Ut D

Professionalization of UMass Project “MALLET”
(PALLET)

Prepared by
Sharath Jagannath
&

Pralabh Kumar

Under the guidance of
Dr. Bhavani Thuraisingham

Table of Contents

2.

3.

INEEOAUCTION: ...ttt ettt ettt et e s bt et e sae e s abe e e sabteeeenabaeeenans 4
IMALLET ...ttt ettt e b e st et e e at e e bt e eheeeab e e s st e sabeesbeeenbeessbeeabeenbeeennneeeas 4
MALLET INSTAllatiOn:....ccoouuiiiiiiiiiieeiiteeeteeet ettt ettt st e st e st e e sabeeseabeaeeeeeeeanes 4
MALLET DIr€CtOTY SIIUCIUTE.vteiitieeiieeeiieeeiteesteeesieeestteesitteesateeesateesaseesssseessaeessnsneeeeessannnns 4
DAt Pre-PrOCESSINE: .. ceeuutieeiiteeiteeeit e ettt et te et e ettt e sttt e st e e sabteesabeeesabeeesaseeesbeessbeeeesnnsbaeeeeesnnnnseaeas 5
MALLET's Important Data Pre-processing COMPONENLS........cc.eerveerieriieerieeiiieeeiiieeeeiieeeeiieeeenane 5
FEAIUIE SEQUEIICE:ceuiiiiieiiiiie ettt e et e e e ettt e e ettt e e e s nabaeeeseassbbabbaaeeaeeeeeeeeeeens 5
FEATUTEVECTOT: ...ttt st ettt st e e 6
INSEANCELLISE: ..eeeieiieeee ettt ettt ettt et ettt et e e s 6

0T o PP PPUPR 6
INPUI2ZCRAISEQUENCE: ..ocvevieeiiieeeiieeeite ettt et e et e et e e et e e s steeesbeeesaseeesseeensaeeseannssnaeaaeeas 6
CharSequence2TOKen-SEqUENCE:cceeviiiiiiiiiiiieieeeeeeeee et 6
TOKENSEQUENCELOWEICASE:eieuiiiiiiiiiieeiieeiee ettt st e e e s 7
TokenSequenceReMOVESIOPWOTAS:cccuiiiriiiiiiieiieeee ettt taeesaeeeees 7
TokenSequence2FeatureSEqUENCE:cccuiiiiiiiiiiiiiiiieeriieerite ettt et e et e e e e e enabaeeaeeens 7
Tar@et2LLabel: ...t e e e eeeeas 8
FeatureSequence2FeatureVECTOL:ciiiiiiiiiiiiieieiieeecet ettt e e 8
Data ClassSIfICATION:cccuuiiiiiiieiieeie ettt ettt ettt e st st esae e e bt e s eeeenneeens 8
ProfesSIONalIZATIONciiuiiiiiiiiee ettt et s e e e e e 8
MALLET DOCUMENEATION:eiutteiieiieeniieeteesite ettt ettt et e sateebeesateebeesabe e bt e sabeebeesabeesbeesaseeneeeeas 9
PALLET OVEIVIEW......eitiiiiitiiteiieeei ettt ettt et ettt e b e st e bt e e it e bt e sabe s bt e sabeenbeesaseeanbaeeeens 10
PALLET ...ttt ettt et e ettt et e s at e e bt e e st e e bt e eabeenb e e eabeenseesnteenbteenbbeeeennteeaan 10
PALLET INSEAIAtION.ceoutiiiiiiiiiiite ettt ettt et ettt e et e et e e sttt e e e e e aabbeeeeeeeenanneneeas 10
REQUITEIMEIILS:veeeiiieeiiie ettt ettt e et e e et e e st e e st e e e sabeeesbeeensbeeensbaaeseennssseeaeeesnnnseees 10
Pallet DIr€CtOry STIUCTUTE:.......coictiieiiieeeiieeeiteette et ee et e et e st e e st e e sebeeesabeesssbtaeeeessanssaneeessennnens 10
Building PALLET ;..o ettt ettt e st e et e st e st e e st e e e e e eaaaee 11
PallEt DALA....cooiiiiiiiieeee ettt ettt ettt e et e e e e et beeeeeeenaan 12
Purpose of Pallet Datacooouiiiiiiiiiiiieie ettt ettt ettt et ee e e e as 12
Output Data FOTMAL.......ccuiiiiiiiiiie ettt ettt e s et e e e e e sabaeeeeeeannes 12

Y Y1 (4 D 2 71 0311010) o PP PURRURRPTPPRRN 13
BUILAPIPE.....e oottt ettt e et e et e e et e e et e e sstaeeenseeeesaeeeenseeeesbeeennsaeaeeens 13
BUlldPIPEDIfIPIPE.eeoiiiiiiiiieee ettt e 14
RDF2MalletInstances and RDEFULLS.........cocoooiiiiiiiiiniceceee e 14
Pallet ClasSiEy eecuiieeiiieeiiieeiie ettt et e e et e e st e e e bt e e esteeesabeeeanbeeesbeeensbaeesbeeensseennnneeeeeans 15
TTAINET ODJECE: ... eieitieiiiie ettt ettt et e e st e et e e et ae e tteeesteeeesseeesaseeessseessseesnsseesnssseeaesennnsssees 15
Pallet UTLIEY ..ottt ettt et e e e et e e s e e eaen 16
Creating Training MOdeL:..........ocoviiiiiiiiiiiie e 16
Incremental training MOAEL:........ccueiiiiiiiiiiieiie e e e e e 16
Saving the training model (as RDF data):........ccccoeviiiiiiiiiiiiiiiceee e 16
Restoring the training model(from RDF data):..........coooiiiiiiiiiiiiiiiiiceceeeee 17
ClassifyIng the teSt INSTANCESccouutiiiiiiiiiie ettt ettt ettt e et eeateeebteesbaeeeaneee 17
Getting accuracy values for the classified data:............ccooveeiiiiiniiiiniiiie e, 17
PlIEE TESL: ...ttt ettt ettt ettt e b e st e b e ettt e e e e s e e eaneee 18
Command Line INTerface:.......cc.eiiiiiiiiiiii ettt st 18

