assertion>

oo »

[ I

Example:
var isinteger := 8;
keep i mod 2 = B; (i is an even number)

Example:

procedure push(var s:intstack(n:);
const e:integer; cond overflow) =
begin
exit case(
is normal: top(s) = e
is overflow: s = §');
cexit case(
is normal: s.pt = s'.pt + 1 and s.st(s.pt) = e
is overflow: s = s')
if s.pt < n
then s.pt := s.pt + 1;
s.st{s.pt) := e
else signal overflow
end:;

=Y
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end;
Example:

program ProducerConsumer (var get, put:Buf) =
begin
block not full(put) imp empty(get) and
put.outto = get.infrom;
var store:Buf;
cobegin
producer (get, store):
consumer (store, put):
end;
end;

3.7 Run-Time Validation

Run-time validation serves the function of verifying
specifications by performing run-time checks to establish their
validity. A specification is specified for run-time validation
by appending an otherwise clause to the specification. The
compiler will then generate the appropriate code to perform the
checks and signal the specified condition should it fail, This
condition must be declared in an enclosing scope.

3.7.1 Conditions

A condition is an instantaneous event which may occur
during the execution of a program; caused by either a predefined
or a user-defined event. The exact set of predefined conditions
depends in part upon actual hardware design, but a subset of
necessary conditions can be defined independent of hardware
peculiarities. The list enclosed is by no means exhaustive. A
condition declaration creates a name for a user~defined condition
which the user may cause by explicitly signalling it or by its
being attached to a run-time check. Conditions may be passed as
parameters in routine calls.

<local condition> ::= cond <"condition name"® id>
{;, <"condition name" id>}*

<condition> ::= <"condition name® id>|indexerror|caseerror|
aritherror!initializeerrorlbuffererroriroutineerrori
rangeerrorlsenderrorlreceiveerroriassignerrorltypeerror

Example:

3.6.3 - 3.7.1
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cond stackoverflow:

3.7.2 Signal Statements

The signal statement provides the user a means of causing a
condition. The user caused condition i1s treated exactly like a
system caused condition.

<signal statement> ::= signal <condition>

Example:

signal stackoverflow;

3.7.3 Condition Clauses

All compound statements terminate with an end clause. Up
to this point in this report, the end clause has been simply the
word end. However, an end clause may also be an optional "when"
clause., A "when" <clause 1lists a set of conditions with
corresponding actions to be taken in the event that the condition
should occur. The "when®™ clause is treated exactly like a case
statement where the case expression type is a condition and the
case labels are condition names. For normal exits from a
compound statement, the "when" clause is skipped over and
execution continues immediately following the "end"” of the

compound statement.

Whenever a condition occurs inside a compound statement the
following actions occur:

1. If the condition name appears in the "when®™ clause for
the compound statement, then the corresponding action is
executed.

2. If the "when®™  clause for the compound statement has an
else part, then the else action is executed.

3. If the compound statement is contained within another
compound statement, then the inner compound statement is exited
to the next immediately enclosing compound statement and the
search continued from step 1.

4, If there are no more enclosing compound statements and

if the condition name is a parameter, then the routine 1is exited
and the search is continued from step 1 in the calling

3.7.1 - 3.7.3
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environment after substituting the actual for the formal
condition parameter name.

5. If there are no more enclosing compound statements and
the condition is not a parameter, then the routine is exited with
the condition being transformed intc a routineerror. The search
continues from step 1 in the calling environment.

6. If there is no calling routine, i.e. it is the main
program, then the system aborts.

A "when" clause 1is only entered upon the occurrence of a
condition and is ignored under normal execution. Whenever an
action within a "when™ clause is executed, then the compound
statement is exited immediately afterwards.

If the compound statement being exited happens to be a
cobegin statement an interesting situation occurs. What happens
to the other processes within the cobegin? If any process within
a cobegin returns a condition, all of the other processes are
immediately signalled by a cobeginerror condition to terminate.
After all processes have terminated, then the original condition
is processed in a normal manner beginning at step 1. At the
moment there is no scheme for enforcing termination of a process

voluntarily.

<when clause> ::= when {is <condition> {, <condition>}*
: <statement list>}+ {else : <statement list>}! end

Example:
loop
X 1= x + 1;
when
is rangeerror : x := 8:
end:
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Chapter 4
A MESSAGE SWITCHING NETWORK

The following example follows part of the development of a
simple message switching network and illustrates many of the
important features of Gypsy. Only the specification and
implementation of the network will  be discussed. Its
verification is beyond the current scope. The development of the
network will be top-down, but Gypsy - admits any kind of program

design strategy.

The top-level structure of the network is shown in figure
1. The network switches messages among a fixed number of users,
each of which communicates with the network through a port. Wwe
will ignore protocols, and assume that each message is a

Figure 1. Network Top-Level Structure
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separate, complete communication. Even at this early stage of
development, the network can be written in Gypsy.

program Network (var upa:PortArray) = pending;
 type PortArray = array(UserId) of Port;

type UserId = integer(l..NUsers);
const NUsers:integer = pending;

type Port = record(Get,Put:Line);
type Line = buffer(CSize) of Message;
const CSize:integer = pending;

type Message = pending;

This program gives a precise description of the lines of
communication between the network and its external environment.
Communication is through an "array(UserId) of Port." Each port is
a record consisting of two buffers, and each buffer contains a
maximum of <csize messages. The type userid 1is an integer
restricted to the range (1l..nusers). The actual number of users,
the maximal buffer size, the structure of messages, and the
implementation of the network are left pending.

