Z: GRAMMAR AND
CONCRETE AND ABSTRACT SYNTAXES
{Version 2.0)

by

Steve King
ib Holm Sgrensen
Jim Woodeock

Technical Monograpb PRG-68
ISBN 0-902828-50-3
July 1988

Oxford University Computing Laboratory
Programming Research Group

8-11 Keble Road

Oxford OX13QD

England



Copyright © 1988 IBM United Kingdem Laboratories Limited
Authors’ address:

Oxford University Computing Laboratory
Programming Research Group

811 Keble Road

Oxford OXI 3QD

England

Electronic mail: king@uk.ac.oxtord.prg (JANET)



Preface

This monograph, which presents a grammar and an abstract syntax for the Z specification
language, iz produced as part of a joint project between IBM United Kirgdom Labo-
ralories Limited at Hureley, England and the Programming Research Group of Oxford
University Computing Laboratory, into the application of formal software specification
techniques to industrial problems. The work was supported by a research contract be-
tween IBM and (Oxford University and is published by permission of the Company.

[Abrial 81] provided the starting point in the development of the Z notation. The syniax
for definitions, predicates and terms presented here was developed from Jean-Raymond
Abrial’s paper. The notation has been further developed and described in [Sufrin 86].

The type rules and the semantics of Z have been described in [Spivey 85]. The commen-
tary in this paper on the meaning of the language constructs is an informal description
of what is formally described in [Spivey 83].

The schema concept is an extension to conventional set theory and preliminary descrip-
tions can be fonud in [Suftin 81], [Sgrensen 82] and [Morgan 84]. A tutorial introduction
to the present state of the schema notation can be found in [Woodcock 88).

Version 2.0

It is the authors’ expectation (and hope!} that this will be the ‘final’ version of this
document, at least in its present form. It is presented as part of the PRG’s (and IBM’s)
work towards the standardisation of 7. As such, it has two major aims: to capture the
present state of the language, particularly those parts of the language whose syntax has
become stable, and to snggest possible solutions to several problems which have to be
resolved as part of the standardisation process. In this second category come such topics
as the syntax for theorems (which is dependent, to some extent, on agreement on a logic
for Z), mnemonic names for the many non-ASCII symbols used in Z, ard the whole
question of how to nse one Z document within another (ie imports, document qualifiers,
versions etc). This last item can only be resolved when case studies have beer completed,
using for instance a library of spedifications. To repeat: in these cases, what is presented
in this document is merely a suggested solution—the definitive answer can only appear
in due time!!
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1 Introduction

In this monograph we give a comprehensive description of the syntax for the specification
language Z. The language has already been described informally in [Sufrin 86) and in
[Hayes 87].

The aim of this document is to prepare for the standardisation of the syntax of Z. The
abstract syntax of 7 is defined and a concrete representation of all language comstructs
is given. The paper suggests a terminology for the construwets. and the concepts of the 2
language. The syntax describes a language which is as close as possible to that which
is used in existing case studies. However, some syntactic variants of constructs in the
language which have been used in the past have been omitted.

The paper gives an informal introduction to the scope rules for identifiers, the type rules
for terms and the precedence rules for operators, functions and relation symbaols. This
description is informnal, and the description of the type rules is concise and camplex, and
may be passed over if the reader desires.

Chapter 2 defines the concrete syntax of the language.

2.1 defines the overall structure of a Z specification docnment and describes the general
facilities a Z for introducing new concepts.

2.2 sets some conventions for the naming of varables in Z documents.

2.3 gives the syntax for introducing new constants, data types and schemas. It de-
scrihes how Z can be extended to include new infix binary operator symbols, new
prefix and postfix function symbols and new infix relation symbols. It also describes
how to introduce generic sets, functions and relations.

2.4 describes the syntax used for theorems.

2.5 gives the syntax of predicates. The predicate notation is conventional, although
the use of types and constraints in quantified expressions is peculiar to Z.

2.6 gives the syntax for terms which is the notation used to describe elements and sets.
This is conventional, for the most part, and includes the notion of types.

2.7 descrihes the notation for schemas. The schema notation is the part of the Z
language which is used to give names ta reusable specifications written in the set
theoretical notation. Specifications written in Z make extensive use of the schema
notation.

Chapter 3 describes the terminal symbols of this syntax.
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Chapter 4 contains a description of the symbols and identifiers which have heen given
special meaning in the basic librery.

Chapter 5 presents an abstract syntax for Z; the structure of this chapter follows that of
chapter 2.



2 Syntax

The notation used to describe the syntax of Z is a simple variant of BNF:
¢ nop-termipals are words in lower case letiers, possibly with embedded underscores.
e alternative constructs are denoted by | at the start of a line.
e optional constructs are enclosed in angle brackets { ) .
e space denctes zero or more spaces of continuation characters (‘soft’ newlines),

» terminals: 1) special characters; 2) reserved words, sbown in beld; aad 3) UPPER
CASE abbreviations, which stand for large graphical forms (such as ‘top of box} or
invisible symboals (such as newline). All terminal symbols are listed in chapter 3,
section by section, i.e. symbols from section 2.1 are listed in 3.1, these from 2.2
are listed in 3.2 etc.

To help in cross-referencing, page references are given for each syntactic category on the
right hand side of a production. These references may be found in the right hand margin.

2.1 A document

document ::= explan text { document ) 55
| Z z_text EZ { document ) 55
explan.text ::=  “sequence of characters, excluding Z and EZ”

A document is divided into a series of sections, which may be: 1) explanatory text
(explan_text), which is a description in a natnzal language; or 2) Z text which gives a
formal description in the language Z.

z_text t:= { z_phrase ) { list_sep z.text ) 655
list_sep HES H
| WL

Z text is a sequence of Z phrases separated by semicolons or newlines?.

'1f a Z phrase is to be split between two or more lines, a ‘soft’ newline character is used asa eontinuatian
character,



z_phrase piw given_set _def 3

| definitiom 6
| constraint 7
| theorem 11
| impert 7

A 7 phrase can take the {ollowing forms:
1. GivenSet Defmition

givenset def ::= [ name_list ] 8

The given sets of a document appear as a list of base names enclosed in square
brackets ([,]). The given sets are formal parameters 16 the document, When a
document is imported into another document, a sel can be supplied as the actnal
value for a given set.

Scope: The scope of & given set is the entire document.

Type* A given set iz a type. If T is a given set, then the elementis of T have type
T; T itself has type P(T).

. Definition
definiticn L axiomatic_def 9
| syntactic_def 10
| datatype def 1
| schama_def 12

This language category is used to define constants, data types and schemas. The
syntax for defining them is described in section 2.3. Constants are introduced by
axiomatic definitions and syntactic definitions and in data type definitions. Data
types wre introduced by data type definitions and schemas are introduced in schema
definitions. Note that a data type definition introduces both a data type and some
constants. Axiomatic, syntactic and schema definitions may be generic.

