Defining a Security Reference Architecture

Sigurd Meldal ~ David C. Luckham

Technical Report CSL-97-728
Program Analysis and Verification Group Report No. 76

June 1997

Computer Systems Laboratory
Department of Electrical Egineering
Stanford University
Stanford, CA 94305-9040

Abstract
This report discusses the definition and modeling of reference architectures that specify the security aspects
of distributed systems. NSA’s MISSI (Multilevel Information System Security Initiative) security reference ar-
chitecture is used as an illustrative example. We show how one would define such a reference architecture,
and how one could use such a definition to model as well as check implementations for compliance with the
reference.

We demonstrate that an ADL should have not only the capability to specify interfaces, connections
and operational constraints, but also to specify how it is related to other architectures or to implementa-
tions.

A reference architecture such as MISSI is defined in Rapide [10] as a set of hierarchical interface con-
nection architectures [9]. Each Rapide interface connection architecture is a referencearchitecture — an ab-
stract architecture that allows a number of different implementations, but which enforces common struc-
ture and communication rules. The hierarchical reference architecture defines the MISSI policies at differ-
ent levels — at the level of enclaves communicating through a network, at the level of each enclave being a
local area network with firewalls and workstations and at the level of the individual workstations. The ref-
erence architecture defines standard components, communication patterns and policies common to MISSI
compliant networks of computer systems. A network of computers may be checked for conformance
against the reference architecture.

The report also shows how one can generate architecture scenarios of networks of communicating
computers. The scenarios are constructed as Rapide executable models, and the behaviors of the models
can be checked for conformance with the reference architecture in these scenarios. The executable models
demonstrate how the structure and security policies in the reference architecture may apply to networks of
computers.

Key Words and Phrases: Software architectures, security, reference architecture, software engineer-
ing, specification, testing, conformance.

T This project was funded by TRW under contract 23679HYL6M, DARPA under F30602-95-C-0277
(subcontract C-Q0097), and by NFR under contract 100426/410.

1. Introduction

This report investigates the use of the Rapide ADL in the definition of elements of NSA’s MISSI
reference architecture [7]. Everybody knows what an architecture is — it is a set of components and
connections between them. However, that is as far as agreement goes. What the proper methods of
defining these entities are, what conformance means, what the distinctions are between an archi-
tecture, and architecture style and a reference architecture, these are issues that are unresolved (and
presumably unresolvable, as they are questions closely related to world-views, methods and con-
sequently often come down to pseudo-religious beliefs).

Architectures are used in different situations, and for distinct reasons. The most concrete use
is in designing software systems, to make an initial sketch of it in terms of its module decompo-
sition architecture in the top-down tradition of design, focusing on the high-level components
and their means of interaction. Architectures are also used to define references against which im-
plementations can be checked for compliance. Such reference architectures define the functional
components of the architecture and how the components may interact, but need not require that
distinct components in the architecture necessarily be distinct also in the implementation. The
use of reference architectures allows a separation of concerns in the system specification — dis-
tinct reference architectures address distinct aspects of the system (e.g., there might be one refer-
ence architecture stating fault-tolerance requirements, another (such as the MISSI reference)
stating security requirements, another (such as the 1ISO OSI reference stack) addressing commu-
nication protocols, etc.).

The presence of a component or connection between components in a reference architecture
may signify different requirements, depending on which aspect of the system the reference ad-
dresses. E.g., does the lack of a connection between two modules indicate a prohibition against
their direct interaction (i.e., is the interaction graph as given by the architecture supposed to be
complete)? Does a connection between two components indicate that they will communicate (i.e.
a connection represents not only a potential for interaction, it is also a requirement that such an
interaction shall occur)? And in all cases, what is the concept of interaction anyway? Does an ar-
chitecture imply what protocol an interaction shall adhere to? E.g. RPC vs. buffered pipes vs. pas-
sive, reactive systems vs. event broadcasting, etc. In the end, what distinguishes one kind of ar-
chitecture from another is the conformance requirements imposed by the architecture.

This report discusses how one can capture a security reference architecture in a manner
amenable to analysis and automatic conformance checking. After giving a brief overview of the
Rapide ADL in section 1.1, in section 2 we present the process of architecting using the Rapide
ADL, giving examples from the MISSI reference architecture. In section 3 we go through all the
top level requirements of the MISSI reference architecture one by one, showing how they are
captured in the Rapide ADL. In section 4 we shall briefly look at how the reference architecture
can be put to use for (semi-) automatic checking, visualization and analysis of implementation
system conformance.

1.1 The Rapide ADL

In reading an architecture description, the question of what the description actually means needs
to be resolved unambiguously in the readers’ and designers’ mind in order to evaluate and then
implement a given architecture. Without a clear understanding of the semantics of a notation (be
it graphical — boxes and arrows, or textual — as in Rapide) one cannot be sure that whatever is
extracted from it (be it implementation strategies, modeling results, etc.) is implied by the de-
scription given, and understood by other readers of the architectural description.

An interface connection architecture [9] is defined by giving its

e Components: the primary elements of the architecture, and their means of interaction with
other components. Components are considered black boxes constrained only by the defini-
tions of their interfaces.

» Connections: the lines of interaction between components.

e Conformance: identifying minimum requirements of how an implementation may satisfy the
architecture.