Training the CIASSITICT:ccoiiiiiiie ettt e e et e et e e et e e s beeesbeeesaseeensseeennseeens 18

© oL oA

INCTEMENTAL TTAIN oeeveeieeeee ettt et e e e e e ettt e e e e e e e e e ee e aeeeeeeeeeeanenaaaesesanaeeeneeerannns 18

ClaSSTEICALIONceeciiiiiieeee e e eeecitee e e e eeeeccr et eeeeeeeeettaareeeeeeeeeeaasssreesaaeeseesassssseseaaeeeeaasnsssnssrnnes 18
IMPOTTANt POINTS.coviiiiiiiiiiiieeieee ettt ettt e e e s 19
T8 1 A =5 48 Lo 10 OO SPPPPP 19
AT e (S5 A (o (0 J OO PP PP PP PP TP 20
SUITIMIATY L.ttt ettt ettt et e et e sttt e sttt e eab et e eab e e e eab et e aab e e e aabeeeeenasbbbeeeeeeennneaeees 20
RO T EIICES ...t e e e e e et e e e e e e e e eeetbabbeeeaaeeeeaaaeeaeeaaaaeeeeeerreerrraaas 20

Introduction:

This work which we call A Professionalization of Umass project “MALLET” (PALLET) aims at
providing a well structured documentation and code snippets that describes MALLET's features. It also
contains an extension to MALLET that abstracts the Machine Learning algorithms that suffice the
requirements of many applications. Further, we provide a framework which can be used to write
Semantic Web applications using MALLET algorithms and we consider this is as the important work
which we have achieved.

MALLET:

MALLET is a Java-based package for statistical natural language processing, document
classification, clustering, topic modeling, information extraction, and other machine learning
applications to text.

MALLET includes sophisticated tools for document classification: efficient routines for converting text
to "features", a wide variety of algorithms (including Naive Bayes, Maximum Entropy, and Decision
Trees), and code for evaluating classifier performance using several commonly used metrics.

In addition to classification, MALLET includes tools for sequence tagging for applications such as
named-entity extraction from text. Algorithms include Hidden Markov Models, Maximum Entropy
Markov Models, and Conditional Random Fields. These methods are implemented in an extensible
system for finite state transducers

Topic models are useful for analyzing large collections of unlabeled text. The MALLET topic modeling
toolkit contains efficient, sampling-based implementations of Latent Dirichlet Allocation, Pachinko
Allocation, and Hierarchical LDA.

In addition to sophisticated Machine Learning applications, MALLET includes routines for transforming
text documents into numerical representations that can then be processed efficiently. This process is
implemented through a flexible system of "pipes", which handle distinct tasks such as tokenizing
strings, removing stopwords, and converting sequences into count vectors.

Note : Above description on MALLET is obtained from its homepage.

MALLET Installation:

Step 1: Download MALLET from its homepage.
Step 2: MALLET is an ANT project, download ant.
Step 3: Building Mallet

cd ${mallet directory}

ant

MALLET Directory Structure

Mallet follows the standard directory structure which is being followed by all the professionalized
software.

Mallet directory structure contains following folders

1. Bin: It contains all the Batch files.
2. Src: It contains all the source files.

http://ant.apache.org/manual/index.html

Class : It contains all the java compiled class files

Dist: It contains jar files.

Lib: It contains all the jar files.

Sample-data: It contains all the sample-data on which MALLET can be tested.

Doc: It is an empty in mallet-2.0.5.But is should contain all the important documentation.

No kW

Data Pre-processing:

MALLET uses Instances to represent data, and pre-processing is the process of transforming
the data to instance list.

MALLET instance is composed of the following 4 fields:
* Name: This field acts as the Name of the instance and use for the identification of instances.

* Label: Label is primarily used to classify the instances. Labels represent the classes in the
classification module.

» Data: The data is generally a Feature Vector or Feature Sequence (for example sequence of
words).Classifier does the classification of the instances on the basis of the data of instances
and provide the Label to it(if it is unclassified data)

e Source: It tells the information about the source of the Mallet Instance.
MALLET's Important Data Pre-processing Components

Feature Sequence:

Mallet provides different types of sequences which are basically used to store Objects .All the
sequences in MALLET implements Sequence interface.

FeatureSequence is used to store the Objects of the same class. It is mutable and can expand as new
objects are added.For eg if one stores all the words of the files in a FeatureSequence ,then
FeatureSequence would be

der {0)}—-- > Index of the Word. If this word occur somewhere in this
40 (1) file or some other file than it is also indexed with 0
war (2)

ein (3)

sowjetischer (4)
leichter {5)
schwimmpanzer (6)
zur (T)

zeit (B)

zweiten (9)

10: weltkrieges (10)
11: die (11)

12: damalige (12)

13: sowjetische (13)
14: klassifikation (14)
15: ordnete (15)

16: thn (16)

17: als (17)

18: kleinen (18)

19: panzer (19)

20: ein (3)

W= &WNh=O

FeatureVector:

It is a subset of class “Alphabet”. An “Alphabet” class represents the mapping between integers
and objects. Integers are assigned consecutively ,starting at zero, as objects are added to the
Alphabet. one cannot delete objects from the alphabet and thus the integers are never used. When
classifying documents using MALLET, all the unique words in a document would be unique entry in the
alphabet with a unique integer is associated with it. FeatureVectors use this integer part inorder to
represent the subset of Alphabet. FeatureVector is represented as a SparseVector.A location in a
FeatureVector represents the index in Alphabet.For eg

swabhili(4)=1.0
ngoma(5)=1.0
means(6)=1.0
dance(7)=1.0-------------- >Number of times index(7) or Word(dance) occurs in the data.

