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ABSTRACT
The objective of this paper is classifying images by the ob-
ject categories they contain, for example motorbikes or dol-
phins. There are three areas of novelty. First, we introduce
a descriptor that represents local image shape and its spa-
tial layout, together with a spatial pyramid kernel. These
are designed so that the shape correspondence between two
images can be measured by the distance between their de-
scriptors using the kernel. Second, we generalize the spatial
pyramid kernel, and learn its level weighting parameters (on
a validation set). This significantly improves classification
performance. Third, we show that shape and appearance
kernels may be combined (again by learning parameters on
a validation set).

Results are reported for classification on Caltech-101 and
retrieval on the TRECVID 2006 data sets. For Caltech-
101 it is shown that the class specific optimization that we
introduce exceeds the state of the art performance by more
than 10%.

Categories and Subject Descriptors
I.4.8 [Computing Methodologies]: Image Processing and
Computer Vision—Scene Analysis

General Terms
Measurement Performance

Keywords
Shape features, Spatial Pyramid Kernel, Object and video
retrieval

1. INTRODUCTION
We consider the problem of image classification where our

main goal is to explore how the spatial distribution of shape
can benefit recognition. Much recent work has used a “bag
of (visual) words” representation together with an SVM clas-
sifier in order to classify images by the objects they con-
tain [6, 27]. These methods represent local appearance, but
not shape directly. However, representations of shape using
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the spatial distribution of edges [19, 20, 21] often perform
as well as or even better than local appearance patches, but
recognition involves computing geometric consistency using
Hough like accumulators – losing the simple vector repre-
sentation of a bag of words. We introduce a new descriptor
which has the advantages of both: it captures the spatial
distribution of edges, but is formulated as a vector represen-
tation. Similarity on descriptor vectors between two images
(for example measured using histogram intersection or χ2)
then measures the similarity of their spatial distribution of
edges.

Our descriptor is mainly inspired by two sources: (i) the
image pyramid representation of Lazebnik et al. [14], and
(ii) the Histogram of Gradient Orientation (HOG) of Dalal
and Triggs [7].

In essence, we wish to assess how well an exemplar image
matches (the shape of) another image. As in [14] the intu-
ition is that a strong match goes beyond a “bag of words”
and also involves a spatial correspondence. To this end we
represent shape in the form of edges, replacing the quan-
tized appearance patches (visual words) of [14], and learn
a class specific weighting for the levels of the hierarchical
spatial histogram [11, 14]. This captures the intuition that
some classes are very geometrically constrained (such as a
stop sign) whilst others have greater geometric variability
(e.g. dolphins, boats). The details of the descriptor, termed
PHOG (for Pyramid of Histograms of Orientation Gradi-
ents) are given in Section 2, and the idea is illustrated in
Fig. 1.

The flexibility of the spatial histogram level weighting
means that a spectrum of spatial correspondences between
two images can be represented. If only the coarsest level is
used, then the descriptor reduces to a global edge or orien-
tation histogram, such as used by [13, 24]. If only the finest
level is used, then the descriptor enforces correspondence
for tiles (spatial bins) over the image. This extreme is what
is captured by [7, 23] where histograms are computed over
local image regions. Other weightings of the spatial levels
capture geometric consistency between these extremes. We
compare the PHOG descriptor to a standard shape descrip-
tor, Chamfer matching, in Section 2.3.

Having developed the PHOG descriptor we then intro-
duce kernels, suitable for an SVM classifier, that combine
both appearance (visual words) and edge (PHOG) descrip-
tors. This is a form of feature combination and selection,
but here the selection is at the kernel level. Again, in a class-
specific learning step, the descriptors (appearance or shape
or both) most suitable for a particular class are determined.
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Figure 1: Shape spatial pyramid representation.
Top row: an image and grids for levels l = 0 to l = 2;
Below: histogram representations corresponding to
each level. The final PHOG vector is a weighted
concatenation of vectors (histograms) for all levels.
Remaining rows: images from the same and from
different categories, together with their histogram
representations.

For example, a category such as car is best described by
shape alone, leopard by appearance alone, and buddha by
a combination of the two. This generalizes previous ap-
proaches that have used a fixed linear weighting to combine
feature vectors [13]. The kernels are described in Section 3.