Axiomatic definitions also allow us to extend the language with infix operator
syrubdls (op), prefix and postfix function symbols (func, pfanc), and infix relation
symbols (rel). When generically defined operator, function or relation symbols
are used, they are implicitly instantiated and appear in infix, prefix or postfix form
(eg. [@g, #5,r"1, 2 € 1). Syntactic definitions also allow us to extend the
language with new symbols: infix symbols for naming sets (in), e.g. -+ prefix
symbols for naming sets (pre), e.g. Pl ; postfix symbols for naming sets (post).
When these symbols are used, they must be explicitly instantiated (e.g. N + N is

iZ is based on typed set theory, in which all elements are associated with a particular maximal set
(their type) from a universe of sets. The type of any element is unique and can always be determined.
There is no setin 2 to which all elements belong, instead there is a universe of sets, called types, which
conesists of all given sets, data types and schema types, and all sets which can be constructed from them
using P (power set), x (cartesian product) and bracketing ( () ).
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the set of partial functions over N, PX is the set of subseis of X).

Scope: The scope of a constant, data type or schema is the entire document. They
are referred to as global variables. Note that only data types may be defined
recursively. VWhen a document is imported, the scope of these global variables is
extended to the importing document. Scope rules follow the static structure of the
document: new local mathematical variables may be introduced by declaration in
constructs nested within the document (e.g. ¥, 3 ). Such constructs are excluded
from the scope of any global variable if its name is reused for a local variable (see
also section 2.3-

Type: The types of constants, data types and schemas are desctibed in section 2:3:

. Global Constraint

coastraint 1= pradl 15
Constants are assumed to satisfy all the global constraints of the document,

. Theorems
A theorem is a formal statement about the definitions given in the document (see
section 2.4).

. Import
import :1=  basenama { version } { instantiation ) 858

A document is imported by giving its name. The uninstantiated given sets, con-
stants, data types and schemas of the imported document become globally known
to the importing document. However, if a version is specified, then the version
name is added to the imported identifiers, and the identifiers are known only in
their repamed form. Each of the given sets of the imported document may be
instantiated i.e. a value for each of the given sets may be supplied (in an instan-
tiation, see section 2.2}, thereby achieviug a partial instantiation of the imported
document.

Scope: The use of the import facility may lead to ambiguity as variables from
different documents can have identical names. This is resolved by prefixing the
reference to such a variable with the name of the document which introduces it
(references are described in section 2.2j.

Type: Instantiation of given sets is systematic, and may add more information
about the types used in the imported document. For example, if an imported vari-
able z is of type P(3xT) where T is a given set of the imported document, and if
T is instantiated with {1,2, 3}, then the type of z will be P(SxN),



2.2 Identifiers, names and references

id. list ::= id {, idlist ) 88
id ::=  basename { decor } 88
base name ::= “sequence of alphanumerics, underscores and symbols,

excluding the terminal symbols of this syniax
and those symbols which have been defined as operators”

name_list I base name { , pame.list } 88

An identifier list (id_1ist) is a sequence of identifiers (id), separated by commas. An
identifier consists of a base name, which may be decorated (decor). Identifiers are
used to name mathematical variables (e.g. elements, sets). When naming schemas,
only base names can be used, since decoration is interpreted as a decoration opetation
which renames the bindable variables of the schema (see section 2.7.2). Note that some
identifiers (c.g. dom, seq) have been given a meaning in the basic library. Strings of
digits will be interpreted as numbers in base 10. Numbers are described in the basic
library.

decor ::= version { decor } 88

| attribute { decor } g8
veraion ::= ¥ bape name EV 8
attribute L= !

A base name decoration is a sequence of version or attribute decorations. A version
decoration is a subscript name. An attribute may contain exclamation marks (for output
variables), question marks (for input variables) or dashes (for variables denoting resulting
states).

reference ::=  { doc_qual § } id { instentiation ) 888
doc_qual :i=  basemame { version } 88
instantiation ::= [ inst list ] 9



inst_list :z=  termlist e

| binding list 9
term.list tz= term { , term.list ) )
binding list :z= id = term ( , binding list } 199

When a reference is made to a varable, its name may be prefixed with a document
qualifier to indicate the document in which the variable is defined. Generically defined
variables may be instantiated. The document qualifier is terminated by a dollar, The
document qualifier consists of the name of the document together with an optional version
decoration. Each element of an instantiation list (inst_list) gives values to the generic
parameters of a generic definition.

scheme ref :z= { doc_qual $ ) basemame { instantiation ) agn

A reference to a schema can not include any decoration, since decoration of schema
names is interpreted as a special operation (see seciion 2.7.2).

2.3 Definitions and declarations

Definitions introduce constants, data types and schemas. Definitions of constants and
schemas may be gemneric. A definition takes one of the following forms:

1. Axiomatic definition

arxiomatic.def ::= liberal def 9

| genericdef 9
liberal def ti= dec { | pred )} 1313

| SR v.sch_text ER 12
generic_def HEA decl_id params : term { | pred } 13919 15

| SR { params ) GE v_sch text ER s12
params t:= [ name list ] 8

An axiomatic definition introduces constants in global declarations (dec and
dec_list). Constants can be elements, sets or functions which are used in pre-
fix (func), infix {op) or postfix (pfunc) forms. The constants satisfy all their
defining predicates. An axiomatic definition takes one of two forms: a liberal def-
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inition, which introduces constants and, for each constant, gives a set from which
the value of the constant must be drawn; or & generic definition, which introduces
a fomily of constants, parameterised by the generic parameters of the list params.
Each instance of a generic constant has a unigue value.

Scope: The scope of & coustant is the entire document (global scope), excluding
the declaration list in which it is declared and any construct in which its name is
reused for a local variable. The parameters of a generic definition are local to the
definition, but they can be given values when the generic constant is instantiated.
Type: The type of constants introduced in a declaration is described in section
2.3.2

Appearance: When a definition is given in a ‘vertical’ form, it is enclosed by SR
{Stari vertical Rule) and ER (End vertical Rele). In the case of a generic definition,
SR and ER also denote the scope of the generic parameters.

A liberal definition may appear in either a horizontal or a vertical form:

i:N[z#1

or

z# 1

A generic definition may also appear in a horizontal or a vertical form:
1il[X) : seq X — seq X | predicate

or

(X]
U_:PX xPX —-PX

predicate

. Syntaciic definition

syntactic.def ::= declid { params ) £ term 13919
} const_sym L term 119

A syntactic definition defines a new constant, which can be generic. It may also
define a generic constant which has been given a symbol name.
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Scope: A consiant which is defined by a syntactic definition has global scope, ex-
cluding constructs in which jts name is reused for a local vafiable. Note, also, that
recursive syntactic definitions are not allowed.