The Rapide model of architectures is event based — a basic notion being that architecture
components are defined by the kinds of events they may generate or react to. An interface also
identifies the semantics of a conforming component by giving event based constraints, specifying
whether particular protocols are to be adhered to, identifying causal relationships between
events, etc. Such constraints form the basis for analysis and testing tools, such as run-time
checking for conformance violations [6, 17].

A successful ADL requires a high degree of flexibility in how an architecture can be refined.
Naturally one wants to be able to refine interface definitions, making use of subtype substitutivity
when extending an interface with new capabilities or by adding further constraints. In addition to
this basic capability, an ADL should enable the definition of hierarchies of architectures, where
one architecture can be interpreted quite flexibly as an implementation (or refinement) of an-
other. The Rapide map construct gives the designer the tool to explicitly define how complex
patterns of events in one architecture correspond to more abstract events of another, thereby
enabling a powerful and checkable notion of conformance.

The literature presents a number of distinct ways of distingushing kinds of architectures (e.g.,
Soni et al. [24] makes a distinction between object and function decomposition architectures,
among others). We prefer the notion that “an architecture description conveys a set of views, each
of which depicts the system by describing domain concerns.” [5] The distinction between differ-
ent architectures descriptions then becomes one of a difference of conformance requirements. In
moving from (say) a module decomposition architecture to an implementation, conformance would
require disjoint sets of modules implementing distinct components of the architecture. In con-
trast, in checking whether a reference architecture is satisfied by a particular implementation one
would make the weaker conformance requirement that there be a mapping of components and
events at the implementation level to components and events of the reference architecture.

This perspective on what an architecture is allows a clean separation of concerns. One can
specify multiple architectures for any given implementation, each focusing on a particular aspect
of the system, each with an appropriate set of conformance requirements. For instance, when
specifying a distributed object system it is reasonable to separate security concerns from fault tol-
erance concerns. Part of the security architecture for the system would state the conformance re-
quirement that information should flow only along connections defined in the architecture; the
architecture identifies the maximal connectivity of an information flow graph. In contrast, part of
the fault tolerance architecture for the system would be to state the conformance requirement
that information should be able to flow independently along all connections defined in the archi-
tecture, making no restrictions on the presence of extra connections; the architecture identifies
the minimal connectivity of an information flow graph. In claiming that a particular implementa-
tion satisfies both perspectives the implementor would explicitly give the two maps, from the
implementation to each of the reference architectures, showing the conformance argument.

The vocabulary of the Rapide ADL [10] incorporates and extends the basic vocabulary of
interface connection architectures:

Components: The computational entities of an architecture.

Connections: The means by which components interact. Connections have a limited computa-
tional power, invoked when determining where a particular interaction is routed.

Events: Representing that something happened. What that something is may vary from architec-
ture to architecture, and with varying degrees of abstraction.

Reactive rules: Representing state-machine-like behaviors, implementing or simulating compo-
nents.

Patterns: Descriptions of how events may be related by causality, time or other relations. Patterns
are described using an extension of regular expressions with placeholders to describe partial
orders of events.

Constraints: Predicates, usually in the form of prescribed or proscribed patterns of behavior, indi-
cating the intended functionality of a component.

Maps: Interpreting an implementation as being of a particular architecture — useful for constraint
checking, and when relating a model or implementation to a particular reference architec-
ture.

In specifying the MISSI reference architecture there were two features of Rapide that were
particularly useful:

Causality: In Rapide one can specify whether particular patterns of events should be independ-
ent or causally related. This allows a very precise description of information flow.

Maps: In Rapide one can specify how distinct architectural descriptions are related, and precisely
how an implementation satisfies a given specification. This allows multiple views of a sys-
tem, each with its distinct map showing how conformance is obtained.

Rapide's object-oriented type- and module definition sublanguage provides features for
code refinement and reuse (through inheritance and polymorphism) and specification refinement
and reuse (through subtyping and polymorphism). The reactive rules of Rapide object types
provide a limited synthesis capability; when the behavioral constraints of a group of components
(such as, say, the “Certificate Authorities”) are given in a particular form the tools can synthesize
conforming behaviors, supplying an early operational model of the reference architecture.

The Rapide execution model, emphasizing causal and temporal relationships between
events of a system, provides the capability to be quite specific about how components of an ar-
chitecture may (or may not) interact. Causal relations can often identify whether assumptions
about the degrees of independence among an architecture’s components are warranted or not.
E.g., the focus on causal relationships allows the Rapide user to state in very general terms as-
sumptions about the presence of covert channels, and to identify possible means of covert inter-
action in an architecture through the analysis of causal relationships displayed by test executions.

Furthermore, it allows tools to investigate the causal relations between events, distinguishing
between temporal relationships that are causally significant and those that are not.

The Rapide pattern and constraint languages supports the definition of operational policies
and specific protocols, which can take into account causal- as well as time-relationships between
events.

The Rapide map construct supports explicit statements of conformance — the implementor
of an architecture can state exactly how the implementation conforms: it defines which (sets of)
components of the implementation play the role of particular components of the architecture,
how patterns of events in the implementation correspond to more abstract events used in the ar-
chitecture, etc. Since maps are given explicitly, they allow tools to check for conformance auto-
matically, avoiding laborious reasoning or formal proofs except where exceptional circumstances
requires an extraordinary degree of confidence in the implementation’s conformance.

