
Recursive Computation of Regions and
Connectivity in Networks

Mengmeng Liu, Nicholas E. Taylor, Wenchao Zhou, Zachary G. Ives, Boon Thau Loo
Computer and Information Science Department, University of Pennsylvania

Philadelphia, PA, U.S.A.
{mengmeng, netaylor, wenchaoz, zives, boonloo}@cis.upenn.edu

Abstract— In recent years, the data management community
has begun to consider situations in which data access is closely
tied to network routing and distributed acquisition: examples
include, sensor networks that execute queries about reachable
nodes or contiguous regions, declarative networks that main-
tain information about shortest paths and reachable endpoints,
and distributed and peer-to-peer stream systems that detect
associations (e.g., transitive relationships) among data at the
distributed sources. In each case, the fundamental operation
is to maintain a view over dynamic network state. This view
is typically distributed, recursive, and may contain aggregation,
e.g., describing transitive connectivity, shortest paths, least costly
paths, or region membership.

Surprisingly, solutions to computing such views are often
domain-specific, expensive, and incomplete. In this paper, we
recast the problem as one of incremental recursive view main-
tenance in the presence of distributed streams of updates to
tuples: new stream data becomes insert operations and tuple
expirations become deletions. We develop a set of techniques
that maintain compact information about tuple derivability or
data provenance. We complement this with techniques to reduce
communication: aggregate selections to prune irrelevant aggre-
gation tuples, provenance-aware operators that can determine
when tuples are no longer derivable and remove them from their
state, and shipping operators that greatly reduce the tuple and
provenance information being propagated while still maintaining
correct answers. We validate our work in a distributed setting
with sensor and network router queries, showing significant gains
in communication overhead without sacrificing performance.

I. INTRODUCTION

As data management systems are handling increasingly
distributed and dynamic data, the line between a network
and a query processor is blurring. In a plethora of emerging
applications, data originates at a variety of nodes and is being
frequently updated: routing tables in a peer-to-peer overlay
network [1] or in a declarative networking system [2], [3],
sensors embedded in an environment [4], [5], monitors within
various clusters at geographically distributed hosting sites [6],
[7], data producers in large-scale distributed scientific data
integration [8]. It is often natural to express distributed data
acquisition, integration, and processing for these settings using
declarative queries — and in some cases to compute and
incrementally maintain the results of these queries, e.g., in
the form of a routing table, an activity log, or a status display.

The queries that are of interest in this domain are frequently
quite different from the OLAP or OLTP queries that exemplify
centralized DBMS query processing. We consider two main
settings.

Declarative networking. In declarative networking [9], [3],
an extended variant of datalog has been used to manage the
state in routing tables — and thus to control how network mes-
sages are forwarded through the network. Perhaps the central
task in this work is to compute paths available through multi-
hop connectivity, based on information in neighboring routers’
tables. It has been shown that recursive path queries, used to
determine reachability and cost, can express conventional and
new network protocols in a declarative way.

Sensor networks. Declarative, database-style query sys-
tems have also been shown to be effective in the sensor
realm [4], [5], primarily for aggregation-style queries. Outside
the database community, a variety of macroprogramming
languages [10], [11] have been proposed as alternatives, which
include features like region and path computations. In the long
run, we argue that the declarative query approach is superior
because of data independence and optimization. However, the
query languages and runtime systems must be extended to
match the functionality of macroprogramming, particularly
with respect to computing regions and paths.

Section II provides a number of detailed use cases and
declarative queries for regions and paths in these two domains.
The use cases are heavily reliant on recursive computations,
which must be performed over distributed data that is being
frequently updated in “stream” fashion (e.g., sensor state and
router links are dynamic properties that must be constantly re-
freshed). The majority of past work on recursive queries [12],
[13] has focused on recursion in the context of centralized
deductive databases, and some aspects of that work have
ultimately been incorporated into the SQL-99 standard and
today’s commercial databases. However, recursion is relatively
uncommon in traditional database applications, and hence little
work has been done to extend this work to a distributed setting.
We argue that the advent of declarative querying over networks
has made recursion of fundamental interest: it is at the core
of the main query abstractions we need in a network, namely
regions, reachability, shortest paths, and transitive associations.

To this point, only specializations of recursive queries have
been studied in networks. In the sensor domain, algorithms
have been proposed for computing regions and neighbor-
hoods [10], [11], [14], but these are limited to situations in
which data comes from physically contiguous devices, and
computation is relatively simple. In the declarative networking
domain, a semantics has been defined [3] that closely matches

router behavior, but it is not formalized, and hence the solution
does not generalize. Furthermore, little consideration has been
given to the problem of incremental computation of results in
response to data arrival, expiration, and deletion.

In this paper, we show how to compute and incrementally
maintain recursive views over data streams, in support of
networked applications. In contrast to previous maintenance
strategies for recursive views [15], our approach emphasizes
minimizing the propagation of state — both across the network
(which is vital to reduce communication overhead) and inside
the query plan (which reduces computational cost). Our meth-
ods generalize to sensors, declarative networking, and data
stream processing. We make the following contributions:
• We develop a novel, compact absorption provenance, which

enables us to directly detect when view tuples are no longer
derivable and should be removed.
• We propose a MinShip operator that reduces the number

of times that tuples annotated with provenance need to be
propagated across the network and in the query.
• We generalize aggregate selection to handle streams of

insertions and deletions, in order to reduce the propagation
of tuples that do not contribute to the answer.
• We evaluate our schemes within a distributed query pro-

cessor, and experimentally validate their performance in real
distributed settings, with realistic Internet topologies and
simulated sensor data.
Section II presents use cases for declarative recursive views.

In Section III we discuss the distributed query processing
settings we address. Sections IV through VI discuss our main
contributions: absorption provenance, the MinShip operator,
and our extended version of aggregate selection. We present
experimental validation in Section VII, describe related work
in Section VIII, and wrap up and discuss future work in
Section IX.

II. DISTRIBUTED RECURSIVE VIEW USE CASES

We motivate our work with several examples that frame
network monitoring functionalities as distributed recursive
views. This is not intended to be an exhaustive coverage of
the possibilities of our techniques, but rather an illustration of
the ease with which distributed recursive queries can be used.

Throughout the paper, we assume a model in which logical
relations describe state horizontally partitioned across many
nodes, as in declarative networking [9]. In our examples, we
shall assume the existence of a relation link(src, dst), which
represents all router link state in the network. Such state is
partitioned according to some key attribute; unless otherwise
specified, we adopt the convention that a relation is partitioned
based on the value of its first attribute (src), which may
(depending on the setting) directly specify an IP address at
which the data is located, or a logical address like a DNS
name or a key in a content-addressable network [1].
Network Reachability. The textbook example of a recursive
query is graph transitive closure, which can be used to compute
network reachability. Assume the query processor at node X
has access to X’s routing table. Let a tuple link(X,Y) denote
the presence of a link between node X and its neighbor Y.

Then the following query computes all pairs of nodes that can
reach each other.
with recursive reachable(src,dst) as
(select src,dst

from link
union
select link.src, reachable.dst
from link, reachable
where link.dst = reachable.src)

The techniques of this paper are agnostic as to the query
language; we could express all queries in datalog, as in [9].
However, since SQL has a more familiar syntax, we present
our examples using SQL-99’s recursive query syntax1. The
SQL query (view) above takes base data from the link table,
then recursively joins link with its current contents to generate
a transitive closure of links. Note that since all tables are
originally partitioned based on the src, computing the view
requires a distributed join that sends link tuples to nodes based
on their dst attributes, who join with reachable.src.

