Early Research Experience With OpenAccess Gear:
An Open Source Development Environment
For Physical Design

Zhong Xiu*
Andreas Kuehlmann?

David A. Papa‘

Philip Chong?
Rob A. Rutenbar*

Christoph Albrecht:
Igor L. Markov*

“Carnegie Mellon University, E&CE Dept., Pittsburgh, PA, USA
TUniversity of Michigan, Dept. of EECS, Ann Arbor, Ml, USA
iCadence Berkeley Labs, Berkeley, CA, USA

ABSTRACT

Physical design EDA research in academia has historically been
based on infrastructure developed independently by individual con-
tributors. This has led to fragmentation in the community, where in-
teraction, data interchange and comparison of results between tools
are difficult. We discuss our early experience with the OpenAccess
Gear system, an open source software initiative intended to provide
pieces of the critical integration and analysis infrastructure that are
taken for granted in proprietary tools, but often wholly absent in
research tools. Built on top of the widely available OpenAccess
database, OA Gear provides components such as industrial-strength
static timing analysis and extensible layout and netlist visualiza-
tion. We discuss preliminary results from two on-going research ef-
forts that have adopted OA Gear as their infrastructure: retrofitting
the University of Michigan Capo placer into this environment, and
the addition of a timing-driven capability to the Carnegie Mellon
Warp placer.

Categories and Subject Descriptors
D.7.2 [Integrated Circuits]: Design Aids

General Terms

Algorithms, Design, Experimentation, Standardization

Keywords

Open source, EDA, database, physical design, timing, placement

1. INTRODUCTION

The physical design research community is highly fragmented.
Individual academic tool developers tend to implement their own
infrastructure, distinct from other people’s works. For example,
four leading-edge academic placement tools (Capo [10, 8], Warp1
[22], Dragon [21], and Feng Shui [25]) are each implemented on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ISPD’05, April 3-6, 2005, San Francisco, California, USA.

Copyright 2005 ACM 1-59593-021-3/05/0004 ...$5.00.

their own design database. Others have also commented on the
fragmentation within the physical design community, for instance
[18].

This deep fragmentation is the root of several problems in physi-
cal design research today. First, building the infrastructure requires
a significant effort from already busy researchers. At the least, each
individual design database requires the development of parsers and
translators for processing standard file formats to that database.
Second, without common infrastructure, it becomes difficult to in-
tegrate tools into larger flows, or to extend tools with additional
functionality. As an example, it is difficult to tightly couple a tim-
ing engine with a placement tool to create a timing-driven place-
ment experiment, if the timer and placer do not share a common
design database. Finally, the lack of common infrastructure makes
comparison of results between different tools problematic. Both [7]
and [18] discuss this particular issue in detail.

The industry-standard OpenAccess (OA) database was devel-
oped to provide a common EDA infrastructure for physical design
tools [1, 9]. While originally intended for adoption within industry,
the release of OA as free open source makes it an ideal candidate
for academic use. Moreover, adoption of a common database in
the physical design community yields benefits for everyone, mini-
mizing problems of fragmentation, easy result comparison, and the
perennial problem of incompatible benchmark formats. However,
despite the availability of OA for several years now, new academic
tools are still built on top of ad hoc infrastructure.

The main shortcoming of OA in academic research has been
the lack of a supporting environment of software components with
higher levels of functionality: industrial-strength analysis, easy in-
tegration and visualization. While OA provides extensive support
for low-level design database operations, this is of no help for, say,
a graduate student researcher looking for a timing engine to plug
into a placer. Industrial users could be expected to be able to build
their own high-level components on top of OA by themselves, or
buy them from other parties, but at the academic level such re-
sources are lacking.

Because of this “infrastructure gap” in OA, we have initiated the
OpenAccess Gear (OA Gear) project. OA Gear aims to provide
an open source development environment with a library of tools
and software components which algorithm EDA designers, both in
academia as well as in industry, can use to extend or improve their
own work.