InstancelList:

It contains Mallet instances which are typically used for training and testing of machine learning
algorithm. All the instances in the Mallet list must have passed through the same sequence of pipes
and hence share the same data and target alphabets.

Pipe:

Mallet uses different types of pipes in order to preprocess the data. For eg Mallet provides
TokenSequencelLowerCase which converts the in coming tokens to lower case.Pipe is an abstract
superclass of all these pipes. Some of the important pipes which Mallet provides.

Input2CharSequence.
CharSequence2Token-Sequence.
TokenSequencelLowercase.
TokenSequenceRemoveStopwords.
TokenSequence2FeatureSequence.
Target2Label.
FeatureSequence2FeatureVector.
PrintinputAndTarget.

Data importing (pre-processing) is achieved by using a series of pipes. Pipes take as input instance
List and modify the data field based on the series of pipes specified. The pipes which are used in the
project

Input2CharSequence:

It is a Pipe that can read data from various kinds of sources and convert the given input into
character sequence.

CharSequence2Token-Sequence:

It is pipe that tokenizes a character sequence. It expects a character sequence and converts
into tokens. For e.g. following data

“Der T-40 war ein sowjetischer leichter Schwimmpanzer “ is converted to:
Token#0:Der span0..3]

Token#1:T span[4..5]

Token#2:40 span[6..8]

Token#3:war span[9..12]

Token#4:ein span[13..16]
Token#5:sowjetischer span[17..29]
Token#6:leichter span[30..38]
Token#7:Schwimmpanzer span[39..52]

TokenSequencelLowercase:
It is pipe which converts all the tokens received through previous pipes to lower case. For e.g.

Token#0:Der Span|0..3] Token#0:der span[0..3]
Token#1:T span[4..5] Token#1:t span[4..5]

TokenSequenceRemoveStopwords:

It is the pipe which is used to remove the stop words from the tokens. MALLET contains a list
of stopword(which are basically useless). If tokens contains these stopwords than that tokens are
removed from the

TokenList. For e.g. the some of the stopwords english language:

“q"
"able",
"about",
"above",
"according",
"accordingly",
"across",
"actually”,
"after",
"afterwards",
"again”,
"against”,
"all"

TokenSequence2FeatureSequence:

It converts the token sequence to feature sequence.lt indexes each token.

0: der (0)------ > Index of the Word. If this word occur somewhere
1:40 (1) in this file or some other file than it is also

2: war (2) indexed with 0.

3:ein (3)

4: sowjetischer (4)

5: leichter (5)

6: schwimmpanzer (6)

7:zur (7)

8: zeit (8)

9: zweiten (9)

Target2Label:

It Convert Object in the target field into the label. These Labels are used as the classes at the
time of classification.

FeatureSequence2FeatureVector:

It Converts a data field from Feature Sequence to Feature vector. This class does not insist on
getting its own Alphabet because it rely on getting from the FeatureSequence input.For eg:

Feature vector counts the number of times index 0 occurred in a FeatureSequence
[0]=11.0
Note : The index 0 is related to the word “der”. So it means that
“der” occurred 11 times in a feature sequence.

Data Classification:

MALLET supports rich set of Document Classification Algorithms:
* Naive Bayes.
* Maximum Entropy.
» (45 Decision Tree.
» Boosting Algorithms and many more.

Every Classifier is implemented as a Trainer and Classifier, and performs classification only on the
instances processed with the pipe (import data pipe) associated with this classifier. Instances are
generally Feature Vectors. Trainer is responsible for training data and the Classifier performs the
classification based on the trained data.

Every Trainer consists train () method, which is used to train the data. A call to this train() method
instantiates the Classifier which can classify the data based on its training. Further, all Trainers and
Classifiers can be found in cc.mallet.classify. Also, each trainer and classifier is implemented as an
object in the MALLET. All the trainer mentioned above extends ClassifierTrainer class and the trainers
mentioned extends Classifier respectively, both of which can be found at cc.mallet.classify.

Complete Documentation of data-import and classification can be found here.

Professionalization:

MALLET itself is a well structured code, but lacks proper documentation, an useful and mature
library like MALLET can be acknowledged only if it has a good document which acts as a references
to its interface. Our work was a small step towards making MALLET useful in the Open Source
Community. Documentation included writing description to the MALLET interfaces and code snippets
showing how to use the interfaces.

Most important extension to the MALLET which we undertook was to build the framework to
extend MALLET as an algorithm to Semantic Web Framework. As a by-product of this work, we
provided an abstract factory that encapsulates the creation of MALLET's object and also provided a
facade to simplify the interface making it easier to understand and use. This extension supports most
of the common tasks for data import and classification. We named our project PALLET (A

http://code.google.com/p/pallet/
http://code.google.com/p/pallet/w/list

Professionalization of the UMass project "Mallet"). We built our Pallet as a maven project and thus
adhering to modern software practices and handling the dependencies automatically. Currently, Pallet
supports Data import and Classification of RDF/XML data.

Pre-processing includes, conversion of RDF/XML data to MALLET Instances. We use Jena to
retrieve RDF data, further we consider, rdf resources as the data field of the Instance Object, Predicate
values as the class labels and rdf objects as object field. This Instance List is processed through the
pipes converting them to feature vector.

Feature vector generated is used to construct the training model, and we use the factory we
created to instantiate the training model, and the trained model is persisted as a RDF data for
incremental learning.

Query data should be processed in the same way and the classified query data is written back
as a RDF data with the reification statement added to the query data. Reified statement provides the
confidence value for the data being classified.

Our framework was robust enough to implement the mallet algorithms as Blackbook
algorithms.

MALLET Documentation:

Mallet is huge toolkit. It contains lots of files ,packages and thousands of lines of code. But the
problem with MALLET is that it is not properly documented. One has to spend a huge amount of time
to understand the working of classes and packages in MALLET. Therefore it is very tough to use
MALLET for the purpose of Classification ,Sequence Tagging etc.