In a simple network with no protocols, the fundamental
specification that is desired is that messages are delivered
properly among all possible pairs of users. This specification
for the network can be written as

program Network(var upa:PortArray) =
begin
block all i,j:userid,
ProperDelivery (i, j,upa);
pending;
end;

The specification is written as a block, instead of an exit,
specification because we intend the message network to be non-
terminating. The network being blocked means that all processes
in the network are blocked. This could happen for any number of
reasons, including deadlock, but in this example, it will mean
that there is no further input available from any user.

Before we can proceed with the implementation o©of the
network, it is necessary that we be more specific about the
meaning of "properdelivery.” Loosely speaking, what we mean is
that user j receives only those messages that were intended for
j. We will make this definition precise with a macro.

define ProperDelivery(i,j,pa) =
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mail (pa(j).Put.outto,i, i)
sub mail (pa(i).Get.infrom,1i,3);

(The macro definition was chosen to illustrate the use of macros.
ProperDelivery also could have been defined using a function.)
Pa(j).put.outto 1is the sequence of all messages sent out to
buffer pa(j).put by the network, and pa(i).get.infrom is the
sequence of messages received in from buffer upa(i).get. The
function mail(ms,i,j) is the subsequence of messages in message
seqguence ms that are directed from port i to j.

The completion of the definition of properdelivery requires
a precise definition of the mail function, and mail in turn will
require some additional information about messages.

function mail (ms:MessageSequence;i,j:UserId)
:MessageSegquence =
begin
exit (assume mail(ms,i,j) =
if ms=MessageSegquence()
then MessageSequence ()
else if i = Source(first(ms)) and
j = Destination(first(ms))
then MessageSequence (first(ms))
@ Mail (nonfirst(ms),i,3j)
else Mail (nonfirst(ms),i,j)
£i £i):
end;

type MessageSequence = sequence of Message;

type Message<Source,Destination,Text,Compose,
Equal> =
begin
axiom all m:Message,
Equal (Compose (Source(m) ,Destination(m),
Text(m)) ,m);
pending;
end:;

function Source (m:Message) :UserId =
pending;

function Destination(m:Message) :UserId =
pending;

function Text(m:Message) :CString =
pending;

function Compose(s,d:Userid;t:CString)
:Message = pending;

function Egqual (ml,m2:Message) :boolean =
pending;
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type CString = sequence (188) of char;

The definition of mail(ms,i,j) is given as an assumed exit
specification which gives a complete recursive definition of
mail. The definition of mail requires a new type,
messagesequence. The type definition “sequence of message"”
defines a potentially infinite sequence of messages., Sequences
are given a precise meaning by the semantics of Gypsy, but it is
not necessary that they be implemented. Gypsy has a number of
these kinds of constructs. They are included for purposes of
formal program analysis, and may appear anywhere in a program
where execution is not required, such as in specifications that
are proved or assumed. In contrast, the type cstring is a
sequence of ASCII characters of maximal size 184. Normally a
Gypsy implementation would contain finite sequences but not
infinite ones. Size restrictions can be enforced by run-time
checks, and both kinds of sequences share a common semantics,
Messagesequence() denotes the empty sequence of messages. 1In
general, type names can be used to construct objects of that
type. The @ operator is the sequence append operator.

The definition of mail makes use of two functions on
messages, source and destination. The type definition of message
permits these functions, as well as text, compose, and equal,
access to the internal structure of messages, which is left
pending. The axiom states an identity relation that must be
maintained among this set of functions. This axiom implies that
three kinds of information can be extracted from a message, a
source, destination, and text part. The source and destination
are the means of directing a message from one user to another,
and the text is the actual content of the message to be
transmitted. The compose function builds a message from these
three parts, and equal defines a message equality. This is the
only information that we will need to know about messages to
carry out the full specification, implementation, and
verification of the network process. Eventually, of course, we
must choose a concrete representation of messages, and prove that
the representation and the implementation of the functions that
can access it satisfy the axioms.

Now we can give a completely precise interpretation to
properdelivery. For every i,j pair, the mail from source 1 that
is sent out to port j must be a subsequence of the mail received
in from port i that is designated for destination j. This
requires that the messages be the same and that they arrive in
the same order that they were sent. The subsequence relation
permits the network to drop messages. This is a concession to
the reality of potentially unrecoverable transmission failures.
This completes the specification of network.
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We can proceed with the top-down design at any place in the
current Gypsy program where a pending appears. There are many
ways this program could be implemented to satisfy the block
specification, but we will choose the following.

program network (var upa:PortArray} =
begin
block all i,j:userid,
ProperDelivery(i,j,upa);
var npa:PortArray;
cobegin
Node (upa (i) ,npa(i), i) each i : Userld;
switch(npa):;
end;
end;

process Node(var up,np:Port;i:UserId) =
begin
block up.Put.outto sub np.Put.infrom
and np.Get.outto sub up.Get.infrom;
pending;
end;

process Switch(var npa:PortArray) =
begin
block all i,j:UseriId,
ProperDelivery(i,j,npa);
pending;
end;

This implements the program as a star network where each user is
attached to exactly one node, and all of the nodes are connected
to a single switch as shown in figure 2. Each node 1is similar
to a full-duplex channel program passing messages unaltered, and
in sequence, between the user and the central switch. All of the
nodes and the switch are set into concurrent execution by the
cobegin in the network program.