The paper is organized as follows. Section 2 first surveys the
OA Gear system itself and its core components. To illustrate how
OA Gear can be exploited by academic research, Section [3] dis-

http://www.ece.cmu.edu/
http://www.eecs.umich.edu/
http://www.cadence.com/company/cadence_labs/

cusses three experiences using the tools: (1) prototyping a sim-
plistic buffer insertion flow; (2) quickly integrating Capo, a mature
and well-known placer, without committing to a complete rewrite
of the tool; and (3) extending the recently introduced Warp placer
to include a fairly complete timing-driven flow, done as a native
integration. Section/4 offers concluding remarks.

2. OA GEAR COMPONENTS

Currently, OA Gear consists of four components:
o Static timing analyzer (OA Gear Timer)
e User interface (OA Gear Bazaar)
e Benchmarks (free and restricted cases)
o Standard cell placer (Capo)

These components were chosen for their perceived utility to the
physical design community. We describe the first three of these
in detail in this section. We describe the Capo integration in the
following section.

2.1 OA Gear Basics

OA Gear is written in C++, and runs on any platform on which
OA itself is available.

An early decision was made to have OA Gear be fully open
source, free for any use. This has many advantages in an academic
research setting. First, the transparency of open source makes it
ideal for scientific exploration, where reproducibility of results is
critical. Second, published papers often hide implementation de-
tails due to space limitations, leaving the actual source code as the
only document describing complex algorithms completely. Third,
open source encourages others to build on existing work and return
improvements back to the community, benefiting all. The advan-
tages of open source are well-known in the physical design com-
munity; see for instance [7} 18].

OA Gear is an ongoing project. The current components are an
initial seed, to help promote the adoption of OA in the research
community. In addition to continued development of OA Gear on
our part, contributions of software from the community are wel-
come. We envision users of OA Gear contributing components rep-
resenting their own research work, building up the OA Gear toolkit
and making it even more valuable for others, while at the same time
promoting their own research. Section 4/lists some of the compo-
nents we hope will be added to OA Gear in future.

OA Gear was initially released on November 19, 2004. The
project home page can be found at [2].

2.2 OA Gear Timer

Timing is a much-neglected area in academic physical design
research, with a lack of generally accepted infrastructure [7]. The
essential difficulties are:

e Accuracy versus infrastructure effort: At the beginning
of a research project, one would like to validate quickly the
utility of a new timing idea, without the effort of a complete
industrial flow integration. Bluntly put, we would prefer not
to spend a year integrating the necessary tool infrastructure,
only to find out after the fact that our idea does not work.
We seek to reduce the barriers to experimentation with more
realistic technologies, timing models, and flows.

o Comparability: We also seek to make it easier to compare
“apples to apples” among different research layout tools, as

these tools mature and add capabilities. Though much abused
and over-interpreted, core area and half-perimeter wirelength
are at least reasonably useful as means of comparing lay-
out quality. This is much less true for timing results, which
make more serious demands on not only placement, but cell
and technology models, routing models, timing verification
tools, etc.

Some more mature tools, for instance APlace [16], Capo [15],
and Dragon [24], have already made these serious integration ef-
forts, and use a mix of academic (e.g. place, timing optimize, etc.)
and commercial flow components (e.g. legalize, global and detailed
route, timing analysis). Once in place, such academic/commercial
flow “hybrids” can be enormously useful. However, tightly in-
tegrating industrial tools into an academic project can be a large
task, given the potential differences between the underlying design
databases. Interaction with core components may be limited to
slow, inefficient file transfers. Finally, use of an industrial anal-
ysis tool such as a static timing engine can be problematic when
comparing results, as such tools sometimes come with licensing
restrictions preventing such comparisons. Our goal is to provide
infrastructure to make future efforts easier, less costly in resources
to complete, and moreover, easier to compare across different re-
search groups.

Another approach which is sometimes taken in academic projects
is to incorporate a static timing engine written specifically for that
project; for example [13] and [14] take this approach. Not only
is this a work-intensive undertaking, but often such code has very
little potential for reuse outside of the original project. Ensuring
correctness or fidelity to actual timing results can be difficult, as
physical design researchers generally are not interested in learning
the finer details of timing analysis. Finally, compatibility with in-
dustry standard data formats can also be a significant problem with
such an approach. Therefore, OA Gear tries to provide a flexible,
shared timing tool to avoid complete reimplementation on a per-
project basis.

