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Preface 

This monograph, which presents a grammar and an a.bstract syntax {or the Z specification 
language, is produced as part of a joint project between IBM United Kingdom Labo. 
ratories Limited a.t Hursley, England and the Programming Research Group of Oxford 
University Computing Laboratory, into the application of formal software specification 
techniques to industrial problems. The work WM sopported by a research contract be­
tween IBM and Oxford University and is published by pennission of the Company. 

[Abrial 811 provided the starting point in the development of the Z notation. The syntax 
for definitions, predicates and terms presented here was developed from Jea.n·Ra.ymond 
Abrial's paper. The notation has been further developed and described in [Sufrin 86]. 

The type roles and the semantics oCZ have been described in [Spivey 85]. The commen­
tary in this paper on the mea.ning of the language constructs is an informal description 
of what is formally described in [Spivey 85]. 

The schema concept is an extension to conventional set theory and preliminary descrip­
tions can be found in [Sumn 81], [Sfilirensen 82] and [Morgan 84]. A tutorial introduction 
to the present sta.te of the schema notation can be found in [Woodcock 88]­

Version 2.0 

It is the authors' expectation (e.nd hope!) that this will be the 'final' version o{ this 
document, at least in its present form. It is presented 8.8 part of the PRG's (and IBM's) 
work towards the standardisation of Z. As such, it has two major aims: to capture the 
present state of the language, particularly those parts o{ the la.nguage whose syntax has 
become stable, and to snggest possible solutions to several problems which ha.ve to be 
resolved as part of the standardisation process. In this second category come such topics 
as the syntax for theoreIIUI (which is dependent, to some extent, on agreement on a logic 
for Z), mnemonic names {or the many non-ASCII symbOls used in Z, and the whole 
question of how to nse one Z document within another (ie imports, document qualifiers, 
versions etc). This last item can only be resolved when case studies ~ been completed, 
using {or instance a library o{ specifications. To repea.t: in these cases, what is presented 
in this document is merely a suggested solution-the definitive a.ns~r can only appear 
in due time!! 
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1 Introduction 

In this monograph ""We give 8. comprehensive description of the syntax for the specification 
language Z. The language has already been described infoI'III8lly in [Sufrin 86} and in 
[Haye, 871. 

The aim of this document is to prepare for the standardisation of the syntax of Z. The 
abstract syntax of Z is defined and a. concreterepreserrtation of all language COWIt:cuets 

is given. The paper suggests a terminology fOf the coDstnrcts.and- the concepts of the Z 
language. The syntax describes a language which is as close as possible to that which 
is used in existing case studies. However, some syntactic variants of constructs in the 
language which have been used in the past have been omitted. 

The paper gives aD- informal introduction to the scope rules for identifiers, the type rules 
for terms and the precedence rules for operators, fll1lctions and relation symbols. This 
description is inror:r:nal, and the description of the type rules is concise and complex, and 
may be passed over if the reader desires. 

Chapter 2 defines the concrete syntax of the language. 

2.1	 defines the overall structure of a Z specification docnment and describes the general 
facilities in Z for introducing new concepts. 

2.2 sels sornt: conventions for the naming of variables in Z documents. 

2.3 gives	 the syntax for introducing new constants, data types a.nd schemas. It de­
scrihes how Z can be extended to include new infix binary operator symbols, new 
prefix and post:lix function symbols and new infix relation symbols. It also describes 
how to introduce generic sets, functions and relations. 

2.4 describes the f.lyntax used for theorems. 

2.5 gives	 the syntax of predicates. The predicate notation is conventional, although 
the use of types and constraints in quantified expressions is peculiar to Z. 

2.6 gives the syntax for terms which is the notation used to describe elements and sets. 
This is conventional, for the most part, and includes the notion of types. 

2.7 descrihes	 the notation for schemas. The schema notation is the part of the Z 
language which is used to give names to reusable specifications written in the set 
theoretical notation. Specifications written in Z make extensive use of the schema 
notation. 

Chapter 3 describes the terminal symbols of this syntax. 
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Chapter 4 contains a description of the symbols and identifiers which have been given 
special mea.o..ing in the basic library. 

Chapter 5 presents an abstract syntax for Z; the structure of this cha.pter follows that of 
chapter 2. 
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2 Syntax 

The notatioo used to describe the syntax of Z is a simple variant of BNF: 

•	 non-teuninals are words in lower case letters, possibly with embedded underscores. 

•	 alternative constructs are denoted by I a.t the start of a line. 

•	 optional cons tructs are enclosed in angle brackets ( ) . 

•	 space denotes zero or more spaces or continuation characters ('soft' newlines). 

•	 terminals: 1) special characters; 2) reserved words, shown in bold; and 3) UPPER 
CASE abbreviations, which sta.nd for large graphical fOrIllS (such as 'top of box') or 
invisible sym.bols (such as newline). All terminal symbols are listed in chapter 3, 
section by section, i.e. symbols from section 2.1 are listed in 3.1, those £rom 2.2 
are listed in 3.2 etc. 

To help in cross~referencing, page references are given {or each syntactic category on the 
right hand side of a production. These references may be found in the right hand margin. 

2.1 A dOCUUlent 

document : :s	 explan_text document 
Z z_text EZ document " 

" 
explan_text : :::	 "sequence of characters, excluding Z and EZ" 

A document is divided into a series of sections, which may be: 1) explanatory text 
(explan_text), which is a description in a natural language; or 2) Z texl which gives a 
formal. description in the language Z. 

z_text : : '" z_phrase ) ( list-Bep z_text ) "	 , 
list_sep : : '" 

Nt 

Z text is a sequence of Z phrases separated by semicolons or newlines1 • 

'If a Z phrase is to be .6plit between two or mOre Jines, a 'soft' newline character is used as a continuation 
cbarao::ter. 

5 



z_phrase : :­ given_ut_def 6 

definition 6 

constraint 
theorem " import 

A Z phrase can take the following fonns: 
1. GivenSet Definition 

given-set_def ::=	 [ name-liBt J 

The given sels of a document appear as a list of ba.se names enclosed in square 
brackets ([,J). The given sels are fonnal parameters to the document. When a 
document is imporled into another document, a set can be supplied 88 the adual 
value lor a given set. 
Scope: The scope of a given set is the entire document. 
Type2: A given set is a type. If T is a given set l then the elements of T have type 
T; T itself has type P(T). 

2. Definition 

definition : :=	 axiomatic_def 
syntactic_def " datatype_def n 

schama..def n 

This language category is used to define constants, data types snd schemas. The 
syntax for defining them is described in section 2.3. Constants are introduced by 
axiomatic definitions and syntactic definitions and in data type definitions. Data 
types are introduced by data type definitions and schemM are introduced in schema 
definitions. Note that a data type definition introduces both a data type and some 
constants. Axiomatic, syntactic and schema definitions may be generic. 
Axiomatic defini tions also allow us to extend the language wi th infix operator 
symbols (op), prefix and postfix function symbols (func, pfnnc), and infix relation 
symbols (reI). When generically defined operator, function or relation symbols 
are used, they ace implicitly instantiated and appear in infix, prefix or postfix form 
(e.g. fEEl g, #5 1 r-t, .8 <;; t). Syntactic definitions also allow us to extend the 
language with new symbols: infix symbols for naming sets (in), e.g. _; prefix 
symbobJ for naming sets (pre), e.g. PI i postfix symbols for naming sets (post). 
When these symbols are used, they must be explicitly instantiated (e.g. N _ N is 