The map construct is also a valuable tool whenever an architecture is given a hierarchical
structure. E.g., if one level of structure is defined in terms of federations of enclaves connected via
wide area networks, and another level as network-connected workstations, certificate servers, etc.,
then maps are the means whereby the distinct levels can be related in the architecture definition.
For instance, through the definition of appropriate maps the designer can identify how the set of
networks, workstations and servers aggregate into enclaves and WANSs (see section 2.6).

1.2 Secure architectures

There are a number of perspectives one may apply when discussing the security aspects of a
software architecture. In particular, in this document we shall address two aspects of the MISSI
reference architecture:

Structures: That the secure architecture has a certain structure, requiring the existence of certain
components (such as “certificate authorities,” or “enclaves” [7]). The structure may be de-
fined at different levels of abstraction, with different conformance requirements. We deal
with
1. a global level, focusing on the main components and the overall constraints on their in-

teraction. At this level general policies about information flow and the like may be
stated, without regard to how these policy constraints are ensured by particular proto-
cols, functional units, etc.

2. aconcept of operations (“conops”) level, focusing on the functional decomposition of the
architecture, identifying the events of interest, the main functional components and
their potential for interaction.

3. anexecution level, describing the dynamic, physical structure of the system.

The architectures at each of these levels are related to one another and impose different

conformance requirements on the implementation. Both the relationships and the confor-

mance requirements must be defined.

Information flow integrity: That certain policies and procedures regarding the authorization and
acceptability of information are adhered to as it is being generated and propagated. Such
policies may be in terms of any of the three levels listed above and could also involve refer-
ences to cryptographic and encoding requirements, as well.

2. The Architecting Process

The MISSI reference architecture is defined in a series of prose documents, some with first order
predicate logic definitions of MISSI policies. In this exposition we shall stay with the overview
document, given in full in [7]. The overview is an executive summary of the reference architec-
ture, but contains enough detail to evaluate the utility of Rapide to specify the architecture.

We find the process of constraints capture in itself very useful. This process can be quite en-
lightening — interpreting the prose and giving it an unambiguous meaning often identifies poten-
tial contradictions or holes in the original definitions of the reference architecture. Even in the
case where the final reference document is given in prose, we find that the exercise of formalizing
the prose as it is being developed may help the development team, by enhancing their under-
standing of the interplay of their own statements.

Reference documents are also subject to mishaps, resulting from typographical mistakes
through incomplete version-control to out-right conceptual misunderstandings. The sheer size of
most such documents make them hard to check for consistency and correctness unless such
checks are assisted by (semi-)automatic tools. Consequently, the presence of supporting tools
should be almost mandatory in the definitions of standards. Tools require the existence of (parts
of) the standard in a machine-manipulatable form, i.e., in the form of a formalized set of defini-
tions.

2.1 Prose and Constraints Capture

The process leading up to a formal capture of an architecture has three main steps: (1) identifying
the components, (2) identifying how they are connected, and (3) identifying how the connec-
tions are used. The three steps are accompanied by a fourth, stating the conformance require-
ments, when relating the architecture to an implementation (or model, or a more detailed ver-

sion). We'll go through the process of capturing the MISSI reference overview, giving examples of
each of these steps.

Capturing the interface connection architectures defined in the MISSI specification, we first
identify the levels of the reference architecture. In this report we shall deal with two levels, the
global and the concept of operations levels (see section 1.2 above).

For each level we proceed to identify and define the components of the level by defining their
interfaces (sections 2.2, 2.5.1), and then going on to define the connections among them (sections
2.3, 2.5.3) and how they are used (sections 2.4, 2.5.3)

As appropriate, we then go on to define how the components and activities of one level map
to those of another (section 2.6).

2.2 What are the components?

For each kind of component (such as an enclave at the global level) we define a Rapide type,
whose interface is developed as the architecture is being refined. Part of this definition may iden-
tify how one type is a refinement or subtype of another [15]. Of course the interface definitions
themselves rely on other types (such as security classifications and security tokens) already having
been defined.
A very first approximation of an enclave type is given in Figure 1.
It identifies two key characteristics of an enclave:
1. The provides declaration of s_class makes it possible to refer to the security attributes (here
exemplified by it having a security classification) of every enclave.
2. The service declaration of wan_conn states that every enclave interface contains a Flow entity
which (as we shall see) defines the minimum communication capabilities of enclaves.
Architecture component interfaces can be highly structured. It may be helpful to think in
terms of plugs and sockets [9]: a component’s interface offers a set of distinguishable means of
connecting it to its environment, similarly to what one expects in the hardware world. Such a
means of connecting come in dual forms (as in plugs and sockets being duals in hardware), and
may have further substructures (as in a single plug carrying pins/sockets for a number of wires).

ENCLAVE

type Enclave is interface

provides s_class
s_class : SecurityClassification;
service
wan_conn : Flow; Flow
end Enclave; wan_conn

Figure 1: A definition of an enclave type

It is natural to depict the Flow service type graphically (Figure 2), similarly to how we depict
the Enclave interface definition in Figure 1. We can see that the wan_conn attribute has a struc-
ture; the declaration of its type, Flow, shows that wan_conn consists of two action declarations.
An out action declaration indicates that the component may generate events which its environ-
ment may observe, an in action declaration indicates that the component may react to events
generated by the environment. The wan_conn declaration is therefore in fact a bi-directional
communication interface offering both a means of sending messages to the environment
(intended to be a WAN) as well as of accepting such messages from the environment.