Sections 4–6 describe the datasets used, implementation
details, and the experimental procedure and results on clas-
sification for Caltech-101 [8] and retrieval for TRECVID
2006. It is shown that the set of innovations introduced here
lead to a 10% performance improvement over the previous
best result on Caltech-101 [26].

2. SPATIAL SHAPE DESCRIPTOR – PHOG
Our objective is to represent an image by its local shape

and the spatial layout of the shape. Here local shape is
captured by the distribution over edge orientations within a
region, and spatial layout by tiling the image into regions at
multiple resolutions. The idea is illustrated in Fig. 1. The
descriptor consists of a histogram of orientation gradients
over each image subregion at each resolution level – a Pyra-
mid of Histograms of Orientation Gradients (PHOG). The
distance between two PHOG image descriptors then reflects
the extent to which the images contain similar shapes and
correspond in their spatial layout.

The following sub-sections describe these two aspects (lo-
cal shape and spatial layout correspondence) in more detail.

2.1 Local Shape
Local shape is represented by a histogram of edge orien-

tations within an image subregion quantized into K bins.
The contribution of each edge is weighted according to its
magnitude, with a soft assignment to neighbouring bins in
a manner similar to SIFT [17]. Implementation details are

given in Section 5.
Each bin in the histogram represents the number of edges

that have orientations within a certain angular range. This
representation can be thought of as a traditional “bag of
(visual) words”, where here each visual word is a quantiza-
tion on edge orientations. A similar representation is used
in [2]. We will refer to the representation of each region as
a Histogram of Orientated Gradients [7] (HOG).

2.2 Spatial Layout
In order to introduce spatial information we follow the

scheme proposed by Lazebnik et al. [14] which is based on
spatial pyramid matching [11]. Consider matching two im-
ages each consisting of a 2D point set, where we wish to
determine soft matches between the point sets when the im-
ages are overlaid – for a particular point the strength of the
match depends on the distances from its position to points
in the other set. Each image is divided into a sequence of
increasingly finer spatial grids by repeatedly doubling the
number of divisions in each axis direction (like a quadtree).
The number of points in each grid cell is then recorded. This
is a pyramid representation because the number of points in
a cell at one level is simply the sum over those contained
in the four cells it is divided into at the next level. The
cell counts at each level of resolution are the bin counts for
the histogram representing that level. The soft correspon-
dence between the two point sets can then be computed as a
weighted sum over the histogram intersections at each level.
Similarly, the lack of correspondence between the point sets
can be measured as a weighted sum over histogram differ-
ences at each level.

In our case, a HOG vector is computed for each grid cell
at each pyramid resolution level. The final PHOG descrip-
tor for the image is a concatenation of all the HOG vectors.
In forming the pyramid the grid at level l has 2l cells along
each dimension. Consequently, level 0 is represented by a K-
vector corresponding to the K bins of the histogram, level 1
by a 4K-vector etc, and the PHOG descriptor of the entire
image is a vector with dimensionality K

∑
lεL 4l. For exam-

ple, for levels up to L = 1 and K = 20 bins it will be a
100-vector. In the implementation we limit the number of
levels to L = 3 to prevent over fitting.

The PHOG is normalized to sum to unity. This normal-
ization ensures that images with more edges, for example
those that are texture rich or are larger, are not weighted
more strongly than others.

Fig. 1 shows that images from the same category have a
similar PHOG representation and that this representation is
discriminative between categories. Note, PHOG is not the
same as a scale space pyramid representation of edges [16]
as there is no smoothing between levels of the pyramid, and
all edges are computed on the high resolution image.

Similarity between a pair of PHOGs is computed using
a distance function, with appropriate weightings for each
level of the pyramid. In previous work [11, 14], the distance
function was histogram intersection and the weightings were
fixed and class independent. In this paper we learn the
weightings for the levels, and show that a χ2 distance has
superior performance to histogram intersection.