There are many potential enhancements to this query, e.g.,
to compute reachable pairs within a radius, or to find cycles.
Network Shortest Path. We next consider how to compute
the shortest path between each pair of nodes, in terms of the
hop count (number of links) between the nodes:
with recursive path(src,dst,vec,length) as
(select src,dst,src ||’.’|| dst,1 from link
union
select link.src,path.dst,link.src ||’.’|| vec,
length+1

from link, path where link.dst = path.src)

create view minHops(src,dst,length) as
(select src,dst,min(length) from path
group by src,dst)

create view shortestPath(src,dst,vec,length) as
(select P.src,P.dst,vec,P.length
from path P, minHops H where P.src = H.src
and P.dst = H.dst and P.length = H.length)

This represents the composition of three views. The path
recursive view is similar to the previous reachable query,
with additional computation of the path length, as well as
the path itself. The other (non-recursive) views minHops and
shortestPath determine the length of the shortest path, and the
set of paths with that length, respectively.
Network Highest-Bandwidth Path. We can similarly define
the highest bandwidth path: instead of counting the number of
links, we instead set a path’s bandwidth to be the minimum
bandwidth along any link; and then find, for any pair of
endpoints, the path with maximum bandwidth.
Sensing Contiguous Regions. In addition to querying the
graph topology itself, distributed recursive queries can be used
to detect regions of neighboring nodes that have correlated
activity. One example is a horizon query, where a node com-
putes a property of nodes within a bounded number of hops of
itself. A second example (which we show and experimentally
evaluate in Section VII) starts with a series of reference nodes,
and computes contiguous regions of triggered sensors near
these nodes. This is useful in sensor networks, e.g., in order
to determine the average temperature of a fire.

1We assume SQL UNIONs with set semantics, and that a query executes
until it reaches fixpoint. Not all SQL implementations support these features.

Distributed query
computation nodes

VIEWS:

Reachability

Shortest path

Contiguous
region

Fig. 1. Basic architecture: query processing nodes are placed in a number
of sub-networks. Each collects state information about its sub-network, and
the nodes share state to compute distributed recursive views such as shortest
paths across the network.

Other Example Queries. The routing resilience query counts
the number of paths (alternate routes) between any two nodes.
Another class of queries examines multicast or aggregation
trees constructed within the network. A query could compute
the height of each subtree and store this height at the subtree
root. Alternatively, we might query for the imbalance in the
tree – the difference in height between the lowest and highest
leaf node. Finally, a query could identify all the nodes at each
level of the tree (referred to as the “same generation” query
in the datalog literature).

III. EXECUTION MODEL AND APPROACH

We consider techniques applicable to a broad variety of
networked environments, and we make few assumptions about
our execution environment. We assume that our networked
query processor executes across a number of distributed nodes
in a network; in addition, we allow for the possibility that there
exist other legacy nodes that may not run the query processor
(as indicated in Figure 1). In this flexible architecture, the
query processing nodes will serve as proxy nodes storing state
information (connectivity, sensor status, etc) about devices on
their sub-networks: IP routers, overlay nodes, sensors, devices,
etc.

Individual sub-networks may have a variety of types of
link-layers (wired IP, wireless IP with a single base station,
multi-hop wireless/mesh, or tree-structured sensor networks).
They may even represent different autonomous systems on
the Internet backbone, or different locations within a multi-
site organization. Through polling, notifications, or snooping,
our distributed query processing nodes can acquire detailed
information about these sub-networks. The query processing
nodes each maintain a horizontal partition of one or more
views about the overall network state: cross-sub-network short-
est paths, regions that may span physically neighboring sub-
networks (e.g., a fire in a multi-story building), etc. During
operation, the nodes may exchange state with one another,
either (1) to partition state across the nodes according to keys
or ranges, or (2) to perform computation of joins or recursive
queries.

Importantly, in a volatile environment such as a network,
both sensed state and connectivity will frequently change.
Hence a major task will be to maintain the state of the views,
as base data (sensor readings, individual links) are added or
deleted, as distributed state ages beyond a time-to-live and
gets expired, and as the effects of deletions or expirations get
propagated to derived data.

A. Query Execution Model

In networks, query execution is a distributed, continuous
stream computation, over a set of horizontally partitioned
base relations that are updated constantly. We assume that all
communication among nodes is carried out using a reliable
in-order delivery mechanism. We also assume that our goal
is to compute and update set relations, not bag relations: we
stop computing recursive results when we reach a fixpoint.

In our model, inputs to a query are streams of insertions
or deletions over the base data. Hence, we process more
general update streams rather than tuple streams. Sliding
windows, commonly used in stream processing, can be used to
process soft-state [16] data, where the time-based window size
essentially specifies the useful lifetime of base tuples. Thus,
a base tuple that results from an insertion may receive an
associated timeout, after which the tuple gets deleted. When
this happens, the derived tuples that depend on the base tuples
have to be deleted as well. Due to the needs of network state
management, we consider timeouts or windows to be specified
over base data only, not derived tuples.

B. Motivation for New Distributed Recursive Techniques
To illustrate the need for our approach, we consider an

example. Assume our goal is to maintain, at every node, the set
of all nodes reachable from this node. Refer to Figure 2, which
shows a network consisting of three nodes and four links (vi-
sualized in Figure 3). Each node “knows” its direct neighbors:
we represent these in the link table, consisting of four entries
link(A, B), link(B, C), link(C, A), and link(C, B). As in
our previous examples, the link table is partitioned such that
all values with source src are stored on node src. In our simple
example, there is a direct correspondence between src value
and location, although one could decouple each location from
its physical encoding by using logical addresses (e.g., doing
hash-based partitioning).

Now we define a materialized view reachable(src, dst),
which is also partitioned so tuples with source src are stored
on node src. This query computes the transitive closure over
the link table, and was shown in the Network Reachability
example of Section II. Unlike in traditional recursive query
execution (e.g., for datalog), here computing the transitive
closure requires a good deal of communications traffic: link
data must be shipped to the node corresponding to its dst
attribute in order to join with reachable tuples2; and the
output of this join may need to be shipped to a new location
depending on what its src is. Consider the execution plan
shown in Figure 4. This plan is disseminated to all nodes,
from which it continuously generates and updates partitions of
the reachability relation. The left DistributedScan represents
the table scan required for the base case, which fetches the
contents of link and sends them to the Fixpoint operator. In
the recursive case, the Fixpoint invokes the right subtree of the
query plan: it sends its current contents to a FixPointReceiver,
where they are joined via a PipelinedHashJoin with a copy of
link — whose contents have been re-partitioned and shipped
to the nodes corresponding to the dst attribute. The output

2Or vice-versa, depending on the query plan.

is shipped to the fixpoint via the MinShip (tuple shipping)
operator, which in the simplest case simply sends data to a
receiving node.
Computing the View Instance. Figure 2 steps through the
execution of reachable, showing state after each computation
step in semi-naı̈ve evaluation (equivalent to steps in strati-
fied execution), as well as communication (the “at → to”
columns). We defer discussion of the column marked pv.

The base-case contents of reachable are computed directly
from link, as specified in the first “branch” of the view
definition (See Network Reachability query in Section II).
The recursive query block joins all link tuples with those
currently in reachable. Since the tables are distributed by their
first attribute, all link tuples must first be shipped to nodes
corresponding to their dst attribute, where they are joined with
reachable tuples with matching srcs. Finally, the resulting
reachable tuples must be shipped to the nodes corresponding
to their src attributes. For instance, in step 1, reachable(C, B)
is computed by joining link(C, A) and reachable(A, B) as
computed from step 0. That requires first shipping link(C, A)
to node A, performing the join to generate reachable(C, B),
and sending the resulting tuple to node C. In our figure, we
indicate the communication for the resulting reachable table
in the third column as A→ C.

Since we are following set-semantics execution, duplicate
removal will eliminate tuples with identical values; but this
only occurs after they are created and sent to the appropriate
node. For instance, consider reachable(C, C), which is first
computed in step 1 and sent to node C. During step 2, node
A re-derives this same tuple; however, it must send this result
to node C before the duplication can be detected, and the
tuple eliminated. In total, 16 tuples (4 initial link tuples,
and 12 reachable tuples) are shipped during the recursive
computation. In the final step, a fixpoint is reached when no
new tuples are derived. Observe that since we have a fully-
connected network, the final resulting reachable table at every
node contains the set of all node pairs in the network with the
first attribute matching the node’s address.
Incremental Deletion (Standard Approach). Now consider
the case when link(C, B) expires (hence is deleted). Com-
monly used schemes for maintaining non-recursive views, such
as counting tuple derivations, do not apply to this recursive
view. Instead, one might employ the standard algorithm for
recursive view maintenance, DRed [15]. DRed works by first
over-deleting tuples conservatively and then re-deriving tuples
that may have alternative derivations. Figure 5 shows the DRed
over-deletion phase (steps 0-4), followed by the rederivation
phase (steps 5-8). In the over-deletion phase, it first deletes
reachable(C, B) based on the initial deletion of link(C, B).
This in turns leads to the deletion of all reachable tuples
with src = C (step 1), then those with src = B (step 2)
and src = A (step 3). The reachable table is empty in step
4. DRed will ultimately re-derive every reachable tuple, as
shown in steps 5-8. Overall, DRed requires shipping a total of
16 tuples, equivalent to computing the entire reachable view
from scratch, despite having just a single deletion.