In Rapide, such structured communication interfaces are called services. The dual of the
wan_conn service will be part of the interface of the wide area network component of the archi-

tecture, and is naturally depicted as the inverse of the Flow type (i.e., it forms a plug to the Flows
socket). Where the type Flow has an out action there will be a corresponding in action of the dual,
and vice versa. One need not declare dual types explicitly, but can instead use the keyword dual.
We have given the dual of Flow explicitly in Figure 2.

type Flow is interface
action
out Release (data: Data; destination : Address);

in Accept (data : Data; destination : Address); accept accept

end Flow;
release release

type DualFlow is interface Flow Dual of Flow
action

in Release (data : Data; destination : Address);

out Accept (data: Data; destination : Address);
end Flow;

Figure 2: Plugs and sockets

Though plausible as a first approximation in the global view of a distributed system, we may
want to add some instrumentation points to the definition of an enclave. Consequently, in Figure
3 we create a subtype of the Enclave typel. We introduce a new out action called internal to be
able to speak about things going on within the enclave (leaving the notion of “Activity” uninter-
preted for now). As we shall see later (page 8), this turns out to allow an interesting architectural
constraint about the existence of covert channels.

MISSI_ENCLAVE

s_class

type MISSI_Enclave is

include Enclave; - - Create a subtype of the Enclave type
interface wan_conn acce”t:j
provides release
function release_reviewers () - - (See page 16.)
return set(release_reviewer_type);
action
out internal (a: Activity); -- (See page 8.) Uit
out releasable (d : Data); - - (See page 14.) E
out MiSSI_releasable (d : Data); - - (See page 18.)

releasable

end MISSI_Enclave;

|

MISSI_releasable

release_reviewers

Figure 3: Extending the definition of an enclave

Having identified the types of components that make up the architecture, we define their
number (if known), their structure (if any) and whether new components can be created while

1 Some of the other actions and functions will be used later. For each, the comment succeeding the decla-
ration identifies the page on which it is used.

the system evolves, and whether existing components can terminate and remove themselves be-
fore the architecture terminates.

In the case of the MISSI reference architecture there is not much structure at the global level,
and the architecture does not address the issue of dynamic component creation or removal. In its
purest form, we may simply state that the components of the architecture are a set of enclaves, a
single WAN (a simple routing model) and directory service agent and a set of unclassified (i.e.,
non-DoD) sites, as in Figure 4.

architecture MISSI() is
internet : WAN;

DNS : DirectoryServiceAgent;
enclaves : set(MISSI_Enclave);
sites . set(Site);

end MISSI

Figure 4: The components of the MISSI reference architecture

This is deceptively simple, but then the architecture is rather simple, at this level. The com-
plexity arises primarily at the lower level architecture, where we see a wide variety of architecture
components and policies.

2.3 How are components connected? Adding structural constraints

Having identified the types and numbers of the components of the architecture, we proceed to
define how they may interact. At this level of abstraction, the interaction is quite simple: The en-
claves and sites are all connected to the WAN through their respective wan_conn services (Figure
5).

The role of the connection definitions are domain specific. In secure systems architectures,
the interpretation of the set of connections would be that they identify all possible means of in-
teraction among the architecture components. There is an implied frame axiom for the architec-
ture specification that information shall flow only along those lines and in those forms explicitly
defined by the connection definitions for the architecture.

We notice that since all the enclaves are given a bi-directional connection to the internet, we
have that the enclaves are all indirectly connected to each other. This is a common pattern — that
components of an architecture communicate via intermediaries that allow for communication
transformation, filtering, routing, etc. Such intermediaries are called connectors.

connect
fore: Enclave in enclaves.enum() generate
internet.socket to e.wan_conn;
end;

Figure 5: Connecting architecture components

24 How are connections used? Adding operational constraints

After we have specified the structural properties of the global architecture, we go on to specify
some operational requirements that implementations have to obey. Operational requirements de-
fine protocols and possibly other restrictions on the behavior of components of the architecture.
Where a connection between two components indicates a potential for interaction, the operational
specifications will indicate precisely under what circumstances such interaction actually can (or
must) take place, as well as indicating when interaction shall not occur.

In the constraint sublanguage of the Rapide ADL one can specify simple protocols for inter-
action (such as handshaking, etc.), as well as more sophisticated requirements regarding infor-
mation flow, causal relationships, etc. At the global level the most powerful security constraint
would be that

No information should flow from one enclave to another without going through official net-
work connections.

There are a number of different ways to make such a statement precise, and the Rapide
formalization of the architecture specification allows us to clearly identify and thus discuss the
alternatives. The strictest interpretation is probably that

There shall be no internal activity in two distinct enclaves such that they are causally related
without intervening wan_conn events.

Stated in Rapide (see Figure 6), the semantics may be more immediately apparent: when-
ever we see a causal chain of events from an internal activity of one enclave to an internal activity
of another enclave, then there must be two wan_conn events within that chain, one sending (from
the originating enclave), and one receiving (at the other end). The variables ?el, ?e2 are free, in-
dicating that the constraint holds for all enclaves.