2.3 What Is Being Represented?
In order to gain an intuition into what is represented

by a difference between PHOG descriptors, we show here
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Figure 2: A comparison of difference in PHOG
descriptors using χ2 (gray bars) to Chamfer dis-
tance (dark green bars). Note, the y-axis shows
1−distance, so that a perfect match corresponds to
unity, and a poor match to zero. (a) shows a syn-
thetic model image and (b) its matching to the syn-
thetic images (arranged on the x-axis). Similarly,
(c) shows a real model image and (d) its matching
to images from Caltech-101.

its relation to Chamfer distance between the edge maps.
Comparing boundaries using Chamfer [3] has proven to be
a reliable and efficient method for object recognition e.g.
the pedestrian detector of Gavrila & Philomen [10] and the
hand tracking of [22]. The chamfer distance between two
curves measures the average over the closest distance be-
tween them. If the model and target curves are represented
by the point sets {xm} and {xt} then the Chamfer distance
can be computed as:

Chamfer =
1

Nm

∑
m

minxt ||(xm − xt)|| (1)

In addition for curves, rather than point sets, edges are only
matched if they have similar orientations, and also distance
is capped to reduce sensitivity to “outliers”, such as missed
edges through detector drop out [22].

To illustrate the similarity, in Fig. 2 we compare Chamfer
distance to the difference between PHOG descriptors com-
puted using χ2. It can be seen in (a) that both have simi-
lar behaviours: both can tolerate missed edges to some ex-
tent (second and third examples where an edge is missing)
and background clutter (fourth example where an edge is
added). PHOG copes better with rotated images due to the
additional slack given by computing orientation histograms
over regions, whereas Chamfer will cease to find a matching
edge that has the same orientation. Fig. 2(b) shows that for
real images (Caltech-101), Chamfer and PHOG again have

similar behaviour for the most part.
This raises the question of why it is necessary to intro-

duce a new descriptor at all. The answer is that PHOG has
three advantages over Chamfer: (i) insensitivity to small
rotation (mentioned above). More significantly, (ii) PHOG
is a compact vector descriptor suitable for use in standard
learning algorithms with kernels. Chamfer matching can
be reformulated as a distance between vectors as shown
by Felzenswalb [9] (and similarly for Hausdorff matching).
However, the vector has the dimension of the number of pix-
els in the image and will not be particularly sparse; (iii) the
principal advantage is that Chamfer matching requires strict
spatial correspondence whereas PHOG is flexible, since it
builds in spatial pyramid matching, and is able to cope with
varying degrees of spatial correspondence by design.

3. MODELING SHAPE AND APPEARANCE
In this section we describe the kernels that will be used in

the SVM classifiers for classifying and retrieving images ac-
cording to their class (e.g. containing a motorbike or a road).
We begin by describing the kernel for the PHOG descriptor,
and then introduce two kernels suitable for combining or
selecting between appearance and shape representations.

3.1 Kernel Definition
If images I and J are represented by the PHOG feature

vectors SI and SJ , then the similarity between the images
is defined as

K(SI , SJ) =
∑

lεL

αldl(SI , SJ) (2)

where αl is the weight at level l and dl the distance between
SI and SJ at pyramid level l computed using χ2 (though
other distances could be used). This defines the kernel for
PHOG similarity.

In the original spatial pyramid representation [14] each

level was weighted using αl = 1/2(L−l) where L is the num-
ber of levels and l the current level. This means that his-
tograms from finer resolutions are weighted more highly
than those at coarser resolutions. However, this may not be
the optimum weight choice for classification performance.
We investigate two methods for learning the weights:
GLW – Global Level-Weights. Instead of giving a fixed
weight to each pyramid level as in [14], we learn the weights
αl which give the best classification performance over all
categories.
CLW – Class specific Level-Weights. Instead of learn-
ing weights common across all classes, the weights αl are
learnt for each class separately by optimizing classification
performance for that class using one vs the rest classifica-
tion. This means that for the 100 categories of Caltech-101
it is necessary to learn 400 parameter values (for L = 3
levels) instead of only 4 for GLW.

The advantage of learning class-specific level-weights is
that classes then have the freedom to adapt if there is more
or less intra-class spatial variation. The disadvantage is that
the solution is sub-optimal since performance is not opti-
mized over all categories simultaneously. Details and results
are given in Section 6.1.

3.2 Merging Features
It was shown in Section 2 that shape represented by PHOG

is a good measure of image similarity and thus for image



Figure 3: Images from the Caltech-101 dataset. One
per category.

classification. However, shape features alone are not suffi-
cient to distinguish all types of images, as is shown for ex-
ample by the strawberry and brain examples in Fig. 2b. In
this case, appearance [4, 14] is a better feature to distinguish
them. Consequently, we investigate here kernels to combine
these two features (shape & appearance). The appearance
features and kernel are described in Section 5.2.