That's why documentation of MALLET is the cardinal part of,our final goal which is
professionalization of MALLET . Some of the MALLET packages ,which is used in classification, is
properly documented so that even a naive user can understand them.The whole goal to document
MALLET is to provide the convienece to the user, to understand some of the complexe classes of
MALLET.

1)cc.mallet.pipe :Package which is used in the processing of input data is properly documented

* Input2CharSequence e StringAddNewLineDelimite * Printinput
e CharSequence2TokenSeq r * PrintTokenSequenceFeatu
uence e CharSequenceRemoveUU res
» TokenSequencelowercas EncodedBlocks SaveDatalnSource
e e StringList2FeatureSequen e SelectiveSGML2TokenSeq
¢ TokenSeguenceRemoveSt ce uence
opwords » FeatureSequenceConvolut e SimpleTaggerSentence?St
* TokenSequence2FeatureS ion ringTokenization
equence » FeatureVectorConjunction e Token2FeatureVector
¢ Target2Label * TokenSequenceRemoveN e TokenSequence2Tokenlns
» FeatureSequence2Featur onAlpha tances
eVector * TokenSequenceNGrams e AugmentableFeatureVecto
e PrintinputAndTarget e SGML2TokenSequence rAddConjunction
* CharSequenceReplace * Target2FeatureSequence * BranchingPipe
e (CharSeqguenceRemoveHT * Target2l abelSequence » Directory2Filelterator
ML

http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Directory-2-File-Iterator
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Branching-Pipe
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Augmentable-Feature-Vector-Add-Conjunction
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Augmentable-Feature-Vector-Add-Conjunction
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Token-Sequence-2-Token-Instances
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Token-Sequence-2-Token-Instances
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Token-2-Feature-Vector
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Simple-Tagger-Sentence-2-String-Tokenization
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Simple-Tagger-Sentence-2-String-Tokenization
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Selective-SGML-2-Token-Sequence
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Selective-SGML-2-Token-Sequence
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Save-Data-In-Source
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Print-Token-Sequence-Features
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Print-Token-Sequence-Features
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Print-Input
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Target-2-Label-Sequence
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Target-2-Feature-Sequence
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#SGML-2-Token-Sequence
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Token-Sequence-N-Grams
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Token-Sequence-Remove-Non-Alpha
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Token-Sequence-Remove-Non-Alpha
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Feature-Vector-Conjunction
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Feature-Sequence-Convolution
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Feature-Sequence-Convolution
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#String-List-2-Feature-Sequence
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#String-List-2-Feature-Sequence
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Char-Sequence-Remove-UUEncoded-Blocks
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Char-Sequence-Remove-UUEncoded-Blocks
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#String-Add-New-Line-Delimiter
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#String-Add-New-Line-Delimiter
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Char-Sequence-Remove-HTML
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Char-Sequence-Remove-HTML
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Char-Sequence-Replace
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Print-Input-And-Target
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Feature-Sequence-2-Feature-Vector
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Feature-Sequence-2-Feature-Vector
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Target-2-Label
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Token-Sequence-2-Feature-Sequence
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Token-Sequence-2-Feature-Sequence
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Token-Sequence-Remove-Stopwords
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Token-Sequence-Remove-Stopwords
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Token-Sequence-Lower-case
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Token-Sequence-Lower-case
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Char-Sequence-2-Token-Sequence
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Char-Sequence-2-Token-Sequence
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Input-2-Char-Sequence
http://code.google.com/p/pallet/
http://code.google.com/p/pallet/
http://code.google.com/p/pallet/
http://code.google.com/p/pallet/

MakeAmpersandXMLFrien

dly
FeatureSequence2Augme
ntableFeatureVector

AugmentableFeatureVecto

rLogScale
CharSequence2charngra
ms

CharSequencelowercase
CharSubsequence
LineGroupString2TokenSe

quence
Filename2CharSequence

CharSequenceArray2Toke
nSequence

TokenSequenceParseFeat
ureString
TokenSequenceMatchDat

aAndTarget
TokenSequence2FeatureS

equenceWithBigrams
TargetRememberLastlLabe

|
Sourcelocation2TokenSe

guence
FeatureCountPipe

FeatureValueString2Featu
reVector

Pipeutils

Serial Pipes

TokenSequence2FeatureV

ectorSequence
FeatureVectorSequence2F
eatureVectors

FilterEmptyFeatureVector
InstanceListTrimFeaturesB
yCount

Noop

Pipe

Array2FeatureVector
Csv2FeatureVector
TargetStringToFeatures
SimpleTaggerSentence2T

e Csv2Array okenSequence
SimpleTokenize
PALLET:
PALLET Overview

Currently, PALLET is a maven project which consists of four sub-projects.

HownD~

Pallet-Data: provides pre-processing functionality for RDF data.

Pallet-Classify: provides classification functionality.
Pallet-Test: Creates an application to demonstrate Pallet-Data and Pallet Classification.
Pallet-Blackbook: Independent of all the mentioned sub-projects, converts MALLET algorithms

as Blackbook algorithms.

PALLET Installation

Requirements:

1.

Subversion: In most cases svn should be already installed on UNIX/Linux box, if not download

it from here.

2. Maven: If not ubuntu install maven using sudo apt-get install maven2, if not download and

install a copy from here.