A node can be implemented by decomposing it into two one-
way channels operating asychronously.

process Node(var up,np:Port;i:UserId) =
begin .
block up.Put.outto sub np.Put.infrom
and np.Get.outto sub up.Get.infrom;
cobegin _ ‘
Pass{np.Put,up.Put,i,Depart);
Pass(up.Get,np.Get,i,Arrive);
end;
end;
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process Pass(var x,y:Line; 1:UseriId;
d:Direction) =
begin
block y.outto sub x.infrom;
var m:Message:
loop
assert y.outto sub x.infrom;
receive m from x:
trace i = if 4 = Depart
then Destination(m)
else Source(m) £i;
send m to y:
end;
end;

type direction = (Arrive, Depart):

Pass is intentionally programmed as a non-termination 1loop. The
loop simply receives messages from line x and passes them on to

Figure 2. Network First-Level Refinement
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line y performing a trace depending on the value of d. The send
and receive statements are potential blockage points, and these
are the points where the block specification must hold. A
cobegin, as in node or network, also is a potential blockage
point.

The switch process also loops forever waiting on each
buffer in its turn for a small time slice. If input is ready it
will receive it; otherwise, it will time out and go on to the
next buffer.

process Switch(var npa:PortArray) =
begin
block all i,j:Userld,
ProperDelivery(i,j,npa):
var m:Message;
var k:UserlId;
cond DestinationErr;
keep Destination(m) in (1. .NUsers)
otherwise DestinationErr;
loop
k = 1;
loop
if k > NUsers then leave end;
assert all i,j:UserId,
ProperDelivery(i,j,npa);
await
on receive m from npa(k).Get:
send m to npa(destination(m)).Put;
after TimeSlice: ;
when
is DestinationErr: ;
end: ‘
k := k + 1;
end;
end;
end;

const TimeSlice:integer = pending;

Switch repeatedly iterates through the get buffers of the ports
attempting to receive a message. Control leaves the inner loop
at the leave statement, and the outer loop runs indefinitely. If
a message is not received in timeslice amount of time, the await
is exited and the next buffer is considered. If a message is
received within the allocated amount of time, it is sent to the
appropriate destination. The keep specification of switch is
evaluated each time one of its variables is assigned a new value.
If the specification ever 1is violated, a destination error is
signalled. The keep prevents an invalid array index in the send
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statement. If the error occurs, control is transferred to the
when clause of the await and the destinationerr part of the when

is performed. In this case, switch does nothing, thus dropping
the message. This conforms with the subsequence relation

specified in properdelivery.

The process structure of the complete network is shown in
figure 3. All of these processes run concurrently. The
intermediate level of a node process was not necessary. The pass
processes could have been invoked explicitly from the cobegin in
the network. The extra level of decomposition is helpful
conceptually and in breaking the network into small, individually

verifiable components.

Now let us return to the implementation of messages. They
will be implemented in the obvious way as a record of three

fields.

type Message<Source,Destination,Text,Compose,
Equal> =

Figure 3. Network Second-Level Refinement
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begin
axiom all m:Message,
Equal (Compose (Source(m) ,Destination{m),
Text(m)) ,m);
record(s,d:Userid; t:CString):
end;

function Source(m:Message) :UserId =
begin

cexit Source{m} = m.s;

result := m.s;
end:

"function Destination(m:Message) :UserId =
begin .

cexit Destination(m) = m.d;

result := m.d;
end:;

function Text (m:Message) :CString =
begin

cexit Text(m) = m.t;

result := m.t;
end;

function Compose(s,d:UserId; t:CString)
:Message =
begin
cexit Compose(s,d,t) = Message(s,d,t):
result := Message(s,d,t);
end;

function Equal(ml,m2:Message) :booclean
begin
exit Equal(ml,m2) iff Egual(m2,ml):
cexit Equal(ml,m2) iff
ml.s=m2.s and ml.d=m2.d and ml.t=m2.t;
result := ml.s=m2.s and ml.d=m2.4d
and ml.t=m2.t;
end;

In the functions that are permitted access to the internal
structure of messages, centry and cexit specifications also are
permitted access to the internal structure, but entry and exit
specifications are not. Entry and exit specifications are
visible externally, to the routines that call the functions, but
centry and cexit specifications are not. This prevents the
external specifications from revealing the internal structure of
messages. In a function the local variable with the reserved
name "result” is the value assigned to the function upon exit,
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It can be used in the same way as any other local variable. 1In
the function compose, message(s,d,t) is another example of the
type name used to construct an object of that type.
Message(s,d,t) creates a message with successive fields equal to

s, d, and t.