In the above example, DRed is prohibitively expensive:

deleting a single link resulted in the deletions of all reachable
tuples; yet, it is clear that nodes A, B, and C are still connected
after link(C, B) is deleted. One source of deletions in network
settings is tuple expirations; given the fact that large-scale
network tends to be highly dynamic, tuples will need to
expire frequently, thus triggering frequent re-computation and
exacerbating the overhead. Perhaps surprisingly, our example
illustrates the common case behavior for network state queries:
most networks are well-connected with bi-directional connec-
tivity along several redundant paths. DRed will over-delete
such paths, and then re-derive data.

We have ignored a further issue that DRed must wait
until all deletions have been processed before it can start
rederiving. (This requires distributed synchronization, which
may be expensive.)

C. Our Approach
We now propose a solution that eliminates the need for

recomputation, and that also avoids global synchronization.
The major challenge with distributed incremental view main-
tenance lies in handling deletions of tuples. In general, we
must either buffer base tuples, then recompute the majority
of the query (as in our example); or we must maintain state
at intermediate nodes, which enables them to propagate the
appropriate updates when a base tuple is removed. We adopt
the latter approach, developing a scheme that:
• Maintains a concise form of data provenance — bookkeep-

ing about the derivations and derivability of tuples — such
that it is easy to determine whether a view tuple should be
removed when a base tuple is removed. (Section IV.)
• Propagates provenance information from one node to an-
other only when necessary to ensure correctness — thus
reducing network and computation costs. (Section V.)
• Propagates tuples through distributed aggregate computa-

tions only when necessary for correctness — also reducing
network and computation costs. (Section VI.)

We describe these features in the next three sections, with
the query plan of Figure 4 as the central example.

IV. PROVENANCE FOR EFFICIENT DELETIONS

In order to support view maintenance when a base tuple is
deleted, we must be able to test whether a derived tuple is
still derivable. Rather than over-delete and re-derive (as with
DRed), we instead propose to keep around metadata about
derivations, i.e., provenance [17], also called lineage [18].
Provenance alternatives. Different proposed forms of prove-
nance capture different amounts of information. Lineage
in [18] encodes the set of tuples from which a view tuple was
derived — but this is not sufficiently expressive to distinguish
what happens if a base tuple is removed. Alternatives include
why-provenance [17], which encodes sets of source tuples that
produced the answer; and the semiring polynomial provenance
representation of [8], [19], whose implementation we term
relative provenance here. In physical form, the latter encodes
a derivation graph capturing which tuples are created as imme-
diate consequents of others. The graph can be traversed after
a deletion to determine whether a tuple is still derivable from
base data [8]. Either of these latter two forms of provenance

reachable(src,dst)
(derivation step 1)

tuple at → to pv
(A,B) A p1
(B,C) B p2
(C,A) C p3
(C,B) C p4
(A,C) B → A p1 ∧ p2
(B,A) C → B p2 ∧ p3
(B,B) C → B p2 ∧ p4
(C,B) A → C p1 ∧ p3
(C,C) B → C p2 ∧ p4

reachable(src,dst)
(derivation step 3)

tuple at → to pv
(A,A) A p1 ∧ p2 ∧ p3
(A,B) A p1
(A,C) A p1 ∧ p2
(B,A) B p2 ∧ p3
(B,B) B (p2 ∧ p4) ∨ (p1 ∧ p2 ∧ p3)
(B,C) B p2
(C,A) C p3
(C,B) C p4 ∨ (p1 ∧ p3)
(C,C) C (p2 ∧ p4) ∨ (p1 ∧ p2 ∧ p3)
∗(A,B) B → A p1 ∧ p2 ∧ p3
∗(B,C) C → B p1 ∧ p2 ∧ p3
(C,A) A → C p1 ∧ p2 ∧ p3
∗(C,B) A → C p1 ∧ p2 ∧ p4

reachable(src,dst)
(derivation step 2)

tuple at → to pv
(A,B) A p1
(A,C) A p1 ∧ p2
(B,A) B p2 ∧ p3
(B,B) B p2 ∧ p4
(B,C) B p2
(C,A) C p3
(C,B) C p4 ∨ (p1 ∧ p3)
(C,C) C p2 ∧ p4
(A,A) B → A p1 ∧ p2 ∧ p3
(A,B) B → A p1 ∧ p2 ∧ p4
∗(B,B) C → B p1 ∧ p2 ∧ p3
(B,C) C → B p2 ∧ p4
(C,A) B → C p2 ∧ p3 ∧ p4
(C,B) B → C p2 ∧ p4
(C,C) A → C p1 ∧ p2 ∧ p3

reachable(src,dst)
(derivation step 4)

tuple at → to pv
(A,A) A p1 ∧ p2 ∧ p3
(A,B) A p1
(A,C) A p1 ∧ p2
(B,A) B p2 ∧ p3
(B,B) B (p2 ∧ p4) ∨ (p1 ∧ p2 ∧ p3)
(B,C) B p2
(C,A) C p3
(C,B) C p4 ∨ (p1 ∧ p3)
(C,C) C (p2 ∧ p4) ∨ (p1 ∧ p2 ∧ p3)

Fig. 2. Recursive derivation of reachable in recursive steps (bold indicates new derivations). The “at” column
shows where the data is produced. The “to” column shows where it is shipped after production (if omitted, the
derivation remains at the same node. The “pv” column contains the absorption provenance of each tuple (Section IV).
A tuple marked “*” is an extra derivation only shipped in the absorption provenance model.

A B

C

Fig. 3. Network represented in link
relation

to dst

on link.dst=reachable.src

reachable(src,dst)

reachable(src,dst)

link(src,dst)

reachable(src,dst)

reachable(link.src,reachable.dst) @link.dst

reachable(src,dst)

to link.src

Fig. 4. Plan for reachable query.
Underlined attributes are the ones upon
which data is partitioned.

reachable(src,dst)
(step 0)

tuple at
(A,A) A
(A,B) A
(A,C) A
(B,A) B
(B,B) B
(B,C) B
(C,A) C
(C,B) C
(C,C) C
−(C,B) C

reachable(src,dst)
(step 1)

tuple at → to
(A,A) A
(A,B) A
(A,C) A
(B,A) B
(B,B) B
(B,C) B
(C,A) C
(C,C) C
−(C,A) B → C
−(C,B) B → C
−(C,C) B → C

reachable(src,dst)
(step 5)

tuple at → to
(A,B) A
(B,C) B
(C,A) C

reachable(src,dst)
(step 2)

tuple at → to
(A,A) A
(A,B) A
(A,C) A
(B,A) B
(B,B) B
(B,C) B
−(B,A) C → B
−(B,B) C → B
−(B,C) C → B

reachable(src,dst)
(step 6)

tuple at → to
(A,B) A
(B,C) B
(C,A) C
(A,C) B → A
(B,A) C → B
(C,B) A → C

reachable(src,dst)
(step 3)

tuple at → to
(A,A) A
(A,B) A
(A,C) A
−(A,A) B → A
−(A,B) B → A
−(A,C) B → A

reachable(src,dst)
(step 7)

tuple at → to
(A,B) A
(A,C) A
(B,A) B
(B,C) B
(C,A) C
(C,B) C
(A,A) B → A
(B,B) C → B
(C,C) A → C

reachable(src,dst)
(step 4)

tuple at → to

reachable(src,dst)
(step 8)

tuple at → to
(A,A) A
(A,B) A
(A,C) A
(B,A) B
(B,B) B
(B,C) B
(C,A) C
(C,B) C
(C,C) C
(A,B) B → A
(B,C) C → B
(C,A) A → C

Fig. 5. DRed algorithm: over-delete and re-derive steps after deletion of link(C,B).

will allow us to detect whether a view tuple remains derivable
after a deletion of a base tuple. However, to our knowledge,
why-provenance is always created “on demand” and has no
stored representation; and relative provenance relies on the
system of equations (encoded as edges in a graph) to resolve
the problem of infinite derivations, which can be expensive in
a distributed setting.