Pallet Directory Structure:

Pallet project adheres to maven directory structure. Root of the directory structure contains
pom file which defines the four above mentioned modules: Pallet-Data, Pallet-Classify, Pallet-Test and
Pallet-Blackbook.

http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/
http://maven.apache.org/
http://subversion.tigris.org/project_packages.html
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Simple-Tokenizer
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Simple-Tagger-Sentence-2-Token-Sequence
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Simple-Tagger-Sentence-2-Token-Sequence
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Target-String-To-Features
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Csv-2-Feature-Vector
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Array-2-Feature-Vector
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Pipe
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Noop
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Instance-List-Trim-Features-By-Count
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Instance-List-Trim-Features-By-Count
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Filter-Empty-Feature-Vector
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Feature-Vector-Sequence-2-Feature-Vectors
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Feature-Vector-Sequence-2-Feature-Vectors
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Token-Sequence-2-Feature-Vector-Sequence
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Token-Sequence-2-Feature-Vector-Sequence
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Serial_Pipes
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Pipe-utils
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Feature-Value-String-2-Feature-Vector
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Feature-Value-String-2-Feature-Vector
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Feature-Count-Pipe
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Source-Location-2-Token-Sequence
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Source-Location-2-Token-Sequence
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Target-Remember-Last-Label
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Target-Remember-Last-Label
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Token-Sequence-2-Feature-Sequence-With-Bigrams
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Token-Sequence-2-Feature-Sequence-With-Bigrams
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Token-Sequence-Match-Data-And-Target
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Token-Sequence-Match-Data-And-Target
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Token-Sequence-Parse-Feature-String
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Token-Sequence-Parse-Feature-String
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Csv-2-Array
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Char-Sequence-Array-2-Token-Sequence
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Char-Sequence-Array-2-Token-Sequence
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#File-name-2-Char-Sequence
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Line-Group-String-2-Token-Sequence
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Line-Group-String-2-Token-Sequence
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Char-Sub-sequence
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Char-Sequence-Lower-case
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Char-Sequence-2-char-n-grams
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Char-Sequence-2-char-n-grams
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Augmentable-Feature-Vector-Log-Scale
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Augmentable-Feature-Vector-Log-Scale
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Feature-Sequence-2-Augmentable-Feature-Vector
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Feature-Sequence-2-Augmentable-Feature-Vector
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Make-Ampersand-XML-Friendly
http://code.google.com/p/pallet/wiki/Data_Import_Tutorial#Make-Ampersand-XML-Friendly

Ttrunk
pallet
v pallet-blackbook
r pallet-classify
rpallet-data
rpallet-test
wiki

Each module of the pallet workspace uses the following packaging structure:

~pallet-data
settings
Tsre
Trmain
*lava
~utd
vpallet
data
Ttest
*java
utd
Tpallet
data

Building PALLET :

Step 1: Checkout a copy of the source code using the following command:
svn checkout http://pallet.googlecode.com/svn/trunk/ pallet-read-only
Step 2: Pallet is dependent on non-maven mallet, download mallet library from here
Step 3: cd to pallet directory(root directory of the project) and build the project using mvn clean install.

Step 4: If you are building pallet for the first time then it is likely to encounter the following build error:

Missing:

1) umass.mallet:mallet:jar:2.0
Try downloading the file manually from the project website.

Then, install 1t using the command:
mvn install:install-file -DgroupId=umass.mallet -DartifactId=mallet -Dversion=2.0 -Dpackaging=jar -Dfile=/path/to/file

Alternatively, 1f you host your own repository you can deploy the file there:

mvn deploy:deploy-file -Dgroupld=umass.mallet -DartifactId=mallet -Dversion=2.0 -Dpackaging=jar -Dfile=/path/to/file -Dur
1=[url] -DrepositoryId=[id]

Path to dependency:
1) pallet:pallet-data:jar:0.1
2) umass.mallet:mallet:jar:2.0

1 required artifact 1s missing.

http://code.google.com/p/pallet/downloads/list?deleted=1&ts=1271370408
http://code.google.com/p/pallet/downloads/list?deleted=1&ts=1271370408
http://code.google.com/p/pallet/downloads/list
http://maven.apache.org/

Step 5: Install the missing artifact using:

mvn install:install-file -Dgroupld=umass.mallet -Dartifactld=mallet -Dversion=2.0 -Dpackaging=jar -
Dfile=/path/to/mallet/jar/of/step 2

Step 6: Use mvn clean install to complete the installation.
Pallet Data:

Purpose of Pallet Data
It Provides interfaces to MALLET Data Import module

Interfaces to handle RDF/XML making it possible to handle semantic data.

Output Data Format

(Ma ll;t Instances)

Mame: urn: Monterey:incidentl
Label: Hoax/Prank

Data: All the predicate data comes here
inthe feature vectorform.

Source: File

Once data is preprocessed it goes to classification state.

The final outcome of the data is also in RDF format. The unlabeled data is labeled with all the classes
which are provided by the classifier. But ,it also provides confidence prediction value for each class.
For eg we have event : urn: Monterey: incident1 with its description but is currently untagged. The
classifier can divide the data into following categories (which was provided to the classifier at the time
of training)

1. Hoax/Prank.
2. Use of agent.
3. False case.
4. Plot only.

So the final outcome will be the resource "urn: Monterey: incident1” which is tagged with all these
classes as its objects and with corresponding confidence value.

http://code.google.com/p/pallet/downloads/list?deleted=1&ts=1271370408
http://code.google.com/p/pallet/downloads/list?deleted=1&ts=1271370408

urn: Monterey: incincidentl

http://marathonminds.com/Mallet/# malletClassificationEvent

http://marathonminds.com/Mallet/
malletClassificationEvent2011835

. hasOtherClassification
hasBestClassification

Hoax/Prank Use of Agent False case Plot Only

MalletDatalmport

The purpose of the creation of MalletDatalmport is to let the user to understand the
functionality of the some of the most important preprocessing pipes of the MALLET.It
demonstrates the functionality of the pipes used by BuildPipeDiffPipe.After knowing the
functionality of the different preprocessing units of MALLET ,a user can use them in its own
application.

BuildPipe

Mallet uses different types of pipes in order to preprocess the data.This module further
demonstraes the functionality of the some of the different pipes of Mallet. The whole purpose to
demonstrate the functionalities of different type of pipes of Mallet to the user is to make user
more familiar with them .So that user can easily use them in its own application.BuilPipe
demonstrates the functionalties of the following files

Input2CharSequence
CharSequence2TokenSequence
TokenSequenceRemoveStopwords
TokenSequence2FeatureSequence
Target2Label
FeatureSequence2FeatureVector
Printinputandlabel

BuildPipeDiffPipe

BuildPipeDiffPipe is similar to BuildPipe in functionality and purpose.But it is showing the
functionalites of the different pipes of MALLET.