We consider two kernel combinations. The first is a simple
linear blend, the second involves a hard choice between the
feature types using a max operation.

The first merging kernel that we propose is based on the
weighted sum of appearance and shape information:

K(x, y) = αKA(xApp, yApp) + βKS(xShp, yShp) (3)

where α and β are the weights for the appearance and shape
kernel (2) respectively. It has the capacity to give higher
weights to the more discriminative features during learning.
Moreover it also has the capability to ignore features which
do not match well if α = 0 or β = 0. It is a Mercer ker-
nel [12]. Previous authors have considered similar merging
kernels, but the optimization differs. We optimize perfor-
mance over a validation set directly whereas in [1, 15] the
interest is in efficient optimization of a proxy for classifica-
tion performance.

The second merging kernel is based on taking the maxi-
mum value of the appearance or shape kernel:

K(x, y) = max[KA(xApp, yApp), KS(xShp, yShp)] (4)

This kernel has the ability to ignore the appearance or shape
features if those features do not match well for a particular
exemplar image. Note that it is not a Mercer kernel, but
this has not proven to be a problem in practice.

For kernel learning we again consider two situations:
GFW – Global Feature-Weights. Optimize weights α
and β in (3) over all classes together, so that all the classes
will have the same weights for the kernel features used.
CFW – Class specific Feature-Weights. Optimize weights
α and β in (3) for each class separately. Again, these weights
are learnt by classifying that class against all others.

Car Bus Airplane Police Corporate
Leader

Vegetation Waterscape Boat

Figure 4: Training images from TRECVID. Each
column shows three different examples. Note the
high intra-class variability.

4. DATASETS
Caltech-101. This dataset (collected by Fei-Fei et al. [8])

consists of images from 101 object categories, and contains
from 31 to 800 images per category. Most images are medium
resolution, about 300 × 300 pixels. The significance of this
database is its large inter-class variability. Fig. 3 shows im-
ages for each category from the dataset.

Fig. 6 shows examples of what is being represented by the
spatial shape descriptor for this dataset. From the average
image (averaged over 25 training images) it is evident that
images from the same category are very well centred and do
not suffer from much rotation. The average gradient and
edge images show the strong alignment of the principal ob-
ject edges within a class – note in particular the alignment
of the cup and metronome boundaries. The gradient mag-
nitude weighting of the histogram bins is particularly bene-
ficial here as the strong gradients that are common within a
class score highly in the HOG, in turn reinforcing the sim-
ilarity of PHOGs for images of the same class. It is clear
from the averaged orientation histograms for two levels that
more local spatial-shape (l = 3) is able to distinguish be-
tween classes better than global (l = 0).

TRECVID1. We use the annotated training data from
TRECVID 2006, which consists of 80 hours of video se-
quences. Video shots are annotated into 39 semantic cat-
egories which occur frequently in the database (e.g. sports,
entertainment, weather). TRECVID also provides keyframes
for each shot, and only these frames are used here for learn-
ing and shot retrieval. There are a total of 43907 keyframes.
A sample is shown in Fig. 4. Note the difficulty of these im-
ages.

5. IMPLEMENTATION
For image classification we use the kernels defined in Sec-

tion 3 in a SVM classifier [5]. Multi-way classification is
achieved using a one-versus-all SVM: a classifier is learnt to
separate each class from the rest, and a test image is as-
signed the label of the classifier with the highest response.
For the retrieval results in TRECVID 2006 we use the prob-
ability estimate provided by [5] to rank the representative
keyframes (shots).

5.1 Shape Implementation
Edge contours are extracted using the Canny edge detec-

tor on monochrome versions of the images (with intensity
I = 0.3R + 0.59G + 0.11B). The orientation gradients are
then computed using a 3× 3 Sobel mask without Gaussian

1http://www-nlpir.nist.gov/projects/trecvid/



smoothing, since [7] showns that smoothing significantly de-
creases classification performance. The HOG descriptor is
discretized into K orientation bins. The vote from each con-
tour point depends on its gradient magnitude, and is linearly
distributed across the two neighbouring orientation bins ac-
cording to the difference between the measured and actual
bin orientation. Histograms with K ranging between 10 and
80 bins are tested.