Moreover, we note that the tuple derivability problem has
several properties for which we can optimize. In particular,
base (EDB) tuples may each participate in many different
derivations — yet the deletion of that base tuple “invalidates”
all of these derivations. View maintenance requires testing
each view tuple for derivability once base tuples have been

removed — which can be determined by testing all of the
view tuples’ derivations for dependencies on the deleted base
tuples.

Our compact representation. We define a simplified prove-
nance model, absorption provenance, which starts with the
following intuition. We annotate every tuple in a view with a
Boolean expression: the tuple is in the view iff the expression
evaluates to true. Let the provenance annotation of a tuple t
be denoted P(t). For base relations, we set P(t) to a variable
whose value is true when the tuple is inserted, and reset to
false when the tuple gets deleted. The relational algebra opera-
tors return provenance annotations on their results according to
the laws of Figure 6 (this matches the Boolean specialization

Algorithm 1 Fixpoint operator
Fixpoint(B∆, R∆)
Inputs: Input base stream B∆, recursive stream R∆

Output: Output stream U ′∆

1: Init hash map P : U(x̄)→ provenance expressions over U(x̄)
2: if there is a aggregate selection option then
3: Get the grouping key uk, number of aggregate functions n and

aggregate functions agg1, · · · , aggn
4: B′∆ := AggSel(B∆, uk, n, agg1, · · · , aggn)
5: B∆ := B′∆

6: R′∆ := AggSel(R∆, uk, n, agg1, · · · , aggn)
7: R∆ := R′∆

8: end if
9: while not EndOfStream(B∆) and not EndOfStream(R∆) do

10: Read an update u from B∆ or R∆

11: if u.type = INS then
12: if P does not contain u.tuple then
13: P [u.tuple] := u.pv
14: Add u.tuple to the view
15: Output u to the next operator
16: else
17: oldPv := P [u.tuple]
18: P [u.tuple] = P [u.tuple] ∨ u.pv
19: deltaPv := P [u.tuple] ∧ ¬oldPv
20: if oldPv 6= P [u.tuple] then
21: u′.tuple := u.tuple
22: u′.type := INS
23: u′.pv := deltaPv
24: Output u′ to the next operator
25: end if
26: end if
27: else if u is from B∆ then
28: for each t in P do
29: oldPv := P [t]
30: P [t] = restrict(P [t],¬u.pv)
31: if P [t] indicates no derivability then
32: Remove t from P
33: Remove t from the view
34: end if
35: end for
36: end if
37: end while

σθ(R): If tuple t in R satisfies θ, annotate t with P(t)
R1 1 R2: For each tuple t1 in R1 and tuple t2 in R2, annotate the

output tuple t1 1 t2 with P(t1) ∧P(t2).
R1 ∪R2: For each tuple t output by R1 ∪R2, annotate t

with P(t1) ∨P(t2), where P(t1) is false iff
t does not exist in R1; similarly for P(t2), R2

ΠA(R): Given tuples t1, t2, . . . , tn that project to the same
tuple t′, annotate t′ with P(t1) ∨P(t2) ∨ · · · ∨P(tn)

Fig. 6. Relational algebra rules for composition of provenance expressions.

of provenance described in the theoretical paper [19]).
Our key innovation with respect to provenance is to develop

a physical representation in which we can exploit Boolean
absorption to minimize the provenance expressions: absorption
is based on the law a ∧ (a ∨ b) ≡ a ∨ (a ∧ b) ≡ a, and
it eliminates terms and variables from a Boolean expression
that are not necessary to preserve equivalence. We term this
model absorption provenance. It describes in a minimal way
exactly which tuples, in which combinations of join and union,
are essential to the existence of a tuple in the view. The
benefit of a compact provenance annotation is reduced network
traffic. Even better, we can use absorption provenance to help
maintain a view after a base tuple has been deleted: we assign
the value false to the provenance variable for each deleted base
tuple, then substitute this value into all provenance annotations
of tuples in the view. If applying absorption to the tuple’s
provenance results in the value false, we remove the tuple.
Otherwise, it remains derivable.

Absorption provenance in the example of Figure 2. Ab-

sorption provenance adds a bit of overhead to normal query
computation: the fixpoint operator must propagate a tuple
through to the recursive step whenever it receives a new
derivation (even of an existing tuple), not simply when it
receives a new tuple. Refer back to the reachable query
example of Figure 2. The pv column shows the absorption
provenance for every tuple during the initial view computation,
with respect to the input link tuples annotated p1, p2, p3, and
p4; we see that an additional 4 tuples (beyond the previous set-
oriented execution model) is shipped during query evaluation,
as a result of computing absorption provenance. For instance,
reachable(B, B) is derived in both strata 1 and 2. They have
different provenance that cannot be absorbed, hence we must
track both derivations.

Absorption provenance shows its value in handling dele-
tions. When link(C, B) is deleted, the only step required with
absorption provenance is to zero out p4 in the provenance
expressions of all reachable tuples. In this example, zeroing
out this derivation only requires two message transmissions,
and it does not result in the removal of any tuples from the
view. (In the worst case it is still possible that deletions may
need to be propagated to all nodes in the network.)

A. Implementing Absorption Provenance
There are multiple alternatives when attempting to encode

an absorption provenance expression. Each expression can,
of course, be normalized to a sum-of-products expression,
since in the end there are possibly multiple derivations of the
same tuple, and each derivation is formed by a conjunctive
rule (or a conjunction of tuples that resulted from conjunctive
rules). From there we could implement absorption logic that
is invoked every time the provenance expression changes. We
choose an alternative — and often more compact — encoding
for absorption provenance: the binary decision diagram [20]
(BDD), a compact encoding of a Boolean expression in a
DAG. A BDD (specifically, a reduced ordered BDD) rep-
resents each Boolean expression in a canonical way, which
automatically eliminates redundancy by merging isomorphic
subgraphs and removing isomorphic children: this process
automatically applies absorption. Since BDDs are frequently
used in circuit synthesis applications and formal verification,
many highly optimized libraries are available [21]. Such
libraries, e.g., [21], provide abstract BDD types as well as
Boolean operators to perform on them: pairs of BDDs can
be ANDed or ORed; individual BDDs can be negated; and
variables within BDDs can be set or cleared. We exploit such
capabilities in our provenance-aware stateful query operators.

Now we describe in detail the implementation of absorption
provenance within the Fixpoint operator. We defer a discussion
of how aggregation state management works to Section VI.

B. Fixpoint Operator
The key operator for supporting recursion is the Fixpoint

operator, which first calls a base case query to produce results,
then repeatedly invokes a recursive case query. It repeatedly
unions together the results of the base case and each recursive
step, and terminates when no new results have been derived.
We define the fixpoint in a recursive query as follows: we reach

a fixpoint when we can no longer derive any new results that
affect the absorption provenance of any tuple in the result.

Unlike traditional semi-naı̈ve evaluation, our fixpoint oper-
ator does not block or require computations in synchronous
rounds (or iterations), a prohibitively expensive operation in
distributed settings. We achieve this with the use of pipelined
semi-naı̈ve evaluation [9], where tuples are handled in the
order in which they arrive via the network (assuming a FIFO
channel), and are only combined with tuples that arrived
previously.

Pseudocode for this operator is shown in Algorithm 1.
The fixpoint operator receives insertions from either the base
(B∆) or recursive (R∆) streams. It maintains a hash table P
containing the absorption provenance of each tuple that it has
received, which remains derivable. Note that in our algorithms,
each tuple now contains three fields, type which indicates
whether it is an INS or DEL tuple, tuple which records its raw
tuple values, and pv which stores its annotated provenance.

Initially (Lines 2–8), we apply any portions of an aggrega-
tion operation that might have been “pushed into” the fixpoint
— this uses a technique called aggregate selection discussed
in Section VI. Now, upon receipt of an insertion operation u
(Lines 11–26), the fixpoint operator first determines whether
the tuple has already been encountered (perhaps with a differ-
ent provenance). If u is new, it is simply stored in P [u.tuple]
as the first possible derivation; otherwise we merge it with
the existing absorption provenance in P [u.tuple]. We save
the resulting difference in deltaPv. If the provenance has
indeed changed despite absorption, u gets propagated to the
next operator, annotated with provenance deltaPv.