CharSequenceReplace
CharSequenceRemoveHTML
MakeAmpersandXMLFriendly
FeatureSequence2AugmentableFeatureVector
AugmentableFeatureVectorLogScale
Printinputandlabel

RDF2Malletinstances and RDFUtils

These two modules are the heart of Pallet-Data. They provide the whole functionaltiy to convert
RDF/XML data into Mallet instances.
The Algorithm which is followed

1.

N

SN kW

Iterate through each resource of the RDF

If Resource is not uri resource or Blank node then find the Original Resource of the
Blank node.

List all the properties of the Resource.

If the object value of the property is literal then add it to the String.

Store the data into HashMap having the key as the Resource.

If while iterating through the resources we get the same resource (because resource of
blank node) which is already in the HashMap then append the new data.

Finally,we add each instance to the List , process the instance through the Pipe and add
all the instances to the instancelList.

Moreover there are certain utlity features provided by RDFUtils module

1.

2.

3.

Rdf2JenaModel: This feature or method convert the data in the given filename into jena
model into RDF/XML format.

DeserializeJenaModel: This method convert the RDF/XML given in string format to Jena
model.

SerializeJenaModel: This method serealizes jena model into String.

All these features of RDFUtils can be used by user for its own purpose.

Note: Currently Pallet-Data is only supporting Montery.rdf file format.

We have the input data in the RDF form, which we have to convert:

http://code.google.com/p/pallet/downloads/list?deleted=1&ts=1271370408

<rdf: Description rdf about="um:montersy incident 1 ">
<deidentifier>] </deidentifier
<pdfy:labelincident-<'rdfs-label>
<rdf type rdfresource = "urm montereyincident™ >
<event-startDate> 199903 0d-</svent-startDate>
<vCard: ADR rdf parseTvpe="Resoune">
<vCard-Locality>Lumberton<+Card:Locality>
<vCard Region>North Carolina<vCard:Region™
<vCard-Country>United States<vCand-Country>
< vCard. ADR>
<de:source™>[A] "Lumberton Diabysis Chime Targeted With Anthrax Scare " The News Observer On The Web (5
March 1999)<'dc-source>
<bbcincidentDescription™An unidentifisd perpetrator called the Lumberton, North Carolina smergency

BT

commumcations center on 4 March 1999 and clamed that anthrax bacteria had besn released m the Lumberton
Dhalvsis Climic </bboncidentDescniption™
<bb:5TAT_EVENT>Hoar Prank<bb:STAT EVENT=>
</rdf Description™

This instance is converted to mallet instance having the following properties:

Name: urn:monterey:incident1.

Label: Hoax/Prank.

Data: All the predicate data comes here in the feature vector form.
Source: File.

Pallet Classify:

Pallet-Classify is a wrapper for the MALLET's Classification algorithms extended to provide API
to support Semantic Web application. MALLET provides the interface “Classifier” which is common to
all of its classifiers, we reuse the same interface in our module, further we separate the Classifiers to
one which supports incremental training and one which does not. MALLET supports incremental
training for it naive bayes implementation and thus our incremental trainer supports naive bayes. We
provide interfaces to serialize the classifier as a RDF model and also interfaces to convert it back as
MALLET instances. Though our implementation does not expose all the features that the MALLET
algorithms provide, it still provides sufficient APl which should suffice the requirements of most of the
applications. We would suggests to use MALLETSs interface if you are planning to make changes to the
algorithm, out implementation aims at providing an user-friendly interfaces to the MALLET's
algorithms.

Pallet exposes it features using “MalletTextDataTrainer” class. This class provides methods to create
Trainer and incremental trainer, You can create Instance List for these methods either using Pallet-
Data or using MALLET interfaces. We would suggest to use MALLET since our Pallet-Data does not
support all the data processing pipes which forms the integral part of MALLET training algorithms.

PalletClassify project is dependent on PalletData. Further, all the files are defined under
utd.pallet.classification package.

Trainer Object:

As explained earlier, MALLET Classifier extends two abstract classes ClassifierTrainer and
Classifier, but they are instantiated at different points in time. Classifier is instantiated only after the
trainer is trained with instances, but we assume that trainer can be serialized even before it is
associated with instances. Thus, we separate these objects from the MALLET Classifier and create

“TrainerObject”.

TrainerObject is defined as a nested class within MalletTextDataTrainer (Explained below) and
implements Serializable interface. It has getters and setters for the ClassifierTrainer and Classifier.

Pallet Utility:

As explained through-out this document, extension we did to the MALLET was to support the
Semantic Web applications. Thus, the TrainerObject needs to be serialized in a format which the
semantic web applications can make use of. We used Jena API to serialize the TrainerObject as RDF
model. Pallet provides MalletUtils class to convert TrainerObject to RDF model and vice-versa.

Creating Training model:

Trainer can be created using createTrainer () method of MalletTextDataTrainer class. It takes
algorithm type as its input parameter and return Trainer Object. We currently support creating
of naive bayes, maximum entropy and decision tree based trainer. This method provides
common interface to create all the types of trainer. Under hood, createTrainer () method uses
“MalletTrainerFactory” to create these instances. MalletTrainerFactory provides factory interface
for naive bayes, max-entropy, decision trees, balanced winnowing and many more but is tested
only for naive bayes, max-entropy and decision trees.