~z is based on typed lid theory, in which all elements Ill'e a&'lOCiated with a particular maximal set 
(then: type) fI'<Jm a univenle of Bets. The type of any element is unique and can aJ ways be determined. 
There is no sd in Z to which all elements belong, instead there ill a univeme of sets, called types, which 
conllists of all given lids, data typell and schema types, and all Bets which can be const,ruded from them 
using P (power Bet), )( (cArtellian product) and bracketing (0). 
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the set of partial fund ions over N , PX is the set of subfiets of X). 
Scope: The scope of a constant, data type or schema is the entire document. They 
are referred to as global variables. Note that only data types may be defined 
recursively. When a document is imported, the scope of these global variables is 
extended to the importing document. Scope rules follow the static structure of the 
document: new local mathematical variables may be introduced by declaration in 
COll6tructs nested within the document (e.g. V, 3 ). Such constructs are eXcluded 
from the scope of any global variable if its name is reused for a local variable (see 
also section 2.3. 
Type: The types of consta.nts, data types and schemM aTe described in ~edion 2iL 

3. Global Constraint 

constraint : :: pndl 
" 

Constants are assumed to satisfy all the global constraints of the document. 

4.	 Theorems 
A theorem is a formal statement about the definitions given in the document (see 
section 2.4). 

5.	 Import 

import ; := base...name ( version) ( instantiation) '" 
A document is imported by giving its name. The uninstantiated given sets t con­
stants, data types and sche:rnaa of the imported document become globally known 
to the importing document. However, if a version is specified, then the version 
name is added to the imported identifiers, and the identifiers are known only in 
their renamed form. Each of the given sets of the imported document may be 
instantiated i.e. a value for each of the given sets may be supplied (in an instan­
tiation, see eeetion 2.2), thereby achieviug a partial instantiation of the imported 
document.
 
Scope: The use of the import facility may lead to ambiguity as variables from
 
different documents can have identical names. This is resolved by prefixing the
 
reference to such a variable with the name of the document which introduces it
 
(referencEl:s are described in section 2.2).
 
Type: Instantiation of given sets is systematic, and may add more infonnation
 
about the types used in the imported document. For example, if an imported vari­

able x is of type P(sxT) where T is a given set of the imported document, and if 
T is instantiated with {l,21 3}, then the type of x will be P(SxN). 
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2.2 Identifiers, names and references 

id.....list : :=	 id ( • id.....list ) " 
id ::""	 base....name ( decor ) " 
base....name : :=	 "sequence of alphanumerics, underscores and symbols, 

excluding the terminal symbols of this syntax 
and those symbols which have been defined as operators" 

name_list : :=	 base....name ( J name.....list ) " 
An identifier list (id_list) is a sequence of identifiers (id), separated by commas. An 
identifier consists of a base name, which may be decorated (decor). Identifiers are 
used to name mathematical variables (e.g. elements, sets). When naming schemas, 
only base names can be used, since decoration is interpreted as a decoration operation 
which renames the bindable variables of the schema. (see section 2.7.2). Note that some 
identifiers (e.g. dom. seq) have been given a meaning in the basic library. Strings of 
digits will be interpreted as numbers in ba.se 10. Numbers are described in the basic 
library. 

A base name decoration is a sequence of version or attribute decorations. A version 
decoration is a subscript name. An attribute may contain exclamation marks (for output 
variables), qaestion marks (for input variables) or dashes (for variables denoting resulting 
states). 

reference :: ­ ( doc_qual $ ) id ( instantiation ". 
doc_qual : : .. base....name { version " 
instantiation: := [ inst.....list ] • 
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inst-list :: =	 term-list , 
binding_list , 

term_list :: =	 hrm ( • tem~list ) 190 

binding_~iat :: =	 id = tern { J binding-list } g 19 9 

When a reference is made to a variable, its name may be prefixed with 8. document 
qualifier to indicate the dDcument in which. the variable is defined. Generically defined 
variables may be instantiated. The document qualifier is terminated by a dDllar. The 
document qualifier COrulists of the name of the document together with an optional version 
decoration. Each element of an instantiation list (inst_list) gives values to the generic 
parameters of a generic definition. 

s chema-ref : ::::	 ( doc_qual $ ) base-name ( instantiation) 90 , 

A reference to a schema can not include any decoration, since decoration of schema 
names is interpreted as a special operation (see section 2.7.2). 

2.3 Definitions and declarations 

Definitions introduce constants, data types and echemas. Definitions Df constants and 
schemas may be generic. A definition takes one of the following forms: 

1. Axiomatic definition 

axiomatie-def :: '"	 liberal_def 9 

generic_def 

liberal_def : : ..	 dec ( I pred ) 13 15 

SR v_sch_text ER " 
generic_def : :=	 deel_id params : term ( I prod) 13919ts 

SR ( params ) GE v_e-eh_tert ER ,,, 

parame- : :=	 [ name-list 

An axiomatic definition introduces constants in global declarations (dec and 
dec_list). Constants can be elements, sets Dr functions which a.re used in pre. 
fix (fune), infix (op) or postfix (pfune) forms. The constants satidy all their 
defining predicates. An axiomatic definition takes one of two forms: a liberal def­

9 



initioD j which introduces constants and, for each constant, gives a set from which 
the value of the constant must be drawn; or a generic definition, which introduces 
a jtlffllly of constants, para.meterised by the generic parameters of the list paxams. 
Each instance of a generic cOD1itant has a unique value. 
Scope: The scope of a constant is the entire document (global scope), excluding 
the declaration list in which it is declared and any cOD1itrnct in which its na.me is 
reused for a local variable. The parameters of a generic definition are local to the 
definition, but they can be given values when the generic constant is instantiated. 
Type: The type of constants introduced in a declaration is described in section 
2.3.2.
 
Appearance: When a definition ]s given in a. 'vertical' form, it is enclosed by SR
 
(Start vertical Rule) and ER (End vertical Rule). In the case of a generic definition,
 
SR and ER also denote the scope of the generic parameters.
 

A liberal definition may appear in either a horizontal or a vertical form: 

"NI·;'l 

or 

F­
A generic definition may also appear in a horizontal or a vertical form: 

tl1il[X] : $eq X --t $eq X	 I predicate 

or 

[X]============ 
_u_: PX x PX --t PX 

predicate 

2. Syntactic definition 

syntactic_def	 ::- decLid ( params ) ~ term 13 9 19 

const...Bym ~ term 11 19 

A synta.ctic definition definel'l a new constant, which can be generic. It may also 
define & generic constant which has been given a symbol name. 
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Scope: A constant which is defined by a synta.ctic definition has global scope, ex­

cluding constructs in which its name is reused for a local variable. Note, also. that
 
recursive syn-tactic definitions are not allowed.
 
Type: The constants defined in a. syntactic definition have the same type as their
 
defining tern::J.. Types of terms are described in section 2.6.
 

CODst..Bym : := pre id 8 

id poet 8 

id in id 88 

A syntactic definition can be used to define a (possibly generic) constant which is 
to be named by an identifier (decLid). Alternatively, it can be used to de£ne a 
generic constant which will be named by a prefix, postfix or infix symbol (from 
the syntactic categories pre, post and in), in which case the names of the generic 
parameters (:i.d) indicate the positions of the actual parameters which must be 
supplied when the set is used. For example, the definition 

FX'" {, ,PX I···j 

introduces the (generic) set of finite subsets of a set. FA and FB are two different 
instantiations of this set. Chapter 4 gives a list of these special symbols which are 
introduced in the Z Basic Library. 
Appearance: A syntactic definition has a horizontal fonn for constants named by 
identifiers: e.g. 