Deletions are handled in a straightforward fashion
(Lines 27–35), given our implementation of absorption prove-
nance. In our scheme deletions on the recursive stream are
directly caused by deletions on the base stream. Hence, we
only need to focus on deletion tuples generated from the base
(B∆) stream. When we receive a deletion operation u, for each
tuple t in the table P , we zero out the associated provenance
of tuple u (u.pv) from the provenance expression of each t
(P [t]), computed by BDD operation “restrict” [21] shown
in Line 30. If the result is a provenance expression returning
false (zero), a deletion operation on t is propagated to the next
operator after removing its entry from P .

C. Join Operator

The PipelinedHashJoin must not only maintain two hash
tables for its input relations (as is the norm), but also a hash
table from each tuple to its current absorption provenance.
It maintains this provenance state in a manner similar to the
Fixpoint; due to space constraints we refer the reader to the
extended technical report [22] for pseudocode. As insertions
are received, provenance is updated for the associated tuple.
The difference between the tuple’s existing and new prove-
nance is computed; then the tuple is added to the appropriate
hash table (if it does not already exist), and probed against
the opposite relation. Deletion happens similarly, except that a
tuple is removed from the join hash table only if its provenance
becomes false (i.e., it is no longer derivable).

V. MINIMIZING PROPAGATION OF TUPLE PROVENANCE

With provenance, each time a given operator receives a new
derivation of a tuple, it must typically propagate that tuple and
derivation, in much the same fashion as it would a completely
new tuple. If a tuple is derivable in many ways, it will be
processed many times, just as a tuple might be propagated
multiple times in a bag relation (versus a set). This increases
the amount of work done in query processing, as well as the
amount of state shipped across the network. Even worse, in
the general case, a recursive query may produce an infinite
number of possible derivations.

Fortunately, absorption helps in the last case. If a new tuple
derivation is received whose provenance is completely ab-
sorbed, we do not need to propagate any information forward.
We will reach a fixpoint when we can no longer derive any
new results that affect the absorption provenance of any tuple
in the result.

However, we must take additional steps to reduce the
amount of state shipped by our distributed query processor
nodes. Our goal is to reduce the number of derivations
(provenance annotations) we propagate through the query plan
and the network, while still maintaining the ability to handle
deletions. Here we define a special stateful MinShip operator.
MinShip replaces a conventional Ship operator, but maintains
provenance information about the tuples produced by incom-
ing updates. It always propagates the first derivation of every
tuple it receives, but simply buffers all subsequent deriva-
tions of the same tuple — merely updating their absorption
provenance. By absorption, the stored provenance expression
absorbs multiple derivations into a simpler expression.

Now if the original tuple derivation is deleted, MinShip
responds by propagating forward any alternate derivations it
has buffered — then it propagates that deletion operation.
Additionally, depending on our preferences about state prop-
agation, we can require the MinShip operator to propagate all
of its buffered state periodically, e.g., when the buffer exceeds
a capacity or a time threshold. By changing the batching
interval or conditions, we can adjust how many alternate
derivations are propagated through the query plan — a smaller
interval will propagate more state, and a larger interval will
propagate less state. In the extreme case, we can set the
interval to infinity, resulting in what we term lazy provenance
propagation. In the lazy case, alternate derivations of a tuple
will only be propagated when they affect downstream results;
this significantly reduces the cost of insertions. (In some cases
it may slightly increase the cost of deletion propagation.)

MinShip’s internal state management again resembles that
of the Fixpoint operator. Pseudocode is given in [22].

VI. MINIMIZING PROPAGATION OF STATE

Our third challenge is to minimize the amount of state
(in terms of unique tuples, not just alternate derivations of
the same tuple) that gets propagated from one node to the
next. Given that aggregation is commonplace in network-based
queries (as in most queries of Section II), we need a way
to also suppress tuples that have no bearing on the output
aggregate values. We adapt a technique called aggregate selec-
tion [23] to a streaming model, with a windowed aggregation

(group-by) operation [24]. We consider MIN, MAX, COUNT,
and SUM functions3. In essence, the aggregate computation is
split between a partial-aggregate operation that is used inter-
nally by stateful operators like the Fixpoint and MinShip to
prune irrelevant state, and a final aggregation computation is
done at the end over the partial aggregates’ outputs. Our main
contributions are to support revision (particularly deletion) of
results within a windowed aggregation model, and to combine
aggregate selection with minimal provenance shipping.

Our aggregate selection (AggSel for short) module (Algo-
rithm 2) can be embedded within any operator that creates
and ships state. (In our system, both Fixpoint and MinShip
have calls to this module.) The module takes as input a stream
U∆, a grouping key uk, the number of aggregate functions n,
and a set of aggregate functions agg1, agg2, · · · , aggn. The
module maintains a hash table H indexed on the grouping
key uk, which records all the buffered tuples met so far based
on its grouping key values — this is necessary to support
tuple deletion. A corresponding hash table P maps from each
tuple to their absorption provenance. Another hash table B is
maintained to record the value associated with each aggregate
attribute aggi, for the grouping key uk. AggSel finally outputs
a stream U ′∆ of the update tuples.

Each time AggSel receives a stream insertion (Lines 6–
30), it inserts this tuple into the internal map H from group-
by key uk to source tuple set. (If a tuple with the same value
already exists in the set, then it simply updates the provenance
P for the tuple.) Next, if the insertion affects the result of
any aggregate attribute associated with uk — it changes the
MIN or MAX value, or it revises the COUNT or SUM — the
aggregation selection module will then propagate a deletion
operation on the old aggregate value. After checking all the
aggregate functions, if at least one of the aggregate values
is affected, then it propagates this input insertion tuple as an
insertion; if none of them is affected, it propagates nothing (see
the loop starting at Line 15). Meanwhile, the module applies
the change to its internal state.

Upon encountering a stream deletion or an expiration
(Lines 30–56), AggSel checks whether the deletion has any
affect on the derivability of the deleted tuple (Lines 31–33),
and then whether any aggregate value associated with the
group-by key uk is affected. If an aggregate value is modified
(i.e., this deletion tuple at least partly determines the aggregate
value), then AggSel traverses through the current version of
buffered tuple table, computes the updated aggregate value,
and propagates an insertion of the tuple with the new aggregate
value. If any of the aggregate values is affected, then it
propagates a deletion. Meanwhile, the module applies the
change to its internal state.

VII. EXPERIMENTAL EVALUATION

We have developed a Java-based distributed query processor
that implements all operators as described in Sections IV-
VI. Our implementation utilizes the FreePastry 2.0 03 [26]
DHT for data distribution, and JavaBDD v1.0b2 [21] as the
BDD library for absorption provenance maintenance. Our

3AVERAGE can be derived from SUM and COUNT, as in [25].

Algorithm 2 Aggregate selection sub-module
AggSel(U∆, uk, n, agg1, agg2, · · · , aggn)
Inputs: Input stream U∆, grouping keys uk, number of aggregate functions
n, aggregate function agg1, agg2, · · · , aggn.
Output: Stream U ′∆.
1: Init hash map H: U(x̄)[uk]→ {U(x̄)}
2: Init hash map P : U(x̄)→ provenance expressions over U(x̄)
3: Init hash map B: U(x̄)[uk]→ [1..n] ∗ {U(x̄)}
4: while not EndOfStream(U∆) do
5: Read an update u from U∆

6: if u.type = INS then
7: if H does not contain u.tuple then
8: H[u.tuple[uk]] := u.tuple
9: Set P [u.tuple] to the provenance of u

10: else
11: Add the provenance of u to P [u.tuple]
12: end if
13: if oldPv 6= P [u.tuple] then
14: changed := false
15: for i = 1 to n do
16: if B does not contain u.tuple[uk] then
17: B[u.tuple[uk]] := u.tuple
18: changed := true
19: else if u.tuple is better than B[u.tuple[uk]].i for aggi then
20: u′.tuple := B[u.tuple[uk]].i
21: u′.type := DEL
22: Set provenance of u′ to P [B[u.tuple[uk]].i]
23: Output u′