To address the lack of timing infrastructure in the EDA research
community, OA Gear provides a static timing analysis tool called
OA Gear Timer, which is comparable with industrial offerings. A
few of the key features of OA Gear Timer are support for industry-
standard timing library and constraint file formats, extensible wire
delay modeling, and incremental timing analysis capabilities. We
can summarize briefly the main features in the following bullets.

e Approach: OA Gear Timer follows generally accepted stan-
dard techniques for static timing analysis. Arrival and re-
quired arrival times and signal slew rates are maintained for
all nodes in the circuit. Separate timing figures are kept for
rising and falling signals. Internal gate delays utilize the
standard interpolated two-dimensional lookup table based on
output load and input signal slew rate.

e Full timing mode: OA Gear Timer has two modes of oper-
ation. Full timing analysis computes and stores the arrival
and required arrival times and slew rates for al/l nodes in the
design. Timing queries simply return the stored values for
these figures. Under full analysis, if the netlist or delays are
changed, the timing for all nodes is fully recomputed.

e Incremental timing mode: In contrast, incremental timing
uses lazy evaluation, and only computes timing for a min-
imal subset of nodes of the design in order to satisfy any
timing queries made. Techniques for preventing unneces-
sary recomputation in incremental timing analysis are well
known. We choose a simple approach using invalid flags to

netlist modification

change of worst slew

required
arrival time
invalid

primary inputs
and
register outputs

primary ouputs
and
register inputs

arrival time
invalid

Figure 1: Propagation of invalid flags.

indicate when any particular data item is potentially incor-
rect. When timing for a node is computed, it is cached and
the corresponding invalid flag is cleared to mark the validity
of the stored value (i.e. a form of memoization).

Whenever a modification is made to the netlist, the arrival
times in the transitive fanout of the change become invalid
and the appropriate flag is set. The slew is propagated for-
ward from the modification and updated immediately. The
required arrival time is marked invalid in the transitive fanin
of the nodes right after the modification and of every node in
the fanout for which the slew was changed.

Figure [1 shows the parts of the netlist for which the slew
is updated, for which the arrival time becomes invalid, and
for which the required arrival time becomes invalid. Our ap-
proach is similar to that of [17] except that we do not attempt
to minimize the size of the change region. Invalid flags are
simply propagated throughout the entire transitive fanin and
fanout of changed nodes.

e Wire Delay Modeling: Both the ability to model delays
due to wires and estimation of capacitive wire loading on
drivers of nets are critical for timing-driven physical design.
Currently there are two wire delay/load models in OA Gear
Timer. One simply ignores wire delays, and the other esti-
mates delay and load using the half-perimeter bounding-box
as an estimate of routed wirelength. More sophisticated wire
delay models require integration with the OA database and
can be defined by users through a function callback mecha-
nism. Such user-defined models are then automatically in-
voked during timing analysis. This flexibility allows arbi-
trary non-linear models to be added to OA Gear.

o Standard File Formats: It is vital not to underestimate the
frustrations that “yet another file format” create in most aca-
demic research efforts. Thus, OA Gear Timer supports the
standard timing library formats offered by Cadence (.t1f)
and Synopsys (.1ib, “Liberty”). The number of features
found in these file formats is large, and we cannot support
them all completely. However, there is sufficient support for
basic timing analysis, such that useful experiments in physi-
cal design (such as timing-driven placement) can be easily
performed. For timing constraints, a useful subset of the
. sdc file format is supported, sufficient for use in timing-
based physical design. . sdc commands which set the clock
period, create external delays on primary inputs and outputs,
set the driving cell for inputs and set load capacitance on out-
puts are all available.

e Reporting: The timing engine can generate human-readable
timing reports, in addition to annotating the OA database

The Design

oaTerm oalnstTerm
oaGearTimerPoint oaGearTimerPoint

oaGearTimerExtDelay A

Std Cell Lib

v v

oaTerm
oaGearTimerPointMaster

v v
oaNet oalnst

Figure 2: OA Gear model and interfaces for static timing.

with timing information. Several different reports can be cre-
ated, including reporting the path having the worst slack in
the entire design, reporting the path having the worst slack
starting from, ending with, or passing through any given node,
and reporting the slacks at all timing endpoints.

e Timer-Database Integration: The OA database does not
currently include direct support for timing, so we rely on
annotating the database using the OA extensions (appDef)
mechanism. Extensions allow objects in the database to be
annotated with arbitrary data, so we use this to store the tim-
ing information. The instance terminals on all instances in
a design are each given an appDef storing a unique timer-
Point, a data structure which contains the arrival and required
arrival times and slew rate associated with the corresponding
instance terminal. To handle storage of internal gate timing
arcs, the terminals on all master cells in the standard cell li-
brary are each given an appDef£ storing a timerPointMaster,
which is a data structure containing the internal timing arcs
associated with the corresponding terminal. See Figure|2.