,om,IX]'" (x ,X I ... j 

and a horizontal form for constants named by symbols: e.g. 

X ~ y '" piX x Y) 
X ~ Y '" (X ~ Y I ... j 

N++ N is an instantiation of..;..) and is the set of all partial functions from '" to N. 

3. Data type definition 

datatype_de-f ::== id ::== branches 8n 

branches ::= id ( ~ rem-;;l> ) ( I bronc'es ) S 19 II 

A data type definition introduces a new sel, known 8.8 a data. type. It is formed 
from the union of constants and the ranges of new constructor functions. In the 
definition, ea.ch new constant appears as an identifier, while each comtructor func­
tion appears in a branch with a description of its domain enclosed in double angled 
brackets (<< ... »). 
Scope: The data type itself, as well as &.lJ the new constants and constructor (unc­
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tions,has global scope. Recursive data type definitions are allowed. 
Type: A data type is a type. The following example explains the types of the 
constants introduced by a data type definition. Suppe»>e 

DT ::. a I b r f «N~ 

This definition introduces the constants a and b of type DT and the function f with 
domain N. f is an element of N 1--+ DT and 80 has type P (NxDT). 

4. Schema definition 

schema_def : :- base..name { params ~ schema_term 8924 

base..name ( params S8 v...sch_ter:t ESB S 9 l) 

A schema definition introducel'l either a single new schema or a family of schemas,
 
and DWles them. A schema name can be used as a predicate, as an inclusion in a
 
declara.tion list, as a term in a 6-construction or as a term in a declaration.
 
Scope: The schema is globally known, but recursive schema definitions are not al­

lowed. The variables introduced in the declaration list of the schema text (dec....list)
 
are local to the following predicate list (pred....list).
 
Type: When a scheDla is used as a term in a declaration, it denotes a type. This
 
is described in sections 2.6 and 2.7.1. The type of a 6-construction is described in
 
section 2.6.2.
 
Appeamnce: Use of S8, ST and ESB corresponds to


r';:: 
pred_list 

2.3.1 Schema texts 

When variables are introduced in a declaration list, it is often necessary to give a predicate 
which constrains or relates them in some way. This construct-declarntion list plus 
optional prlrlicate-has been aptly christened a schema text [Spivey 88]. It can appear 
in either a horizontal or a vertical form. 

h_sch_text : := dec....list ( I pred ) 1315 

v_sch_text : := dec....list ( ST pred....list 1314 
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The vertical Corm can appear in axiomatic and schema definitions, and the horizontal 
Corm can appear in >., p. and set comprehension terms. 
Scope: The scope oC the variables introduced in 8. schema text depends on the type of 
construct in which the schema text is being used, but it always includes the predicate 
pari oC the schema. text. 

2.3.2 Lists or declarations 

Lists of declarations (dec...list) can appear at two levels: local lists are used to introduce 
variables in schemas, in quantified expressions and in comprehension terms; at a higher 
level, lists of global declarations introduce constants and operators in definilions. 

dec-list : : '" dec ( list_sep dec-list ) 
inclusion { list_sep dec_list 

13 5 13 

135 13 

dec : : '" dec1...id_list term 1319 

decLid-list : : :E decl...id { J decl....id-list 13 13 

decLid : ; = id 
lunc _ { rfunc 
_ plunc 
(_op_) 

lop _ op _ 
_ op_rop 
_ reI _ 

, 

inclusion : := schema-ref ( decor ) " 
Each element of a dec-list is either a global declaration or an inclusion. The name 
used in the reference of an inclusion mUlit denote a schema. A global identifier is a 
new constant or a symbol. When a symbol denotes a fundion, it can be defined to be 
nsed in a prefix form (func), a postfix form (pfnnc), or an inm: form (op). When a 
symbol denotes a relation, it can be defined to be 'Il5ed in an infix form (reI). Various 
marker symbols may also be used in combination with func and op symbols: rfunc 
lop rap. Underscores (_) indicate the positions of the operands. The complete name oC 
the function, operator or relation includes the underscores. However, these are always 
omitted when operands are supplied. Chapter 4 contains a tillt of the special symbols 
which na.me the pr-efix and postfix functions (lunc pfunc), the infix operators (op) and 
the infix relation symbols (reI) from the Z basic library. 
Binding: Operator symbols which are introduced using in a global declaration bind in the 
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order pfunc. func. OPt reI. Relational symbols (reI) bind more strongly than the
 
logical connectives. Postfix function symbols pfunc are left associa.tive i.e. the left-most
 
operator binds most strongly e.g. r-- l is parsed as (r·)-l. Prefix function symbols func
 
are right associative i.e. the right-most operator binds most strongly e.g. # U{51, 52}
 
is parsed as #(U{51,52}). The relative binding powers of infix operator symbols (op)
 
are left unspecified.
 
Sc.ope: If all inclusion is used in a declaration, the local variables oUhe included schema.
 
become known.
 
Type: A doclaration defines a list of variables of the same type. If the term used in a
 
declaration denotes a set, then the value of the variables can only range over that set,
 
and the type of the variables declared is the same as the type of the elements of that
 
set. If the term is a schema, then the type of the variables declared is the schema type
 
associated with that schema.
 

2.3.3 Lists of predicates 

Predicate lists are used as statements about mathematical variables (e.g. in theorems 
and axiomatic definitions). 

pred_Iist : :- pred ( list-eep pred_Iist ) 15514 

2.4 Theorems 

theorem : : .. I-- pred " TH { given_set-def ( list-sep ) ) ( hyps ) I-- coneI ETH 651514 

sB { given_set-def ( list-sep ) ) ( hyps ) I-- concl EsB 651514 

concl : :"" pred_list " 

A theorem may be a tucwtile (1--) followed by a deducible statement (the conclusion) 
which takefi the form of a predicate. H the conclusion is a reference to a schema term, all 
the variables of the schema term (its signature) must already be declared in the document, 
and, furthermore, the predicate part (its constraint) must be tnIe. A theorem ma.y also 
have an hypothe&s. in which case the hypothesis and the conclusion are enclosed in 
theorem bn.ckets (TH and ETH). In this form, the conclusion may be a. list of predicates. 
New given rets can be introduced in square brackets. 
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hyps ::=	 hyp~ist " schema_term " 
hyp_list ::=	 h_8ch_text { list_sep hyp-list 12,'; 15 

pred ( list_sep hyp-list ) 15515 

The hypothesis introduces new local variables, which can be introduced either through a 
hypothesis list or indirectly through a schema. tenn. IT the hypothesis is a. schema term. 
then the variables of the schema. (its signature) will be introduced and the predicate part 
(its constraint) will be part of the hypothesis. 
Appearance: The TH and ETH tags cause indentation when they are used. For example 

document ... 
dec_ll~t 

f­
pred_li~t 

document ... 

2.5 Predicates 

A predicate is a statement about sets or dements of sets. Predicates are wed as state­
ments in axiomatic definitions and global constraints. They are also used in theorems 
as statements in the hypothesis or conclusion. In schemas, predicates are used to con­
strain the values taken by local va.riables. In comprehension terms, they are used in the 
descriptions of sets, functions a.nd particular elements. 

pred : : =	 schema...xef , 
predl " 

predl ::=	 (pred 
51	 pred_list £1 " ,. 
log_e:r.p " qnant_e:r.p " reLe:r.p	 ,s 

A predicate may take the following forms: 

1.	 A reference to a schema can be a predicate. IT this form iEi' used, all the local 
variables of the schema must have been declared in the context in which the refer­
ence appears. The predicate denoted by the reference is the predicate part of the 
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referenced schema.. 