24: B[u.tuple[uk]].i := u.tuple
25: changed := true
26: end if
27: end for
28: if changed then Output u
29: end if
30: else if H contains u.tuple then
31: oldPv := P [u.tuple]
32: Remove the provenance of u from P [u.tuple]
33: if P [u.tuple] indicates no derivability then
34: Remove u.tuple from P
35: Remove u.tuple[uk] from H
36: end if
37: if oldPv 6= P [u.tuple] then
38: changed := false
39: for i = 1 to n do
40: if B[u.tuple[uk]].i = u.tuple then
41: changed := true
42: Remove u.tuple from B[u.tuple[uk]].i
43: for each tuple t in H[u.tuple[uk]] do
44: if B[u.tuple[uk]].i = null or t is better than

B[u.tuple[uk]].i for aggi then
45: B[u.tuple[uk]].i := t
46: end if
47: end for
48: u′.tuple := B[u.tuple[uk]].i
49: u′.type = INS
50: Set provenance of u′ to P [B[u.tuple[uk]].i]
51: Output u′

52: end if
53: end for
54: if changed then Output u
55: end if
56: end if
57: end while

experiments are carried out on two clusters: a 16-node cluster
consisting of quad-core Intel Xeon 2.4GHz PCs with 4GB
RAM running Linux 2.6.23, and an 8-node cluster consisting
of dual-core Pentium D 2.8GHz PCs with 2GB RAM running
Linux 2.6.20. The machines are internally connected within
each cluster via a high-speed Gigabit network, and the clusters
are interconnected via a 100Mbps network shared with the rest
of campus traffic. Our default setting involves 12 nodes from
the first cluster; when we scale up, we first use all 16 nodes
from this cluster, then add 8 more nodes from the second

cluster to reach 24 nodes. All experimental results are averaged
across 10 runs with 95% confidence intervals included.

A. Experimental Setup
We studied two query workloads taken from our use cases:

Workload 1: Declarative networks. Our query workloads
consist of the reachable query and the shortest-path query
(Section II). As input to these queries, we use simulated
Internet topologies generated by GT-ITM [27], a package that
is widely used to model Internet topologies. By default we
use GT-ITM to create “transit-stub” topologies consisting of
eight nodes per stub, three stubs per transit node, and four
nodes per transit domain. In this setup, there are 100 nodes in
the network, and approximately 200 bidirectional links (hence
400 link tuples in our case). Each input link tuple contains
src and dst attributes, as well as an additional latency cost
attribute. Latencies between transit nodes are set to 50 ms,
the latency between a transit and a stub node is 10 ms, and
the latency between any two nodes in the same stub is 2 ms.
To emulate network connectivity changes, we add and delete
link tuples during query execution.
Workload 2: Sensor networks. Our second workload con-
sists of region-based sensor queries executed over a simulated
100m by 100m grid of sensors, where the sensors report data to
their local query processing node. We include 5 “seed” groups,
each initialized to contain a single device. Our recursive view
“activeRegion” finds contiguous (within k meters, where by
default k=20) triggered nodes and adds them to the group —
or removes them if they are no longer triggered. Based on
that, we can compute the the largest such active region.
with recursive activeRegion(regionid,sensorid) as

(select M.regionid, S.sensorid
from sensor S, coordSensor M, isTriggered T
where M.sensorid = S.sensorid

and S.sensorid = T.sensorid
union
select A.regionid, S2.sensorid
from sensor S1, sensor S2, activeRegion A,

isTriggered T
where distance(S1.coord, S2.coord) < k

and S1.sensorid = A.sensorid and
S1.sensorid = T.sensorid)

create view regionSizes(regionid,size) as
(select regionid, count(sensorid)
from activeRegion
group by regionid)

create view largestRegion(size) as
(select max(size) from regionSizes)

create view largestRegions(regionid) as
(select R.regionid
from regionSizes R, largestRegion L
where R.size = L.size)

Initially all the seed sensors are triggered. Also we trigger
half of the sensors in the network to study the effects of
insertions, and then randomly remove them to study the effects
of deletions. Note that while the input topology simulates a
grid-based sensor topology, the queries are executed over our
real distributed query processor implementation.

Our evaluation metrics are as follows:
• Per-tuple provenance overhead (B): the space taken by

the provenance annotations on a per-tuple basis.

• Communication overhead (MB): the total size of com-
munication messages processed by each distributed node for
executing a distributed query to completion.
• Per-node state within operators (MB): the total overhead
of the state maintained inside operators on each distributed
node.
• Convergence time (s): the time taken for a distributed query
to finish execution on all distributed nodes.

B. Incremental View Maintenance with Provenance
Our first set of experiments focuses on measuring the over-

head of incremental view maintenance. Using the reachable
query as a starting point, we compare three different schemes:
the traditional DRed recursive view maintenance strategy,
relative provenance [8] where each tuple is annotated with
information describing derivation “edges” from other tuples,
and our proposed absorption provenance. We also consider
two schemes for propagating provenance: an eager strategy
(propagate state from MinShip once a second) and a lazy
one (propagate state only when necessary).

Insertions-only workload: We first measure the overhead of
maintaining provenance, versus normal set-oriented execution.
Figure 7 shows the performance of the reachable query, where
the Y-axis shows our four evaluation metrics, and the X-
axis shows the fraction of links inserted, in an incremental
fashion, up to the maximum of 400 link tuples required to
create the 100-node GT-ITM topology. Given an insertion-
only workload, DRed has the best overall performance, since
no provenance needs to be computed or maintained. Relative
provenance encodes more information than absorption prove-
nance, resulting in larger tuple annotations, more communica-
tion, and more operator state. Relative provenance with eager
propagation (Relative Eager) did not converge within 5 min-
utes for insertion ratios of 0.75 or higher; hence, we only show
lazy propagation (Relative Lazy) for the remaining graphs.
Eager propagation with absorption provenance (Absorption
Eager) also is costly due to the overhead of sending every
new derivation of a tuple. Lazy propagation of absorption
provenance (Absorption Lazy) is clearly the most efficient of
the provenance schemes.

Insertions-followed-by-deletions workload: Our next set of
experiments separately measures the overhead of deletions:
here provenance becomes useful, whereas in the insertion case
it was merely an overhead. (One can estimate the performance
over a mixed workload by considering the relative distribution
of insertions vs. deletions and looking at the overheads on
each component.) Given the same 100-node topology, after
inserting all the link tuples as above, we then delete link
tuples in sequence. Each deletion occurs in isolation and
we measure the time the query results take to converge
after every deletion is injected. Figure 8 shows that DRed
is prohibitively expensive for deletions when compared to
our absorption provenance schemes: it is an order of mag-
nitude more expensive in both communication overhead and
execution time. Relative provenance wins versus DRed in
communication cost and convergence time because it does
not over-delete and re-derive. However, its performance is far

worse than absorption provenance, and it also incurs more per-
tuple overhead and operator state. Relative provenance relies
on graph traversal operations to determine derivability from
base tuples (see [8]), and thus is expensive in a distributed
setting. In contrast, absorption provenance directly encodes
whether a derived tuple is dependent on a base tuple. Overall,
absorption provenance is the most efficient method in deletion
handling, and consequently ships fewer tuples than the other
methods. Taking both insertions and deletions into account,
Absorption Lazy has the best mix of performance.
Region-based sensor query: The region query is com-
puted over a different topology from the reachable case,
and it exhibits slightly different update characteristics. Still,
as we see in Figure 9, which measures performance with
the insertion workload described earlier in the experimental
setup, performance follows similar patterns. (The overhead
is lower across each of the four metrics, since the network
is smaller here and neighbors are within closer proximity.)
Under deletion workloads, the trends shown by the region
query also closely mirror that of the reachable query and
those graphs are shown in [22]. Since the queries exhibit
similar performance, we focus on the reachable query for our
remaining experiments.
C. Scalability

Next we consider how our absorption provenance schemes
scale, with respect to inputs and to query processing nodes.
Scaling Data. We increase the number of input link tuples, by
increasing the average number of transit nodes in the GT-ITM
generated topology. We considered two network topologies:
each node in the dense topology has four links (as in our
default setting) on average, whereas the sparse setting has two.
Figure 10 shows the insertion-only workload.4 We observe that
the dense network is more costly to evaluate than the sparse
network: there are far more derivations. Here, lazy propagation
is essential: Eager Dense did not complete after 5 minutes on
a 800-link network, whereas Lazy Dense finished in under 5
seconds.
Increasing Query Processing Nodes. Next, we increase the
number of query processing nodes to up to 24 machines, while
keeping the input dataset constant. Figure 11 shows the re-
sults. Per-tuple provenance overhead increases, then eventually
levels off, as the number of nodes increases: each node will
now process fewer tuples, and the opportunities of absorption
and buffering are reduced. More query processors lead to a
reduction in query execution latency, per-node communication
overhead, and per-node operator state. The increase of latency
between 16 and 24 nodes is due to the lower-bandwidth
connection between our two subnets. In all cases, DRed incurs
higher communication overhead and takes longer to complete
than our approach.
D. Multi-aggregate Selection