Type: The constants defined in a syptactic definition have the same type as their
defining term. Types of terms are described in section 2.6.

const sym 1:=  pre id 8
| id post a
| id im id 88

A syntactic definition can be used to define a (possibly generic) constant which is
to be named by an identifier (deel_id). Alternatively, it can be used to define a
generic constant which will be named by a prefix, postfix or infix symbol (from
the syntactic categories pre, post and in), in which case the names of the generic
parameters (id) indicate the positions of the actual parameters which must be
supplied when the set is used. For example, the definition

FX 2 {s:PX | ..}

introduces the (generic) set of finite subsets of a set. FA and FB are twe different
instantiations of this set. Chapter 4 gives a list of these special aymbols which are
introduced in the Z Basic Library.

Appearance: A syntactic definition has a horizontal form for constants named by
identifiers: e.g.

some[X12 {z: X | ..}
and 2 horizontal form for constants named by symbols: e.g.

XeY2PXxY)
X+ Y2{Xev|.)

N-+ N is an instantiation of = and is the set of all partial functions from N to N.
. Data type definition

datatype.def ::= id ::= branches 811

branches i3=  id { < term » ) { | bramches ) 81911

A data type definition introduces a new sei, known as a data type. It is formed
from the union of constanis and the ranges of new constructor functions. In the
definition, each new constant appears as an identifier, while each constructor funec-
tion appears in a branch with a description of its domain enclosed in double angled
brackets (& ... ).

Scope: The data type itself, as well as all the new constants and constructor fune-
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tions, has global scope. Recursive data type definitions are allowed.
Type: A data type is a type. The following example explains the types of the
constants introduced by a data type definition. Suppose

IT ::=a|b] f €N>»

This definition introduces the constants a and b of type DT and the function £ with
domain N. £ is an element of N ++ DT and so has type P(NxDT).

4. Schema definition

schema_def ::=  basa_name { params } £ schema_term 8924

| base name { params } SB v_sch_tert ESB 8912

A schema definition introduces either a single new schema or a family of schemas,
and pames them. A schema name can be used as a predicate, as an inclusion in a
declaration list, as a term in a #-construction or as a term in a declaration.
Scope: The schema is globally known, but recursive schema definitions are not al-
lowed. The variables introduced in the declaration list of the scherna text (dac_list)
are local to the following predicate list (pred 1ist).

Type: When 2 schema is used as a term in a declaration, it denotes a type. This
is described in sections 2.6 and 2.7.1. The type of a f-construction is described in
section 2.6.2.

Appearance: Use of SB, 5T and ESB corresponds to

bﬂ.sﬂ_"”m'

dee _hist

pred _list

2.3.1 Schema texts

When variables are introduced in a declaration list, it is often necessary to give a predicate
which constrains or relates them in some way. This construct—declaration list plus
oplional predicate—has been aptly christened a schema text [Spivey 88]. It can appear
in either a horizontal or a vertical form.

h_sch_text t:=  declist { | pred }. 1315

v.sch text 1:=  declist { ST pred_list } 1314
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The vertical form can appear in axiomatic and schema definitions, and the horizontal
form can appear in A, p and set comprehension terms.

Scope: The scope of the variables iniroduced in a schema text depends on the type of
construct in which the schema text is being used, but it always includes the predicate
part of the schema text.

2.3.2 Lists of declarations

Lists of declarations (dec_list) can appear at twa levels: local lists are used to introduce
variables in schemas, in quantified expressions and in comprehension terms; at a higher
level, lists of global declarations introduce constants and operators in definitions.

dec_list :1=  dec { list_sep declist } 13513

| inclesicn { liat_sep dec_list ) 13513
dec ;:=  declid list : term 13 18
decl-id list = decl.id { , decl id list } 1313
deel_id rz= id 8

| fune _ { rfunc }

| - pfunc

[ (_eop-)

| 1lop - op -

| - op - rop

| - zel _
in¢lusion ::= schemaref { decor ) o8

Each element of a dec_list is either a global declaration or an inclusion. The name
used in the reference of an inclusion must denote a schema. A global identifier is a
new constant or a symbol. When a symbol denotes a function, it can be defined to be
nsed in a prefix form (func), a postfix form (pfunc), or an infix form (op). When a
symbol denotes a relation, it can be defined to be used in an infix form (rel). Various
marker symbols may also be used in combination with func and op symbols: rfunc
lop rop. Underscores () indicate the positions of the operands. The complete name of
the function, operator or relation includes the underscores. However, these are always
omitted when operands are supplied. Chapter 4 contains a list of the special symbols
which name the prefix and postfix functions (func pfunc), the infix operators {op} and
the infix relation symbols (rel) from the Z basic library.

Binding: Operator symbols which are introduced using in a global declaration bind in the
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order pfunc, func, op, rel. Relational symbols (rel) bind more sirongly than the
logical connectives. Postfix function symbols pfunc are left associative i.e. the left-most
operator binds most strongly e.g. 77! is parsed as (r*)1. Prefix function symbols func
are right associative i.e. the right-most operator binds most strongly e.g. #U{51,52}
is parsed as #(U{S51, 52}). The relative binding powers of infix operator symbols (op)
are left unspecified.

Scope: U an inclusion is used in a declaration, the local variables of the included schema
become known.

Type: A declaration defines a list of variables of the same type. If the term used in a
declaration denotes a set, then the value of the variables ¢an only range over that set,
and the type of the variables declared is the same as the type of the elements of that
set. 1f the term is a schema, then the type of the variables declared is the schema type
associated with that schema.

2.3.3 Lists of predicates

Predicate lists are used as statements about mathematical variables (e.g. in theorems
and axiomatic definitions).

pred_list ::=  pred { list_sep pred.list } 15514

2.4 Theorems

theorem i:= b pred 13
| TH { given_set_def { list_sep } ) { hyps } I concl ETH e515 14
| SB { given_set_def { list_sep } } { hyps } b concl ESB 651514

concl :r=  pred list 14

A theorem may be a turnstile () followed by a dedueible statement (the conclusion)
which takes the form of a predicate. If the conclusion is a reference lo a schema term, all
the variables of the schema term (its signature) must already be declared in the document,
and, furthermore, the predicate part (its constraint) must be true. A thecrem may also
have an hypothesis, in which case the hypothesis and the conclusion are enclosed in
theorem brackets {TH and ETH). In this form, the conclusion may be & list of predicates.
New given sets can be introduced in square brackets.

14



hyps :=  hyplist 15
| echema_term 24
hyp-list := h_sch text { list_sep hyplist ) 12515
| pred { list_sep hyplist )} 15515

Thbe hypothesis introduces new local variables, which can be introduced either through a
hypothesis list or indirectly through a schema term. If the hypothesis is a schema term,
then the variables of the schema (its signature) will be introduced and the predicate part
(its constzaint) will be part of the hypothesis.