2. Predicates can be grouped by enclosing them in parentheses ( ). 

3. Predicates can be grouped by enclosing them in 'indentation brackets' 51, EI . 

4. Preditaks can be compound logical expressions (see below). 

5. Preditates can be compound quantified expressions (see below). 

6. Preditates can be compound relational expressions (see below). 

Appeara.nce: Use of SI. EI (start indenta.tion, end indentation) causes indentation. The 
predicates of a. list which are a.t the same indentation level are conjoined. For example 

document ... 
'v'dedut
 

pI
 
p2
 
p3
 

document ...
 

is parsed as 

document ...
 
\ldeel"t • (pl)" (pE)" (p9)
 
document ...
 

2.5.1 Logical expressions 

log_exp : := ..., pred " 
1~ 1~pred II pred 

pred V pred HH 

pred => pred 15 1~ 

pred ¢:> pred 1515 

A logical expression can be 

1. a negation using --... (not); 

2. a conjunction using the connective II (and)j 

3. a disjunction using the connective V (or); 

4.	 an implication using the connective => (implies);
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5.	 an equivalence using the connective # (iff-if and only if). 

Binding: .., binds stronger than the binary logical connectives which bind in the order 

/\, V,=>,<=?
 
The binary logical connectives are left associative e.g. (PI => P2 => P:J) is the same as
 

((1'> "" 1'2) "" p,).
 

2.5.2 Quantified expressions 

quant_exp : : = 3 h...sch_text • pred 12 15 

3] h_sch_text . pred 12 ]5 

pred where h...sch_text Hi 12 

pred where 51 v_sch_text EI 15 12 

V h_8ch_text • pred 12 15 

A quantified expression can be: 

1.	 an existential. quantification using the existential quantifieI'8 (3, there exists, and 
31 , there exists exactly one). or the wherekeywordj or 

2.	 a universal qua.ntification using the universal quantifier (V, for all). 

The predicate following the vertical bar ( ! ) of the schema text constrains the values of 
the quantified variables. The predicate following the dot ( • ) is the quantified predicate. 
Scope: The schema text in a quantified expression introduces bound varia.bles. These 
are local to the construct. 
Binding: All of the logical connectives (-', A, V, =>, #) bind stronger than . (dot) a.nd 
I (bar), which bind stronger than where, which in turn binds stronger than the predica.te 
list sepa.rator (j). For example, the predicate list 

Vdecl • PI A P1. AP:J; P4 

should be read as 

(Vdecl .1'>1\ 1'2 1\ p,);p, 
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2.5.3 Relational expressions 

rel_exp : :'" term I: reLexp_tail l~ IS 

term E term I~ I~ 

term term 1919 

term reI reLexp_tail l~ 1~ 

reLexp_tail : :'"	 term ( '" reLexp_tai1 ) 19 1~ 

term ( reI reLexp_tail ) I~ 1~ 

Note: rel is not defined in this syntax, but the list of symbols, which is described in 
chapter 4, indicates which symhols can be used as infix relational spIlbols. 
In a relational expression, a. predicate may be constructed using equality (=), membership 
(E), or a predefined relational opera.tor. A relational expression may also be constructed 
from two terms (i.e. juxtaposition). For example, if S is a set and e is an element, then 
S(e) is equivalent to e	 E s. 
Binding: Equality, membership and the relational operators bind &tronger than --.. and 
the binary logical connectives. For example 

l=aV--..bES 

should be read as 

(1 =a)VH.E 5) 

Type: The components of an equality expression must all be of the same type. If the 
tenn on the left of a membership expression is of type T, then the tenn on the right 
must be of Jype PT. The type-correctness of a relational expression is determined by the 
definition of the the relational operator. 

2.6 Terms 

Terms are used in syntactic de£n.itions to denote sets or elements of sets. In a declaration, 
a term is used to denote the set over which the declared variables can range. Tenns are 
also used in relational expressions as statements about elements and sets, and in other 
tenns for constructing new termlL 
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term :: = tertnJeference " ( term ) " comprehension '" expl_constr " selection " construction " 
t erm...reference : : ,.	 reference 8 

schema...ref { decor " pre term " term in term 1919 

term post " 
A term ca.n take the following foI'lIl.B: 

1. A	 tenn can be a reference to a !jet, a.n element or a schema.. H the term is 
a base...name, possibly with a decoration, then it may either be parsed as a 
reference or a. schema...ref. This ambiguity is resolved by exa.rnining the name: 
if it is a schema name then the latter p8.l"Se is chosen. The instantiation of generi­
cally defined constants takes a special form if the constants have been given symbol 
names (pre, in, poet). pre binds as func and post binds as pfnnc (see section 
2.6.4). in binds less tightly than op and is right associative. 

2. Tenru;	 can be enclosed in parentheses. Bracketing is used to associate explicitly 
component teInl5 within constructions. The associativity laws, which allow brack­
eting to be on:ritted, are described below. 

3. A comprehension term denotes a. set or a function (see below). 

4. An explicit construction term denotes a tuple, a set or a sequence (Set below). 

5. A selection term denotes an individual named component of a 'structured' tenn of 
schema type (see below). 

6. A construction term constructs new sets or elements from existing set~, elenlents, 
functions and operators (see below). 

Type: If a term is a reference to a schema, the term denotes the schema type associated 
with the referenced schema (see section 2.7.1. The type of other references is determined 
by the definition (and the instantiation where relevant) of the referenced object. The 
type of other terms is described below. 
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2.6.1 Comprehension terms 

comprehension ;;:: { h_sch_text { • term) } 12 19 

>. h_sch_text term 1219 

J! h_sch_text ( • term ) 12 19 

Scope: The declaration list in the schema text of a comprehension (enn introduces some
 
bound varidble~ which are local to the con~trud.
 

A comprehension can take the following forms:
 

1.	 A set comprehension term introduces some bound variables in a declaration list, 
constrains their values using a predicate, and uses a constru.cting term to indicate 
the value of the elements of the set. For example 

(x:NlzE1..3 'z+3}~{4,5,6} 

If the constructing term is omitted, the elements of the set are tuples, wh.ich are 
constructed from the order of the declarations. For example 

Iz ,N;y, Nlz E 1..2 Ay < z} 
= {x:N;y,NlzE1..2Ay<z· (z,y)} 
= {(I, 0), (2, 1), (2, O)} 

If there is only one declaration, then the members are single elements. However if 
the dec-list is a single schema inclusion, then the set is composed of the elements 
of the schema type. For example, if S is a schema 

{Sf ~ IS • es} 

Type: The type of the elements of the newly formed set is the type of the con­
stru.cting term. The type of the new set is the power set of the type of its elements. 

2.	 A lambda abstraction term denotes a function. The bound variables define the 
parameters of the function. The constraining predicate defines the domain of the 
function. The constructing term indicates the value of the result. For example 

Ax: Nlz $ 2 . z + 3 = {x: Nlz $ 2' z ~ (z + 3)} 
= {(O, 3), (1, 4), (2, 5)} 
=	 {O f-+ 3,1 f-+ 4,2 f-+ 5} 

Type: The type of the function's parameter is the cartesian product of the typetl 
of the individual parameters. The type of the result is the type of the constructing 
term. The function itself is a subset of the cartesian product of its parameters' 
type and its result's type. 
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3. A choice term denotes a single element. The value of the element must be uniquely 
determined by the bound variables, the constraining predicate and the constructing 
term. For eX&Inple 

(I'z,y, Nly~z+1"z-2~5'(y,z +4)) = (B,ll) 

If the term is omitted, the default is the tuple COllstructed £rom the deciMation, as
 
for set comprehensions above.
 
Type: The type of a choice term is the type of the constructing term.
 

2.6.2 Explicit construction terms 

expl_coDetr ::= tuple " { term-li.t } 9 

lseq ( terIILlist ) rseq 21921 

tuple ::= ( term • termJist ) '00 
9 schema...re1' I 

lseq ::­

rseq ::= 

An explicit constructiOll may denote: 

1.	 a tuple, which is an explicit cOIUitruetion of a tuple from its compon~ts or a 
9-construetion, in which the reference must denote a schema; the local variables 
of the schema. must be declared in the context where the 9-construction appears, 
either explicitly or implicitly by schema inclusion; 

2.	 a set extension (enclosed in set braces), which is an explicit construction of a. set 
from its members; the termJist cannot be a single schema name as the term 
{ scheme...name } will be parsed as a comprehension term (see se<:tion2.6.l); or 

3.	 a sequence (enclosed in sequence brackets). 

Binding: The list separator (,) binds less strongly than any of the operators in construc­

tion terms. Note that piU'entheses cannot be omitted !rom a tuple: (a, b, c) 8.Ild ((a, b), c)
 
are different terms.
 
Type: The type of an explicit tuple cOnBtruction is the cartesian product of the types of
 
the individual terIIlli. The type of a 9-construction is the schema type associated with
 
the name in the reference. H 5 is a schema, then 95 and 95' are of the same type (see
 

21 
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section 2.7.2). The type of a. set is the power set of the type of the individual component 
terms which must all be of the same type. A sequence is a partial. function from Natural 
11l1mbers to the type of the component terms, which must also all be of the same type. 

2.6.3 Selection terms 

selection ::'" term. id '" 

The term in a selection must be of schema type and the identifier Illust be a. variable of 
the signature of the schema. For example, if 

s ~ [ a: N; b: X I a> 1] and elem : S 

then 

elemh 

is the b component of elem. Note that this is a convenient abbreviation for 

(AS' b) elem 

Type: The type of a. selection term is the type of the component tha.t is being selected. 
In the above example 

elern.a is of type N 
elern.b is of type X 

2.6.4 Construction terms 

construction : ::11: product x term 23 19 

P term " func_appl 'l' 

term op term ( rop ) 1919 

lop term op term 1919 

func term ( rfunc ) " term pfunc " 
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prod,uct ::= ( product x ) term 23 19 

func_appl ::= term term 19 I~ 

A construction term can take the following forms: 

1.	 A cartesian product. The component terms in a cartesian product must all denote 
sets. 
Binding: Parentheses cannot be omitted from a cartesian product term. 
Typ€: The type of a cartesian product is the power set of the cartesian product 
of the types of the elements of the sets described by the component terms. For 
example, if we have 8: PS and t: PT then 8 x t is of type P(S x T) since the type 
of elements of s is S a.nd the type of elements of t is T. The t.ype of the elements 
of a cartesian product is the cartesian product of the types of the elements of the 
sets tha.t are described by the component teTIllS. For example, if A and II are given 
sets, and a: A x B, then a is of type A x B. 

2. A power set	 term. The component term must denote a set. 
Binding: The power set. operator ('set of all subsets of') binds stronger than x and 
all other infix: operators. 
Type: The type of a power set term is the power get of the type of the component 
term. The type of its elements is the same 88 the type of the component term. For 
example, if 1 ~ N \ {o} ,and 8a: PA, then the type of sa is PN. 

3. A function	 application term. The £rst component term denotes the function and 
the second denotes the pa.rnmeter. 
Binding: The function application separators (space and '(') are left associative i.e. 
the left-most separator binds most strongly: 

f a b = (f a) b 
f(a)(b) =(f(a))(b) 

The separator binds stronger than x and the infix operators. For example 

f a + b ~ (f a) + b 

Prefix and postfix function symbols bind stronger than the function applica.tion 
sepa.ra.tors. For example, 

f#5 ~ {(#5) 

Type: The type of the pa.rameter supplied must be the same as t.he type of the 
elements of the function's domain. The type of the application term is the type of 
the elements of the funelion's range. 

4. An infix function application term. Infix operators (op) are predefined or defined 
in definitions. Some infix operators have an end marker, in which case the oper-ator 
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and the end marker serve a.ti delimiters Cor the second operand (e.g. R ~ S ~).
 
Binding: Infix operator symbols bind stronger than infix relational symbols. The
 
relative binding rules between infix operators are not defined.
 
Type: The type oC infix function application terms is deter:rn.ined as for function
 
application terms. Note that the parameter is the tuple constructed Crom the two
 
operands.
 

5. A prefix function application term. Prefix operators (func) are predefined or de­
fined in definitions. 
Binding: Prefix operator symbols hind stronger than in:fix operator symbols. In 
sequences oC prefix operator symbols, the right-most operatDr binds most strongly 
e.g. #U{SI,S2.S3) is parsed as #(U{SI.S2.S3)). 
Type: As above. 

6.	 A postfix function application term. Postfix operators (p1nnc) are predefined or 
defined in definitions. 
Binding: Postfix operator symbols bind stronger than prefu: operator symbols. In 
sequences oC postfix operator symbols, the leCt-most operator binds most strongly 
e.g. r*-l is parsed as (r*)-l. 
Type: As above. 

2.7 Schema terms 

A schema term i8 a mathematical structure, similar to a predicate. However a schema 
term can be given a mune and the name can be used in different contexts. The name 
can be included in a declaration list, it can be used a.ti a predicate, it can be used as a 
term to denote a type or it can be used a.ti part oC a 9-construction. 

A schema term is &8sociated with a signature and a constraint. The signature defines 
the bindable variables and their types, and the constraint limits the values which the 
bindable variables can take (in any context). 

If the name that denotes the schema term is used to denote a predicate or an element 
of schema type i.e. in a 9-construction, then the bindable variables of the schema term 
must all be declared in the context. 

schema_term : := schema..ref 

schema 
schema_term rename 
( schema_term 

log..sexp 
spec_sexp 

" 
2426 

" 
" 
" 
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1.	 a reference to a schema; 

2.	 a schema, which explicitly introduces the signature and constraint of a.schema (see 
below); 

3.	 a renamed schema term) which will rename the bind able variables of lhe signature 
of the scheIlla term (see below); 

4.	 a bracketed schema term, which is used to associate schema term components 
explicitly within schema expressions; 

5.	 a logical sehema expression, which is used to construct new schema. terms from 
existing schema terms (see below); or 

6.	 a. special purpose schema expression, which is also used to construct new schema 
terms from eDsting schema terms (see below). 