In the experiments two HOG descriptors are compared:
one with orientations in the range [0, 180] (where the con-
trast sign of the gradient is ignored) and the other with
range [0, 360] using all orientation as in the original SIFT
descriptor [17]. We refer to these as Shape180 and Shape360

respectively.

5.2 Appearance Implementation
A dense representation is computed as described in Bosch

et al. [4]. In short, SIFT descriptors are computed at points
on a regular grid with spacing M pixels, here M = 10.
At each grid point the descriptors are computed over circu-
lar support patches with radii r = 4, 8, 12 and 16 pixels.
Consequently each point is represented by four SIFT de-
scriptors. Multiple descriptors are computed to allow for
scale variation between images. The patches with radii 4 do
not overlap and the other radii do. The image can be repre-
sented using colour (termed AppColour) or only monochrome
information (termed AppGray). For AppColour the SIFT de-
scriptors are computed for each HSV component. This gives
a 128 × 3 D-SIFT descriptor for each point. In the case of
AppGray SIFT descriptors are computed over the gray im-
age (again with intensity I = 0.3R + 0.59G + 0.11B) and
the resulting SIFT descriptor is a 128 vector. Note that the
descriptors are rotation invariant. The dense features are
vector quantized into visual words using k-means cluster-
ing. The k-means clustering was performed over 5 training
images per category selected at random. A vocabulary of
300 words is used here. Each image is then represented by
a histogram of word occurrences. This forms the feature
vector for an SVM classifier, here using the spatial pyramid
kernel of (2).

6. EXPERIMENTAL RESULTS
Following standard procedures, the Caltech-101 data is

split into 30 (25 for training and 5 for the validation set)
training images (chosen randomly) per category and 50 for
testing – disjoint from the training images. The validation
set is used to optimize all the parameters (e.g. K, αl). The
final performance score is computed as the mean recognition
rate per class, so that more populous (and easier) classes
are not favoured. The classification process is repeated 10
times, (changing the training, validation and test sets), and
the average performance score and its standard deviation
are reported.

For the TRECVID data we used the most representative
keyframe of each video shot (43907 keyframes). This data
is also split into three disjoint sets: 27093 keyframes for
training, 3900 (100 per category) for the validation set and
12914 for testing. In this case precision vs. recall graphs
are computed and the average precision is reported as a
performance measure, following the TRECVID guidelines.

6.1 Parameter Optimization – Caltech 101
Parameter optimization is carried out on the validation

set. For example, weights αl, (2) are learnt by maximizing
the performance score on this set. The optimization is car-
ried out by an exhaustive search over a range of values with
granularity 0.1 for αl, α and β, and granularity 10 for K.
Distance measures. We explore here three distance mea-
sures: histogram intersection, χ2, and the normalized scalar
product (cosine of angle). For this experiment αl = 1 and
K = 20 using Shape180. The best results are obtained with
χ2 (Fig. 5a), and consequently this distance is used for the
rest of this section.
Number of bins – K. We change the value of K in a range
[10 . . . 40] for Shape180 and [20 . . . 80] for Shape360. Note
that the range for Shape360 is doubled, so as to preserve
the original orientation resolution. Performance is optimal
with K = 20 orientations bins for Shape180, and K = 40
for Shape360 as shown in Fig. 5b. However, as can be seen,
the performance is not very sensitive to the number of bins
used.
Level-Weight – αl. Since the final PHOG is normalized
there are only three independent parameters which represent
three of the ratios in: α0:α1:α2:α3. For GLW we optimize
the ratios varying them in a range [0, 2]. Best performance is
achieved with α0 : α3 = 0.2, α1 : α3 = 0.4 and α2 : α3 = 0.4.
For CLW we optimize the same ratios and vary their value
independently for each category. For the most part more
weight is given to l = 3, however for accordion and inline-
skate (and some others) more importance is given to l = 2 or
l = 1. This is because at the higher levels regions are smaller
and may miss the object entirely (capturing background) as
the object position varies in the image (there is more intra-
class pose variation).
Kernel features – α & β. For the GFW we learn the ker-
nel weights in (3) by varying the ratio α : β in the range
[0 . . . 2]. In this case best performance is obtained with
α:β = 1.5. This means that appearance has more influence.
For CFW optimization there exist categories for which ap-
pearance works better (e.g. leopards, barrel) and others for
which shape is best (e.g. scissors, lamp).