OA Gear Timer registers callbacks with the OA database
so that, when an element (instance or net) of a design ever
changes in the database, OA Gear Timer will automatically
be notified, and can then set the invalid flags for the changed
nodes and propagate these flags through their fanin and fan-
out cones as appropriate. This ensures that the timing in-
formation/invalid flags are always completely synchronized
with the database itself.

The OA Gear Timer has been validated on a variety of public
and proprietary benchmarks, and performs well. For example, a
full timing analysis of a 50k cell design took less than 1 minute
on a 2.0GHz Pentium 4, and only a few seconds to incrementally
update timing for a typical single cell change. This is with the sim-
ple bounding-box wire delay model; of course, more sophisticated
delay models will add to these runtimes. The timer output vali-
dates within 1% of Cadence’s commercial RTL signoff timing flow
across our initial benchmarking experiments.

There are currently a number of shortcomings of OA Gear Timer
which may limit its use in certain cases. For instance, absent are
capabilities for analysis across multiple clock domains, accounting
for false paths and multi-cycle paths, and handling of transparent
latches are absent. We intend to address some of these missing
features in future releases of OA Gear, but for now we expect the

Figure 3: OA Gear Bazaar screenshot showing layout and
netlist views.

current tool to be sufficient to deal with many of the ordinary de-
signs which can be found in academic settings.

2.3 OA Gear Bazaar: User Interfaces

Visualization is essential for debugging physical design algo-
rithms. In placement, bugs can show themselves in obvious ways
when the output is displayed as shapes rather than as lists of num-
bers. The graphical user interface (GUI) — called Bazaar — is
thus an important part of OA Gear.

Two visualization tools are included with OA Gear. One is a lay-
out viewer, intended for visualization of placement results. This
tool displays a geometrically correct physical layout of a design,
where instances (gates) are shown with their proper shapes and
with their assigned locations. The second tool is a netlist browser,
which displays simple shapes for the instances, not necessarily cor-
responding to their actual sizes, and with locations chosen by the
netlist browser. This tool gives the designer the ability to easily
view and verify netlist connectivity.

The architecture of the GUI tools was designed to be flexible and
easily customizable by the end developer. All GUI components are
programmed using QT, a popular cross-platform graphics toolkit
[3]. QT is freely available for non-commercial use of OA Gear.
The GUI also makes extensive use of OpenGL, a standard API for
graphics acceleration, for improved performance on modern graph-
ics hardware [4]. A sample visualization with several Capo place-
ments and netlist views appears in Figure[3]

OA Gear also includes a command line interface component.
This is intended to allow support for scripting, to provide for batch
jobs and similar tasks which are amenable to text-based interaction.

2.4 OA Gear Benchmarks

Proper algorithm design hinges on having benchmarks available
for testing quality of results. However, in many areas of research,
especially timing-driven layout, the current sets of public bench-
marks are incomplete and often lack useful scale, detailed sizing or
pinout information, timing views, and real logical structure/intent.
As the usefulness of OA Gear depends on having benchmarks in
native OA format, it is critical that benchmarks be a fundamental
component of OA Gear.

We have collected some benchmarks which we have divided in
two categories. One group contains designs and libraries which are
freely available for all uses, while the other group contains bench-

Type Name PIs POs Instances Registers

s13207 | 32 121 2680 466
s15850 | 15 87 4565 540
Free $35932 | 36 320 11587 1728
s38417 | 29 106 14762 1463
s38584 | 13 278 12221 1292

DMA 661 262 24942 2073
Restricted | DSP 575 269 24306 3550
RISC 276 351 45455 7590

Table 1: OA Gear Benchmarks: Largest ISCAS89 designs
(free) and Faraday designs (restricted).

marks which are restricted for use in non-commercial settings only.
This distinction is necessary in order to allow OA Gear to be freely
distributable.

e Freely distributable benchmarks: This benchmark suite is
included as a part of the OA Gear distribution; it includes
a standard cell library along with the ISCAS89 sequential
logic benchmarks. The standard cell library is hypotheti-
cal: it does not correspond to any real library or technol-
ogy process. However, the timing and electrical parame-
ters have been chosen to resemble a typical 250nm process.
The ISCAS89 benchmark designs are provided in technol-
ogy mapped form using the given standard cell library. SIS
[20] was used to map the 30 designs in the suite. The charac-
teristics of the largest circuits from the benchmark suite are
shown at the top of Table/1.

These designs are relatively small, yet serve two important
purposes. First, they allow new OA Gear users to start work-
ing immediately with the toolkit, without having to find suit-
able benchmarks elsewhere. Second, these designs are used
as part of the regression test suite for OA Gear itself.

e Restricted benchmarks: A second set of benchmarks which
carry restrictions regarding commercial use is also available
in OA format. Because of these restrictions, these bench-
marks cannot be included in OA Gear directly, but instead are
available for download from a separate web site [5]. Table[1
(bottom) shows the characteristics for these designs. The re-
stricted benchmarks also include the Generic Standard Cell
Library (GSCLib), which is based on a hypothetical 180nm
process. The designs for this benchmark suite come from the
Faraday Structured ASIC test cases [6].

We are currently seeking to expand the set of benchmarks, tech-
nology libraries and electrical models available for OA Gear, espe-
cially in the direction of smaller technology nodes (i.e. 90nm and
below). Contributions from the physical design community toward
this goal would be most welcome.

3. EXPERIMENTAL RESULTS USING OA
GEAR INFRASTRUCTURE

To validate and to illustrate the various components of the sys-
tem and their potential utility across a range of research projects at
different levels of maturity, we briefly describe here three different
experiments, across projects at two different universities.

3.1 Simple Buffer Insertion

As a simple design exercise demonstrating some of the capabil-
ities of OA Gear Timer, we look at the problem of buffer insertion
for timing improvement. The goal here is to reduce the capacitive

Figure 4: Simple buffer insertion example.

Name Full s) Incr(s) Full/Incr

s13207 59.50 1.31 45.42
s15850 121.76 3.72 32.73
s35932 | 2033.80 208.02 9.78
s38417 458.44 5.64 81.28

s38584 437.14 3.42 127.82
DMA 698.85 13.14 53.18
RISC 22189.07 2664.22 8.33
Avg 51.22

Table 2: Simple buffer insertion runtimes.

loading on gates which lie on the critical path by inserting buffers
on the non-critical fanouts of such gates. If the buffer offers a
smaller capacitive load than those fanouts which it isolates, then
the timing on the critical path may be improved. Of course, the
new buffer must not degrade timing on the non-critical paths to the
point where some other path becomes critical instead.

Consider the following naive algorithm to find the optimum po-
sition for a single buffer:

1. Find the most critical path in the design by evaluating the
slack at the primary inputs and registers and traversing the
netlist from these points along the timing arcs, following the
pins with the worst slack.

2. For each net on the critical path do the following:

(a) Sort the sink pins of the net according to the slack in
increasing order. Let the sink pins be s1,...,s, in this
order. See Figure[4.

(b) For each i, 1 <i < n, insert a buffer which drives the
sinks {s;,...,s,} and which is in turn driven by the
original driver for the net. Evaluate the change in the
slack at the driver. Remove the buffer and reconnect the
sink pins.

3. Finally, insert the buffer at the position which showed the
greatest timing improvement.

This is brute force to be sure, but does give a clear sense of the
capabilities of the tools to allow quick experimentation. We imple-
mented this algorithm in two different ways: first, using full timing
analysis, so that timing information in the network is completely
recomputed for each change to the netlist; second, using the incre-
mental timing capability of the OA Gear Timer.

Table[2 compares the runtimes between these implementations;
execution was on a 2.0GHz Pentium 4. For this experiment, using
incremental timing was on average about 51 times faster than full
timing.