INTERNAL —>» INTERNAL

INTERNAL = — |—>»| INTERNAL

observe (?el, ?e2: MISSI_Enclave)
?el.internal - any() - ?e2.internal where ?e1 # ?e2
match
?el.internal - any() - ?el.wan_conn.to_net
- any() -
?e2.wan_conn.to_node - ?e2.internal;
end;

Figure 6: A security constraint

This is a significantly stronger (and to-the-point) constraint than what we would obtain by
stating the requirement in terms of time. If we interpreted “a — b” as “a happened before b in
time” then the above constraint would be satisfied if two enclaves were (legitimately) interacting
with high frequency while information were to flow covertly from the one to the other at a lower
frequency. The fact that there would be legitimate wan_conn events interspersed between the

sending and the receipt of covert information would legitimize the communication of the covert
information. On the other hand, the interpretation of “ - * as representing causal dependency
correctly precludes such a scenario from being acceptable.

The Rapide pattern language has much in common with regular expressions extended with
variables and the ability to evaluate Boolean expressions, and extended to deal with partial orders
as well as the sequences of more traditional regular expressions. The key difference is that the
Rapide pattern language encourages specifications of causal dependency relationships. The
Rapide “a - b" relationship between two events requires that they occur in a particular order; a
before b, and also that there be an established dependency between a and b, e.g. that a represents
writing of data and b represents reading of that data, or a represents the sending of a message and
b its receipt. For a full exposition of the Rapide pattern and constraint languages, see [11, 18,
19, 20]

25 Repeat as needed ... the concept of operations level

The next level of architecture is a concept of operations (“conops”) architecture. The conops archi-
tecture specifies the structure of enclaves, and how the operations within an enclave are carried
out by its various components (including human beings).

As with the global architecture, the definition of the conops architecture identifies (1) the
components of an enclave, (2) their connections and (3) how these connections may (or may not)
be used.

251 What are the components?

The components are such entities as users and workstations, confidentiality and authentication serv-
ers as well as other servers such as firewalls. We shall not enumerate all the component types of
the conops architecture. However, the MISSI document [7] does give us an example of a non-
trivial decision we face when formalizing the definitions of the component types. It says:

2(a) “An authorized releaser for a particular enclave must be a MISSI certificate holder and reside
within the enclave.”

This paragraph introduces the component type “authorized releaser,” and can be interpreted
in two different ways, depending on our interpretation of the word “must.” If an authorized re-
leaser by definition is a MISSI certificate holder, then one makes the type releaser a subtype of the
type certificate_holder. A consequence of such a choice would be that one cannot entertain (or
formally specify) situations where a releaser is not a certificate holder, just as one cannot entertain
the notion that an even number not be an integer.

Another tack would be to identify the relationship between an enclave and its set of releas-
ers, each of which is of the generic MISSI_user_type. In which case we are obliged to define a
function from such user components to their set of certificates (in order to state that all releasers
hold certificates) as well as a residency relation between enclaves and its residents (in order to
state that the residency requirements should hold). Such functions and relations can be defined
as being part of a component (i.e., an attribute of it), or as a function or predicate external to the
component. We chose the latter approach.

We are faced with a similar decision in paragraph 1(b):

1(b) “All legitimate MISSI users must have a valid certificate for some classification level they are
cleared to read.”

Is this a definition of what a “legitimate MISSI user” is (in which case we define the type le-
gitimate_MISSI_user and add the requirement that the attribute certificate_set be non-empty)? Or
is it a definition of when a MISSI-user is “legitimate” (in which case we define the type MISSI_user
with the attribute legitimate, which is true if and only if the attribute certificate_set is non-
empty)? We settled for the latter interpretation.

type Certificate_authority_type is Certificate_authority
include Authority
interface ‘
provides -
function authorized () return Boolean; authorized
requires
certificate_generator : Certificate_generator_type; L

certificate_generator

end;

-

Figure 7: An enclave component identifying its requirements

252 How are components connected?
At the enclave level we also see a number of requirements regarding access and connectivity,
such as:

1(a) “Authorized certificate authorities (and no others) must be provided with access to certificate
generation functions.”

As with many of the MISSI requirements this one has both a prescriptive as well as a restrictive
aspect: There shall be access for one class of components, and such access by any other compo-
nent is prohibited. The former is reasonably interpreted as a structural requirement, the latter
may either be structural (that there simply be no physical accessibility), or one of protocol (that
there shall be no attempts at exercising the certificate generation functions without proper
authorization.)

The prescriptive part of the requirement is easily modeled with in Rapide using interface
type definitions (see Figure 7). The presence of a requires clause in the definition lists all the
entities a Certificate_authority_type module expects to be able to use without further ado — it is
up to the architecture implementation to supply it with a suitable module to satisfy this require-
ment. The requires section of a type specification indicates what the environment — the architec-
ture — has to make available to objects of type Certificate_generator_type. This mechanism differs
from the usual object-oriented approach of employing parameterization of the type or the object
constructors of the type. If one were to employ the alternative of supplying the server references
as parameters to object constructors as in

module certificate_authority(certificate_generator : Certificate_generator_type; ...)
return Certificate_authority_type is

end:

then we would bury a key implicit element of the prose requirements; that the assignment of a
server to a user is an architectural one, which may change over time as the system evolves and the
user acquires or relinquishes certificates.