6.2 Classification Results – Caltech 101
Shape alone. The first four rows in Table 1 summarize

the performances achieved using just the HOGs at one level
of the pyramid (single level) as well as the performances
when using the PHOG for GLW optimization. As can be
seen in this table (and in Fig. 5a), very poor performance is
obtained for the lowest level (L = 0). In this case we are rep-
resenting the images with just one orientation histogram and
this is not very discriminative between classes (see Fig. 6e).
However performance increases by around 40% when intro-
ducing spatial information, so the PHOG becomes far more
discriminative (see Fig. 6f). This means that objects can be
more easily differentiated by their spatially local orientations
than by global measures. Though matching at the highest
pyramid level seems to account for most of the improvement,
using all the levels together confers a statistically significant
benefit.

Using Shape360 we obtain the best result (69.0%). Includ-
ing contrast sign information helps substantially for recog-
nition tasks in Caltech-101, because this sign information is
useful for the majority of objects in the dataset, like motor-
bikes or cars. This is in contrast to [7] where better results
were obtained if the contrast sign of the gradient was ig-
nored. This is because [7] is detecting pedestrians, and in
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Figure 5: (a) Caltech-101 validation set performance for different distance measures over pyramid Levels
L = 0 to L = 3; and (b) over the number of bins (K). (c) Intra-colour variability for a few different categories.
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Figure 6: Caltech-101 training set: (a) representative image for the class; (b) average over images; (c) average
over gradient images; (d) average over edge images; (e-f) orientation histograms at l = 0 and at l = 3. Note: (i)
the gradient and edge images illustrate that a spatial orientation histogram with some tolerance to translation
will capture these classes well; (ii) the classes have quite similar global (level l = 0) orientation histograms,
but differ in their finer (level l = 3) spatial layout.
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Figure 7: Examples of categories that are confused
using shape alone: (a) images confused with a gui-
tar; (b) images confused with an accordion; (c) im-
ages confused with a bonsai.

this case the wide range of clothing and background colours
presumably makes the contrast sign uninformative. If we
use the CLW (class specific level-weight optimization) the
score increases as far as 69.8% for Shape180, and to 70.6%
for Shape360.

Fig. 7 samples some examples of class confusions, and it
is evident that the confusion is understandable, and arises
here (and in others we have looked at, but are not shown)
from shape similarity. The best classified classes are octopus,
metronome and inline skate with a score of 100% and the
worst are brontosaurus and cannon, with 25.0% and 25.7%
respectively.

Appearance alone. The last two rows of Table 1 sum-
marize the appearance performance for GLW optimization.
For Caltech-101, AppGray works better than AppColour (68.1%
vs 66.5%). If we use CLW then the score increases to 71.6%
for AppGray and to 68.2% for AppColour. However, in some
individual categories (e.g. ketch, leopards) colour informa-
tion is very relevant and class confusion is reduced if it is
used, whilst for others (e.g. yin-yang, umbrella) it is not.
Fig. 5c shows examples of each case.

Shape & Appearance. We first use the kernel in (3)
with GLW and GFW. When merging AppGray and Shape180

the performance is 70.7%, and this increases to 71.5% when
merging AppGray and Shape360. For GLW and CFW per-
formances increase to 72.8% for AppGray and Shape180, and
to 73.5% for AppGray and Shape360. The best results are
obtained using both class-specific optimizations (CLW &
CFW): 76.2% for AppGray and Shape180, and 76.6% for
AppGray and Shape360. That merging with Shape360 is bet-
ter than with Shape180 is expected, since Shape360 alone
performs better. Using the kernel in (4) and both class-
specific optimizations, performances are slightly better at
76.6% and 76.7%.