3.2 Retrofitting Capo Placer into OA Gear

Placement forms a cornerstone of EDA. Because of its impor-
tance in the overall design process, including an interface to a ma-
ture placer in OA Gear was a top priority. We chose Capo [8,/10]
as the initial placement tool for OA Gear, due to its open source
nature and reputation for producing high-quality results.

However, Capo also has another virtue for this work: as an exam-
ple of mature, nontrivial code base, we face the problem of how to
retrofit the tool into the environment. This is a significant “barrier
to entry” for many mature academic projects. In a perfect world,
for optimal performance and ease of future integration, Capo would
ideally be rewritten to run natively on OA data structures. How-
ever, this would be a difficult and time-consuming task. Hence,
we chose to instead construct a wrapper around Capo. The wrap-
per reads placement information from the OA database, generates
the corresponding Capo internal data structures, and invokes Capo.
The placement results obtained are then written back into the OA
database. All wrapper interaction is done in memory, avoiding slow
file accesses. Including the wrapper code in the OA Gear serves the
useful purpose of illustrating how one can re-engineer existing aca-
demic tools to take advantage of the OA environment.

Another advantage of using a wrapper-based approach to inte-
grate placement in OA Gear is that the interface for placement can
be easily standardized. Given two different placers, they each can
be encased in a wrapper with the same interface. This allows for
mixing usage of different placers as demanded by the task at hand.
For example, it is relatively difficult to integrate individual timing
constraints within a typical min-cut placement tool [12,/15]. How-
ever, there are various ways to incorporate such constraints in an
analytic placement framework, for example [16]. It might there-
fore be advantageous to use min-cut placement on most of a de-
sign, which yields routability improvements, and switch to an ana-
lytic formulation for the timing-critical portions. Such integration
of heterogeneous placement techniques would normally be enor-
mously difficult, but with a common interface wrapper, two differ-
ent placement tools can work smoothly together on different por-
tions of the same design.

3.3 Integrating a Timing-Driven Flow Natively
in the Warp Placer

The Capo placer represents one end of the integration/research
spectrum: a large, mature tool with a significant existing codebase.
The concern there is to be able to integrate with OA Gear expe-
ditiously, to quickly take advantage of new features. The Warp
placer, on the other hand, represents a different type of integration
problem. Warp is still a very new, evolving placer. The wirelength-
only version of Warp was introduced in 2004 [22], and extensions
to handle timing, macroblocks, etc., are still under active investi-
gation. Thus, Warp is at the other end of the spectrum of “inte-
gration complexity” as Capo. In particular, to enhance our ability
to do future research on Warp, we are willing to abandon our ad
hoc database infrastructure and replace it completely with OA and
OA Gear components at a native level. In other words, we made
the decision to integrate Warp placer tightly with OA and OA Gear.
To illustrate this concretely, we undertook to add the first version
of a timing-driven component to Warp using the OA Gear Timer
and database infrastructure. Any such effort requires a significant
investment to set the overall timing-flow in which the placer must
function; we summarize our experience with OA Gear in this re-
gard.

The Warp placer is based on a novel strategy called grid-warping.
Grid-warping relies on a strikingly simple idea: rather than move
the gates to optimize their location, we elastically deform a model

WARP2 with uniform
net weights

Static timing analysis

< -

‘ Compute new weights U

—_—

Timing-driven WARP2
with new weights

<

‘ Legalize (Domino) H

Figure 5: Basic flow for timing-driven Warp placer.

of the 2-D chip surface on which the gates have been crudely and
quickly placed, “stretching” it until the gates arrange themselves to
our liking. Put simply: we move the grid, not the gates. Deform-
ing the elastic grid is a relatively simple, low-dimensional nonlin-
ear optimization, and augments a traditional quadratic formulation.
Details of the wirelength-only formulation appear in [22]. We de-
cided to use OA Gear as the basis of our timing driven version.

Since our focus in this paper is on the OA Gear integration, we
omit discussion about the mechanics of extending a grid-warping
placer to include timing; see [23] for details. Roughly speaking,
we use net-based delay budgeting ideas from the slack sensitivity
model of [19], create a set of net weights for timing critical paths,
and augment the following three steps to use these weights: (1)
the initial quadratic placement, which locates gates on the “elastic
sheet”; (2) the nonlinear elastic distortion step which drives the next
phase of layout improvement; and (3) the min-cut-based partition
improvement step by which warping recursively descends to finer
and finer layouts.

As is common for such flows, we run placement iteratively, first
without timing-based net weights, then again after invocation of
static timing provides the slack data we need to update the weights.
The initial version of our timing driven flow (see Figure 5) can be
summarized as:

1. Run wirelength-only Warp placer with uniform net weights.

2. Run OA Gear Timer to obtain the slack for each net. Note
that we use the generic 250nm cell library, with the simple
bounding-box length-proportional model for wire delay.

3. Compute a new weight for each net using slack sensitivity.
4. Run timing-driven version of Warp with new weights.
5. Legalize final placement using Domino [11] as backend.

This flow is still rather simple, but preliminary results are en-
couraging [23]. We compared the results from the wirelength-only
version of Warp with the timing-driven version, using the ISCAS89
sequential logic benchmarks. On average, the timing-driven ver-
sion of Warp can improve the worst-case negative slack by about
36%, with only moderate increase in wirelength.

Perhaps more interesting is our rough accounting of the effort to
execute this integration:

o Native integration: We spent about 1 week to replace Warp’s
original database with OA. We were, at this point, very famil-
iar with the OA and OA Gear APIs. Our experience is that
“running up” this learning curve takes about 4-6 weeks.

o Timing integration: We spent about 3 weeks to put in place
the first rough version of the timing flow from Figure 5| at
which point we could productively focus on the actual algo-
rithmic and tuning details of adding delay budgeting and net
weighting to our placer.

e Code size: We added only ~ 1000 lines of code for the na-
tive integration and the rough timing flow, which is approxi-
mately 8% of the total placer package.

Our experience of putting in place this flow, from scratch, in
roughly 1 month using the OA Gear components, suggest that we
have at least partially achieved our stated goals of reducing the time
and effort to put academic tools in more realistic flows. We estimate
this probably would take 3-4 months to do from scratch in a typical
proprietary commercial flow.

4. CONCLUSIONS

Physical design EDA research in academia has historically been
based on infrastructure developed independently by individual con-
tributors. This has led to fragmentation in the community, where in-
teraction, data interchange and comparison of results between tools
are difficult. We discussed some early experiences with the Open-
Access Gear system, an open source software initiative intended
to provide pieces of the critical integration and analysis infrastruc-
ture that are taken for granted in proprietary tools, but often wholly
absent in research tools. Built on top of the widely available Open-
Access database, OA Gear provides components such as industrial-
strength static timing analysis and extensible layout and netlist vi-
sualization. By reducing some of the historically nontrivial “barri-
ers to entry”, we hope OA Gear promotes adoption of a standard-
ized database infrastructure, unifying the fragmented landscape of
physical design research. Preliminary results from on-going re-
search efforts that have adopted OA Gear as their infrastructure —
the Capo group at Michigan and the Warp group at Carnegie Mel-
lon — have been extremely positive.

Looking forward, in addition to improving the existing compo-
nents, we hope to extend the capabilities of OA Gear with other
tools which EDA researchers will find useful, for example global
and detailed routing, parasitic extraction, noise analysis, clock tree
generation, and design for manufacturability. Contributions from
the community in these and other areas are welcome.

Downloads of OA Gear are available through the project home
page at [2].

S. ACKNOWLEDGMENTS

Zhong Xiu wrote OA Gear Timer, and David Papa wrote OA Gear
Bazaar during internships at Cadence Berkeley Labs. We are grate-
ful to Cadence and Lavi Lev for their support of the OpenAccess
Gear project. Thanks also go to the OpenAccess development team,
whose efforts form the base of our project. Work on the Capo placer
at Michigan is supported by the Gigascale Systems Research Cen-
ter. Work on the Warp placer and recent timing extensions at CMU
is supported by the Pittsburgh Digital Greenhouse.

6. REFERENCES

[1] http://openeda.si2.org/.
[2] http://openedatools.si2.org/ocagear/.

http://openeda.si2.org/
http://openedatools.si2.org/oagear/

(3]
(4]
(5]
(6]
(7]

(8]

(9]

[10]

(11]

(12]

[13]

[14]

[15]

http://www.trolltech.no/.
http://www.opengl.org/.
http://crete.cadence.com/.
http://www.faraday-tech.com/,

S. N. Adya et al. Benchmarking for large-scale VLSI
placement and beyond. In /EEE Transactions on
Computer-Aided Design, volume 23, pages 472-488, Apr.
2004.

S. N. Adya et al. Unification of partitioning, placement and
floorplanning. In IEEE/ACM International Conference on
Computer-Aided Design, pages 550-557, 2004.

T. Blanchard, R. Ferreri, and J. Wilmore. The OpenAccess
Coalition: The drive to an open industry standard
information model, API, and reference implementation for
IC design data. In International Symposium on Quality
Electronic Design, pages 69-74, 2002.

A. E. Caldwell, A. B. Kahng, and I. L. Markov. Can
recursive bisection alone produce routable placements? In
Design Automation Conference, pages 477-482, 2000.

K. Doll, F. Johannes, and K. Antreich. Iterative placement
improvement by network flow methods. IEEE Transactions
on Computer-Aided Design, 13(10):1189-1200, Oct. 1994.
B. Halpin, C. R. Chen, and N. Sehgal. Timing driven
placement using physical net constraints. In Design
Automation Conference, pages 780783, 2001.

A. P. Hurst, P. Chong, and A. Kuehlmann. Physical
placement driven by sequential timing analysis. In
IEEE/ACM International Conference on Computer-Aided
Design, pages 379-386, 2004.

A. B. Kahng, S. Mantik, and I. L. Markov. Min-max
placement for large-scale timing optimization. In ACM
International Symposium on Physical Design, pages
143-148, 2002.

A. B. Kahng, I. L. Markov, and S. Reda. Boosting: Min-cut
placement with improved signal delay. In Design,
Automation and Test in Europe, pages 1098-1103, 2004.

[16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

A. B. Kahng and Q. Wang. An analytic placer for mixed-size
placement and timing-driven placement. In IEEE/ACM
International Conference on Computer-Aided Design, pages
565-572, 2004.

J.-F. Lee and D. T. Tang. An algorithm for incremental
timing analysis. In Design Automation Conference, pages
696701, 1995.

P. H. Madden. Reporting of standard cell placement results.
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 21(2):240-247, Feb. 2002.

H. Ren, D. Pan, and D. Kung. Sensitivity guided net
weighting for placement driven synthesis. In ACM
International Symposium on Physical Design, pages 10-17,
2004.

E. M. Sentovich et al. SIS: A system for sequential circuit
synthesis. Technical Report UCB/ERL M92/41, University
of California Berkeley Electronics Research Laboratory,
May 1992.

M. Wang, X. Yang, and M. Sarrafzadeh. Dragon2000:
Standard-cell placement tool for large industry circuits. In
International Conference on Computer-Aided Design, pages
260-263, 2000.

Z. Xiu, J. D. Ma, S. M. Fowler, and R. A. Rutenbar.
Large-scale placement by grid-warping. In Design
Automation Conference, pages 351-356, 2004.

Z. Xiu and R. A. Rutenbar. Timing-driven placement by
grid-warping. To appear in Design Automation Conference,
2005.

X. Yang, B.-K. Choi, and M. Sarrafzadeh. Timing-driven
placement using design hierarchy guided constraint
generation. In International Conference on Computer-Aided
Design, pages 177-180, 2002.

M. Yildiz and P. H. Madden. Global objectives for standard
cell placement. In Great Lakes Symposium on VLSI, pages
68-72, 2001.

http://www.trolltech.no/
http://www.opengl.org/
http://crete.cadence.com/
http://www.faraday-tech.com/

	Introduction
	OA Gear Components
	OA Gear Basics
	OA Gear Timer
	OA Gear Bazaar: User Interfaces
	OA Gear Benchmarks

	Experimental Results Using OA Gear Infrastructure
	Simple Buffer Insertion
	Retrofitting Capo Placer into OA Gear
	Integrating a Timing-Driven Flow Natively in the Warp Placer

	Conclusions
	Acknowledgments
	References