Figure 12 shows the effectiveness of aggregate selections
over the dense and sparse topology of 100 nodes. We experi-
ment with two extensions of the shortest path query presented

4We further experimented with deleting an additional 20% of the links.
Observations were similar and we omit graphs due to space constraints.

in Section II: Multi AggSel computes two aggregates (one for
shortest path and the other for cheapest cost path); Single
AggSel minimizes only based on the cheapest cost path. We
observe that aggregate selections are most effective in dense
topologies, and Multi AggSel costs only half as much as
Single AggSel due to aggressive pruning of the two aggregates
simultaneously. Without the use of aggregate selections, all
queries are prohibitively expensive, and do not complete
within 5 minutes for dense topologies.
E. Summary of Results

We summarize our experimental results with reference to
the contributions of this paper as outlined in Section III-C.
• Absorption provenance (Section IV) incurs some overhead

during insertions and consumes increased memory, compared
to traditional schemes such as DRed. That increase is off-
set by huge improvements in communication overhead and
execution times when deletions are part of the workload.
Moreover, our concise representation of data provenance is
far more efficient than an encoding of relative provenance.
Most applications (both for declarative networking and sen-
sor monitoring) include time-based expiration for state, and
hence require frequent deletion processing.
• Our second technique, lazy propagation of derivations (Sec-

tion V) using the MinShip operator, reduces traffic when there
are multiple possible derivations. Lazy propagation results
in significant communication cost savings. Given the dense
network topology with 800 links and many alternative routes,
lazy propagation resulted in 5-second running times, versus
5 minutes for eager propagation in the same network.
• Our third technique of multiple aggregate selections results

in minimal propagation of tuples during query evaluation
(Section VI). A dense network produces several alternative
routes, and aggregate selections are especially effective in
this setting, resulting in at least an order of magnitude
reduction in communication cost and execution times. While
the benefits of aggregate selections have been explored pre-
viously in centralized settings, our main contribution here
was the extension to a stream model, including support for
deletions, and validating that similar benefits are observed in
a distributed recursive stream query processor.

VIII. RELATED WORK
Stream query processing has been popular in the recent

database literature, encompassing sensor network query sys-
tems [4], [5] as well as Internet-based distributed stream
management systems [28], [29], [30]. To the best of our
knowledge, none of these systems support recursive queries.
Distributed recursive queries have been proposed as a mech-
anism for managing state in declarative networks. Our work
formalizes aspects of soft-state management and significantly
improves the ability to maintain recursive views. Our dis-
tributed recursive view maintenance techniques are applicable
to other networked environments, particularly programming
abstractions for region-based computations in sensor net-
works [10], [11].

Provenance (also called lineage) has often been studied
to help “explain” why a tuple exists [17] or to assign a
ranking or score [8], [31]. Lineage was studied in [18] as a

1

10

100

1000

10000

0.5 0.75 1

Relative Eager Absorption Eager

Relative Lazy Absorption Lazy

DRed

Insertion Ratio

P
er

-t
u

p
le

 s
iz

e(
B

)

(a) Per-tuple Prov. Overhead (B)

0

5

10

15

20

25

30

0.5 0.75 1

Relative Eager

Relative Lazy

Absorption Eager

Absorption Lazy

DRed

Insertion Ratio

C
o

m
m

u
n

ic
at

io
n

 O
ve

rh
ea

d
 (

M
B

)

(b) Comm. Overhead (MB)

0

5

10

15

20

25

30

35

40

0.5 0.75 1

Relative Eager

Relative Lazy

Absorption Eager

Absorption Lazy

DRed

Insertion Ratio

St
at

e
Si

ze
 (

M
B

)

(c) State within operators (MB)

0

2

4

6

8

10

12

14

16

0.5 0.75 1

Relative Eager

Absorption Eager

Relative Lazy

Absorption Lazy

DRed

Insertion Ratio

Ex
ec

u
ti

o
n

 T
im

e
(s

)

>
>
2
5

(d) Convergence time (s)
Fig. 7. reachable query computation as insertions are performed

0

50

100

150

200

250

300

350

400

450

500

0.2 0.4 0.6 0.8 1

Relative Lazy

Absorption Eager

Absorption Lazy

DRed

Deletion Ratio

P
er

-t
u

p
le

 s
iz

e(
B

)

(a) Per-tuple Prov. Overhead (B)

0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1

DRed

Relative Lazy

Absorption Lazy

Absorption Eager

Deletion Ratio

C
o

m
m

u
n

ic
at

io
n

 O
ve

rh
ea

d
 (

M
B

)

(b) Comm. Overhead (MB)

0

5

10

15

20

25

30

35

40

0.2 0.4 0.6 0.8 1

Relative Lazy

Absorption Eager

Absorption Lazy

DRed

Deletion Ratio

St
at

e
Si

ze
 (

M
B

)

(c) State within operators (MB)

0

50

100

150

200

250

300

350

0.2 0.4 0.6 0.8 1

DRed

Relative Lazy

Absorption Eager

Absorption Lazy

Deletion Ratio

Ex
ec

u
ti

o
n

 T
im

e
(s

)

(d) Convergence time (s)
Fig. 8. reachable query computation as deletions are performed

1

10

100

1000

0.5 0.75 1

DRed

Absorption Eager

Absorption Lazy

Insertion Ratio

P
er

-t
u

p
le

 s
iz

e(
B

)

(a) Per-tuple Prov. Overhead (B)

0

0.005

0.01

0.015

0.02

0.025

0.5 0.75 1

DRed

Absorption Eager

Absorption Lazy

Insertion Ratio

C
o

m
m

u
n

ic
at

io
n

 O
ve

rh
e

ad
 (

M
B

)

(b) Comm. Overhead (MB)

0.001

0.01

0.1

0.5 0.75 1

DRed

Absorption Eager

Absorption Lazy

Insertion Ratio

St
at

e
Si

ze
 (

M
B

)

(c) State within operators (MB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.5 0.75 1

DRed

Absorption Eager

Absorption Lazy

Insertion Ratio

Ex
ec

u
ti

o
n

 T
im

e
(s

)

(d) Convergence time (s)
Fig. 9. region query computation as insertions are performed

1

10

100

1000

10000

100 200 400 800

Eager Dense

Lazy Dense

Eager Sparse

Lazy Sparse

Total Links in Network

P
er

-t
u

p
le

 s
iz

e
(B

)

(a) Per-tuple Prov. Overhead (B)

0

1

2

3

4

5

6

100 200 400 800

Eager Dense

Lazy Dense

Eager Sparse

Lazy Sparse

Total Links in Network

C
o

m
m

u
n

ic
at

io
n

 O
ve

rh
ea

d
 (

M
B

)

(b) Comm. Overhead (MB)

0

5

10

15

20

25

30

100 200 400 800

Eager Dense

Lazy Dense

Eager Sparse

Lazy Sparse

Total Links in Network

St
at

e
Si

ze
 (

M
B

)

(c) State within operators (MB)

0

5

10

15

20

25

30

35

40

100 200 400 800

Eager Dense

Lazy Dense

Eager Sparse

Lazy Sparse

Total Links in Network

Ex
ec

u
ti

o
n

 T
im

e
(s

)

(d) Convergence time (s)
Fig. 10. Increasing the number of links (and nodes) for the reachable query over inserts

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25

DRed

Absorption Lazy

Number of physical peers

P
er

-t
u

p
le

 S
iz

e
(B

)

(a) Per-tuple Prov. Overhead (B)

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25

DRed

Absorption Lazy

Number of physical peers

C
o

m
m

u
n

ic
at

io
n

 O
ve

rh
ea

d
(M

B
)

(b) Comm. Overhead (MB)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 15 20 25

DRed

Absorption Lazy

Number of physical peers

St
at

e
Si

ze
 (

M
B

)