This completes the program and its specifications except
for assigning values to the pending constants nusers, c¢size, and
timeslice. The program at this stage of development can be

written as

program network (var upa:PortArray) =
begin
block all i,j:userid,
ProperDelivery(i,j,upa);
var npa:PortArray;
cobegin
Node (upa(i) ,npa(i),i) each i : UserlId;
switch(npa);
end;
end;

type PortArray = array(Userld) of Port;

type UserId = integer(l..NUsers):;
const NUsers:integer = pending;

type Port = record(Get,Put:Line);
type Line = buffer(cslze) of Message;
const CSize:integer = pending;

define ProperDelivery(i,j,pa) =
mail (pa(j).put.outto,i,j)
sub mall(pa(i).get.infrom,i,j);

function mail (ms:MessageSequence;i,j: UserId)
:MessageSequence =
begin
exit (assume mail(ms,i,j) =
if ms=MessageSequence()
then MessageSequence()
else if i = Source(first(ms)) and
j = Destination(first(ms))
then MessageSequence(first(ms))
@ Mail(nonfirst(ms),i,3)
else Mail (nonfirst(ms),i,3)
£i £i);
end:;

type MessageSequence = sequence of Message;
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process Node(var up,np:Port;i:UserlId) =
begin
block up.Put.outto sub np.Put.infrom
and np.Get.,outto sub up.Get.infrom;
cobegin
Pass(np.Put,up.Put,i, Depart):
Pass(up.Get,np.Get,i,Arrive);
end;
end;

process Pass(var x,y:Line; 1i:UserId;
d:Direction) =
begin
block y.outto sub x.infrom;
var m:Message;
loop
assert y.outto sub x.infrom;

receive m from x;
trace i = if 4 = Depart
then Destination(m)
else Source(m) fi;
send m to y;
end:;
end;

type direction = (Arrive, Depart):;

process Switch(var npa:PortArray) =
begin
block all i,j:Userld,
ProperDelivery(i,j,npa):;
var m:Message;
var k:UserId;
cond DestinationErr;
keep Destination(m) in (1l..NUsers)
otherwise DestinationErr;-
loop
k := 1;
loop
if k > NUsers then leave end;
assert all i,j:Userld,
ProperDelivery(i,j,npa);
await
on receive m from npa(k) .Get:
send m to npa(destination(m)).Put;
after Timeslice: ;
when
is DestinationErr: ;
end:;
k 2= k + 1;
end;



ICSCA=-CMP~1

end;
end:;

const TimeSlice:integer = pending;

type Message<Source,Destination,Text,Compose,
Equal> =
begin
axiom all m:Message,
Equal (Compose (Source (m) ,Destinaticn (m),
Text(m)) ,m);
record(s,d:Userid; t:CString); -
end;

type CString = sequence (106) of char;

function Source(m:Message) :UserId =
begin

cexit Source(m) = m.s;

result := m.s;
end;

function Destination(m:Message) :UserId =
begin

cexit Destination(m) = m.q;

result := m.d;
end;

function Text (m:Message) :CString =
begin

cexit Text(m) = m.t;

result := m.t;
end;

function Compose(s,d:Userld; t:CString)
:Message =
begin
cexit Compose(s,d,t) = Message(s,d,t):
result := Message(s,d,t):
end;

function Equal(ml,m2:Message) :boolean =
begin
exit Equal(ml,m2) iff Equal(m2,ml):
cexit Equal(ml,m2) iff
ml.s=m2.s5 and ml.d=m2.d and ml.t=m2.t;
result := ml.s=m2.s and ml.d=m2.d
and mi.t=m2.t;
end; '

79
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There are many details of Gypsy that this example does not
illustrate, but the development of this program and its
specifications provides a good overview of the philosophy and
capabilities of the language.
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Chapter 5

CONCLUSION

Gypsy has a number of important and distinctive aspects.
It is a high-level language for general purpose computing that
also supports the development of systems programs. It includes
facilities for concurrency and timing, execution in imperfect
run-time environments, and an access control mechanism. Gypsy
includes extensive and powerful facilities for expressing
functional specifications of its programs and of the units from
which the program is structured. All constructs in Gypsy are
verifiable either by formal proof or run-time validation. Run-
time validation can be used effectively to reduce the size and
complexity of the formal proofs. Facilities are provided for
decomposing both routines and data into small, 1logically
meaningful, units that can be verified independently. This
modularity greatly enhances the practical feasibility of formal
proofs. We believe that integrating these features smoothly into
a common language is a significant step forward in the design of
languages to support the systematic development of highly

reliable computer programs.
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Appendix A

SYNTAX

2.3
<symbol> ::= <letter>|<digitd>|<score>|<prime>|<opcode>]
<quote>|<blank>|<bracket>|<special>
<letter> ::= # upper/lower case ASCII letter #
<digit> ::= @]112]3141516171819
<score> ::=
<prime> ::= T
<opcode> ::= +|=|*[/I<|>]@|=]|.1,1;:]:
<guote> ;:= "
<blank> ::=
<bracket> ::= <[> (1) I{]}
<special> ::= # all other ASCII characters #
2.4
<token> ::= <id>|<number>|<character>|<string>|<comment>
<id> ::= <letter> {{<letterdigitscore>}* <letterdigit>}!
<number> ::= {<Kdigit>}+
<character> ::= <prime> <symbol>
<string> ::= <quote> {<symbol>}* <guote>
<letterdigitscore> ::= <letterdigit>|<score>
<letterdigit> ::= <letter>|<digit>
<comment> ::= { #string not containing { or }# }
2.5
<type unit> ::= <("type" type header> =
<"type" type body>|pending
<"type" type header> ::= type {<access list>}!
<"type type name” id> {<formal type parameter list>}!
{<access list>}!
<"type" type body> ::= <"type" type declaration)|
begin {<type spec> ;}* <"type"” type declaration> end|
begin {<type spec> ;}* pending end
2.5.1
<"simple type" id> ::= rationallinteger|character]
<"scalar type" id>
<"scalar type" id> ::= boolean|<"scalar type name® id>
<"scalar®™ type declaration> ::= ( <"scalar value® id>
{, <"scalar value®™ id>}* )
2.5.2