Trainer can be created as shown:

Instancelist iList = /From somewhere

MalletTextDataTrainer trainer = new MalletTextDataTrainer ();

int trainingAlgorithm = MalletTextDataTrainer.NAIVE_BAYES;

TrainerObject trainerObject = trainer.trainlncremental (iList, trainingAlgorithm);

Incremental training model:

At the time of writing this document, MALLET supported incremental training only with the
naive bayes algorithm, Code snippet for incrementally training the model using naive bayes:

Instancelist iList1 = //From somewhere

ClassifierTrainer <NaiveBayes> prevTrainer = trainerObject.getTrainer ();
MalletTextDataTrainer trainer = new MalletTextDataTrainer ();
trainerObject = trainer.trainlncremental (prevTrainer, iList1);

Saving the training model (as RDF data):

Code snippet below demonstrates how to convert the trainer created in the previous step as a
RDF data.

Model model = ModelFactory.createDefaultModel();

String uri = // Some valid URI

Statement stmt = MalletUtils.convertTrainertoRDF Statement(model,trainerObj,uri);
model.add(stmt);

File file = new File(filename);

FileWriter writer = new FileWriter(file);

BufferedWriter bWriter = new BufferedWriter(writer);

model.write(writer, "RDF/XML");

writer.close();

Restoring the training model(from RDF data):
Code snippet below demonstrates how to retrieve the saved trainer:

FileReader reader = new FileReader (file);
BufferedReader bReader = new BufferedReader(reader);

String line ="";

String rdfData = "";

while (null != (line = bReader.readLine())) {
rdfData += ling;

}
TrainerObject trnObj =
MalletUtils.convertRDF ToTrainerObj(rdfData, "RDF/XML");
Classifying the test instances:
Classification of test instances can be achieved in 2 ways:
1. Using MALLET Interface:

As explained above TrainerObject also consists of MALLET's Classifier interface within
it, we can directly use this interface to classify the test instances.

Code snippet below demonstrates how to classify the test data instances:

ArrayList <Classification> classificationList = trnObj.getClassifier().classify(testinstanceList);
2. Using Pallet's MalletTextClassify class:

Pallet also provides interfaces of it's own to classify the test instances.

Code snippet:

MalletTextClassify classifier = new MalletTextClassify();
classificationList =
classifier.classify(trnObj.getClassifier(), testinstancelList);

Decision of using either of the method depends on what you want. Pallet uses the same
MALLET interface and exposes simpler methods to fetch class labels and accuracy of
classification. If you want more than what pallet provides, you can then switch to MALLET's
interface but we would strongly suggest to use our interface before jumping into MALLET.

Getting accuracy values for the classified data:

Accuracy of classification is represented as an object of “MalletAccuracyVector” class. It
provides methods to fetch the following:

1. Best class label for the test data instance.
2. Accuracy of the class labels in terms of percentage.
3. Name and source of test data.
4. Accuracy Vector.
MalletAccuracyVector class is defined in PalletData project.

Pallet Test:

Pallet Test workspace behaves both as a command-line interface to PalletData and PalletClassify
project and also as a simulator demonstrating the Semantic web application development using Pallet.
In this document we discuss Pallet Test with respect to command-line interface.

BlackBookSimulator class provides the command-line interface.

Command Line Interface:

Training the classifier:

If user want to train the classifier and want to store it in some output file then the command line
arguments would be

TRAIN <training data set> <training algorithm> <output file name> <classification
property >

for eg

TRAIN C:\Users\pralabh\workspace2\Mallet1\Montery2RDF.rdf NaiveBayes C:\Users\pralabh
\workspace2\Mallet1\MonteryTrainer2 http://blackbook.com/terms#STAT_EVENT

» C:\Users\pralabh\workspace2\Mallet1\Montery2RDF.rdf : The training data

* NaiveBayes: Algorithm which is used to train the classifier.

» C:\Users\pralabh\workspace2\Mallet1\MonteryTrainer2: The location where trained
classifier will be stored.

* http://blackbook.com/terms#STAT EVENT : The classification Property on the basis of
which classification will be done.

Incremental Train:

INC_TRAIN <training data set> <Filename where the classifier stored> <Output file name>
<classification Property>

for eg

Inc_TRAIN C:\Users\pralabh\workspace2\Mallet1\Montery2RDF.rdf C:\User\old_classifier
c:\User\new_classifier http://blackbook.com/terms#STAT_EVENT

» C:\Users\pralabh\workspace2\Mallet1\Montery2RDF.rdf : New Training Data.
» C:\User\old_classifier: The location where old classifier is stored.

» c:\User\new_classifier: The location where new classifier will be stored.

* http://blackbook.com/terms#STAT EVENT: Classification Property.

Classification:
1. Classification using the saved trainer.

CLASSIFY_SD <data which is to be classified> <trainer object file name> <validation
source> <Classification Property>

for eg

CLASSIFY_SD C:\Users\pralabh\workspace2\Mallet\Montery2RDF.rdf
C:\Users\pralabh\workspace2\Mallet1\MonteryTrainer2
C:\Users\pralabh\workspace2\Mallet1\Montery2RDF.rdf

http://blackbook.com/terms#STAT_EVENT:
http://blackbook.com/terms#STAT_EVENT

http://blackbook.com/terms#STAT_EVENT

» C:\Users\pralabh\workspace2\Mallet\Montery2RDF.rdf : Data which is to be
classified

» C:\Users\pralabh\workspace2\Mallet1\MonteryTrainer2 : Place where the already
trained classifier is stored.

» C:\Users\pralabh\workspace2\Mallet1\Montery2RDF.rdf : The Validation model
which contains then classification of the unclassified data.(This is to compare the
results of Mallet classification with actual classification)

http://blackbook.com/terms#STAT_EVENT: The classification Property on the
basis of which classification occurred.

2. Classification by building trainer.

CLASSIFY <Training data Set> <test data set> <Training algorithm> <Trainer
Destination File> <Validation data src> <Classification Property>

Note: In the option ,training the classifier,storing it into the file ,classifying the
test data and validating the final classified data all these things happening
simultaneously.