Rapide allows us to make the style distinction between parameterized definitional dependen-
cies (which are identified by the parameter lists of type definitions), parameterized implementation
dependencies (which are identified by the parameter lists of module constructors) and (dynamic)
architectural dependencies (which are identified by requires sections in interface definitions).

The restrictive part of the requirement (“...and no others...”) can be addressed explicitly or
implicitly. By using the frame axiom for security architecture conformance (i.e., in the absence of
any connections, no information flow shall take place) we can deduce this restriction from the
absence of any explicit connections between modules that are not authorized certificate authori-
ties and certificate generators. Such a structure-oriented representation of the requirement would
be using conditional connections in the architecture itself to set up the connections for all the

10

authorized certificate authorities (see Figure 8). Here the architecture specification makes clear that
access to the new_token function will be given only to those certificate_authority_type compo-
nents that have the authorized attribute set to true.

connect
(?c : Certificate_authority_type)
?c.new_token where ?c.authorized
to certificate_generator.new_token,;

Figure 8: A conditional connection

However, a requirements document that relies on the absence of certain statements might be
asking for too much of the reader.

If one instead wishes to make this requirement explicit in the formal version of the reference
architecture then it is naturally rephrased as a protocol requirement; that all modules attempting to
make use of the certificate generators are duly authorized. Since this is a usage restriction relevant
to certificate generators, it is reasonable to locate it within the definition of the Certifi-
cate_generator interface (see Figure 9).

When it states “Authorized certificate authorities (and no others)...” the constraint interprets the
“(and no others)” as meaning not only all non-authorized certificate authorities, but also all other
entities of other categories. The mechanism is through observing all calls to the new_token func-
tion, and then requiring that all these calls be made by components of the Certifi-
cate_authority_type, where that component also has the authorized attribute set to true.

type Certificate is interface ... end;

type Certificate_generator_type is interface
function new_token(...) return Certificate;

constraint
observe (?p : root) new_token'call(performer is ?p)
match (?c : Certificate_authority_type)
new_token'call(performer is ?c) where ?c.authorized;
end;

end certificate_generator_type;

Figure 9: A restrictive protocol definition

A number of the requirements — 1(c,d,e) — as well as the later 1(e, g, h, i, k), are on the same
form:

“All MISSI certificate holders must be provided with access to appropriate <keyword> func-
tions for each classification level they are cleared to read.”

(Where the <keyword> identifies the distinct functions, such as confidentiality, integrity, and certifi-

cate validation.)

There are two elements to each of these requirements as well:

1. There is a reference to what a confidentiality (and similarly integrity-, certificate validation-,
etc.) function is. That aspect deals with definitions of functions and abstract data types, and
are best dealt with using an ADT- or object specification formalism. Rapide incorporates the
data type specification capabilities of ANNA [], but since the specification of datatypes im-
pinges minimally on our discussion of architectures, we shall not pursue this aspect beyond
the sketch of a Rapide definition of a Wrapper_type, with a specialization to a Confidential-
ity_server_type (Figure 10).

11

2. That for a particular functionality the actual function supplied may differ depending upon
which access level is being exercised by the certificate holder. Consequently, access to server
functions may change over time, as certificates are acquired or relinquished. Furthermore,
there is no requirement that the appropriate function for a given access level be fixed for the
duration of the system — consequently, the formalization should allow for a conforming sys-
tem to supply different functions at different times for a given access level and user.

To state or allow for the latter is a challenge to ADLs and specification formalisms based on
(first order) logics, which do not address the issue of time. In Rapide time is implicitly present
throughout a specification, and can be made explicit as necessary through references to clocks or
events.

We shall assume (see 1 above) that we can define precisely what is expected of a set of confi-
dentiality functions (and similarly for the other functionalities).

type Wrapper_type (type content_type, packaged_type, key_type)
constraint content_type <: equal

is interface

provides
function wrap (k : key_type; c : content_type) return packaged_type;
function unwrap (k : key_type; p : packaged_type) return content_type;
function check (r: root) return Boolean;

constraint

forall c : content_type; p : packaged_type; k : key_type =>
check(wrap(k, c)) and
not check(unwrap(k, p)) and
exist kk : key_type => unwrap(kk, wrap(k, c)) = c;
end;

type Confidentiality_server_type (type key_type, wrap_info_type, wrapped_type)
constraint ...
- - constraints on the parameter types as to minimum information required?
is
include Wrapper_type (key_type, wrap_info_type, wrapped_type)
interface
- - constraints specific to the confidentiality server
- - in addition to the included wrap, unwrap and check
end;

Figure 10: Wrappers and unwrappers, and a specialization to a confidentiality server type

Given the definitions of the server functions, we specify the access requirements explicitly
(Figure 11). Each MisSI_user_type object will assume the (external) existence of a function re-
turning a reference to a confidentiality server (assuming that the types key_type, wrap_info_type,
and Wrapped_type are defined elsewhere), an integrity server and a validation server.

This requirement is formalized using the requires clause of Rapide. In so doing we signal
that a MISSI_user_type object may call the function confidentiality_server with the expectation
that the architecture (i.e., the environment) will supply a binding for it. The architecture may
change this binding during the execution of the system. By adding the “constraint
(classification.element(c))” to the function declaration we identify that the function is only re-
quired and accessible for a particular classification level if the MISSI_user actually is cleared at that
level.