2.7.1 Schemas 

schema : :: SB v_sch_text ESB " [h_sch_text ] " 
A schema introduces the signature and constraint of a schema. term. It can a.ppear in two 
forms: a 'box' schema form or a horizontal schema fonn. The decIara.tion list defines the 
signature. The variables of the declaration list become bindable variables of the schema, 
and their type is determined by their declaration. The bindable variables of an included 
schema (i.e. a schema identifier a.ppearing as an inclusion, in a declaration list, within 
a schema text) also become bindable variables of the including schema. The constraint 
of a schema is the conjunction of the preclicates in the predicate list, together with the 
constraint implici tly imposed on each variable by its declaration. If a schema is included, 
the constraint of that schema is also a constraint of the resulting schema. 
Type: A schema. can be used to denote a set. This set is the schema type associated 
with the schema. The type is solely determined by the identifiers used for the bindable 
variables and their types. The type can be thought of as a set of unordered tuples with 
named components. The components of such a tuple can only be referred to using the 
selection construction described in section 2.6.3. 
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2.7.2 Sehema renaming 

rename : := expl...rename " decor , 

expl-rename : :'"' [ rename-list " 
rename_list : :"" id I id ( • rename-list 8 8 ~6 

A schema term can be renamed, the result of which is the renaming of the bindable 
variables of the schema term. This can be done by rena.ming, in a list of pairs of identifiers 
(b I a mews b replaces all a's), or by decoration ( I means all variables are decorated 
with a' dBJh). 
Type: If S is a schema, then S and SI are associated with the same type. If x: Sand 
y: S' then x and y are of the same type, and OS' is of the same type as OS. However. if 

we construct a new schema by the definition T g s' then the identifiers of the signature 
of T are different Crom those in S, so 8T is associated with a different type from Os (and 
hence Os'). 

2.7.3 Logical schema expressions 

log_sexp : : ­ schema_term /\ schema_term :1~ H 

schema_term V schema_term ]4 J4 

schema_term => schema_term HH 

schema_term {:::> schema_term :14 ~4 

--, schema_term " 3 dec-list sehema_term 13 ~& 

V dec-list schema_term 13 H 

Logical schema. expressions can take the following formlS: 

1.	 The logical schema connectives (/\ ,V,=> ,{:::> ) can be used in expressions 
to construct new schema terms. If a logical schema connective is used, all the 
bindable variables of the component schema terms become bindable variables of the 
constructed schema term. The constraint of the constructed schema term consists 
of the constraints of the component schema terms connected by the appropriate 
logical connective (/\ when /\ is used, V when V is used, => when =} is used, or 
¢:} when {:::> is used). 

2.	 If schema negation (--, ) is used, the bindable variables stay the same, while the 
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constraint is: negated. 

3.	 Schema Quantifiers can abo be used to construct new schema tenus. The bind able 
variables of t he resulting schema term are those of the quantified schema term which 
do not appear in the declaration list (i.e. the quantified variables are hidden). The 
constraint of the resulting schema term is the logical quantification (V for V and 
j for :3 ) of the constraint of the Qnantified schema term, over the variables from 
the declaration list which is used in the quantification. 

Binding: The relative binding power of the logical schema connectives is the same a.s 

that of their predicate counterparts. 
Type: When the logical schema. connectives are used, variables which are common to 
both schema term.s must have the same type. When schema negation is used, care should 
be taken to normalize the declaration before applying the negation to the predicate part 
of the schema ten:n. All of the variables in the declaration list of a quantified schema 
expression must be declared (with the same type) in the quantified schema. term. 

2.7.4 Specio.l purpose schema expressions 

spec_sexp : :'" schema_term \ ( id_list ,,, 
schema_term t schema_term '1424 

schema_term ~ schema_term '1424 

schema_term » schema_term 2424 

pre schema_term ,. 

Special purpose schema expressions may take the following forms: 

1.	 The hiding operator takes a schema term as its first operand and an identifier list as 
its second operand. The result will be a schema term where the bindable variables 
are the bindable variables from the first operand excluding the identifiers of the 
second operand. The constraint of the resulting schema term is the existentially 
quantified constraint of the first operand, over the variables which are excluded. 
Since hiding is equivalent to existential schema. quantification, there is a constraint 
on the hidden (ie Quantified) variables, a8 above: the hidden variable£ must all be 
contained in the signature of the schema tenn. 

2.	 The schema projection operator ( t) hides all the components of its fust argument 
except those which are also components of its second argument. 

3.	 The schema composition and schema piping operators both construct a new schema 
term, and must only be applied to schema terms which describe operations. The 
semantics of these schema operations are explained in [Woodcock 88], 
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4.	 The precondition operator is applied to schema terms which are used in a doc­
ument to describe operations. The resulting schema. is a. schema describing the 
preconditions of the operation. The precise semantics a.re described in [Woodcock 
88]. 

Binding: Prefix: and postfix special purpose schema operators bind stronger than infix 
special p11.rpose schema operators, which, in turn, bind stronger than logical schema 
connectives. Individual infix and postfix operators a.re left associative, while individual 
prefix opera.tors are right IIBsociative. 

28 



3 Terminal symbols 

In this chapter, we give, for each terminal symbol, the mnemonic, a suggested graphical 
representation and the name. The following points should be Doted: 

•	 Some symbols Me ta.gs that are invisible, but are needed in a document for struc­
tural information (e.g. Z. EZ, NL). 

•	 Some symbols do not have a mnemonic since they are available on normal ASCII 
and EBCDIC k,yboanls (e.g. ; , ). 

•	 [n the gra.IIl1DA1' description of chapter 2, the gra.phical representations are used, 
except for synlbols which are tags (z. EZ. Nt) and symbols which have a two 
dimensional graphical. representation (S8. ESB etc). 

•	 The non-tenninals reI. func. op. pf'llDC a.re a collection of terminal symbols 
and have not been fully defined in the concrete syntax of chapter 2. Some specific 
terminal symbols have been defined in the bMic library for Z, and in chapter 4, we 
indicate whether a. symbol is a member of reI, func. op or pfl1nc. 

3.1 Document punctuation 

Z 9 tart Z section 
EZ end Z section 
NL new line 

se:wicolon 
Isqb [ left square bracket 
rsqb ] right square bra.cket 

3.2 Identifier lists and identifier symbols 

comma 

V vernon delimiter, start subscript 
EV verrion delimiter, end mbscript 

? 

dIr $ dollar 
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The following special symbols are often used in names. 

sup start superscript 
esup end superscript 
mb start subscript 
esub end subscript 
Delta. l> 
X; =: 
Sigma. E 
p; II 

3.3 Definitions and declarations 

See also section 3.1 

colon 
cbar constraint bar 
tdef !; syntactic equivalence for terms 

g,sdef syntactic equivalence for schema terms 
ddef data type definition 
bbar I branch separator 
lang « left angled bracket for disjoint union 
'ang 
SR 

>
r 

L

right angled bra.cket for disjoint union 
start vertical ntle 

ST --- "such that" 
ER end vertical ntle 
SB see section 3.7
 
ESB see section 3.7
 
GE = unique (generic) definition 

place holder for generic parameters 

3.4 Theorem symbols 

See also section 3.7 

thrm r theorem 
TR start theorem 
ETR end theorem 
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3.5 Predicate symbols 

left parenthesis 
right parenthe8is 

SI start indentation 

EI end indentation 

nol negation 
and A conjunction 

0' V disjunction 
imp ::::} implication 
HI ¢::} equivalence 
all V universal quantification 

exi 3 existential quantification 

exil 31 unique existence 
where where'postfix' existential quantifier 
spot "'such that" 
cbar I constraint bar 
mem E '"an element of" 

equals 

3.6 Term sYIDbols 

lset { left set bracket 
rset } right set bracket 
lambda ,\ la.TIlbda abstraction 
mn choiceI' 
Iseq ( start sequence 
,seq ) end sequence 

selection 
prod x cartesian product 

psel P power set 
theta 9 tuple constructor 

3.7 Schema notation 

I,ch [ left schema. bracket 
nch 1 right schema bracket 
SB 

start schema. box (after name) 
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ST 
middle line of schema. box 

ESB 

zand 
Zor 
zimp 
zeq 
znot 
zexi 

..II 
zfor 
zhide 
zproj 
zcmp 
zpipe 
pre 

1\ 
V 
=} 

¢} 
~ 

:J 
V 
I 
\ 
I 
; 
» 
pre 

end schema. box 
schema conjunction 
schema disjunction 
schems implication 
fichema equivalence 
5chema negation 
schema existential quantification 

schema univenal quantification 
renaming 

schema hiding 
schema projection 
schema composition 
schema piping 
schema precondition 
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4 Symbols defined in the Basic Library 

This chapter gives a.liBt of symbols and identifiers which are introduced and defined in 
the Z Basic Library. We shaJ.l give a mnemonic for ea.ch symbol which is not included 
in the standard character sets. We shall also indicate, fOT each symbol, whdher it is a 
relational symbol (reI), an infix operator symbol (op), a prefix function symbol (tunc) 
or a. postfix function symbol (pfunc). Identifiers denote sets or functions. 

4.1 Set notation 

equa.l.s reI' 
mem E "an element of" rei' 
pset P power set fune3 

prod x cartet'iian product op' 

neq ! not equal to reI 
jut n intersection op 
nni U union op 
diff \ set difference op 
subs (; subset reI 
pBubs C proper subset reI 
nem rt "not an element or reI 
dint n distributed intersection fune 
duni U distributed union fune 
iset F finite subsets pre 
fsetl F, non-empty finite subset.!; pre 
psetl P, non-empty power set pre 
null '" null set 

4.2 Relation notation 

rei ~ relation op 
;d identity relation 
dom domain of a relation pre 
ran range of a relation pre 
fcmp fonrnrd relational composition op 
cmp o relational composition op 

3Tbe:se symbols are part of the basic Language of Z and are used in the Bll.'Iic Library 10 defiD~ other 
5ymbob. 
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dre' 
dsub 
,re, 
rsub 
fove 
limg 
rimg 
inv 
iter 
ritee 
rtel 
tel 
map 

<J	 domain restriction 
<l domain subtraction 
0- range restriction 
I> range 8U btIll.Ction 

III	 functional overriding 
left image bracket~ 
right image bracketl 
inverse 
iteration 
end iteration. 
reflexive transitive closure 

+ transitive closure 
~ maps to 

op 
op 
op 
op 
op 
op 
rop 
plune 
op 
rop 
prune 
pfune 
op 

4.3 Fanction categories 

Some relations have special properties. Sets of relations which show common properties 
are grouped together and given special names. The names appear as infix operators with 
sets as operands. 

pfUD ~ 

linn ~ 

tfun ~ 

pinj ~ 

tinj ~ 

finj - finite injection 

p"" - partial surject.ion 
hur - total surjection 
bij ~ bijection 

4.4 Natural numbers 

partial function 
total Cunction 
finite (unction 
partial injection 
total injection 

Nat N 
Int Z 

succ 
pred 
min 
max 

+ 

natural numbers 
integers 
successor 
predecessor 
minimum 
maximum 
addition 
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in 
in 
in 
in 
in 
in 
in 
in 
in 

fune 
rune 

op 



D:lUltiplica.tion op• 
subtraction op 

div division op 
mod modulus op 

geq ;> grea.ter than or equal to rel 
leq less than or equal to rel"> grea.ter than rei 

< less than rei 
number interval op 

# cardinality func 

4.5 Sequence and bag notation 

'eq set of sequences pre 
seql set of non-empty i5equence!l pre 
lseq ( left sequence bracket 

r""q ) right sequence bracket 
front 
last 
head 
tail 
next 
rev 
prefix 
,uffix 
squash 

~cat sequence concatenation op 
don ffJ/ distributed overriding rUDe 
dcmp :/ distributed comp06ition {une 

deat ~/ distributed concatenation {une 

ires 1 index restriction op 
,re, t sequence restriction op 
bag set of bags pre 
count 
in 
buni bag union op 
items '" 
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5 An Abstract Syntax for the Z Notation 

An abstract syntax for the Z notation is presented. It is intended to avoid details of 
concrete syntax: rather than describing a language by defining which strings of char­
acters are permissible, an abstract syntax defines instead objects whose structures are 
permissible. These objects are usually viewed as trees, and each may abstract many 
different strings in the concrete syntax. An abstract syntax is therefore more concise 
and so more readable. 

The abstract syntax is described using the Z notation itself. Readers should be warned 
that this description is not intended for newcomers to the notation. It will be found 
useful by those who already have some familiarity with Z, and now feel that an a.bstract 
view of (lIe notation's syntax would be worthwhile. It is expected that this syntax 
will prove most useful to people who might be constructing tools for ma.n.ipulating the 
language. As has been noted elsewhere [Spivey 85], if we are to use a description of the Z 
notation-the abstract syntax in this case-as pari of the specification of a software tool 
to manipulate a.nd reason about Z, then we ought to use a notation for that description 
which is intended for expressing software specifications. The exercise is also a good 
demonstration of the applicability of Z to a problem such as that of describing syntax 
abstractly. 

In what follows, definitions of syntactic categories are given using data type definitions 
to expre9S alternatives. For example, 

BRUlCH ::a 
constant «ID ,. 

constructor < FURCTIOlLIMAGE ,. 

describe:sa syntactic category BIU.NCH, a representation of which can be either a constant 
drawn from the syntactic category ID, or a constructOr drawn from the syntactic cat­
egory FUiCTIOlLIHAGE, which could be defined using the schema definition 

FUllCTIDI_IKAGE ~ [function...name: 10; domain: TERM] 

This says that a constructor has two components: function--.name, drawn from the 
syntactic category rD, and domain, drawn from the syntactic category TERM. A schema 
is used to emphasise that in the abstract syntax we really don't care about the order of 
these components. This allows greater freedom in the design of concrete syntaxes. 

The description of the syntax in the Z notation has something of the flavollr of a descrip­
tion in Ba.cklls-Naur Form, both being tree-like descriptions. However, we can be more 
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abstract-and more rigorous-in Z; we can avoid unnecessary detail such as ordering; 
and we can give components convenient names. A similar use of an abstract syntax 
notation may be found in [Jones 801. 

5.1 A document 

We first define a construct that will be useful in the following specification: we model an 
optional. constrnct by a set which has either a or 1 elements. 

optional [X] ~ (s: PI I #s S 1} 

The specification uses definitions taken from the basic library: 

BASIC-.LIB 

It is important to understand that a document exists in an environment of named doc­
uments. 

Library ~ JlAl1E +-t DOCUMENT 

where a DOCUMENT is defined as follows: 

DOCUMENT ~ [givensets: seq NAME; contents: seq SECTION] 

and 

SECTION: :=
 

definition < DEF »
 
consequence -«: THEOREM ::>
 
import <: IMPORT ::>
 

A document is generic with respect to some given named sets; a document defines some 
global. variables--these may be either explicit definitions of new variables whose scope 
is then the entire document, or generic extensions to the language, e.g. definitions of 
new operators; a document contains some consequences, which are theoreIDli a.bout the 
definitions given in the document; documents from the library may be imported; 
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When a document is imported from the library, its variables may be renamed and its 
generic puameters instantiated: 

IKPORT ~ [doc: NAME; version: optional[NlME]; inst: INST] 

INST	 ::'"
 
key ~ ID ++ TERM »
 
position ~ seq TERM ::»­

A document constmction contains either one or two NAMEs. The first of these is the name 
given to the document in the library. The second, if present, is the version decoration. 
Instantiation may be either by keyword or by position (but not a mixture of the two). 