Appearance: The TH and ETH tags cause indentation when they are used. For example

document...
dee_hast
'_
pred_list
document...

2.5 Predicates

A predicate is a statement about sets or elements of sets. Predicates are used as state-
ments in axiomatic definitions and global constraints. They are also used in theorems
as statements in the hypothesis or conclusion. In schemas, predicates are wed to con-
strain the values taken by local variables. In comprehension terms, they areused in the
descriptions of sets, functions and particular elements.

pred := achema ref 9
| predi 15
predl t:i=  ( pred ) 15
| 8I pred-list EI 14
| logexp 16
| qnant_exp 17
| rel_exp 18

A predicate may take the following forms:

1. A reference to a schema can be a predicate. I this form is used, dl the local
variables of the schema must have been declared in the context in which the refer-
ence appears. The predicate dencted by the reference is the predicate part of the

15



referenced schema.

Predicates can be grouped by enclosing them in parentheses ( ).

. Predicates can be grouped by enclosing them in ‘indentation brackets’ SI, EI .
Predicates can be compound logical expressions (see below).

Preditates can be compound quantified expressions (see below).

SN I S

Predicates can be compound relational expressions (see below).

Appearance: Use of SI, EI (start indentation, end indentation) causes indentation. The
predicates of a list which are at the same indentation level are conjoined. For example

document...
Ydeclist -
?l
p?
»
document...
is parsed as
document...
Vdeclist » (pI} A (p2) A(pS)
document...

2.5.1 Logical expressions

log-exp = - pred 15
| pred A pred 1518
| pred V pred 11
| pred = pred 1518
| pred < pred 1515

A logical expression can he
1. a negation using —~ {not);
2. a conjunction using the connective A (and);
3. a disjunction using the connective V (or);
4. an implication using the connective = (implies);
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5. an equivalence using the connective & (iff—if and only if).

Binding: - binds stronger than the binary lopical connectives which bind in the order

NV, =,
The binary logical connectives are left associative e.g. (71 = p; = pa) is the same as

((71 = p2) = 1a).

2.5.2 Quantified expressions

quant_exp 2= 3 hosch text - pred 1215
t 3 h_sch_text - pred 12 15
| pred where h._sch text 15 12
| pred where SI v_sch text EI 15 12
| ¥ h_sch text * pred 1215

A quantified expression can be:

1. an existential quantification using the existential quantifiers {3, there exists, and
3;, there exists exactly one), or the wherekeyword; or

2. a universal quantification using the universal quantifier (¥, for all).
The predicate following the vertical bar ( { ) of the schema text constraina the values of
the quantified variables. The predicate following the dot ( * ) is the quantified predicate.
Scope: The schema text in a quantified expression introduces bound varisbles. These
are local to the construct.
Binding: All of the logical connectives (-, A,V,=>,4) bind stronger than * (dot) and

| (bar), which bind stronger than where, which in turn binds stronger than the predicate
list separator (;). For example, the predicate list

Vdecl * oy A g A paipe

should be read as

(Vdecdd * ;1 A pa A pakima

17



2.5.3 Relational expressions

rel exp i3= term = rel _exp-tail 1918
| term € term 1919
| term term 1918
| term rel rel exp_tail 1913
rel_exp-tail ::= term ( = rel.exptail ) 1918
| term ( rel rel exp.tail } 1918

Note: rel is not defined ir this syntax, but the list of symbols, which is described in
chapter 4, indicates which symhols can be used as infix relational syrmbols.

In a relatiom] expression, a predicate may be consiructed using equality (=), membership
(€), or a predefined relational operator. A relational expression may also be constructed
from two terms (i.e. juxtaposition). For example, if 5 is a set and ¢ is an element, then
S(e) is equivalent to e € S.

Binding: Equality, membership and the relational operators bind stronger than — and
ihe binary lgical connectives . For example

l=aV -bhe§
should be read as
(t=av(-(be$)

Type: The components of an equality expression must all be of the same type. If the
term on the left of a membership expression is of type T, then the term on the right
must be of type PT. The type-correctness of a relational expression is determined by the
definition of the the relational operator.

2.6 ‘Terms

Terms are mwed in syntactic definilions to denote sets or elements of sets. In a declaration,
a term is used to denote the set over which the declared variables can range. Terms are
also used in relational expressions as statements about elements and sets, and in other
terms for constructing new terms.

18



term 1= term reference 19
| ( term ) 19
| comprehension 20
| expl_constr 1
| selection 22
| construction 22

torm reference:: = reference s
| schema ref { dacor } 33
| pre temrm 19
| term in term 1918
| term pest 19

A term can take the [ollowing forms:

1, A term can be a reference to & set, an element or a schema. If the term is
a basemame, possibly with a decoration, then it may either be parsed as a
reference or a schema_ref. This ambiguily is resolved by examining the name:
if it is a schema name then the latter parse is chosen. The instantiation of generi-
cally defined constants takes a special form if the constants have been given symbol
names {pre, in, post). pre binds as func and post binds as pinuc (see section
2.6.4). in binds less tightly than op and is right associative.

2. Terms can be enclosed in parentheses. Bracketing is used to associate explicitly
component terms within constructions. The associativity laws, which allow brack-
eting to be omnitted, are described below.

3. A comprehension term denotes a set or a function (see below).
4. Aun explicit construction term denotes a tuple, a set or a sequence (sex belaw).

5. A selection term denotes an individual named component of a ‘structured’ term of
schema iype (see below).

6. A construction term constructs new seis or elements from existing sets, elements,
functions and operators (see below).

Type: If a term is a reference to a schema, the term denotes the schema. type associated
with the referenced schema (see section 2.7.1. The type of other references is determined
by the definition {and the instantiation where relevant] of the referenced object. The
type of other terms is described below.
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2.8.1 Comprehension terms

comprehension :i= { h_sch.text { - term ) } 1218
| A h_schtext - term 1219
| @ hosch_text ( - term ) 1119

Scope: Thedeclaration list in the schema text of a comprehension {erm introduces some
bound variables which are local to the construct.
A comprehension can take the following forms:

1. A set comprehension term introduces some bound variables in a declaration list,
constrains their values using a predicate, and uses a constructing terra to indicate
the value of the elements of the set. For example

{t:N|z€1l.3 - z+3}=1{4,5,6}

If the constructing term iz omitted, the elements of the set are tuples, which are
constructed from the order of the declarations. For example

{z:N;y:N[z€l.2Ay <z}

{z:N;y:Nzel.2Ay <z - (z,¥)}

{(1,0),(2,1),(2,0)}

If there is only one declaration, then the members are single elements. However if

the dec_liat is a single schema inclusion, then the set is composed of the elements
of the schema type. For example, if 5 is a schema

(S}={5-63)

Type: The type of the elements of the newly formed set is the type of the con-
structing term. The type of the new set is the power set of the type of its elements.

2. A lambda absiraction term denotes a function. The bound wariables define the
parameters of the function. The constraining predicate defines the domain of the
function. The constructing term indicates the value of the result. For example

Az:Nlz<2-2+3 ={z:Njz<2 -z (z+3)}

= {(073)7(]"4),(2:5)}
= {0+~ 3,1~ 4,2+ 5}

Type: The type of the function’s parameter is the cartesian product of the types
of theindividual parameters. The type of the result is the type of the constructing
term. The function itself is a subset of the cariesian product of its parameters’
type and its result's type.
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3. A choice term denotes a single element. The value of the element must be uniquely
determined by the bound variables, the constraining predicate and the constructing
term. For exarmnple

(wzy: Nly=2+1A2-2=5 - (.= +4)) = (8,11)

If the term is omitted, the default is the tuple constructed from the dedlaraticn, as
for set comprehensions abave.
Type: The type of a choice term is the type of the constructing term.

2.6.2 Explicit construction terms

expl constr ::= tuple 2

| { term1list } q

| lseq { termlist } reeq 21921
tuple ::= ( term , termlist ) 199

| ¢ schemaref 9
1lseq =
Tseq r= )

An explicit construction may denote:

1. a tuple, which is an explicit comstruction of a tuple from its companents or a
f-construction, in which the reference must denote a schema; the local variables
of the schema must be declared in the context where the #-constructicn appears,
cither explicitly or implicitly by schema inclusion;

2. a set extension {encloeed in set braces), which is an explicl construction of a set
from its members; the term_list cannot be a single schema name ss the term
{ schema name } will be parsed as a comprehension term (see section 2.6.1); or

3. a sequence (enclosed in sequence brackets).

Binding: The kst separator (,) binds less strongly than any of the operators in construc-
tion terms. Note that parentheses cannot be omitted from a tuple: (a,b,¢) and {{a, b),¢)
are different terms.

Type: The type of an explicit tuple construction is the cartesian product of the types of
the individual terms. The type of a #-construction is the schema type assocated with
the pame in the reference. If § is a schema, then 85 and 85’ are of the same type (see
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section 2.7.2). The type of a set is the power set of the type of the individual component
terms which must all be of the same type. A sequence is a partial function from Natural
numbers to the type of the component terms, which must also all be of the same type.

2.6.3 Selection terms
selection rr= term . id 198

The term in a seleciion must be of schema type and the identifier must be a variable of
the signature of the schema. For example, if

N a:N;b: X |e>11 and elem : 5§

then
elemb

is the b component of elem. Note that this is a convenient abbreviation for
(AS - b) elem

Type: Thetype of a selection term is the type of the component that is being selected.
In the above example

elem.a is of type N
elem.b is of type X

2.8.4 Constructien terms

construction ::= product x term 23 19
| P term 19
| func_appl 23
| term op term { rop ) 1913
| lop term op term 1919
| func term { rfunc ) 19
| term pfunc 19
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[

product { product x ) term 2319

func_appl 1:=  term term 1913

A construction term can take the following forms:

1. A cartesian product. The component terms in a cartesian product must all denote
selB.
Binding: Parentheses cannot be omitted from a cartesian product term
Type: The type of a cartesian product is the power set of the cartesian product
of the types of the elements of the sets described by the component terms. For
example, if we have s: PSand t: PT then s x t is of type P(S x T) since the type
of elements of s is S and the type of elements of t is T, The type of the elements
of a cartesian product is the cartesiar product of the types of the elements of the
sets that are described by the component terms. For example, if A and & are given
sets, and a: A x B, then a is of type A x B.

2. A power set texrm. The component term must denote a set.
Binding: The power set operator (‘set of all subsets of ) binds stronger than x and
all other infix operators.
Type: The type of a power set term is the power set of the type of the compomnent
term. The type of its elements is the same as the type of the component term. For
example, if & £ N \ {0} ,and sa: P4, then the type of sa is PN,

3. A function application term. The first component term denctes the function and
the second denotes the parameter.
Binding: The function application separators (space and ‘(’) are left associative i.e.
the left-most separator binds most strongly:

fab  =(fa)b
f(a) (®) = (F(a)) ()

The separator binds sironger than x and the infix operators. For example
fa+b=(fa)+h

Prefix and postfix function symbols bind stronger than the function application
separators. For example,

f#S5 = F(#5)

Type: The type of the parameter supplied must be the same as the type of the
elements of the funciion’s domain. The type of the application term is the type of
the elements of the function’s range.

4. An infix function application term. Infix operators {op) are predefined or defined
in definitions. Some infix operators have an end marker, in which case the operator
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and the end marker serve as delimiters for the second operand (e.g. R G 3 D)
Binding: Infix operator symbols bind stronger than infix relational symbols. The
relative binding rules between infix operators are not defined.

Type: The type of infix function application terms is determined as for function
application terms. Note that the parameter is the tuple constructed from the lwo
operands.

5. A prefix function application term. Prefix operators (func} are predefined or de-
fined in definitions.
Binding: Prefix operator symbols hind stronger than infix operator symbols, In
sequences of prefix operator symbols, the right-most operator binds most strongly
e.g #U{S51,52, 53} is parsed as #({S1, 52, 53}).
Type: As above.

6. A postfix function application term. Postfix operators (pfane) are predefined or
defined in definitions.
Binding: Postfix operator symbols bind stronger than prefir operator symbols. In
sequences of postfix operator symbals, the left-most operator binds mast strangly
e.g. r"~1is parsed as (r*)".
Type: As above.

2.7 Schema terms

A schemna term is a mathematical structure, similar to a predicate. However a schema
term can be given a name and the name can be used in different contexts. The name
can be induded in a declaration list, it can be used as a predicate, it can be used as a
term to denote a type or it ¢an be used as part of a #-construction.

A schema term is associated with a signature and a constraint. T'he signature defines
the bindable variables and their types, and the constraint limits the values which the
bindable variables can take {in any context).

If the name that denotes the schema term is used to denote a predicate or an element
of schema type i.e. in a f-construction, then the bindable variables of the schema term
must all be declared in the context.

gchema_term ::=  achemaref 9
| schema 5
| schema term rename 24 26
| ( schema_term ) 2¢
| log-sexp 26
| spec_sexp 77
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1. a reference to a schema;

2. aschema, which explicitly introduces the signature and constraint of a schema (see
below);

3. a renamed schema {erm, which will rename the bindable variables of the signature
of the scherna term (see below);

4. a bracketed schema term, which is used io associate schema term components
explicitly within schema expressions;

5. a logical schema expression, which is used to construct new schema terms from
existing schema terms (see below); or

6. a special purpose schema expression, which is also used to construct new schema
terms ftom existing schema terms (see below).

2.7.1 Schemas

schema 1= SB v_sch_text ESB 12
| [ h-sch text 1 12

A schema introduces the signature and constraint of a schema term. It can appear in two
forms: a ‘box’ schema form or a horizontal schema form. The declaration list defines the
signature. The variables of the declaration list become bindable variables of the schema,
and their type is determined by their declaration. The bindable variables of an included
schema (i.e. a schema identifier appearing as an inclusion, in a declaraticn list, within
a schema text) also become bindable variables of the including schema. The constraint
of a schema is the conjuncticn of the predicates in the predicate list, logether with the
constraint implicitly imposed on each variable by its declaration. If a schems is included,
the constraint of that schema is also a constraint of the resulting schema.

Type: A schema can be used to denote a set. This set is the schema type associated
with the schema. The type is solely determined by the identifiers used for the bindable
variables and their types. The type can be thought of as a set of unordered tuples with
named components. The components of such a tuple can only be referred to using the
selection construction described in section 2.6.3.
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2.7.2 Schema renaming

rename s expl_rename 26

| decor ]
expl_renane 0= [ rename list ] 6
rename_list t:a id / id { , rename liet ) 8828

A schema lerm can be renamed, the result of which is the renaming of the bindable
variables of the schema term. This can be done by renaming, in a list of pairs of identifiers
(b / a mezns b replaces all a’), or by decoration ( ’ means all variables are decorated
with a’ dash).

Type: If Sis a schema, then S and &' are associated with the same type. If x: S and
y: 5 thenx and y are of the same type, and 85’ is of the same type as #3. However, if
we construct & new schema by the definition T 2 S’ then the identifiers of the signature
of T are diferent from those in S, so T is associated with a different iype from S {(and
hence 85').

2.7.3 Logical schema expressions

log_sexp i schema_term /\ schema_term 3
| schema term V schema_term 74 24
| schematerm —> schema_term 2424
| schema texrm 4= echema term 2424
| T schema term 24
| o declist - scheuwa_term 133
| V declist - schema term 1324

Logical schema expressions can take the following forms:

1. The logical schema connectives (A \V ,=> 4> ) can be used in expressions
to ceastruct new schema terms. If a logical schema connective is used, all the
bindable variables of the component schema terms become bindable variables of the
constructed schema term. The constraint of the constructed schema term consists
of the constraints of the component schema terms connected by the appropriate
logical connective (A when /A is used, v when V is used, = when => is nsed, or
< when <= is used).

2. If schema negation (1 ) is used, the bindable variables stay the same, while the
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constraint is negated.

3. Schema quantifiers can also be used to construct new schema terms. The bindable
variables of the resulting schema term are those of the quantified schems term which
do not appear in the declaration list (i.e. the quantified variables are hidden). The
constraint of the resulting schema term is the logical quantification (¥ for ¥ and
Jfor 3 ) of the constraint of the quantified schema term, over the varables from
the declaration list which is used in the quantification.

Binding: The relative binding power of the logical schema conmectives is the same as

that of their predicate counterparts.

Type: When the logical schema connectives are used, variables which are common to

both schema terms must have the same type. When schema negation is used, care should

be taken to normalize the declaration before applying the negation to the predicate part

of the schema term. All of the variables in the declaration list of a quantified schema
expression must be declared (with the same type) in the quantified schema term.

2.7.4 Special purpose schema expressions

spec_sexp 1= schema_term \ ( idlist ) 24 8
| schema_term | schema_term 24 24
| schema term ; schema term 2424
| schema term 3> schema_term 24 24
| pre scheme _term 24

Special purpose schema expressions may take the following forms:

1. The hiding operator takes a schema term as its first operand and an identifier list as
its second operand. The result will be a schemna term where the bindable variables
are the bindable variables from the first operand excluding the identifiers of the
second operand. The constraint of the resulting schema term is the existentially
quantified constraint of the first operand, over the variables which are excluded.
Since hiding is equivalent io existential schema quantification, there is a constraint
on the hidden (ie quantified) variables, as above: the hidden variables must all be
contained in the signature of the schema term.

2. The schema projection operator () hides all the comnponents of its first argument
except those which are also components of its second argument.

3. The schema composition and schema piping operators both construct a new schema
term, and must only be applied to schema terms which describe operations. The
semantics of these schema operations are explained in [Woodcock 88|,
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4. The precondition operator is applied io schema terms which are used in a doc-
ument to describe operations. The resulting schema is & schema describing the
preconditions of the operation. The precise semantics are described in [Woodcock
88].

Binding: Prefix and postfix special purpose schema operators bind stronger than infix
special purpose schema operators, which, in turn, bind stronger than logical schema
connectives. Individual infix and postfix operators are left associative, while individual
prefix operators are right associative.
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3

Terminal symbols

In this chapter, we give, for each terminal symbol, the mnemonic, a suggested graphical
representation and the name. The following points should be noted:

*

.

Some symbols are tags that are invisible, but are needed in a document for struc-
tural information (e.g. Z, EZ, WL).

Some symbols do not have a mnemonic since they are available on normal ASCII
and EBCDIC keyboards {e.g. ; , ).

[n the grammar description of chapter 2, the graphical representations are used,
except for symbols which are tags (Z, EZ, NL) and symbols which have a two
dimensional graphical representation (SB, ESB etc).

¢ The non-terminals rel, func, op, pfunc are a collection of terminad symbols

3.1

EZ
NL

lsgb
rsgb

3.2

EV

and have not been fully defined in the conerete syntax of chapter 2. Some specific
terminal symbols have been defined in the basic library for Z, and in chapter 4, we
indicate whether a symbol is a member of rel, func, op or pfunc,

Document punctuation

start Z section

end Z section

new line
H semicolon
[ left square bracket
] right square bracket

Identifier lists and identifier symbols

. comma
version delimiter, start subscnpt
version delimiter, end subscript

-y

dollar
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The following special symbols are often nsed in names.

sup start superscript
esup end superscript
sub start subscript
esub end subscript
Delta A

Xi E

Sigma T

Pi il

3.3 Definitions and declarations

See also section 3.1

: colon
cbar constraint bar
tdef £ syntactic equivalence for terms
sdef £ syntactic equivalence for schema terms
ddef u=  data type definition
bbar | branch separator
lang L4 left angled bracket for disjoint union
rang p=S right angled bracket for disjoint union
SR r start vertical rule
ST f————— “such that"
ER - end vertical rule
SB see section 3.7
ESB see section 3.7
GE ——— unique (generic) definition

- place holder for generic parameters

3.4 Theorem symbols

See also section 3.7

thrm + theorem
TH r start theorem
ETH * end theorem
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3.5 Predicate symbols

( left parenthesis
) right parenthesis
SI start indentation
EIL end indentation
not - negation
and A conjunction
or v disjunction
imp = implication
iff =3 equivalence
all Y universal quantification
exi 3 existential quantification
exil EN unique existence
where where‘postfix’ existential quantifier
- spot . “guch that”
char | comnstraint bar
mem € “an element of”
= equals