The “(and no others)” part of requirements 1(j, k) are dynamic prohibitions and are formal-
ized in the same way we made precise the similar injunction in 1(a) (see page 11), i.e, as a check

2 These constraints would indicate whether the user identity would have to be included in the key or
wrap_info types, etc.

12

that whenever there is a call for a confidentiality_server it is from a component with the proper
clearance.

type confidentiality_ref is Confidentiality_server(Key_type, Wrap_info_type, Wrapped_type);
- - and similarly for the other servers

type MISSI_user_type is interface
provides
classification : set(Classification_type);

requires
function confidentiality_server (c: Classification_type) return Confidentialy_ref
constraint (classification.element(c));

function integrity_server (c: Classification_type) return Integrity_ref
constraint (classification.element(c));
function validation_server (c: Classification_type) return Validation_ref

constraint (classification.element(c));

end MISSI_user_type;

Figure 11: Capturing access requirements

253 How are connections used?
Finally, there are the policy requirements, stating preconditions for information flow within the
enclave or from the enclave to the outside. An example is

2(c) “All data transferred outside of a secret-high enclave and addressed to a MISSI certificate
holder must be protected by a confidentiality service, a proof of origin non-repudiation service
and a recipient authentication service.”

This can be modeled either as the data having certain properties (essentially having stamps
of approval from the respective servers), or as a precondition on the history leading up to a re-
lease of data outside a secret-high enclave. We recommend the latter approach (see page 19), in
which case we make use of the Rapide pattern language to identify the protocol that defines a
data release: it fits the pattern of Figure 12, i.e., that for any piece of data, if it is released to the
outside then that release has to be preceded by the three services checking it off.

pattern outside_release_ok(?d : data) is
(conf_service(?d) ~ origin_service(?d) ~ recip_service(?d)) - data_release(?d)
end;

Figure 12: Abstracting patterns

2.6 Defining relationships between architectures

At this point in our process we have a definition of the global level of the reference architecture,
whose principal components are MISSI_enclaves and WANSs, and the conops level, whose prin-
cipal components are workstations, firewalls, LANSs, and servers.

Part of the definition of a reference architecture with multiple levels of abstraction identifies
precisely how the levels are related. There are clear relationships between these two levels —e.g.,
the enclave architectures of the lower level are modeling the MISSI_enclaves at the top level, the
activities of the firewalls at one level represent release and accept events at the higher level, the
simple wan_conn of the abstract enclave definition corresponds to the firewall_type objects of the
conops architecture. But in the conops level definition there is no action “internal” which may
play such a crucial role in the constraints of the global level architecture — the reference archi-
tecture must define what conops-level events correspond to the internal events of the global level.

13

map abstract_enclaves from e: enclave_architecture to MISSI_enclave is
rule
rule_1:
(?e : event) 7e@
||> internal(?e);

rule_2:
(?d : Data, ?a : Address) @firewall.wan_conn.to_net(?d,?a)
||> wan_conn.release(?d,?a);

rule_3:
(?ws : COTSWorkstation; ?content : Data)
?ws.net_conn.to_node(Certificate_Validation, ?content)
?ws.net_conn.to_node(Integrity, ?content)
?ws.net_conn.to_node(Encryption,?content)
1>

releasable(?content);;

end;

Figure 13: Three abstraction maps

It would not be a good idea to merge the definitions from the two levels into one unstruc-
tured definition of the notion of “enclave.” Instead we use Rapide maps to relate components
and activities of the conops architecture to their corresponding components and activities in the
global architecture.

Figure 13 gives an example of such an abstraction map. It consists of three rules, each of
which defines how occurrences of patterns of events at the conops level correspond to more ab-
stract events at the global level.

The first rule indicates that any event in the conops enclave (“(?e : event) ?e@”) will be
mapped up to (“|>") the abstract internal event, indicating that something happened (but where
we abstract away from the particulars of what happened). The second rule maps each transmis-
sion of data from the firewall to the WAN (“@firewall.wan_conn.to_net”) to the abstract event re-
lease, representing the flow of information out of the enclave, abstracting away the particulars of
how the information became public. The last rule is an example of how a more complex pattern
of events may represent a single abstract event: Whenever a piece of information (represented by
the placeholder ?content) has been approved by the validation, integrity, and encryption servers
then the information becomes releasable, abstracting away from the actual protocol required for
attaining this status.

Figure 14 shows an excerpt from a computation, indicating the two levels of abstraction and
the relationship between a set of events at the lower level with a single abstract event at the
higher.

As we see, there is no prohibition against a single concrete event participating in more than
one abstract event (as each of the server events are both represented as abstract internal events as
well as being part of the releasable event).

14

INTERNAL
A > INTERNAL
INTERNAL \ \RELEASE
RELEASABLE —
A Global level
— - — AN
,, Q. QCU
2 S E E:
o Conops level
VALIDATION
> NTEGRITY »| FIREWALL.TO_NET
>
ENCRYPTION

Figure 14: Events at two levels of architectural abstraction

If one of the steps in the protocol is missing (for instance, if the validation never took place),
we would not get the required Releasable global event. The result would be as in Figure 15, and
would result in a violation of a global level constraint (see page 17).