<"simple®™ value> ::= <"rational” value>]
<"character® value>|<"scalar”® wvalue>
<"rational”™ value> ::= <"integer" wvalue>|



ICSCA-CMP-1 - 83

2.5.3

2.5.4

2.5.5

2.5.5

2.5.6

2.6

<"integer”® value> / <"integer®™ value>
<"integer” value> ::= <number>|- <number>
{"character" value> ::= <character>|<"character value®” id>
<"scalar”™ wvalue> ::= <"scalar value" id>

<"simple” type declaration> ::= {<"simple type name” id>}!
<"simple” range>

<"simple” range> ::= ( <"simple" expression> ..
<"simple"” expression> )

<"type" type reference> ::= <"type type name” id>| ,
<"type type name"” id> <"type" range>|<"type” range>|
<"type type name" id> <actual type parameter list>

<"type" formal type reference> ::=
{"type" type reference>|<"type type name" id>
<actual/formal type parameter list>

<actual type parameter list> ::= ( <actual type parameter>
{, <actual type parameter>}* )|{empty}

<actual type parameter> ::= <expression>|{empty!}

<"record of typel...typen” type declaration> ::=
record ( <"typel” field declaration>
{; <"typei" field declaration>}?* )

<"type"” field declaration> ::= <"type" field header>
¢ <"type" type declaration>

<"type®” field header> ::= <"type field name"” id>
{, <"type field name" id>}*

<"array typel of type2" type declaration> ::=
array ( <"typel"” type reference> ) of
<"type2" type declaration>

<"simple” composition> ::= <("simple type name” id>

( <"simple" expression> )|_ ( <"simple” expression> )
<"record of typel...typen" composition> ::=

<"record of typel...typen type name® id> (

<{"typel" component> {, <"typei" component>}* )|

_ ( <"typel" component> {, <"typei" component>}* )
<"array typel of type2" composition> ::=

<{"array typel of type2 type name" id> (

<"type2" component> {, <("type2"™ component>}?* )|

_ {( <"type2" component> {, <"type2" component>}* )
<"type" component> ::= {<"integer” expression> *:}!

<{"type" expression>
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<constant unit> ::= <"type"” constant header>

{: <"type" type referenced>}! = <"type" expression>]
<"type" constant header> : <"type"” type reference>
= pending

<local constant> ::= const <"type constant name" id>
{: <"type" type reference>}! = <"type" expression>|
const <"type constant name" id> :
<"type"” type reference> = pending

<"type" constant header> ::= const {<access list>}!
<"type constant name®” id>

2.7
<local variable> ::= <"type" variable header>
{: <"type"” type reference>}! {:= <"type" expression>}!]
<"type" variable header> : <"type"” type reference>
= pending
<"type" variable header> ::= var <"type variable name" id>
{, <"type variable name" id>}*

2.7.1
<"type" variable reference> ::= <("type variable name®” id>|
<"record of ...type..." variable reference> .
<"type field name" id>|
<"array typel of type" variable reference> (
<"typel” expression> )

2.8
<"type” expression> ::= <"type"” value>]
<"type" composition>|<"type constant name" id>|
<"type" variable reference>|
{"type" primed variable reference>|
<"type” function call> ( <"type"” expression> )

2.8.1
<"type” function call> ::= <"
{<actual parameter list>}
<actual parameter list> ::= ( <actual parameter>
{, <actual parameter list>}* )
<actual parameter> ::= <expression>|<"condition name” id>

type function name® id>
i

2.8.2
<"rational®™ expression> ::= plus\+ <"rational®” expression>|

minus\~- <"rational® expression>]

<"rational” expression> power\**

<"rational”™ expression>|<"rational” expression>

plus\+ <"rational” expression>|

<"rational”™ expression> minus\-

<"rational®™ expression>|<"rational™ expression>

times\* <"rational” expression>]

<"rational"” expression> divide\/
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2.8.2

2.8.2

2.8.2

2.8.2

2.8.3

2.8.3

2.8.3

<"rational” expression>]|<"integer" expression>
div\// <"integer® expression>| :
<"integer™ expression> modulus\mod

<"integer® expression>

<"boolean” expression> ::= <"simple” expression> eg\=

<"simple” expression>|{<"simple” expression> ne\<>
<"gimple"” expression>]|<"compound®" expression> eg\=
<{"compound” expression>|<"compound” expression> ne\<>
<"compound” expression>|<"simple" expression> 1t\<
<"simple" expression>|<"simple" expression> le\<=
<"simple"” expression>|<"simple” expression> gt\>
<"simple" expression>|<"simple” expression> ge\>=
<"simple" expression>|<"simple®” expression> in
<"simple” range>