3. Classification using incrementally trained model.

CLASSIFY_INC <test data set> <trained data Set> <trainer source file> <output file>
<validating data source> <classification Property>

Note: In this option the already trained classifier is incrementally trained
,stored in a new position, classifying the test data and validating it with
validating data source.

Important Points

1. If your test data set and trained data set contains multiple files or folders then you can use
them by seperating them with ,. for eg
1. If your test data set contains two files from different location then specified them as
path_of filename1,path_of filename2(C:/user/abc.rdf,d:/user/cba.edf)

2. User can use above stated option simultaneously. For e.g. if user want to use train and classify
stand alone option simultaneously then

TRAIN C:\Users\pralabh\workspace2\Mallet1\Montery2RDF.rdf NaiveBayes
C:\Users\pralabh\workspace2\Mallet1\MonteryTrainer2
http://blackbook.com/terms#STAT_EVENT@CLASSIFY_SD
C:\Users\pralabh\workspace2\Mallet\Montery2RDF.rdf
C:\Users\pralabh\workspace2\Mallet1\MonteryTrainer2
C:\Users\pralabh\workspace2\Mallet1\Montery2RDF.rdf
http://blackbook.com/terms#STAT EVENT

Note : The two options are seperated by @ symbol.

Entity Extraction:
MALLET supports sequence tagging module which under cc.mallet.fst package. It provides HMM,

http://blackbook.com/terms#STAT_EVENT
http://blackbook.com/terms#STAT_EVENT@CLASSIFY_SD
http://blackbook.com/terms#STAT_EVENT:

MEMM and Linear chain CRF algorithms. We again intend to develop a wrapper with which we can
extend the MALLET to support semantic web applications. The plan is to make it an independent
project which supports named-entity extraction of free text data and persists it as an RDF/XML data
which can be used as data feed for the semantic web application. At the time of writing this document,
this module is still in design phase.

Whats left to do:

test with other data sets.

k-fold cross validation.

use algorithm implementations other than Naive Bayes.

go beyond classification, attempting entity extraction, etc.
extend Pallet Data module to work against all RDF/XML data.
test against other machine learning toolkits.

oOkwn =

Summary:

This document intends to provide an overview of MALLET's classification and sequence
tagging modules and further explain our work of professionalizing the MALLET package. As a part of
professionalization we have documented various interfaces that MALLET provides and further we
provide easier interfaces which suffices the requirements of application development. This framework
which we created for the pre-processing and classification supports interfaces to build both stand-
alone and Semantic Web applications.

References:

http://mallet.cs.umass.edu/

http://en.wikipedia.org/wiki/Naive _Bayes _classifier

http://en.wikipedia.org/wiki/Decision_tree learning
http://en.wikipedia.org/wiki/Maximum_entropy classifier
http://www.authorstream.com/Presentation/aSGuest4218-114230-nips-ie-tutorial-ppt-education-
powerpoint/

http://jena.sourceforge.net/

7. http://www.w3.0org/TR/REC-rdf-syntax/

ANl ol

o

Appendix:
INDEX
A L W
B M X
Boosting Algorithm -8 Mallet - 4

BuildPipe - 13 Installation - 4

http://www.w3.org/TR/REC-rdf-syntax/
http://jena.sourceforge.net/
http://www.authorstream.com/Presentation/aSGuest4218-114230-nips-ie-tutorial-ppt-education-powerpoint/
http://www.authorstream.com/Presentation/aSGuest4218-114230-nips-ie-tutorial-ppt-education-powerpoint/
http://en.wikipedia.org/wiki/Maximum_entropy_classifier
http://en.wikipedia.org/wiki/Decision_tree_learning
http://en.wikipedia.org/wiki/Naive_Bayes_classifier
http://mallet.cs.umass.edu/

BuildPipeDiffPipe-13 Directory Structure - 4
Maximum Entropy - 8

C N Y

C-45 NaiveBayes - 8
cc.mallet.pipe - 9

D O Z

Data Preprocessing — 5
Data Classification -8

E P
Entity Extraction - 19 Pipe — 6
PALLET

Installation - 10
Directory Structure - 11
Building Pallet -11

Data - 12
Classify — 15
Utility — 15
Test -17
F Q
FeatureSequence - 5
FeatureVector — 6
FeatureSequence2FeatureVector - 8
G R
RDF2Malletinstances -13
RDFUtils - 13
H S
I T
InstanceList — 6 TokenSequenceLowercase - 7
Input2CharSequence — 6 TokenSequenceRemoveStopwords -7

TokenSequence2FeatureSequence -8
Target2Label -7

Trainer Object -15
Trainer Model - 16

U
V

	Introduction:
	MALLET:
	MALLET Installation:
	MALLET Directory Structure

	Data Pre-processing:
	MALLET's Important Data Pre-processing Components
	Feature Sequence:
	FeatureVector:
	InstanceList:
	Pipe:
	Input2CharSequence:
	CharSequence2Token-Sequence:
	TokenSequenceLowercase:
	TokenSequenceRemoveStopwords:
	TokenSequence2FeatureSequence:
	Target2Label:
	FeatureSequence2FeatureVector:

	Data Classification:

	Professionalization:
	MALLET Documentation:

	PALLET:
	PALLET Overview
	PALLET Installation
	Requirements:
	Pallet Directory Structure:
	Building PALLET :

	Pallet Data:
	Purpose of Pallet Data
	Output Data Format
	MalletDataImport
	BuildPipe
	BuildPipeDiffPipe
	RDF2MalletInstances and RDFUtils

	Pallet Classify:
	Trainer Object:
	Pallet Utility:
	Creating Training model:
	Incremental training model:
	Saving the training model (as RDF data):
	Restoring the training model(from RDF data):
	Classifying the test instances:
	Getting accuracy values for the classified data:

	Pallet Test:
	Command Line Interface:
	Training the classifier:
	Incremental Train:
	Classification:
	Important Points

	Entity Extraction:
	Whats left to do:
	Summary:
	References:
	Appendix:

