Feedback Directed Prefetching:
Improving the Performance and Bandwidth-Efficiency of Hardware Prefetchers

Santhosh Srinathti Onur Mutlu§ Hyesoon Kim}

tMicrosoft
ssri@microsoft.com

Abstract

High performance processors employ hardware data
prefetching to reduce the negative performance impact of large
main memory latencies. While prefetching improves perfor-
mance substantially on many programs, it can significantly re-
duce performance on others. Also, prefetching can significantly
increase memory bandwidth requirements. This paper proposes
a mechanism that incorporates dynamic feedback into the de-
sign of the prefetcher to increase the performance improvement
provided by prefetching as well as to reduce the negative per-
formance and bandwidth impact of prefetching. Our mecha-
nism estimates prefetcher accuracy, prefetcher timeliness, and
prefetcher-caused cache pollution to adjust the aggressiveness
of the data prefetcher dynamically. We introduce a new method
to track cache pollution caused by the prefetcher at run-time.
We also introduce a mechanism that dynamically decides where
in the LRU stack to insert the prefetched blocks in the cache
based on the cache pollution caused by the prefetcher.

Using the proposed dynamic mechanism improves average
performance by 6.5% on 17 memory-intensive benchmarks in
the SPEC CPU2000 suite compared to the best-performing
conventional stream-based data prefetcher configuration, while
it consumes 18.7% less memory bandwidth. Compared to a
conventional stream-based data prefetcher configuration that
consumes similar amount of memory bandwidth, feedback di-
rected prefetching provides 13.6% higher performance. Our
results show that feedback-directed prefetching eliminates the
large negative performance impact incurred on some bench-
marks due to prefetching, and it is applicable to stream-
based prefetchers, global-history-buffer based delta correla-
tion prefetchers, and PC-based stride prefetchers.

1. Introduction

Hardware data prefetching works by predicting the memory
access pattern of the program and speculatively issuing prefetch
requests to the predicted memory addresses before the program
accesses those addresses. Prefetching has the potential to im-
prove performance if the memory access pattern is correctly
predicted and the prefetch requests are initiated early enough
before the program accesses the predicted memory addresses.
Since the memory latencies faced by today’s processors are on
the order of hundreds of processor clock cycles, accurate and
timely prefetching of data from main memory to the processor
caches can lead to significant performance gains by hiding the
latency of memory accesses. On the other hand, prefetching
can negatively impact the performance and energy consump-
tion of a processor due to two major reasons, especially if the
predicted memory addresses are not accurate:

o First, prefetching can increase the contention for the avail-
able memory bandwidth. Additional bandwidth con-

§Microsoft Research
onur @microsoft.com

Yale N. Patt}

IDepartment of Electrical and Computer Engineering
The University of Texas at Austin
{santhosh, hyesoon, patt} @ece.utexas.edu

tention caused by prefetches can lead to increased DRAM
bank conflicts, DRAM page conflicts, memory bus con-
tention, and queueing delays. This can significantly re-
duce performance if it results in delaying demand (i.e.
load/store) requests. Moreover, inaccurate prefetches in-
crease the energy consumption of the processor because
they result in unnecessary memory accesses (i.e. waste
memory/bus bandwidth). Bandwidth contention due to
prefetching will become more significant as more and
more processing cores are integrated onto the same die
in chip multiprocessors, effectively reducing the memory
bandwidth available to each core. Therefore, techniques
that reduce the memory bandwidth consumption of hard-
ware prefetchers while maintaining their performance im-
provement will become more desirable and valuable in fu-
ture processors [22].

e Second, prefetching can cause cache pollution if the
prefetched data displaces cache blocks that will later be
needed by load/store instructions in the program.! Cache
pollution due to prefetching might not only reduce perfor-
mance but also waste memory bandwidth by resulting in
additional cache misses.

Furthermore, prefetcher-caused cache pollution generates
new cache misses and those generated cache misses can in
turn generate new prefetch requests. Hence, the prefetcher
itself is a positive feedback system that can be unstable in
terms of both performance and bandwidth consumption.
Therefore, we would like to augment the prefetcher with a
negative feedback system to make it stable.

Figure 1 compares the performance of varying the aggres-
siveness of a stream-based hardware data prefetcher from No
prefetching to Very Aggressive prefetching on 17 memory-
intensive benchmarks in the SPEC CPU2000 benchmark suite.?
Aggressive prefetching improves IPC performance by 84% on
average’and by over 800% for some benchmarks (e.g. mgrid)
compared to no prefetching. Furthermore, aggressive prefetch-

"Note that this is a problem only in designs where prefetch requests bring
data into processor caches rather than into separate prefetch buffers [13, 11].
In many current processors (e.g. Intel Pentium 4 [6] or IBM POWER4 [24]),
prefetch requests bring data into the processor caches. This reduces the com-
plexity of the memory system by eliminating the need to design a separate
prefetch buffer. It also makes the large L2 cache space available to prefetch
requests, enabling the prefetched blocks and demand-fetched blocks to share
the available cache memory dynamically rather than statically partitioning the
storage space for demand-fetched and prefetched data.

2 Aggressiveness of the prefetcher is determined by how far the prefetcher
stays ahead of the demand access stream of the program as well as how many
prefetch requests are generated, as shown in Table 1 and Section 2.1.

3Similar results were reported by [8] and [18]. All average IPC results in
this paper are computed as geometric mean of the IPC’s of the benchmarks.

ing on average performs better than conservative and middle-
of-the-road prefetching. Unfortunately, aggressive prefetching
significantly reduces performance on some benchmarks. For
example, an aggressive prefetcher reduces the IPC performance
of ammp by 48% and applu by 29% compared to no prefetch-
ing. Hence, blindly increasing the aggressiveness of the hard-
ware prefetcher can drastically reduce performance on several
applications even though it improves the average performance
of a processor. Since aggressive prefetching significantly de-
grades performance on some benchmarks, many modern pro-
cessors employ relatively conservative prefetching mechanisms
where the prefetcher does not stay far ahead of the demand ac-
cess stream of the program [6, 24].

5.00

= No prefetching
4.50 = Very Conservative [——
= Middle-of-the-Road
= Very Aggressive

>
3
3

bl
n
3

=3
5

2.00 |

1.50

Instructions per Cycle
- .
2

Ry X ; g &
qu @Q N Q"} &« & & qy‘@&) @‘P\ e;}"o &

Figure 1. Performance vs. aggressiveness of the prefetcher

The goal of this paper is to reduce the negative perfor-
mance and bandwidth impact of aggressive prefetching while
preserving the large performance benefits provided by it. To
achieve this goal, we propose simple and implementable mech-
anisms that dynamically adjust the aggressiveness of the hard-
ware prefetcher as well as the location in the processor cache
where prefetched data is inserted.

The proposed mechanisms estimate the effectiveness of the
prefetcher by monitoring the accuracy and timeliness of the
prefetch requests as well as the cache pollution caused by the
prefetch requests. We describe simple hardware implemen-
tations to estimate accuracy, timeliness, and cache pollution.
Based on the run-time estimation of these three metrics, the
aggressiveness of the hardware prefetcher is decreased or in-
creased dynamically. Also, based on the run-time estimation
of the cache pollution caused by the prefetcher, the proposed
mechanism dynamically decides where to insert the prefetched
blocks in the processor cache’s LRU stack.

Our results show that using the proposed dynamic feed-
back mechanisms improve the average performance of 17
memory-intensive benchmarks in the SPEC CPU2000 suite by
6.5% compared to the best-performing conventional stream-
based prefetcher configuration. With the proposed mechanism,
the negative performance impact incurred on some bench-
marks due to stream-based prefetching is completely elimi-
nated. Furthermore, the proposed mechanism consumes 18.7%
less memory bandwidth than the best-performing stream-based
prefetcher configuration. Compared to a conventional stream-
based prefetcher configuration that consumes similar amount
of memory bandwidth, feedback directed prefetching provides
13.6% higher performance. We also show that the dynamic
feedback mechanism works similarly well when implemented
to dynamically adjust the aggressiveness of a global-history-
buffer (GHB) based delta correlation prefetcher [10] or a

PC-based stride prefetcher [1]. Compared to a conventional
GHB-based delta correlation prefetcher configuration that con-
sumes similar amount of memory bandwidth, feedback di-
rected prefetching provides 9.9% higher performance. The
proposed mechanism provides these benefits with a modest
hardware storage cost of 2.54 KB and without significantly
increasing hardware complexity. On the remaining 9 SPEC
CPU2000 benchmarks, the proposed dynamic feedback mech-
anism performs as well as the best-performing conventional
stream prefetcher configuration for those 9 benchmarks.

2. Background and Motivation

2.1. Stream Prefetcher Design

The stream prefetcher we model is based on the stream
prefetcher in the IBM POWER4 processor [24] and more de-
tails on the implementation of stream-based prefetching can be
found in [11, 19, 24]. The modeled prefetcher brings cache
blocks from the main memory to the last-level cache, which is
the second-level (L2) cache in our baseline processor.

The stream prefetcher is able to keep track of multiple dif-
ferent access streams. For each tracked access stream, a stream
tracking entry is created in the stream prefetcher. Each tracking
entry can be in one of four different states:

1. Invalid: The tracking entry is not allocated a stream to
keep track of. Initially, all tracking entries are in this state.

2. Allocated: A demand (i.e. load/store) L2 miss allocates a
tracking entry if the demand miss does not find any exist-
ing tracking entry for its cache-block address.

3. Training: The prefetcher trains the direction (ascending or
descending) of the stream based on the next two L2 misses
that occur +/- 16 cache blocks from the first miss.* If the
next two accesses in the stream are to ascending (descend-
ing) addresses, the direction of the tracking entry is setto 1
(0) and the entry transitions to Monitor and Request state.

4. Monitor and Request: The tracking entry monitors the ac-
cesses to a memory region from a start pointer (address
A) to an end pointer (address P). The maximum distance
between the start pointer and the end pointer is determined
by Prefetch Distance, which indicates how far ahead of the
demand access stream the prefetcher can send requests. If
there is a demand L2 cache access to a cache block in the
monitored memory region, the prefetcher requests cache
blocks [P+1, ..., P+N] as prefetch requests (assuming the
direction of the tracking entry is set to 1). N is called
the Prefetch Degree. After sending the prefetch requests,
the tracking entry starts monitoring the memory region be-
tween addresses A+N to P+N (i.e. effectively it moves the
tracked memory region by N cache blocks).’

4Note that all addresses tracked by the prefetcher are cache-block addresses.

SRight after a tracking entry is trained, the prefetcher sets the start pointer to
the the first L2 miss address that allocated the tracking entry and the end pointer
to the last L2 miss address that determined the direction of the entry plus an
initial start-up distance. Until the monitored memory region’s size becomes
the same as the Prefetch Distance (in terms of cache blocks), the tracking entry
increments only the end pointer by the Prefetch Degree when prefetches are
issued (i.e. the end pointer points to the last address requested as a prefetch
and the start pointer points to the L2 miss address that allocated the tracking
entry). After the monitored memory region’s size becomes the same as Prefetch
Distance, both the start pointer and the end pointer are incremented by Prefetch
Degree (N) when prefetches are issued. This way, the prefetcher is able to send
prefetch requests that are Prefetch Distance ahead of the demand access stream.

Prefetch Distance and Prefetch Degree determine the ag-
gressiveness of the prefetcher. In a traditional prefetcher con-
figuration, the values of Prefetch Distance and Prefetch De-
gree are fixed at the design time of the processor. In the feed-
back directed mechanism we propose, the processor dynami-
cally changes Prefetch Distance and Prefetch Degree to adjust
the aggressiveness of the prefetcher.

2.2. Metrics of Prefetcher Effectiveness

We use three metrics (Prefetch Accuracy, Prefetch Lateness,
and Prefetcher-Generated Cache Pollution) as feedback inputs
to feedback directed prefetchers. In this section, we define
the metrics and describe the relationship between the metrics
and the performance provided by a conventional prefetcher.
We evaluate four configurations: No prefetching, Very Con-
servative prefetching (distance=4, degree=1), Middle-of-the-
Road prefetching (distance=16, degree=2), and Very Aggressive
prefetching (distance=64, degree=4).

2.2.1. Prefetch Accuracy: Prefetch accuracy is a measure
of how accurately the prefetcher can predict the memory ad-
dresses that will be accessed by the program. It is defined as

Number of Useful Prefetches

Prefetch Accuracy =
Number of Prefetches Sent To Memory

where Number of Useful Prefetches is the number of prefetched
cache blocks that are used by demand requests while they are
resident in the L2 cache.

Figure 2 shows the IPC of the four configurations along with
prefetch accuracy measured over the entire run of each bench-
mark. The results show that in benchmarks where prefetch ac-
curacy is less than 40% (applu, galgel, and ammp), employing
the stream prefetcher always degrades performance compared
to no prefetching. In all benchmarks where prefetch accuracy
exceeds 40% (except mcf), using the stream prefetcher signif-
icantly improves performance over no prefetching. For bench-
marks with high prefetch accuracy, performance increases as
the aggressiveness of the prefetcher is increased. Hence, the
performance improvement provided by increasing the aggres-
siveness of the prefetcher is correlated with prefetch accuracy.

2.2.2. Prefetch Lateness: Prefetch lateness is a measure of
how timely the prefetch requests generated by the prefetcher
are with respect to the demand accesses that need the prefetched
data. A prefetch is defined to be late if the prefetched data
has not yet returned from main memory by the time a load or
store instruction requests the prefetched data. Even though the
prefetch requests are accurate, a prefetcher might not be able to
improve performance if the prefetch requests are very late. We
define prefetch lateness as:

Number of Late Prefetches
Number of Useful Prefetches

Prefetch Lateness =

Figure 3 shows the IPC of the four configurations along with
prefetch lateness measured over the entire run of each program.
These results explain why prefetching does not provide signif-
icant performance benefit on mcf, even though the prefetch ac-
curacy is close to 100%. More than 90% of the useful prefetch
requests are late in mcf. In general, prefetch lateness decreases
as the prefetcher becomes more aggressive. For example, in
vortex, prefetch lateness decreases from 70% to 22% when a

very aggresive prefetcher is used instead of a very conservative
one. Aggressive prefetching reduces the lateness of prefetches
because an aggressive prefetcher generates prefetch requests
earlier than a conservative one would.

2.2.3. Prefetcher-Generated Cache Pollution: Prefetcher-
generated cache pollution is a measure of the disturbance
caused by prefetched data in the L2 cache. It is defined as:

Prefetcher Generated Cache Pollution =
Number of Demand Misses Caused By the Prefetcher

Number of Demand Misses

A demand miss is defined to be caused by the prefetcher if
it would not have occurred had the prefetcher not been present.
If the prefetcher-generated cache pollution is high, the perfor-
mance of the processor can degrade because useful data in the
cache could be evicted by prefetched data. Furthermore, high
cache pollution can also result in higher memory bandwidth
consumption by requiring the re-fetch of the displaced data
from main memory.

3. Feedback Directed Prefetching (FDP)

FDP dynamically adapts the aggressiveness of the prefetcher
based on the accuracy, lateness, and pollution metrics defined
in the previous section. This section describes hardware mech-
anisms that track these metrics and the FDP mechanism.

3.1. Collecting Feedback Information

3.1.1. Prefetch Accuracy: To track the usefulness of prefetch
requests, we add a bit (pref-bit), to each tag-store entry in the L2
cache.® When a prefetched block is inserted into the cache, the
pref-bit associated with that block is set. Prefetcher accuracy
is tracked using two hardware counters. The first counter, pref-
total, tracks the number of prefetches sent to memory. The sec-
ond counter, used-total, tracks the number of useful prefetches.
When a prefetch request is sent to memory, pref-total is incre-
mented. When an L2 cache block that has the pref-bit set is ac-
cessed by a demand request, the pref-bit is reset and used-total
is incremented. The accuracy of the prefetcher is computed by
taking the ratio of used-total to pref-total.

3.1.2. Prefetch Lateness: Miss Status Holding Register
(MSHR) [12] is a hardware structure that keeps track of all
in-flight memory requests. Before allocating an MSHR entry
for a request, the MSHR checks if the requested cache block is
being serviced by an earlier memory request. Each entry in the
L2 cache MSHR has a bit, called the pref-bit, which indicates
that the memory request was generated by the prefetcher. A
prefetch request is late if a demand request for the prefetched
address is generated while the prefetch request is in the MSHR
waiting for main memory. We use a hardware counter, late-
total, to keep track of such late prefetches. If a demand re-
quest hits an MSHR entry that has its pref-bit set, the late-total
counter is incremented, and the pref-bit associated with that
MSHR entry is reset. The lateness metric is computed by tak-
ing the ratio of late-total to used-total.

SNote that several proposed prefetching implementations, such as tagged
next-sequential prefetching [5, 21] already employ pref-bits in the cache.

5.00

= No prefetching
4.50 = Very Conservative [——
= Middle-of-the-Road oy
° 400 = Very Aggressive E
g, 350 1
6} <
5 3.00 — 5
A £
£ 250 — 9
s g
S 200 "
£ 3
E 1.50 E
= £
1.00 =
=)
0.50
0.00 ramry Qo g > D IS o s
. R & F & & NP & &F K L X & & S
FFFFF I SFFT P S8
Figure 2. IPC performance (left) and prefetch accuracy (
5.00
= No prefetching
4.50 = Very Conservative [——
= Middle-of-the-Road
° 4.00 = Very Aggressive
C 350 — 2
5 £
g 3.00 — j‘é
2 250 -
£ .
2
‘g 2,00 —
£ &
Z 150
=
1.00
0.50
000 SRS T T P LSS IS S
b R & & & $ > & d S &
P AR Q“" 4°{\ « & & F & °«r7> & &5"\ S $°Q <

= Very Conservative
= Middle-of-the-Road|
= Very Aggressive

u

right) with different aggressiveness configurations

1.00

= Very Conservative
= Middle-of-the-Road
= Very Aggressive

& Ty
N <& 2 g
R > v &
& & P E

)
¢ S

S

&

&

& & K IS
Q@S—J 40& & ‘b&& ‘)QQ & 6&?

Figure 3. IPC performance (left) and prefetch lateness (right) with different aggressiveness configurations

3.1.3. Prefetcher-Generated Cache Pollution: To track the
number of demand misses caused by the prefetcher, the pro-
cessor needs to store information about all demand-fetched
L2 cache blocks dislodged by the prefetcher. However, such
a mechanism is impractical as it incurs a heavy overhead in
terms of both hardware and complexity. We use the Bloom fil-
ter concept [2, 20] to provide a simple cost-effective hardware
mechanism that can approximate the number of demand misses
caused by the prefetcher.

Figure 4 shows the filter that is used to approximate the num-
ber of L2 demand misses caused by the prefetcher. The filter
consists of a bit-vector, which is indexed with the output of the
exclusive-or operation of the lower and higher order bits of the
cache block address. When a block that was brought into the
cache due to a demand miss is evicted from the cache due to
a prefetch request, the filter is accessed with the address of the
evicted cache block and the corresponding bit in the filter is
set (indicating that the evicted cache block was evicted due to
a prefetch request). When a prefetch request is serviced from
memory, the pollution filter is accessed with the cache-block
address of the prefetch request and the corresponding bit in the
filter is reset, indicating that the block was inserted into the
cache. When a demand access misses in the cache, the filter is
accessed using the cache-block address of the demand request.
If the corresponding bit in the filter is set, it is an indication
that the demand miss was caused by the prefetcher. In such
cases, the hardware counter, pollution-total, that keeps track of
the total number of demand misses caused by the prefetcher
is incremented. Another counter, demand-total, keeps track of
the total number of demand misses generated by the proces-
sor and is incremented for each demand miss. Cache pollution
caused by the prefetcher can be computed by taking the ratio of
pollution-total to demand-total. We use a 4096-entry bit vector
in our experiments.

CacheBlockAddress[11:0]

CacheBlockAddress[23:12]

Pollution Filter

Figure 4. Filter to estimate prefetcher-generated cache pollution

3.2. Sampling-based Feedback Collection

To adapt to the time-varying memory phase behavior of a
program, we use interval-based sampling for all counters de-
scribed in Section 3.1. Program execution time is divided into
intervals and the value of each counter is computed as:

CounterValue = % CounterValueAtTheBeginningO fThelnterval

@

+ % CounterValueDuringInterval

The CounterValueDuringlnterval is reset at the end of each
sampling interval. The above equation used to update the
counters (Equation 1) gives more weight to the behavior of
the program in the most recent interval while taking into ac-
count the behavior in all previous intervals. Our mechanism
defines the length of an interval based on the number of useful
cache blocks evicted from the L2 cache.” A hardware counter,
eviction-count, keeps track of the number of blocks evicted
from the L2 cache. When the value of the counter exceeds a
statically-set threshold T5,,¢,vqi, the interval ends. At the end
of an interval, all counters described in Section 3.1 are updated
according to Equation 1. The updated counter values are then

"There are other ways to define the length of an interval, e.g. based on the
number of instructions executed. We use the number of useful cache blocks
evicted to define an interval because this metric provides a more accurate view
of the memory behavior of a program than the number of instructions executed.

used to compute the three metrics: accuracy, lateness, and pol-
lution. These metrics are used to adjust the prefetcher behavior
for the next interval. The eviction-count register is reset and a
new interval begins. In our experiments, we use a value of 8192
(half the number of blocks in the L2 cache) for T;ptervai-

3.3. Dynamically Adjusting Prefetcher Behavior

At the end of each sampling interval, the computed values
of the accuracy, lateness, and pollution metrics are used to dy-
namically adjust prefetcher behavior. Prefetcher behavior is ad-
justed in two ways: (1) by adjusting the aggressiveness of the
prefetching mechanism, (2) by adjusting the location in the L2
cache’s LRU stack where prefetched blocks are inserted.®

3.3.1. Adjusting Prefetcher Aggressiveness: The aggres-
siveness of the prefetcher directly determines the potential for
benefit as well as harm that is caused by the prefetcher. By
dynamically adapting this parameter based on the collected
feedback information, the processor can not only achieve the
performance benefits of aggressive prefetching during pro-
gram phases where aggressive prefetching performs well but
also eliminate the negative performance and bandwidth im-
pact of aggressive prefetching during phases where aggressive
prefetching performs poorly.

As shown in Table 1, our baseline stream prefetcher has five
different configurations ranging from Very Conservative to Very
Aggressive. The aggressiveness of the stream prefetcher is de-
termined by the Dynamic Configuration Counter, a 3-bit satu-
rating counter that saturates at values 1 and 5. The initial value
of the Dynamic Configuration Counter is set to 3, indicating
Middle-of-the-Road aggressiveness.

[Dyn. Config. Counter | Aggressiveness [Pref. Distance | Pref. Degree |

1 Very Conservative 4 1
2 Conservative 8 1
3 Middle-of-the-Road 16 2
4 Aggressive 32 4
5 Very Aggressive 64 4

Table 1. Stream prefetcher configurations

At the end of each sampling interval, the value of the Dy-
namic Configuration Counter is updated based on the com-
puted values of the accuracy, lateness, and pollution metrics.
The computed accuracy is compared to two thresholds (Ap;gn
and A;,,) and is classified as high, medium or low. Simi-
larly, the computed lateness is compared to a single thresh-
old (T}4teness) and is classified as either late or not-late. Fi-
nally, the computed pollution is compared to a single threshold
(Thotiution) and is classified as high (polluting) or low (not-
polluting). We use static thresholds in our mechanisms. The
effectiveness of our mechanism can be improved by dynami-
cally tuning the values of these thresholds and/or using more
thresholds, but such optimization is out of the scope of this pa-
per. In Section 5, we show that even with untuned threshold
values, FDP can significantly improve performance and reduce
memory bandwidth consumption on different data prefetchers.

Table 2 shows in detail how the estimated values of the
three metrics are used to adjust the dynamic configuration of
the prefetcher. We determined the counter update choice for

8Note that we adjust prefetcher behavior on a global (across-streams) basis
rather than on a per-stream basis as we did not find much benefit in adjusting
on a per-stream basis.

each case empirically. If the prefetches are causing pollu-
tion (all even-numbered cases), the prefetcher is adjusted to be
less aggressive to reduce cache pollution and to save memory
bandwidth (except in Case 2 when the accuracy is high and
prefetches are late — we do increase aggressiveness in this case
to gain more benefit from highly-accurate prefetches). If the
prefetches are late but not polluting (Cases 1, 5, 9), the aggres-
siveness is increased to increase timeliness unless the prefetch
accuracy is low (Case 9 — we reduce aggressiveness in this
case because a large fraction of inaccurate prefetches will waste
memory bandwidth). If the prefetches are neither late nor pol-
luting (Cases 3, 7, 11), the aggressiveness is left unchanged.

3.3.2. Adjusting Cache Insertion Policy of Prefetched
Blocks: FDP also adjusts the location in which a prefetched
block is inserted in the LRU-stack of the corresponding cache
set based on the observed behavior of the prefetcher. In many
cache implementations, prefetched cache blocks are simply
inserted into the Most-Recently-Used (MRU) position in the
LRU-stack, since such an insertion policy does not require any
changes to the cache implementation. Inserting the prefetched
blocks into the MRU position can allow the prefetcher to be
more aggressive and request data long before its use because
this insertion policy allows the useful prefetched blocks to stay
longer in the cache. However, if the prefetched cache blocks
create cache pollution, having a different cache insertion policy
for prefetched cache blocks can help reduce the cache pollution
caused by the prefetcher. A prefetched block that is not use-
ful creates more pollution in the cache if it is inserted into the
MRU position rather than a less recently used position because
it stays in the cache for a longer time period, occupying cache
space that could otherwise be allocated to a useful demand-
fetched cache block. Therefore, if the prefetch requests are
causing cache pollution, it would be desirable to reduce this
pollution by changing the location in the LRU stack in which
prefetched blocks are inserted.

We propose a simple heuristic that decides where in the LRU
stack of the L2 cache set a prefetched cache block is inserted
based on the estimated prefetcher-generated cache pollution.
At the end of a sampling interval, the estimated cache pollu-
tion metric is compared to two thresholds (P, and Phrign)
to determine whether the pollution caused by the prefetcher
was low, medium, or high. If the pollution caused by the
prefetcher was low, the prefetched cache blocks are inserted
into the middle (MID) position in the LRU stack during the
next sampling interval (for an n-way set-associative cache, we
define the MID position in the LRU stack as the floor(n/2)th
least-recently-used position).” On the other hand, if the pol-
lution caused by the prefetcher was medium, prefetched cache
blocks are inserted into the LRU-4 position in the LRU stack
(for an n-way set-associative cache, we define the LRU-4 posi-
tion in the LRU stack as the floor(n/4)th least-recently-used
position). Finally, if the pollution caused by the prefetcher was
high, prefetched cache blocks are inserted into the LRU posi-
tion during the next sampling interval.

9We found inserting prefetched blocks to the MRU position doesn’t pro-
vide significant benefits over inserting them to the MID position. Thus, our
dynamic mechanism doesn’t insert prefetched blocks to the MRU position. For
a detailed analysis of the cache insertion policy, see Section 5.2.

| Case | Prefetch Accuracy | Prefetch Lateness | Cache Pollution | Dynamic Configuration Counter Update (reason) |

1 High Late Not-Polluting Increment (to increase timeliness)

2 High Late Polluting Increment (to increase timeliness)

3 High Not-Late Not-Polluting No Change (best case configuration)

4 High Not-Late Polluting Decrement (to reduce pollution)

5 Medium Late Not-Polluting Increment (to increase timeliness)

6 Medium Late Polluting Decrement (to reduce pollution)

7 Medium Not-Late Not-Polluting No Change (to keep the benefits of timely prefetches)
8 Medium Not-Late Polluting Decrement (to reduce pollution)

9 Low Late Not-Polluting Decrement (to save bandwidth)

10 Low Late Polluting Decrement (to reduce pollution)

11 Low Not-Late Not-Polluting No Change (to keep the benefits of timely prefetches)
12 Low Not-Late Polluting Decrement (to reduce pollution and save bandwidth)

Table 2. How to adapt? Use of the three metrics to adjust the aggressiveness of the prefetcher

4. Evaluation Methodology

We evaluate the performance impact of FDP on an in-house
execution-driven Alpha ISA simulator that models an aggres-
sive superscalar, out-of-order execution processor. The param-
eters of the processor we model are shown in Table 3.

4.1. Memory Model

We evaluate our mechanisms using a detailed memory
model which mimics the behavior and the bandwidth/port lim-
itations of all the hardware structures in the memory system
faithfully. All the mentioned effects are modeled correctly and
bandwidth limitations are enforced in our model as described
in [16]. The memory bus has a bandwidth of 4.5 GB/s.

The baseline hardware data prefetcher we model is a stream
prefetcher that can track 64 different streams. Prefetch requests
generated by the stream prefetcher are inserted into the Prefetch
Request Queue which has 128 entries in our model. Requests
are drained from this queue and inserted into the L2 Request
Queue and are given the lowest priority so that they do not de-
lay demand load/store requests. Requests that miss in the L2
cache access DRAM memory by going through the Bus Re-
quest Queue. L2 Request Queue, Bus Request Queue, and L2
Fill Queue have 128 entries each. Only when a prefetch re-
quest goes out on the bus does it count towards the number of
prefetches sent to memory. A prefetched cache block is placed
into the MRU position in the L2 cache in the baseline.

4.2. Benchmarks

We focus our evaluation on those benchmarks from the
SPEC CPU2000 suite where the most aggressive prefetcher
configuration sends out to memory at least 200K prefetch re-
quests over the 250 million instruction run. On the remain-
ing nine programs of the SPEC CPU2000 suite, the potential
for improving either performance or bandwidth-efficiency of
the prefetcher is limited because the prefetcher is not active
(even if it is configured very aggressively).'® For reference,
the number of prefetches generated for each benchmark in the
SPEC CPU2000 suite is shown in Table 4. The benchmarks
were compiled using the Compaq C/Fortran compilers with the
—-fast optimizations and profile-driven feedback enabled. All
benchmarks are fast forwarded to skip the initialization portion
and then simulated for 250 million instructions.

10We also evaluated the remaining benchmarks that have less potential. Re-
sults for these benchmarks are shown in Section 5.11.

4.3. Thresholds Used in FDP Implementation

The thresholds used in the implementation of our mecha-
nism are provided below. We determined the parameters of our
mechanism empirically using a limited number of simulation
runs. However, we did not tune the parameters to our appli-
cation set since this requires an exponential number of simu-
lations in terms of the different parameter combinations. We
estimate that optimizing these thresholds can further improve
the performance and bandwidth-efficiency of our mechanism.

| Ahigh | Alow | Tiateness | Tpollution | Phigh | Prow |
[075 | 040 [001l [0005 | 025 | 0005 |

In systems where bandwidth contention is estimated to be
higher (e.g. systems where many threads share the memory
bandwidth), Ap;4n and A, thresholds can be increased to
restrict the prefetcher from being too aggressive. In systems
where the lateness of prefetches is estimated to be higher due to
higher contention in the memory system, reducing the T teness
threshold can increase performance by increasing the timeli-
ness of the prefetcher. Reducing Tpoiiution, Phigh O Plow
thresholds results in reducing the prefetcher-generated cache
pollution. In systems with higher contention for the L2 cache
space (e.g. systems with a smaller L2 cache or with many
threads sharing the same L2 cache), reducing the values of
Tpottutions Phigh or Pio, may be desirable to reduce the cache
pollution due to prefetching.

5. Experimental Results and Analyses

5.1. Adjusting Prefetcher Aggressiveness

We first evaluate the performance of FDP to adjust the ag-
gressiveness of the stream prefetcher (as described in Sec-
tion 3.3.1) in comparison to four traditional configurations that
do not incorporate dynamic feedback: No prefetching, Very
Conservative prefetching, Middle-of-the-Road prefetching, and
Very Aggressive prefetching. Figure 5 shows the IPC perfor-
mance of each configuration. Adjusting the prefetcher aggres-
siveness dynamically (i.e. Dynamic Aggressiveness) provides
the best average performance across all configurations. Dy-
namically adapting the aggressiveness of the prefetcher using
the proposed feedback mechanism provides 4.7% higher av-
erage IPC over the Very Aggressive configuration and 11.9%
higher IPC over the Middle-of-the-Road configuration.

On almost all benchmarks, Dynamic Aggressiveness pro-
vides performance that is very close to the performance
achieved by the best-performing traditional prefetcher configu-
ration for each benchmark. Hence, the dynamic mechanism is

Pipeline

20-cycle minimum branch misprediction penalty; 4 GHz processor

Branch Predictor
wrong-path execution faithfully modeled

aggressive hybrid branch predictor (64K-entry gshare, 64K-entry per-address w/ 64K-entry selector)

Instruction Window

128-entry reorder buffer; 128-entry INT, 128-entry FP physical register files; 64-entry store buffer;

Execution Core

8-wide, fully-pipelined except for FP divide; full bypass network

On-chip Caches

64KB Instruction cache with 2-cycle latency;

64KB, 4-way L1 data cache with 8 banks and 2-cycle latency, allows 4 load accesses per cycle;
1MB, 16-way, unified L2 cache with 8 banks and 10-cycle latency, 128 L2 MSHRs,

1 L2 read port, 1 L2 write port; all caches use LRU replacement and have 64B block size

Buses and Memory

500-cycle minimum main memory latency; 32 DRAM banks; 32B-wide, split-transaction
core-to-memory bus at 4:1 frequency ratio; 4.5 GB/s bus bandwidth; max. 128 outstanding misses to main memory;
bank conflicts, bandwidth, port contention, and queueing delays faithfully modeled

Table 3. Baseline processor configuration

[bzip2 [crafty | eon [gap [gcc [gzip |

mcf | parser | perlbmk [twolf | vortex [vpr |

[336K |

|
SOK | 4969 | 1656K | 110K | 31K | 2585K | 515K |

9218 | 2749 | 591K | 246K |

facerec | fma3d | galgel | lucas | mesa | mgrid | sixtrack | swim | wupwise |

[ammp [applu [apsi | art [equake |
|

[TI57K | 6038K | 8656 | 13319K | 2414K | 2437K |

3643 | 243K | 1103 | 273K | 2185K |

292K | 8766K | 799K |

Table 4. Number of prefetches sent by a very aggressive stream prefetcher for each benchmark in the SPEC CPU2000 suite

able to detect and employ the best-performing aggressiveness
level for the stream prefetcher on a per-benchmark basis.

Figure 5 shows that Dynamic Aggressiveness almost com-
pletely eliminates the large performance degradation incurred
on some benchmarks due to Very Aggressive prefetching.
While the most aggressive traditional prefetcher configuration
provides the best average performance, it results in a 28.9%
performance loss on applu and a 48.2% performance loss on
ammp compared to no prefetching. In contrast, Dynamic Ag-
gressiveness results in a 1.8% performance improvement on
applu and only a 5.9% performance loss on ammp compared
to no prefetching, similar to the best-performing traditional
prefetcher configuration for the two benchmarks.

5.00

= No prefetching

= Very Conservative
= Middle-of-the-Road
o Very Aggressive 1
= Dynamic Aggressiveness

4.50

4.00

3.50

3.00

2.50

2.00

1.50

Instructions per Cycle

& &

.

Figure 5. Dynamic adjustment of prefetcher aggressiveness

5.1.1. Adapting to the Program Figure 6 shows the distri-
bution of the value of the Dynamic Configuration Counter over
all sampling intervals in the Dynamic Aggressiveness mecha-
nism. For benchmarks where aggressive prefetching hurts per-
formance (e.g. applu, galgel, ammp), the feedback mechanism
chooses and employs the least aggressive dynamic configura-
tion (counter value of 1) for most of the sampling intervals. For
example, the prefetcher is configured to be Very Conservative
in more than 98% of the intervals for both applu and ammp.

On the other hand, for benchmarks where aggressive
prefetching significantly increases performance (e.g. wupwise,
mgrid, equake), FDP employs the most aggressive configu-
ration for most of the sampling intervals. For example, the
prefetcher is configured to be Very Aggressive in more than
98% of the intervals for wupwise, mgrid, and equake.

== Very Aggressive (5)
== Aggressive (4)

== Middle-of-the-Road (3
== Conservative (2)

== Very Conservative (1)

Percentage of sampling intervals

N ,
& & qu‘%
& &S

Figure 6. Distribution of the dynamic aggressiveness level
5.2. Adjusting Cache Insertion Policy of Prefetches

Figure 7 shows the performance of dynamically adjust-
ing the cache insertion policy (i.e. Dynamic Insertion) us-
ing FDP as described in Section 3.3.2. The performance of
Dynamic Insertion is compared to four different static inser-
tion policies that always insert a prefetched block into the (1)
MRU position, (2) MID (floor(n/2)th) position where n is the
set-associativity, (3) LRU-4 (floor(n/4)th least-recently-used)
position, and (4) LRU position in the LRU stack. The dynamic
cache insertion policy is evaluated using the Very Aggressive
prefetcher configuration.

= No prefetching
s LRU

= LRU-4

4 = MID

= MRU

o Dynamic Insertion|

4.5

Instructions per Cycle

S
&

> &
54@4&&

,.
KA
iy

Figure 7. Dynamic adjustment of prefetch insertion policy

The data in Figure 7 shows that statically inserting
prefetches in the LRU position can result in significant average
performance loss compared to statically inserting prefetches in
the MRU position. This is because inserting prefetched blocks

in the LRU position causes an aggressive prefetcher to evict
prefetched blocks before they get used by demand loads/stores.
However, inserting in the LRU position eliminates the per-
formance loss due to aggressive prefetching in benchmarks
where aggressive prefetching hurts performance (e.g. applu and
ammp). Among the static cache insertion policies, inserting
the prefetched blocks into the LRU-4 position provides the best
average performance, improving performance by 3.2% over in-
serting prefetched blocks in the MRU position.

Adjusting the cache insertion policy dynamically provides
higher performance than any of the static insertion policies. Dy-
namic Insertion achieves 5.1% better performance than insert-
ing prefetched blocks into the MRU position and 1.9% better
performance than inserting them into the LRU-4 position. Fur-
thermore, Dynamic Insertion almost always provides the per-
formance of the best static insertion policy for each benchmark.
Hence, dynamically adapting the prefetch insertion policy us-
ing run-time estimates of prefetcher-generated cache pollution
is able to detect and employ the best-performing cache inser-
tion policy for the stream prefetcher on a per-benchmark basis.

Figure 8 shows the distribution of the insertion position of
the prefetched blocks when Dynamic Insertion is used. For
benchmarks where a static policy of inserting prefetched blocks
into the LRU position provides the best performance across all
static configurations (applu, galgel, ammp), Dynamic Insertion
places most (more than 50%) of the prefetched blocks into the
LRU position. Therefore, Dynamic Insertion improves the per-
formance of these benchmarks by dynamically employing the
best—performing insertion policy.

100+ - V.
fanng ===l/

80
70
60

50

v
%
A
A
%
1
7
i
i
i1

Percentage of prefetch insertions

Figure 8. Distribution of the insertion position of prefetched blocks

5.3. Putting It All Together: Dynamically Adjusting
Both Aggressiveness and Insertion Policy

This section examines the use of FDP for dynamically ad-
justing both the prefetcher aggressiveness (Dynamic Aggres-
siveness) and the cache insertion policy of prefetched blocks
(Dynamic Insertion). Figure 9 compares the performance of
five different mechanisms from left to right: (1) No prefetching,
(2) Very Aggressive prefetching, (3) Very Aggressive prefetch-
ing with Dynamic Insertion, (4) Dynamic Aggressiveness , and
(5) Dynamic Aggressiveness and Dynamic Insertion together.

Using Dynamic Aggressiveness and Dynamic Insertion to-
gether provides the best performance across all configurations,
improving the IPC by 6.5% over the best-performing traditional
prefetcher configuration (i.e. Very Aggressive configuration).
This performance improvement is greater than the performance

= No prefetching

= Very Aggressive

= Dynamic Insertion

o Dynamic Aggressiveness

= Dyn. Aggressiveness + Dyn. Insertion

Instructions per Cycle
o
G

Figure 9. Overall performance of FDP

improvement provided by Dynamic Aggressiveness or Dynamic
Insertion alone. Hence, dynamically adjusting both aspects of
prefetcher behavior (aggressiveness and insertion policy) pro-
vides complementary performance benefits.

With the use of FDP to dynamically adjust both aspects of
prefetcher behavior, the performance loss incurred on some
benchmarks due to aggressive prefetching is completely elim-
inated. No benchmark loses performance compared to no
prefetching if both Dynamic Aggressiveness and Dynamic In-
sertion are used. In fact, FDP improves the performance of
applu by 13.4% and ammp by 11.4% over no prefetching — two
benchmarks that otherwise incur very significant performance
losses with an aggressive traditional prefetcher configuration.

5.4. Impact of FDP on Bandwidth Consumption

Aggressive prefetching can adversely affect the bandwidth
consumption in the memory system when prefetches are not
used or when they cause cache pollution. Figure 10 shows
the bandwidth impact of prefetching in terms of Memory Bus
Accesses per thousand retired Instructions (BPKI)."' Increas-
ing the aggressiveness of the traditional stream prefetcher sig-
nificantly increases the memory bandwidth consumption, es-
pecially for benchmarks where the prefetcher degrades per-
formance. FDP reduces the aggressiveness of the prefetcher
in these benchmarks. For example, in applu and ammp
our feedback mechanism usually chooses the least aggressive
prefetcher configuration and the least aggressive cache inser-
tion policy as shown in Figures 6 and 8. This results in the large
reduction in BPKI shown in Figure 10. FDP (Dynamic Aggres-
siveness and Dynamic Insertion) consumes 18.7% less memory
bandwidth than the Very Aggressive traditional prefetcher con-
figuration, while it provides 6.5% higher performance.

Table 5 shows the average performance and average band-
width consumption of different traditional prefetcher configu-
rations and FDP. Compared to the traditional prefetcher config-
uration that consumes similar amount of memory bandwidth as
FDP,'? FDP provides 13.6% higher performance. Hence, in-
corporating our dynamic feedback mechanism into the stream
prefetcher significantly increases the bandwidth-efficiency of
the baseline stream prefetcher.

I'we use Bus Accesses (rather than the number of prefetches sent) as our
bandwidth metric, because this metric includes the effect of L2 misses caused
due to demand accesses as well as prefetches. If the prefetcher is polluting the
cache, then the number of L2 misses due to demand accesses also increases.
Hence, counting the number of bus accesses provides a more accurate measure
of the memory bandwidth consumed by the prefetcher.

12Middle-of-the-Road configuration consumes only 2.5% less memory
bandwidth than FDP.

" = No prefetching
= Very Conservative
= Middle-of-the-Road
= Very Aggressive
= Dynamic Aggressiveness + Dynamic Insertion

-
2 (

&

& 30

) ili 3]
0- TR D LS

& T s S FL
KR F& S I

B S F g & 7

Figure 10. Effect of FDP on memory bandwidth consumption

| [[No pref. [Very Cons. | Middle | Very Aggr. | FDP |

IPC 0.85 1.21 1.47 1.57 1.67
BPKI 8.56 9.34 10.60 13.38 10.88

Table 5. Average IPC and BPKI for FDP vs conventional prefetchers

5.5. Hardware Cost and Complexity of FDP

Table 6 shows the hardware cost of the proposed mecha-
nism in terms of the required state. FDP does not add signifi-
cant combinational logic complexity to the processor. Combi-
national logic is required for the update of counters, update of
the pref-bits in the L2 cache, update of the entries in the pol-
lution filter, calculation of feedback metrics at the end of each
sampling interval, determination of when a sampling interval
ends, and insertion of prefetched blocks into appropriate loca-
tions in the LRU stack of an L2 cache set. None of the required
logic is on the critical path of the processor. The storage over-
head of our mechanism is less than 0.25% of the data-store size
of the baseline IMB L2 cache.

5.6. Using only Prefetch Accuracy for Feedback

We use a comprehensive set of metrics —prefetch accuracy,
timeliness, and pollution— in order to provide feedback to ad-
just the prefetcher aggressiveness. In order to assess the ben-
efit of using timeliness as well as cache pollution, we evalu-
ated a mechanism where we adapted the prefetcher aggressive-
ness based only on accuracy. In such a scheme, we increment
the Dynamic Configuration Counter if the accuracy is high and
decrement it if the accuracy is low. We found that, compared to
this scheme that only uses accuracy to throttle the aggressive-
ness of a stream prefetcher, our comprehensive mechanism that
also takes into account timeliness and cache pollution provides
3.4% higher performance and consumes 2.5% less bandwidth.

5.7. FDP vs. Using a Prefetch Cache

Cache pollution caused by prefetches can be eliminated by
bringing prefetched data into separate prefetch buffers [13, 11]
rather than inserting prefetched data into the L2 cache. Fig-
ures 11 and 12 respectively show the performance and band-
width consumption of the Very Aggressive prefetcher with dif-
ferent prefetch cache sizes - ranging from a 2KB fully-associate
prefetch cache to a IMB 16-way prefetch cache.'> The per-

13In the configurations with a prefetch cache, a prefetched cache block is
moved from the prefetch cache into the L2 cache if it is accessed by a demand
load/store request. The block size of the prefetch cache and the L2 cache are
the same and the prefetch cache is assumed to be accessed in parallel with the

formance of the Very Aggressive prefetcher and FDP when
prefetched data is inserted into the L2 cache is also shown.

5.0

= No prefetching

s Very Aggressive (base)
= 2KB

s 8KB

351 #32KB

5 64KB

3044 =« IMB

oDyn. Aggr. + Dyn. Ins.

10
05 R
00 < . -

& & & SN ¥ Qe X
R R O F PSPy FIFEE S
A AR Q"‘ & 8 & & & s@“@ qf & ¥ EUE N

454

401

Instructions per Cycle
“
G

Figure 11. Performance of prefetch cache vs. FDP

903 No prefetching

| | = Very Aggressive (base)
8 2KB, fully-associative

704+ ®8KB, 16-way

8 32KB, 16-way

60| 1 64KB, 16-way

s IMB, 16-way

o Dyn. Aggr. + Dyn. Ins.

BPKI
2

Figure 12. Bandwidth consumption of prefetch cache vs. FDP

The results show that using small (2KB and 8KB) prefetch
caches do not provide as high performance as inserting the
prefetched data into the L2 cache. With an aggressive
prefetcher and a small prefetch cache, the prefetched blocks
are displaced by later prefetches before being used by the pro-
gram - which results in performance degradation with a small
prefetch cache. However, larger prefetch caches (32KB and
larger) improve performance compared to inserting prefetched
data into the L2 cache because a larger prefetch cache reduces
the pollution caused by prefetched data in the L2 cache while
providing enough space for prefetched blocks.

Using FDP (both Dynamic Aggressiveness and Dynamic
Insertion) that prefetches into the L2 cache provides 5.3%
higher performance than that provided by augmenting the Very
Aggressive traditional prefetcher configuration with a 32KB
prefetch cache. The performance of FDP is also within 2%
of the performance of the Very Aggressive configuration with
a 64KB prefetch cache. Furthermore, the memory bandwidth
consumption of FDP is 16% and 9% less than the Very Ag-
gressive prefetcher configurations with respectively a 32KB
and 64KB prefetch cache. Hence, FDP achieves the perfor-
mance provided by a relatively large prefetch cache bandwidth-
efficiently and without requiring as large hardware cost and
complexity as that introduced by the addition of a prefetch
cache that is larger than 32KB.

5.8. Effect on a Global History Buffer Prefetcher

We have also implemented FDP on the C/DC (C-Zone
Delta Correlation) variant of the Global History Buffer (GHB)
prefetcher [10]. In order to vary the aggressiveness of this

L2 cache without any adverse latency impact on L2 cache access time.

pref-bit for each tag-store entry in the L2 cache

16384 blocks * 1 bit/block = 16384 bits

Pollution Filter

4096 entries * 1 bit/entry = 4096 bits

16-bit counters used to estimate feedback metrics

11 counters * 16 bits/counter = 176 bits

pref-bit for each MSHR entry

128 entries * 1 bit/entry = 128 bits

Total hardware cost

20784 bits = 2.54 KB

Percentage area overhead compared to baseline 1MB L2 cache

2.5KB/1024KB = 0.24%

Table 6. Hardware cost of feedback directed prefetching

prefetcher dynamically, we vary the Prefetch Degree.'* Be-
low, we show the aggressiveness configurations used for the
GHB prefetcher. FDP adjusts the configuration of the GHB
prefetcher as described in Section 3.3.

| Dyn. Config. Counter |Aggressiveness | Prefetch Degree |
1 Very Conservative 4
2 Conservative 8
3 Middle-of-the-Road 16
4 Aggressive 32
5 Very Aggressive 64

Figure 13 shows the performance and bandwidth consump-
tion of different GHB prefetcher configurations and the feed-
back directed GHB prefetcher using both Dynamic Aggres-
siveness and Dynamic Insertion. The feedback directed GHB
prefetcher performs similarly to the best-performing traditional
configuration (Very Aggressive configuration), while it con-
sumes 20.8% less memory bandwidth. Compared to the tra-
ditional GHB prefetcher configuration that consumes similar
amount of memory bandwidth as FDP (i.e. Middle-of-the-
Road configuration), FDP provides 9.9% higher performance.
Hence, FDP significantly increases the bandwidth-efficiency of
GHB-based delta correlation prefetching. Note that it is possi-
ble to improve the performance and bandwidth benefits of the
proposed mechanism by tuning the thresholds used in feedback
mechanisms to the behavior of the GHB-based prefetcher, but
we did not pursue this option.

5.9. Effect of FDP on a PC-Based Stride Prefetcher

We also evaluated FDP on a PC-based stride prefetcher [1]
and found that the results are similar to those achieved on
both stream and GHB-based prefetchers. On average, using
the feedback directed approach results in a 4% performance
gain and a 24% reduction in memory bandwidth compared to
the best-performing conventional configuration for a PC-based
stride prefetcher. Due to space constraints, we do not present
detailed graphs for these results.

5.10. Sensitivity to L2 Size and Memory Latency

We evaluate the sensitivity of FDP to different cache sizes
and memory latencies. In these experiments, we varied the L2
cache size keeping the memory latency at 500 cycles (base-
line) and varied the memory latency keeping the cache size
at IMB (baseline). Table 7 shows the change in average IPC
and BPKI provided by FDP over the best performing con-
ventional prefetcher configuration. FDP provides better per-
formance and consumes significantly less bandwidth than the
best-performing conventional prefetcher configuration for all
evaluated cache sizes and memory latencies. As memory la-
tency increases, the IPC improvement of FDP also increases be-

14In the GHB-based prefetching mechanism, Prefetch Distance and Prefetch
Degree are the same.

10

cause the effectiveness of the prefetcher becomes more impor-
tant when memory becomes a larger performance bottleneck.

5.11. Effect on Other SPEC CPU2000 Benchmarks

Figure 14 shows the IPC and BPKI impact of FDP on the
remaining 9 SPEC CPU2000 benchmarks that have less po-
tential. We find that our feedback directed scheme provides
0.4% performance improvement over the best performing con-
ventional prefetcher configuration (i.e. Middle-of-the-Road
configuration) while reducing the bandwidth consumption by
0.2%. None of the benchmarks lose performance with FDP.
Note that the best-performing conventional configuration for
these 9 benchmarks is not the same as the best-performing
conventional configuration for the 17 memory-intensive bench-
marks (i.e. Very-Aggressive configuration). Also note that the
remaining 9 benchmarks are not bandwidth-intensive except
for fma3d and gcc. In gcc, the performance improvement of
FDP is 3.0% over the Middle-of-the-Road configuration. The
prefetcher pollutes the L2 cache and evicts many useful in-
struction blocks in gcc, resulting in very long-latency instruc-
tion cache misses that leave the processor idle. Using FDP re-
duces this negative effect by detecting the pollution caused by
prefetch references and dynamically reducing the aggressive-
ness of the prefetcher.

6. Related Work

Even though mechanisms for prefetching have been studied
for a long time, dynamic mechanisms to adapt the aggressive-
ness of the prefetcher have not been studied as extensively as
algorithms that decide what to prefetch. We briefly describe
previous work in dynamic adaptation of prefetching policies.

6.1. Dynamic Adaptation of Data Prefetching Policies

The work most related to ours in adapting the prefetcher’s
aggressiveness is Dahlgren et al.’s paper that proposed adap-
tive sequential (next-line) prefetching [4] for multiproces-
sors. This mechanism implemented two counters to count
the number of sent prefetches (counter-sent) and the number
of useful prefetches (counter-used). When counter-sent sat-
urates, counter-used is compared to a static threshold to de-
cide whether to increase or decrease the aggressiveness (i.e.
Prefetch Distance) of the prefetcher. While Dahlgren et al.’s
mechanism to calculate prefetcher accuracy is conceptually
similar to ours, their approach considered only prefetch accu-
racy to dynamically adapt prefetch distance. Also, their mech-
anism is designed for a simple sequential prefetching mech-
anism which prefetches up to 8 cache blocks following each
cache miss. In this paper, we provide a generalized feedback-
directed approach for dynamically adjusting the aggressiveness
of a wide range of state-of-the-art hardware data prefetchers by
taking into account not only accuracy but also timeliness and
pollution.

= No prefetching

= Very Conservative

= Middle-of-the-Road

o Very Aggressive

= Dynamic Aggressiveness + Dynamic Insertion

Instructions per Cycle

0.0
&
oV

N =
)

N
<

IS
s
&

PR
e >
&

LS
& & F
%q‘ $OQ cf

9
\{b
'%\“v

& & & LN & ¥ &
e;ﬁ & szr‘% & <« (90& L a&‘b K‘Z’&

BPKI

S

45

= No prefetching

40 = Very Conservative

= Middle-of-the-Road
35 o Very Aggressive

=Dyn. Aggr. + Dyn. Ins.
30 —
25 —
20 —
15 —
10
5
Ky LS h‘g o LTy R PSS

LR EC TGS FITES & & &L
PG AR Q"‘ 40(\ <« & %QQ ¥ 29? & °§ < “\%\ é&\ S $°Q &

Figure 13. Effect of FDP on the IPC performance (left) BPKI memory bandwidth consumption (right) of GHB-based C/DC prefetchers

| L2 Cache Size (memory latency = 500 cycles)

Memory Latency (L2 cache size = 1 MB) |

512 KB 1 MB 2 MB 250 cycles 500 cycles 1000 cycles
A TPC|A BPKI||A IPC|A BPKI || A IPC|A BPKI||A IPC|A BPKI||A IPC|A BPKI || A IPC|A BPKI
0% |-13.9% || 6.5% | -18.7% || 6.3% | -29.6% || 4.5% | -23.0% || 6.5% | -18.7% || 8.4% | -16.9%

Table 7. Change

30 = No prefetching

= Very Conservative

= Middle-of-the-Road
= Very Aggressi
= Dyn. Aggressive. + Dyn. Insertion

45

4.0

e

35

Instructions per Cycle

& o

S &‘D Q%%

&
N S

4
@0

in IPC and BPKI with FDP when L2 size and memory latency are varied

5

= No prefetching

= Very Conservative

= Middle-of-the-Road

= Very Aggressive

= Dyn. Aggressive. + Dyn. Insertion

ﬂ¢m¢$ _ml
) > < B $ NS >) S >
d\‘bk & B3 e}& N & & ‘\&‘b & ,bé‘z'

QZJ

Figure 14. IPC performance (left) and memory bandwidth consumption in BPKI (right) impact of FDP on the remaining SPEC benchmarks

When the program enters a new phase of execution, the
prefetcher is tuned based on the characteristics of the phase
in Nesbit et al. [10]. In order to perform phase detec-
tion/prediction and identification of the best prefetcher config-
uration for a given phase, significant amount of extra hardware
is needed. In comparison, our mechanism is simpler because it
does not require phase detection or prediction mechanisms.

Recently, Hur and Lin [7] proposed a probabilistic technique
that adjusts the aggressiveness of a stream prefetcher based on
the estimated spatial locality of the program. Their approach is
applicable only to stream prefetchers as it tries to estimate the
a histogram of the stream length.

6.2. Cache Pollution Filtering

Charney and Puzak [3] proposed filtering L1 cache pollu-
tion caused by next-sequential prefetching and shadow direc-
tory prefetching from the L2 cache into the L1 cache. Their
scheme associates a confirmation bit with each block in the L2
cache which indicates if the block was used by a demand ac-
cess when it was prefetched into the L1 cache the last time.
If the confirmation bit is not set when a prefetch request ac-
cesses the L2, the prefetch request is discarded. Extending this
scheme to prefetching from main memory to the L2 cache re-
quires a separate structure that maintains information about the
blocks evicted from the L2 cache. This significantly increases
the hardware cost of their mechanism. Our mechanism does not

11

need to keep history information for evicted L2 cache blocks.

Zhuang and Lee [25] proposed to filter prefetcher-generated
cache pollution by using schemes similar to two-level branch
predictors. Their mechanism tries to identify whether or not
a prefetch will be useful based on past information about the
usefulness of the prefetches generated to the same memory ad-
dress or triggered by the same load instruction. In contrast, our
mechanism does not require the collection of fine-grain infor-
mation on each prefetch address or load address in order to vary
the aggressiveness of the prefetcher.

Other approaches for cache pollution filtering include using
a profiling mechanism to mark load instructions that can trigger
hardware prefetches [23], and using compile-time techniques to
mark dead cache locations so that prefetches can be inserted in
dead locations [9]. In comparison to these two mechanisms,
our mechanism does not require any software or ISA support
and can adjust to dynamic program behavior even if it differs
from the behavior of the compile-time profile. Lin et al. [15]
proposed using density vectors to determine what to prefetch
inside a region. This was especially useful in their model as
they used very bandwidth-intensive scheduled region prefetch-
ing, which prefetches all the cache blocks in a memory region
on a cache miss. This approach can be modified and combined
with our proposal to further remove the pollution caused by
blocks that are not used in a prefetch stream.

Mutlu et al. [17] used the L1 caches as filters to reduce L2

cache pollution caused by useless prefetches. In their scheme,
all prefetched blocks are placed into only the L1 cache. A
prefetched block is placed into the L2 when it is evicted from
the L1 cache only if it was needed by a demand request while it
was in L1. In addition to useless prefetches, this approach also
filters out some useful but early prefetches that are not used
while residing in the L1 cache (such prefetches are common
in very aggressive prefetchers). To obtain performance benefit
from such prefetches, their scheme can be combined with our
cache insertion policy.

6.3. Cache Insertion Policy for Prefetches

Lin et al. [14] evaluated static policies to determine the
placement in cache of prefetches generated by a scheduled re-
gion prefetcher. Their scheme placed prefetches in the LRU po-
sition of the LRU stack. We found that, even though inserting
prefetches in the LRU position reduces the cache pollution ef-
fects of prefetches on some benchmarks, it also reduces the pos-
itive benefits of aggressive stream prefetching on other bench-
marks because useful prefetches—if placed in the LRU position—
can be easily evicted from the cache in an aggressive prefetch-
ing scheme without providing any benefit. Dynamically adjust-
ing the insertion policy of prefetched blocks based on the esti-
mated pollution increases performance by 1.9% over the best
static policy (LRU-4) and by 18.8% over inserting prefetches
in the LRU position.

7. Conclusion and Future Work

This paper proposed a feedback directed mechanism that dy-
namically adjusts the behavior of a hardware data prefetcher
to improve performance and reduce memory bandwidth con-
sumption. Over previous research in adaptive prefetching, our
contributions are:

e We propose a comprehensive and low-cost feedback
mechanism that takes into account prefetch accuracy,
timeliness, and cache pollution caused by prefetch re-
quests together to both throttle the aggressiveness of the
prefetcher and to decide where in the cache to place the
prefetched blocks. Previous approaches considered using
only prefetch accuracy to determine the aggressiveness of
simple sequential (next-line) prefetchers.

We develop a low-cost mechanism to estimate at run-time
the cache pollution caused by hardware prefetching.

We propose and evaluate using comprehensive feedback
mechanisms for state-of-the-art stream prefetchers that are
commonly employed by today’s high-performance pro-
cessors. Our feedback-directed mechanism is applicable
to any kind of hardware data prefetcher. We show that it
works well with stream-based prefetchers, global-history-
buffer based prefetchers and PC-based stride prefetchers.
Previous adaptive mechanisms were applicable to only
simple sequential prefetchers [4].

Future work can incorporate other important metrics, such
as available memory bandwidth, estimates of the contention in
the memory system, and prefetch coverage, into the dynamic
feedback mechanism to provide further improvement in perfor-
mance and further reduction in memory bandwidth consump-
tion. The metrics defined and used in this paper could also be

12

used as part of the selection mechanism in a hybrid prefetcher.
Finally, the mechanisms proposed in this paper can be easily
extended to instruction prefetchers.

Acknowledgments

We thank Matthew Merten, Moinuddin Qureshi, members
of the HPS Research Group, and the anonymous reviewers for
their comments and suggestions. We gratefully acknowledge
the support of the Cockrell Foundation, Intel Corporation and
the Advanced Technology Program of the Texas Higher Edu-
cation Coordinating Board.

References

[1] J. Baer and T. Chen. An effective on-chip preloading scheme to reduce
data access penalty. In Proceedings of Supercomputing 91, 1991.
B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, 13(7):422-426, 1970.
M. Charney and T. Puzak. Prefetching and memory system behavior of
the SPEC95 benchmark suite. IBM Journal of Reseach and Development,
41(3):265-286, 1997.
F. Dahlgren, M. Dubois, and P. Stenstrom. Sequential hardware prefetch-
ing in shared-memory multiprocessors. IEEE Transactions on Parallel
and Distributed Systems, 6(7):733-746, 1995.
J. D. Gindele. Buffer block prefetching method. IBM Technical Disclo-
sure Bulletin, 20(2):696—697, July 1977.
G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and
P. Roussel. The microarchitecture of the Pentium 4 processor. Intel Tech-
nology Journal, Feb. 2001. Q1 2001 Issue.
I. Hur and C. Lin. Memory prefetching using adaptive stream detection.
In MICRO-39, 2006.
S. Tacobovici, L. Spracklen, S. Kadambi, Y. Chou, and S. G. Abraham.
Effective stream-based and execution-based data prefetching. In ICS,
2004.
P. Jain, S. Devadas, and L. Rudolph. Controlling cache pollution in
prefetching with software-assisted cache replacement. Technical Report
CSG-462, Massachusetts Institute of Technology, 2001.
K. J.Nesbit, A. S. Dhodapkar, and J. E.Smith. AC/DC: An adaptive data
cache prefetcher. In PACT, 2004.
N. P. Jouppi. Improving direct-mapped cache performance by the addi-
tion of a small fully-associative cache and prefetch buffers. In ISCA-17,
1990.
D. Kroft. Lockup-free instruction fetch/prefetch cache organization. In
ISCA-8, 1981.
R. L. Lee, P.-C. Yew, and D. H. Lawrie. Data prefetching in shared mem-
ory multiprocessors. In /CPP, 1987.
W.-F. Lin, S. K. Reinhardt, and D. Burger. Reducing DRAM latencies
with an integrated memory hierarchy design. In HPCA-7, 2001.
W.-F. Lin, S. K. Reinhardt, D. Burger, and T. R. Puzak. Filtering super-
fluous prefetches using density vectors. In /CCD, 2001.
O. Mutlu, H. Kim, D. N. Armstrong, and Y. N. Patt. An analysis of the
performance impact of wrong-path memory references on out-of-order
and runahead execution processors. I[EEE Transactions on Computers,
54(12):1556-1571, Dec. 2005.
O. Mutlu, H. Kim, D. N. Armstrong, and Y. N. Patt. Using the first-level
caches as filters to reduce the pollution caused by speculative memory
references. International Journal of Parallel Programming, 33(5):529—
559, October 2005.
O. Mutlu, H. Kim, and Y. N. Patt. Techniques for efficient processing in
runahead execution engines. In ISCA-32, 2005.
S. Palacharla and R. E. Kessler. Evaluating stream buffers as a secondary
cache replacement. In ISCA-21, 1994.
J.-K. Peir, S.-C. Lai, S.-L. Lu, J. Stark, and K. Lai. Bloom filtering cache
misses for accurate data speculation and prefetching. In ICS, 2002.
A.J. Smith. Cache memories. Computing Surveys, 14(4):473-530, 1982.
L. Spracklen and S. G. Abraham. Chip multithreading: Opportunities and
challenges. In HPCA-11, 2005.
V. Srinivasan, G. S. Tyson, and E. S. Davidson. A static filter for reducing
prefetch traffic. Technical Report CSE-TR-400-99, University of Michi-
gan Technical Report, 1999.
J. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy. POWER4 system
microarchitecture. IBM Technical White Paper, Oct. 2001.
X. Zhuang and H.-H. S. Lee. A hardware-based cache pollution filtering
mechanism for aggressive prefetches. In /ICPP-32, 2003.

(2]
(3]

(4]

(5]
(6]

(7]
(8]

[9]

[10]

[11]

[12]
[13]
[14]
[15]

[16]

[17]

[18]
[19]
[20]

[21]
[22]

[23]

[24]

[25]