We have at our disposal two kind of appearances cues
(AppGray and AppColour) and two kinds of shape represen-
tation (Shape180 and Shape360). If we merge all the kernels
representing these cues using CLW and CFW, then we ob-
tain the best performance overall: 77.8%. Table 2 gives a
summary of the performances using different feature com-
binations. For just one feature CLW is used. Both class-
specific optimizations (CLW & CFW) are used for merging

Single level
l=0 l=1 l=2 l=3

S180 23.2± 0.5 47.3± 0.7 61.7± 0.5 64.3± 0.8
S360 25.0± 0.4 49.4± 0.7 62.1± 0.7 66.9± 0.9

Pyramid – PHOG
L=0 L=1 L=2 L=3

S180 23.2± 0.4 49.3± 0.6 64.1± 0.6 67.2± 0.5
S360 25.0± 0.5 51.4± 0.8 64.2± 0.7 69.0± 0.6
AG 55.3± 0.4 64.6± 0.3 67.0± 0.5 68.1± 0.6
AC 52.2± 0.5 63.1± 0.7 65.3± 0.9 66.5± 0.8

Table 1: Caltech-101 performance using appearance
and shape separately with a χ2 kernel. Single level
means that only a HOG from level l is used. For
PHOG, GLW is used to find the αl. Note that S360

has slightly better performance than AG.

Shape180 Shape360 AppGray AppColour Perform
X 69.8± 0.5

X 70.6± 0.6
X 71.6± 0.6

X 68.2± 0.8
X X 75.3± 0.6

X X 76.2± 0.6
X X 76.6± 0.8

X X X X 77.8± 0.8

Table 2: Comparison of performance scores for
Caltech-101 when using different cues: top part of
the table is for single features; bottom part is when
using different feature combinations; X means the
cue is used. Feature selection is carried out using
the optimization process CLW and CFW. The ker-
nel defined in (3) is used for merging cues.

cues. If we use the kernel defined in (4) to merge all the
appearance and shape features, then a slightly worse result
of 77.5% is obtained. The conclusion is that the kernel in
(3) works better than the kernel in (4) when a large number
of kernel features are used.

Table 3 compares our results to those reported by other
authors. Our best performance is 77.8%. This outperforms
the results reported by Zhang et al. [26] that to our knowl-
edge are the best until now.

6.3 Retrieval Results – TRECVID
The appearance representation is computed in a similar

manner to that described in Section 5.2. A vocabulary of
1500 words is used for AppColour. The number of bins for
PHOG is set to K = 40 using Shape360 (we have not opti-
mized K here, as it is demonstrated in Section 6.1 that it
does not have much affect on the final results). Level weights
(αl) and kernel weights (α and β) are learnt on the validation
set. We used χ2 distance together with a spatial pyramid
kernel with L = 1, which means that the inputs for the dis-
criminative classifiers have a dimension of 1500× 5+20× 5.
In TRECVID spatial distribution is very variable between
images of the same category. Consequently we only used up
to L = 1 for this data set.

We learn the appearance and shape classifiers for all 39
required topics. In general, most of the categories are best
retrieved when using AppColor features alone (e.g face –
AvPr = 99.4%, Weather – AvPr = 95.3%, Sky – AvPr =



[18] [11] [25] [14] [26] Ours
56.0 58.23 63.0 64.6 66.0 77.8± 0.8

Table 3: Classification of Caltech-101 with 30 train-
ing images per class.

91.6%). However, there are some categories like truck or
screen where Shape360 works better. Concretely there is a
significant increase in performance over AppColour for build-
ing (from 7.8% for AppColour to 44.5% for Shape360) and
road (from 5.4% to 18.6%). Overall, the best results are ob-
tained when using the appearance and shape merging kernel
(3) with both class-specific optimizations (CLW & CFW).
In this case there is a significant performance improvement
when retrieving: crowd – 84.2%, entertainment – 74.9%,
people walking – 65.4%, sports – 61.1%, mountain – 59.3%
and military – 49.9%.

7. SUMMARY & CONCLUSIONS
We have introduced a new descriptor, PHOG, which flex-

ibly represents the spatial layout of local image shape. For
the case of the Caltech-101 dataset, we can attribute how
much each representational and feature increment contributes
to the overall performance. Compared to using a single
level (l = 3) shape representation, PHOG increases per-
formance by 2% using weightings common across all classes.
This increase rises to 4% using class-specific level weighting.
The combination of the PHOG and appearance descriptors
achieves an 11% improvement (compared to the single level
shape representation) using the class-specific feature ker-
nel. This demonstrates that the shape and appearance de-
scriptors are complementary. We conclude that complemen-
tary spatial pyramid based descriptors, together with class-
specific optimization of pyramid weights and class-specific
kernel selection for merging are all important for good per-
formance.
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