3.6 Term symbols

Iset { left set bracket
rset } right set bracket
lambda A lambda abstraction
mu G choice
Iseq { start sequence
rseq ) end sequence

. selection
prod x cartesian product
paet P power set
theta 8 tuple constructor

3.7 Schema notation

Isch [ left schema bracket
rach 1 right schema bracket
SB

start schema box (after name)

a1



ST

ESB

zand
Zor
zimp
zeq
znot
zexd
zall
zfor
zhide
Zproj
zcmp
zpipe
pre

|

middle line of schema box

TS W g <>

%

g
d

end schema box

schema conjunction

schema disjunction

schema mplication

schema equivalence

schema negation

schema existential quantification
schema universal quantification
renaming

schema hiding

schema projection

schema composition

schema piping

schema precondition
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4 Symbols defined in the Basic Library

This chapter gives a list of symhols and identifiers which are introduced and defined in
the 7 Basic Library. We shall give a mnemonic for each symbol which is not included
in the standard character sets. We shall also indicate, for each symbol, whelher it is a
relational symbel (rel), an infix operator symbel (op), a prefix function symbol (func)
or a postfix function symbol (pfunc). Identifiers denote sets or functions.

4.1 Set notation

= equals rel’
mem € “an element of” rel?
pset P power set func®
prod x eartesian product op®
ney # not equal to rel
int n intersection op
uni ] umnion op
diff \ set difference ap
subs C subset rel
psubs C proper subset rel
nem 14 “pot an element of” rel
dint N distributed intersection func
duni U distributed union func
fret F finite subsets pre
fretl Fi non-empty finite subsets pre
psetl P; non-empty power set pre
null @ null set

4.2 Relation notation

rel = relation op
id identity relation

dom domain of a relation pre
ran range of a relation pre
fcmp 2 forward relational composition op
cmp ) relational composition op

3These symbols are part of the basic language of Z and are used in the Basic Library to define other
symbols.
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dres < domain restriction op
dsub < domain subtraction op
Ires > range restriction op
reub B range subtraction op
fovr ) functional overriding op
limg { left image bracket op
rimg ) right image bracket Top
inv - inverse pfunc
iter iteration op
riter end jteration Top
rtel * reflexive transitive closure pfune
tcl * transitive closure pfunc
map — maps to op

4.3 TFunction categories

Some relstions have spectal properties. Sets of relations which show common properties
are grouped together and given special names. The names appear as infix operators with
sets as operands,

pfun + partial function in
tfun — total function in
ffun -+ finite function in
pinj »+  partial injection in
tinj — total injection in
finj "+ finite injection in
psur +» partial surjection in
tsur - total surjection in
bij - bijection in

4.4 Natural numbers

Nat N natural numbers

Int z integers
SUCC  SUCCESSOT func
pred predecessor func

min  minimum
max maximum
+ addition op
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geq
leq

4.5

seq
seq;
lseq
r8eq
front
last
head
tail
next
ey
prefix
suffix
squash
cat
dovr
demp
dcat
ires
sres
bag
count

items

*

=
o 4
a

ANV AYE

ST

Sequence and bag notation

multiplication
subtraction

division

modulus

greater than or equal to
less than or equal to
greater than

less than

number interval
cardinality

set of sequences

set of non-emply sequences

left sequence bracket
right sequence bracket

sequence concatenation
distributed overriding
distributed composition
distributed concatenation
index restriction
sequence restriction

set of bags

bag union
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op
op
op

rel
rel
op
func

pre
pre

op
func
func
func
op
op
pre
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5 An Abstract Syntax for the Z Notation

An abstract syntax for the Z notation is presented. It is intended to avoid details of
concrete syntax: rather than describing a language by defining which strings of char-
acters are permissible, an abstract syntax defines instead objects whose structures are
permissible. These objects are nsually viewed as irees, and eack may abstract many
different strings in the concrete syntax. An abstract syntax is therefore more concise
and so more readable.

The abstrct syntax is described using the Z notation itself. Readers should be warned
that this description is not intended for newcomers to the notation. It will be found
useful by those who already have some familiarity with Z, and now feel that an abstract
view of the notation’s syntax would be worthwhile. It is expected that this syntax
will prove most useful to people who might be constructing tools for manipulating the
language. As has been noted elsewhere [Spivey 85), if we are to use a description of the Z
notation—the abstract syntax in this case—as part of the specification of a software tool
to manipulate and reason about Z, then we ought to use a notation for that description
which is intended for expressing software specifications. The exercise is also a good
demonstration of the applicability of Z to a problem such az that of describing syntax
abstractly.

In what follows, definitions of syntactic categories ate given using data type definitions
to exprew alternatives. For example,

BRARCH ::=
constant < ID »
| constructor < FURCTION_IMAGE %

describesa syntactic category BRANCH, a representation of which can be either a constant
drawn from the syntactic category ID, or a constructor drawn from ihe syntactic cat-
egory FURCTION_IMAGE, which could be defired using the schema definition

FUICTIDN_IMAGE 2 [ fgnction name: ID; domain: TERM ]

This says that a constructor has two components: function name, drawn from the
syntactic category ID, and domain, drawn from the syntactic category TERM. A schema
is used {o emphasise that in the abstract syntax we really don’t care about the order of
these components. This allows greater freedoin in the design of concrete syntaxes.

The description of the syntax in the Z notation has something of the flavour of a descrip-
tion in Backus-Naur Form, both being tree-like descriptions. Howewver, we can be more
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abstract-——and more rigorous—in Z; we can avoid unnecessary detail such as ordering;
and we can give components convenient names. A similar use of an abstract syntax
notation may be found in [Jones 80].

5.1 A document

We first define a construct that will be useful in the following specification: we model an
optional construct by a set which has either 0 or 1 elements.

optional [X] £ {a: PX | #s < 1)
The specification uses definitions taken from the basic library:
BASICLIB

It is important to understand that a document exists in an environment of named doc-
uments.

Library & NAME ++ DOCUMENT
where a DOCUMENT is defined as follows:

DOCUMENT 2 [ givensets: saq NAME; contents: seq SECTION ]
and

SECTION ::=
definition < DEF »
| consequence <« THEOREM >
| import < IMPORT 3

A document iz generic with respect to some given named sets; a document defines some
global variables—these may be either explicit definitions of new variables whase scope
is then the entire document, or generic extensions to the langusge, e.g. definitions of
new operators; a document contains some consequences, which are theorerns about the
definitions given i the document; documents from the library may be imparted.,
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When a {ocument is imported from the Lbrary, its variables may be renamed and its

generic parameters instantiated:
IMPDRT 2 [ doc: NAME; versiom: optional[NAME]; inst: INST ]

INST ::
key < ID + TERM >

| position <« seq TERM

A document construction contains either one or two NAMEs, The first of these is the name
given to the document in the library. The second, if present, is the version decoration.
Instantiation may be either by keyword or by position (but not a mixture of the two).

5.2 Identifiers, names and references

In this specification, we assume the existence of a set of names:

[NME]
Mathemstical variables are named using identifiers, which consist of a “base” name,
together with a sequence? of decorations:

I0 2 [ basename: NAME; decor: seq DECOR 1]

DECOR ::= exclam | query | dash | version < NAME »

Matheratical variables are referred to using an identifier, together with an optional
documert qualifier and an optional instantiation of the identifier’s generic parameters.

Scherma references are very similar, but they cannot contain any decorations.

optional [NAME]; inst: INST ]

REF 2 [ id: ID; qual:
optional [NAME]; inst: INST ]

SCAREF 2 [ name: NAME; quel:

*It should be noted that seq DECOR includes the empty sequence of decotations—we model an undec-
orated identifier as one with an empty sequence of decorations. Similar use is made of seq, F and >

below,
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5.3 Definitions and declarations

A definition consists of: some declarations together with & predicate which the newly in-
troduced variables st satisfy, or a definition of a new variable by syntactic equivalence,
or a definition of a new data type, or a definition of a new schema

DEF ::=
axiomatic < AXDEF »
| syntactic <€ SYN.DEF 3»
| datatype < DTDEF »
| schemadef <« SCHDEF

An axiomatic defimition introduces some constants or operators, together with their
types, in the declaration part of 8 schema text. A predicate may also be used to constrain
the newly-introduced variables. An axiomatic definition may be generic.

AXDEF 2 [ SCHEMA TEXT ; genparams: seq NAME ]
SCREMATEXT 2 [ decls: F DEC; property: PRED 1

A syntactic definition introduces a new variable and specifies the term to which it is to
be equivalent. Syntactic definitions may also be generic.

SYN.DEF &
[ var: ID; spec: TERM; genparams: seq NAME 1]

A data type definition consists of the name of the new data lype, together with at least
one ‘branch’ of the tree to be defined. Each branch is either a siraple identifier or a
constructor Tuncéion.

DT_DEF [ id: 1ID; branches: F, BRANCH 1

BRANCH ::=
constant <« ID
| constructor <« FUNECTION_IMAGE 3

A
FUBCTIDN_IMAGE = [ function_name: ID; domain: TEAM 1

A schema definition introduces either a single new schema, or a generic family of schemas,
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and names them.

SCE_DEF £
[ sch.name: NAME; schema: SCHEMATERM; genparams: seq NAME]

Within a schema text, variables can be introduced in two ways: either by naming them
explicitly (and giving the sets from which they must take their values), or by giving the
name of 2 schema which includes their definition.

decl < VAR_INTRO »
| inclusieon < SCH_INCL >»

DEC

VAR INTRO 2 [ var: ID; range: TERN ]

SCH.INCL 2 [ ref: SCHREF; decor: seq DECOR ]

5.4 Theorems

A theorem can be generic; it introduces a new context in which the conclusion is to be
proved. Parthermore, schemas may be interpreted as theorems.

THEQREM 2 [ givensets: seq NAME; hyp: HYP; conc: PRED ]
HYP ::=

varhyp < SCHEMA_TEXT >
| schhyp < SCHEMATERM »
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5.5 Predicates

A predicate can be

1) a schema can be interpreted as a predicate

2) a nepaled predicate

3) & binary operator from the predicate calculus

4) a quantified predicate, which consists of the quaatified variahles, a predicate which
constrains the values of these variables, and the quantified predicate itself

5) a statement relating two terms

6) 'true’

PRED ::=
predimterp < REF >

negation <« PRED »

conjunction < PARAMS »
disjunction < PARANS »
implication < PARAMS >
equivalence < PARAMS >

universalquant < QUANT EXP >»
existquant < QUANT_EXP >
uniqueerist < QUANTEXP >

binaryrel < REL EXP >

trueval

PARAMS 2 [ op;,op;: PRED 1

REL_EXP [ opy,op;: TERM; operator: RELOP 1]

RELOP ::= member | equal | defrelop < NAME >

Fa

QUART_EXP [ vars: SCHEMA_TEXT; pred: PRED ]

11



5.6 Terms

Terms may take the following forms:

1) term identifiers denote sets or elements. If thesc sets or elexnents are generically
defined, actnal values for the generic parameters can he given.

2) a schema name can be used to denote a set (the schema type) or a tuple.

3) a comprehension form, which introduces some local variables, constrains their values
and constructs new terms, can be used in the definition of a set, an ¢lement (choice) or
a functior (lambda).

4) sets, ssquences and tuples can be constructed by explicitly naming their elements.
5) a selettion term is used to ideniify components of a schema type.

6) the cartesian product of two or more sets.

7) the sel of all subsets of a set.

8) function application.

TEMM ::=
termidentifier <€/ REF »
setinterp <€/ SCH_INCL » | tunpleinterp < REF »
getcomp < COMP *» | lambda < COMP »» | choice < COMP »

getconstruction <F TERM »
seqconstruction € seq TERM >
tupleconstruction <! seq TERM »

gelection <« SELECT »
cartprodnct < seq TERM >
poverszet < TERM >
functionappln < APPLY >

where

[ decl: SCHEMA_TEXT; comstruct: TERM ]

(14

CONP
SELEcT 2 [ argument: TERM; selector: ID ]

APPLY 2 [ func, arg: TERM 1
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5.7 Schema terms

A schema term can be

1) a reference to a schema

2) a schema which iniroduces some new variables and constrains their values
3) a schema with its variables renamed

4) a decorated schema

5) the application of a schema funciion

6) the application of a schema quantifier

7) the hiding of some of the variables of a schema term

SCHEMATERM ::=

schemaname < SCHREF »

schema < SCHEMA_TEXT »

gchema _tename <« RENAME SCHEMA »
schema_decor < DECOR_SCHEMA >
gchemaerp < 5CHEIP >»
schemaquant < QUANT_SCHEMA
schemavarhide <€ HIDE SCHEMA »

RENAME_SCHEMA 2 [ schema: SCHEMATERM; rename: ID »+ ID ]
DECOR SCHEMA 2 [ schema: SCHEMATERM; decer: seq DECOR 1

SCREIP 2 [ function: SCHEMAFUNC; operands: seq SCHEMATERM 1

SCHEMA_FURC ::=
not | and | or | imply | equiv | comp | pipe | proj

QUART_SCHEMA 2
[ decl: F, DEC; schema: SCHEMATERM; quantifier: OQUART ]

QUART ::= universal | existential

FIDE SCHEMA 2 [ schema: SCREMATERM; vars: F ID ]
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