<"boolean” expression> ::= not <"boolean" expression>|

<"boolean” expression> or <"boolean" expression>|
<"boolean" expression> and <"boolean" expression>|
<"boolean" expression> imp\=-> <"boolean" expression>|
<"boolean” expression> iff\eqv <"boolean" expression>

<"boolean” expression> ::= some <"type variable name™ id>

{, <"type variable name” id>}* :

<"simple” type reference> , <"boolean” expression>]
all <"type variable name" id>

{, <"type variable name" id>}* :

<"simple" type reference> , <"boolean®” expression>

<"type" expression> ::= if <"boolean" expression>

then <"type" expression> else <"type"” expression> fi

<"simple”® expression> 3= pred ( <"simple® expression ) |

succ ( <"simple® expression> )|
min ( <"simple” expression> , <"simple” expression> )|
max {( <"simple"” expression> , <"simple” expression> )

<"gimple” expression> ::= lower ( <"simple type name® id>

) lupper ( <"simple type name® id> )

<"simple” expression> ::= scale ( <®"integer™ expression> ,
" <"gimple” type reference> )
<"integer® expression> ::= ord ( <"simple® expression> )
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2.9
<{statement list> ::= {<statement> ;}* {<statement>}!]
pendinglpending :|;
<statement> ::= <simple statement>|<compound statement>
<simple statement> ::= <assignment statement>]
<routine call statement>|<leave statement>]
<buffer statement>|<clock statement>|
<statement spec>]|<signal statement>
{compound statement> ::= <if statement>|
<case statement>|<loop statement>]
<begin statement>]<cobegin statement>|<await statement>
<end clause> ::= end]|<when clause>

2.9.1
<assignment statement> ::= <"type" variable reference> :=

<"type" expression>

2.9.2
<routine call statement> ::= <"routine name®™ id>

<actual parameter list>

2.9.3
{leave statement> ::= leave

2.9.4
<if statement> ::= if <"boolean" expression> then
{statement list> {else <statement list>}! <end clause>

2.9.5
<case statement> ::= case <"simple® expression>
{<"simple"” is clause>}+ {<else clause>}! <end clause>
<"simple®” is clause> ::= is <"simple” value>
{, <"simple” value>}* : <statement list>
<else clause> ::= else : <{statement list>

2.9.6
<loop statement> ::= loop <statement list> <end clause>

2.9.7
<begin statement> ::= begin <statement list> <end clause>

2.19

<routine unit> ::= <routine header> = <routine body>|
<routine header> = pending

<routine header> ::= <procedure header>|<function header>|
<process header>|<program header>

<routine body> ::= begin {<external spec> ;}!
{<internal spec> ;}! {<local declaration> ;}*
{<local spec> :}! <statement list> <end clause>

<local declaration> ::= <local variable>|<local condition>|
<local constant>|<local macro>|<local clock>
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2.16.1
<formal parameter> ::= {<limitation>}!
<"type variable name” id> {,
<"type variable name® id>}* :
<"type" formal type reference>|
cond <"condition name"” id> {, <"condition name® id>}*
<limitation> ::= var|const|copy
<formal parameter list> ::= ( <formal parameter>
{; <formal parameter>}* )
<actual/formal type parameter list> ::=
( <actual/formal type parameter>
{, <actual/formal type parameter>}?* )
<actual/formal type parameter> ::=
<actual type parameter>|<"type variable name® id> :

2,18.2
<procedure header> ::= procedure {<access list>}!

<"procedure name” id> <formal parameter list>

2.18.3
<function header> ::= function {<access list>}!
<"type function name" id> {<formal parameter list>}!

¢ <"type" type reference>

2.18.4
<program header> ::= program {<access list>}!

<"program name® id> <formal parameter list>

2.11
<Gypsy program> ::= {<unit> ;}+
<unit> ::= <type unit>|<routine unit>]
<const unit>|<macro unit>

2.11.2
<access list> ::= <"unit name® id>

{, <"unit name® id>}*

35101
<formal type parameter list> ::= ( <formal type parameter>

{: <formal type parameter>}* )

<formal type parameter> ::= <"simple variable name” id>
{, <"simple variable name® id>}*
: <"simple” formal type reference>

301‘2
<"sequence of type™ type declaration> ::= sequence <size>

of <"type® type declaration>
<size> ::= ( <"integer" expression> )| {empty}

3.1.2
<"get of type®™ type declaration> ::= set <size> of
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<"type" type declaration>

<"bag of type" type declaration> ::= bag <size> of
<"type" type declaration> :

3.1.3
<"list of type"” composition> ::=
{<"list of type type name"” id>}! ( {<"type" component>
{, <"type" component>}*}! )

3.1.3
<"string" value> ::= <string>

3.104 N

<"boolean" expression> ::
<"list” expression>|<
<"list” expression>

= <"list" expression> eg\=
"list™ expression> ne\<>

3.1.4

- <"boolean" expression> ::= <"list"™ expression>
sub <"list" expression>|<"type" expression>
member <"list of type" expression>

3.1.4
<{"sequence"” expression> ::= <("sequence" expression>

append\@ <"sequence" expression>

3.1.4 :
<"set\bag" expression> ::= <"set\bag" expression>
union <"set\bag" expression>|<"set\bag" expression>
intersect <"set\bag" expression>|<"set\bag” expression>
difference <("set\bag" expression>