5~2 Identifiers, names and references 

In this specification, we assume the existence of a set of names: 

[HIXE] 

Mathematical variables are named using identifiers, which consist of a "base" name, 
together with a sequence3 of decorations: 

ID g [basename: NAME; decor: seq DECOR ] 

DECOR :: '" exclam I query I dash I version ~ NAME » 

Mathema.tical variables are referred to using an identifier, together with an optional 
document qualifier and an optional instantiation of the identifier's generic parameters. 
Schema references are very similar, but they cannot contain any decorations. 

REf ~ [id: ID; qual: optional [HAME] ; inst: HIST ] 

SCRJREF ~ [name: NAME; qual: optional[NAME]; inst: INST] 

3It shadd be noted tha.t seq DECOR includes the emplll sequence of decora.tiom-we mode\M undec­
orated identifier 8.5 one with an empty sequence of decorations. Similar uS(' .is made of seq, F and ,..,.. 
below. 
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5.3 Definitions and declarations 

A definition consists 0(: some declara.tions together with a. predica.te which the newly in­
troduced variables must sa.tisfy, or a definition of a. new variable by syntactic equivalence, 
or a definition of a new data. type, or a definition of a new schema. 

DEF ".
 
axioma.tic «.: U...DEF :::»
 
syntactic <: SYI...DEF :::P
 
datatype <t::DT...DEF :::P
 
schemadef <t:: SCH...DEF :»
 

An axioma.tic definition introduces Borne constants or opera.tors, together with their 
types, in the declaration part. of a schema text. A predicate may also be used to constrain 
the newly~introduc-edvaria.bles. An axiomatic definition may be generic. 

AX...DEF ~ [SCHEMA_TEXT j genparams: seq NAME ] 

SCHEMA_TEXT ~ [decls: F DECj property: PRED ] 

A syntactic definition introduces a. new variable and specifies the term to which it is to 
be equivalent. Syntactic definitions may also be generic. 

SYH...DEF ~
 
[var: Inj spec: TERMj genparams: seq YAME ]
 

A data type definition consists of the name of the new data. type, together with at least 
one 'branch ~ of the tree to be defined. Each branch is either a. simple identifier or a 
constructor function. 

DT...DEF g [id: ID; branches: F1 BRANCH] 

BRUCH' ,=
 
constant <t: ID »
 
constructor <t: FUBCTIOY_IHAGE »
 

FUBCTIOB_IMAGE g [:fUll.ction...name: ID; domain: TERK ] 

A schema. definition introduces either a single new schema. or a generic family of schemas, 
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and names them, 

SCH-.D[F ~ 
[ sch...name: IUME; schema: SCHDUTERH; genp8..l:ams: seq RAME] 

Within a schema text, \'anables can be introduced in two ways: either by naming them 
explicitly (and giving the s.ets from which they must take their \'alues), or by giving the 
name of il- schema which includes their definition. 

DEC :::;
 

decl <: VAR_IRTRO >­

inclusion «SCH_IRCL ~
 

VALINTRO g [vax: In; range: TERM] 

SelLIRCL ~ [ref: SCH...REPj decor: seq DECOR] 

5.4 Theorems 

A theorem can be generic; it introduces a new context in which the conclwion is to be 
proved. furthermore, schemas may be interpreted as theorems. 

" .THEOREM = [g1Vensets: seq RAME; hyp: HYP; cone: PRED] 

HYP ,,= 
vaxhyp <: SCHEIU_TEIT >­

Bchhyp <: SCHEMATERM :;:»
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5.5 Predicates 

A predicate can be 
1) a schema. can be interpreted as a predicate 
2) a. negated predicate 
3) 8. binary operator from the predicate calculus 
4) a qu.antified predicate, which consists of the quantified variahles, a predicate which 
constrains the valuer; of these variables. aDd the quantified predicate itself 
5) a statement relating two terms 
6) 'true' 

PRED ::'" 

predinterp <:: REF ~
 

negat ion < PRED ~
 

conjunction < PARAI'IS »
 
disjunction < PARAI'IS »
 
implication < PARAHS »
 
equivalence <PARAI'IS »
 
universalque.nt < QUANT....EXP »
 
existqllant «QUANT....EXP »
 
uniqneexist «:: QUANT....EXP »
 
binaryrel <:: REL...EXP » 
trueval 

PARAMS ~ [Oplo0P2: PRED ] 

RFl....EXP ~ [OPl.OP2: TERM; operator: RELOP ] 

RELOP :: = member I equal I defrelop < NAME » 

QUABT....EXP g [vare: SCHEMA_TEXT; pred: PRED] 
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5.6 Terms 

Terms may take the following forms:
 
1) term identifiers denote sets or elements. If these sets or ele:m.ents are generically
 
defined, actual values for the generic parameters can be given.
 
2) a schema name can be used to denote a set (the schema type) or a tuple.
 
3) a comprehension form. which introduces some local varia.bles, constrains their values
 
and Constructs new terms, can be used in the definition of a set, an element (choice) or
 
a function (lambda).
 
4) sets, sequences and tuples can be constructed by explicitly naming their elements.
 
5) a selection term is used to identify components of a. schema type.
 
6) the cartesian product of two or more sets.
 
7) the set of all subsets of it. set.
 
8) function applica.tion.
 

TEl>! ". 
termidentifier ~REF ~
 

setinterp ~ SCH-IBCL ~ 1 tnpleinterp < REF »
 
setcomp < COMP» I lambda« COMP ~ I choice <t:: COMP ~
 

setconstruction «: F TERM ;:»
 
seqconstruction ~Beq TERM ~
 

tupleconstruction ~seq TERM ~
 

selection <: SELECT ~
 

cartprodnct <: seq TERM >­

powerset ~ TERM ~
 

functionappln ~APPLY ~
 

where 

COKP ~ [dec!: SCHEKLTEXT; construct: TERM ] 

SELECT ~ [argument: TERM; selector: In] 

APPLY ~ [func, arg: TERM] 
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5.7 Schema terms 

A lichema term can be 
1) a reference to a. schema 
2) a schema which introduces &Orne new variables and constrains their values 
3) a schema. with i is variables renamed 
4) a. decorated schema 
5) the application of a. schema function 
6) the application of a schema quantifier 
7) the hiding of SOUle of the varia.bles of a. schema. term 

SCHEMATERM ,,= 
schemaname <: SCH..REF >­
schema «: SCHEMA_TEXT >­

schem8....rename < RENAME-SCHEMA >­

scb9ll:la-decor < DECOR-SCHEMA j>
 

schemaexp < SCH--.EIP :>
 
schemaquant < QUANT ...sCHEMA >
 
schemavarhide <CHIDE..5CHEMA :>
 

REJJAKE-SCHEM! ~ [schema.: SCHEMlTERH; rename: ID >++ ID ] 

D£COR-SCHEMA ~ [schema: SCHEMATERH; decor: seq DECOR ] 

SCHJ:XP ~ [function: SCHEHA...FtJWC; operands: seq SCHEMATERM ] 

SCHEHA....FU1iC :: ..
 
not I and I or I imply I equiv I camp I pipe r proj
 

QUART-SCREMA ~ 
[decl: F 1 DEC; schema: SCHEMATERH; qn8ntifier: QUANT ] 

QUAIT ::= universal I existential 

RIDE...sCREMA g [schema: SCREMATERH; vars: F 10 ] 
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