(c) State within operators (MB)

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25

DRed

Absorption Lazy

Number of physical peers

Ex
ec

u
ti

o
n

 T
im

e
(s

)

(d) Convergence time (s)
Fig. 11. Varying the number of physical query processing nodes in computing reachable query

means of maintaining data warehouse data. Our absorption
provenance model is a compact encoding of the PosBool

provenance semiring in [19] (which provides a theoretical
provenance framework, but does not consider implementabil-

0

20

40

60

80

100

120

140

160

180

200

Multi AggSel Single AggSel No AggSel

Dense

Sparse

P
er

-t
u

p
le

si
ze

(B
)

(a) Per-tuple Prov. Overhead (B)

>25

0.01

0.1

1

10

Multi AggSel Single AggSel No AggSel

Dense

Sparse

C
o

m
m

u
n

ic
at

io
n

O
ve

rh
ea

d
(M

B
)

(b) Comm. Overhead (MB)

0.001

0.01

0.1

1

10

Multi AggSel Single AggSel No AggSel

Dense

Sparse

St
at

e
Si

ze
 (

M
B

)

(c) State within operators (MB)

>300

0.1

1

10

100

1000

Multi AggSel Single AggSel No AggSel

Dense

Sparse

Ex
ec

u
ti

o
n

 T
im

e(
s)

(d) Convergence time (s)
Fig. 12. Aggregate selections performance on shortestPath and cheapestCostPath query

ity). We specialized it for maintenance of derived data in
recursive settings. Our approach improves over the counting
algorithm [15] which does not support recursion. We have
experimentally demonstrated benefits versus DRed [15] and
maintenance based on relative provenance [8] (both of which
were developed for non-distributed query settings).

IX. CONCLUSIONS AND FUTURE WORK

We have proposed novel techniques for distributed recursive
stream view maintenance. Our work is driven by emerging
applications in declarative networking and sensor monitoring,
where distributed recursive queries are increasingly important.
We demonstrated that existing recursive query processing
techniques such as DRed [15] are not well-suited for the
distributed environment. We then showed how absorption
provenance could be used to encode tuple derivability in
a compact fashion, then incorporated into provenance-aware
operators that are bandwidth efficient and avoid propagating
unnecessary information, while maintaining correct answers.

Our work is proceeding along several fronts. Since our
experimental results have demonstrated the effectiveness of
techniques, we are working towards deploying our system in
both declarative networking and sensor network domains. We
intend not only to support efficient distributed view mainte-
nance, but also to utilize the provenance information to enforce
decentralized trust policies, and perform real-time network
diagnostics and forensic analysis. We also hope to explore
opportunities for adaptive cost-based optimizations based on
the query workload, network density, network connectivity,
rate of network change, etc.

ACKNOWLEDGMENTS

This work was funded by NSF grants CNS-0721845, CNS-
0721541, IIS-0812270, IIS-0447972, and IIS-0713267, and a
DARPA Computer Science Study Group grant. We thank the
anonymous reviewers for their suggestions.

REFERENCES

[1] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica,
“Looking Up Data in P2P Systems,” Communications of the ACM, Vol.
46, No. 2, Feb. 2003.

[2] D. Chu, L. Popa, A. Tavakoli, J. M. Hellerstein, P. Levis, S. Shenker,
and I. Stoica, “The design and implementation of a declarative sensor
network system,” in SenSys, New York, NY, USA, 2007.

[3] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan, “Declara-
tive routing: extensible routing with declarative queries,” in SIGCOMM,
2005.

[4] A. J. Demers, J. Gehrke, R. Rajaraman, A. Trigoni, and Y. Yao, “The
Cougar project: a work-in-progress report,” SIGMOD Record, vol. 32(3),
2003.

[5] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Design
of an acquisitional query processor for sensor networks,” in SIGMOD,
2003.

[6] D. Narayanan, A. Donnelly, R. Mortier, and A. Rowstron, “Delay aware
querying with Seaweed,” in VLDB, 2006.

[7] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and
I. Stoica, “Quering the Internet with PIER,” in VLDB, 2003.

[8] T. J. Green, G. Karvounarakis, Z. G. Ives, and V. Tannen, “Update
exchange with mappings and provenance,” in VLDB, 2007, amended
version available as Univ. of Pennsylvania report MS-CIS-07-26.

[9] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Hellerstein,
P. Maniatis, R. Ramakrishnan, T. Roscoe, and I. Stoica, “Declarative
Networking: Language, Execution and Optimization,” in Proc. SIG-
MOD, June 2006.

[10] M. Welsh and G. Mainland, “Programming sensor networks using
abstract regions,” in NSDI, March 2004.

[11] K. Whitehouse, C. Sharp, E. Brewer, and D. Culler, “Hood: a neighbor-
hood abstraction for sensor networks,” in MASN, 2004.

[12] I. Balbin and K. Ramamohanarao, “A generalization of the differential
approach to recursive query evaluation,” J. Log. Program., vol. 4, no. 3,
1987.

[13] F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman, “Magic sets and
other strange ways to implement logic programs,” in PODS, 1986.

[14] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: a
scalable and robust communication paradigm for sensor networks,” in
MobiCom, 2000.

[15] A. Gupta, I. S. Mumick, and V. S. Subrahmanian, “Maintaining views
incrementally,” in SIGMOD, 1993.

[16] S. Raman and S. McCanne, “A model, analysis, and protocol framework
for soft state-based communication,” in Proceedings of ACM SIGCOMM
Conference on Data Communication, 1999, pp. 15–25.

[17] P. Buneman, S. Khanna, and W. C. Tan, “Why and where: A character-
ization of data provenance,” in ICDT, 2001.

[18] Y. Cui, “Lineage tracing in data warehouses,” Ph.D. dissertation, Stan-
ford University, 2001.

[19] T. J. Green, G. Karvounarakis, and V. Tannen, “Provenance semirings,”
in PODS, 2007.

[20] R. Bryant, “Graph-based algorithms for boolean function manipulation,”
IEEE Transactions on Computers, vol. 35, no. 8, pp. 677–691, 1986.

[21] John Whaley, “Javabdd library,” http://javabdd.sourceforge.net.
[22] M. Liu, N. E. Taylor, W. Zhou, Z. G. Ives, and B. T. Loo, “Recursive

computation of regions and connectivity in networks,” University of
Pennsylvania, Tech. Rep. MS-CIS-08-32, 2008.

[23] S. Sudarshan and R. Ramakrishnan, “Aggregation and Relevance in
Deductive Databases,” in Proceedings of VLDB Conference, 1991.

[24] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar,
G. Manku, C. Olston, J. Rosenstein, and R. Varma, “Query processing,
resource management, and approximation in a data stream management
system,” in CIDR, 2003.

[25] S. Chaudhuri and K. Shim, “Including group-by in query optimization,”
in VLDB, 1994.

[26] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object lo-
cation and routing for large-scale peer-to-peer systems,” in Middleware,
Nov. 2001, pp. 329–350.

[27] GT-ITM, “Modelling topology of large networks,”
http://www.cc.gatech.edu/projects/gtitm/.

[28] D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. Zdonik, “Aurora: a new model and
architecture for data stream management,” VLDB J., vol. 12(2), August
2003.

[29] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M.
Hellerstein, W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F. Reiss,
and M. A. Shah, “TelegraphCQ: Continuous dataflow processing for an
uncertain world,” in CIDR, 2003.

[30] A. Arasu, S. Babu, and J. Widom, “The CQL continuous query language:
semantic foundations and query execution.” VLDB J., vol. 15, no. 2,
2006.

[31] O. Benjelloun, A. D. Sarma, A. Y. Halevy, and J. Widom, “ULDBs:
Databases with uncertainty and lineage.” in VLDB, 2006.

	Introduction
	Distributed Recursive View Use Cases
	Execution Model and Approach
	Query Execution Model
	Motivation for New Distributed Recursive Techniques
	Our Approach

	Provenance for Efficient Deletions
	Implementing Absorption Provenance
	Fixpoint Operator
	Join Operator

	Minimizing Propagation of Tuple Provenance
	Minimizing Propagation of State
	Experimental Evaluation
	Experimental Setup
	Incremental View Maintenance with Provenance
	Scalability
	Multi-aggregate Selection
	Summary of Results

	Related Work
	Conclusions and Future Work
	References