3.1.5

<"type® expression> ::= first (
<"sequence of type"” expression> )|last (
<"sequence of type" expression> )

<{"sequence" expression> ::= nonfirst (
<{"sequence” expression> ) |nonlast (
<{"sequence" expression> )

<"integer" expression> ::= length (
<"sequence" expression> )

3.1.5
<"boolean” expression> ::= ismerge (
<"sequence” expression> ,
<"bag of sequence® expression> )

3.2.1
<"buffer of type” type declaration> ::= buffer <size> of
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<"type"” type declaration>

3.2.2 ‘
<buffer statement> ::= send <"type® expression> to
<"buffer of type"” variable reference>|receive
<"type" variable reference> from
<"buffer of type” variable reference>

<®*boolean”® expression> ::= empty {
<"buffer®™ variable reference> ) |full {(
<*pbuffer” variable reference> )

3.2.5
<process header> ::= process {<access list>}!

<"process name” id> <formal parameter list>

3'2.6
<cobegin statement> ::= cobegin
<extended routine call statement>
¢ <extended routine call statement>}* <end clause>

3.2.7
<extended routine call statement> ::=
<routine call statement> {<each clause>}!
<each clause> ::= each <"type variable name® id>

: <"type" type reference>

3.2.8
<await statement> ::= await {on <buffer statement)> :

<statement list>}+ {after <"integer™ expression> :
<statement list>}! <end clause>

30209
<local clock> ::= clock <®"clock variable name® id>

{, <®clock variable name® id>}*

3.2'1g
<clock statement> ::= log <"integer® variable reference>

at <®"clock variable name® id>

<macro unit> ::= <macro header> = <"untyped® expression>
<local macro> ::= define <"macro name® 1id>

{({ <"untyped variable name®” id>

{, <"untyped variable name® id>}#* )}

= {"untyped® expression>
<macro header> ::= define {<access list>}!

<"macro name” id> {( <"untyped variable name® id>

{, <"untyped variable name®™ id>}* )}!
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3.6

3‘6.1

3.6.2

3.6.3

3.7.1

3.7.2

3.7.3
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<assertion> ::= <"boolean" expression>]|

<"boolean” expression> otherwise <condition>|

( <assertion clause> {; <assertion clause>}* )
<assertion clause> ::= prove <"boolean" expression>|

prove <"boolean” expression> otherwise <condition>]

assume <"boolean” expression>|

assume <"boolean” expression> otherwise <condition>
<"type" primed variable reference> ::=

<"type" variable reference)> '

<type spec> ::= {require <assertiond>}!
{axiom <assertion>}!

<statement spec> ::= assert <assertion>
trace <"boolean"” expression>

<external spec> ::= {<entry spec>}! {<block spec>}!
{<exit spec>}!
<entry spec> ::= entry <assertion>
<block spec> ::= block <assertion>
<exit spec> ::= exit <assertion)>|exit case ,
( {is <condition> {, <condition>}* : {<assertion>}!}+ )
<internal spec> ::= {<centry spec>}! {<cblock spec>}!
{<cexit spec>}1!
{centry spec> ::= centry <assertion>
<cblock spec> ::= cblock <assertion>
<cexit spec> ::= cexit <assertion>|cexit case
( {is <condition> {, <condition>}* : {<assertion>}!}+ )
<local spec> ::= keep <assertion>

<local condition> ::= cond <"condition name® id>
{, <"condition name” id>}*

<condition> ::= <"condition name®™ id>|indexerror|caseerror|
aritherrorjinitializeerror|buffererrorjroutineerror]|
rangeerror | senderror |receiveerror|assignerror|typeerror

<signal statement> ::= signal <condition>

<when clause> ::= when {is <condition> {, <condition>}*
: <statement list>}+ {else : <statement list>}! end

®
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Appendix B
STANDARD OPERATORS

o O O 0 R P R
P P P P E R 2]
E E E E S I N
R R R R 3] O =
A A A A L R T
T N N N T I I
0 D D D T M
R 1 2 3 ) 4 E
power okl r 4 r 1 yn
plus + r r 2 34
minus - 4 r 2 y
times * o r r 3 y
divide / r r r 3 n
div // i i i 3 y
modulus mod i i i 3 vy
plus + r r r 4 Yy
minus - r r r 4 y
append @ sq sg sq 4 y
union sb sb sb 4 y
intersect sb sb sb 4 y
difference sb sb sb 4 4
eq = eb eb b 5 Yy
ne < eb eb b 5 y
1t < s s b 5 y
le {= s s b 5 ¥y
gt > s s b 5 V4
ge (= s s b 5 b4
in 8 st b 5 y
sub 1 1 1 5 ¥
member 1 1 1 5 V4
not b b 6 ¥y
and b b b 7 ¥y
or b b b 8 ¥
imp -> b b b 9 y
iff eqgv b b b 9 V'
some s bs s 18 n
all s bs s 18 n
if...fi b eb eb eb y

Where "r® = rational, "i" = integer, "s" = simple, "b* =
boolean, "sq” = sequence, "“sb" = gset/bag, “eb® = except buffer,
"gr® = gimple range, "1* = list, "bs" = boolean(simple), and “yn”
= yes, but only when the exponent is a positive integer.
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Appendix C

RESERVED WORDS

after 3.2.8 £i 2.8.2
all 2.8.2 first 3.1.5
allfrom 3.2.3 from 3.2.2
allto 3.2.3 full 3.2.4
and 2.8.2 function 2.16.3
append 3.1.4 ge 2.8.2
aritherror 3.7.1 gt 2.8.2
array 2.5.5 if 2.8.2, 2.9.4
assert 3.6.2 iff 2.8.2
assignerror 3.7.1 imp 2.8.2
assume 3.6 in 2.8.2
at 3.2.10 indexerror 3.7.1
await 3.2.8 infrom 3.2.3
axiom 3.6.1 initializeerror 3.7.1
bag 3.1.2 integer 2.5.1
begin 2.5, 2.9.7, 2.10 intersect 3.1.4
block 3.6.3 is- 2.9.5, 3.6.3, 3.7.3
boolean 2.5.1 ismerge 3.1.5
buffer 3.2.1 keep 3.6.3
buffererror 3.7.1 last 3.1.5
bufg 3.2.3 le 2.8.2
case 2.9.5, 3.6.3 leave 2.9.3
caseerror 3.7.1 length 3.1.5
cblock 3.6.3 log 3.2.1@
centry 3.6.3 loop 2.9.6
cexit 3.6.3 lower 2.8.3
character 2.5.1 1t 2.8.2
clock 3.2.9 max 2.8.3
cobegin 3.2.6 member 3.1.4
cond 2.18.1 min 2.8.3
const 2.6, 2.16.1 minus 2.8.2
copy 2.16.1 mod 2.8.2
define 3.3 modulus 2.8.2
difference 3.1.4 ne 2,8.2, 3.1.4
div 2.8.2 nonfirst 3.1.5
divide 2.8.2 nonlast 3.1.5
each 3.2.7 normal 3.6.3
else 2.8.2, 2.9.4, 2.9.5, not 2.8.2

3.7.3 of 2.5.5, 3.1.2, 3.2.1
empty 3.2.4 on 3.2.8
end 2.5, 2.9, 3.7.3 et o 2.8.2
entry 3.6.3 ord 2.8.3
eq 2.8.2, 3.1.4 o otherwise 3.6
egv 2.8.2 outto 3.2.3
exit 3.6.3
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pending 2.5, 2.6, 2.7, 2.9,

2.18
plus 2,8.2
power 2.,8.2
pred 2.8.3

procedure 2.18.2
process 3.2.5
program 2.16.4
prove 3.6
rangeerror 3.7.1
rational 2.5.1
receive 3.2.2
receiveerror 3.7.1
record 2.5.5
require 3.6.1
result 2.16.3
routineerror 3.7.1
scale 2.8.3

send 3.2.2
senderror 3
sequence
set 3.1.
signal 3
some 2.8
string 3
sub 3.1,
suce 2.8
then 2.8
times 2.8
to 3.2.2
trace 3.6.2
type 2.5
typeerror 3.7.1
union 3.1.4
upper 2.8.3
var 2.7, 2.18.1
when 3.7.3

7.1
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access protection 39
address space 35
array 19

reference 24

brackets 12

call, function 25
routine 30
case, upper-lower 12,13
character set 12
comment 13
comments, meta- 11
compilation 37
composition 28
named 21
unnamed 21
condition 65,66
‘standard 65
constant 22

data base 37
declaration, constant 22
variable 23

empty list 49
environment, program 10
event 65

exclusive access 52
expression 24

field, record 18
function, bound 28
buffer 54
conversion 29
merge 51
order 28
sequence 58
standard 28,586,54

Gypsy program 37
index, array 19

input-output 52,61
interrupts 55
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limitation, const 34
copy 34
parameter 34
var 34

macro 59
mode 16
equivalence 21

name, base 18,39
modifier 18,39
number 13

operator, boolean 27
concatenation 58
conditional 28
guantifier 27

- rational 26
relational 26,49
repetition 21
set-bag 5@
standard 25,49,91

parameters, omitted 46
routine 34
type 45

Pascal 140

pending 68

prime 61

procedure, buffer 53
standard 53

process, communication 52
scheduling 55
suspension 53
synchronization 52

program 37

gueue, FIFO 52

record 18
reference 24
reference, non-variable 34
restriction, inherited 35
range 16
routine 33
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function 36
procedure 36
process 55
program 37

scope 38
semaphore 52
specification, routine 63

statement 62

type 62 ,
specifications 61
statement, assignment -29

await 57

begin 33

case 31

clock 59

cobegin 57

compound 29

extended routine call

if 31

leave 31

loop 32

routine call 3@

signal 66

simple 29
string 13

syntax, comments 11
notation 11

time, assembly- 18

entry=- 18
parse- 18
proof- 198
run- 18

token 12

type, array 19
bag 48
boolean 15
buffer 52
character 15
clock 58

compound 18
extended 45
int 17

integer 15,16

57

list 47

mode 16
rational 15
record 18
reference 18

restriction 16,

scalar 14
sequence 47
set 48
simple 14
string 47

underscore 13,21

unit, constant 22
interdependence
macro 59
routine 33
type 14

units 149

validation, run=time

value, character 16
composition 29
integer 16,21
list 48
rational 16
record 21
scalar 16
simple 15
string 49

variable 23
initialization
reference 23
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