> INTERNAL
INTERNAL 4 \RELEASE

A
T -« ~«

@ < @

| 3]

x o &

INTEGRITY »| FIREWALL.TO_NET
——>1
ENCRYPTION

Figure 15: Missing conops event — missing global event

3. Formalizing the MISSI requirements summary

In this section we go through all the requirements of the MISSI overview, showing how we
would capture them in Rapide.

We have already dealt with the very first requirement (section 2.5.2, page 13):

1(a) “Authorized certificate authorities (and no others) must be provided with access to certificate
generation functions.”

We have also touched upon the next requirement earlier (section 2.2):

1(b) “All legitimate MISSI users must have a valid certificate for some classification level they are
cleared to read. Entities with valid certificates must be legitimate MISSI users.”

15

If this is a definition of when a MISSI-user is “legitimate” we define the type MISSI_user with the
attribute legitimate, which is true if and only if the attribute “certificate_set” is non-empty (see
Figure 16.3

The last constraint implies the first, of course, but in the interest of clarity of intention we
state both explicitly, since redundancy adds rather than detracts from the confidence we have in
the specification.

An alternative representation would define two types; MISSI_user_type and le-
git_MISSI_user_type <: MISSI_user_type. The latter would be constrained always to have in hand
appropriate certificates, the former would allow its transformation into a legit_MISSI_user_type
object after performing the appropriate checks.

The next three requirements — 1(c,d,e) — as well as the later 1(e, g, h, i, k), all contain a re-
quirement on the same form:

“All MISSI certificate holders must be provided with access to appropriate <keyword> func-
tions for each classification level they are cleared to read.”

(Where the <keyword> identifies the distinct functions, such as confidentiality, integrity, and
certificate validation.) They have been discussed extensively earlier, in section 2.5.3.

type MISSI_user_type is interface

provides
function classification () return set(Classification_type);
function certificates () return set(Certificate_type);

function legitimate () return Boolean;
function residency () return Enclave;
constraint

legitimate() = not certificates().empty;

legitimate() implies

not map(certificate_type,classification_type,certificates(),security_level).intersect(classification()).empty;
end MISSI_user_type;

Figure 16: An invariant constraint

Requirements 1(j, k) strengthens the access requirements by adding that accessed function-
ality be

“...for the enclave in which they reside. (All <entities> are MISSI certificate holders and re-

side in the enclaves in which they perform their task.)”

These are simply invariants over the relationships between components and enclaves, and
could be stated in those terms, e.g., in the subtype release_reviewer_type of the MISSI_user_type
there is the invariant that:

not certificates().empty;
residency().release_reviewers().element(self);

8 The polymorphic function map takes two types S and T (the source and target type), an object M of type
set(S) and a function F with signature S - T, and returns an object of type set(T), each of whose elements is
the result of applying F to some element of M. The function security_level is assumed to map certificates
to security levels.

4 Each shaded area represents a releasable event justifying the corresponding release event. There is an
example of a single releasable justifying multiple releases, as well as a single release being justified by
multiple releasable events.

16

Sections 2 and 3 of the requirement set identify the circumstances under which information
may be released from or accepted into an enclave.

2(a) “An authorized releaser for a particular enclave must be a MISSI certificate holder and reside
within the enclave.”

2(a) is similar to the requirements of 1, and is dealt with in the same way.

2(b) “All data transferred outside of a secret-high enclave must have been sent by an authorized
releaser in the originating enclave, must be protected by an integrity server, and must pass a
releasability check in the originating enclave.”

2(b) establishes protocol precursors for the event representing the release of data from an
enclave. Assuming that data is being released by means of the firewall communicating to the
network, the notion of data being releasable was captured on page 14. Given that, 2(b) becomes a
constraint of the abstract enclave definition. Observing release and releasability events (Figure
17), every communication to the net of a piece of data has to be preceded by a releasability event

(but not the other way around — releasable data is not required to actually be released):
Note that there must be a causal chain from establishing releasability to the actual release.

observe
‘ RELEASABLE ‘ RELEASE }—»‘ RELEASABLE H RELEASE ‘ from releasable, release
where (security_classification() = secret_high)
RELEASE‘ match (?content : Data)
[* rel union] (releasable(?content) -
release(?content)) union
[* rel ~] releasable;

‘RELEASABLE RELEASE%AAA)WRELEASABLE

RELEASABLE

‘RELEASABLE H RELEASE‘ end;

Figure 17: Satisfying the releasability requirement*

The use of the union relation over the set of pairs of releasable and release events allows a
single releasable event to justify multiple actual releases (as in Figure 17).

If the requirement specified that all releasable data actually be released then we would omit
the second component of the union collecting all the dangling releasable events.

2(c) “All data transferred outside of a secret-high enclave and addressed to a MISSI certificate
holder must be protected by a confidentiality service, a proof of origin non-repudiation serv-
ice, and a recipient authentication service.”

2(c) is similarly structured to 2(b), the main difference being that we limit our interest to data
addressed to MISSI certificate holders. By implication, this requires a global (specification) func-
tion mapping addresses to attributes of the addressee®. Figure 18 gives a variant on the 2(b) re-
quirement. The global event MISSI_releasable is defined in Figure 19, and is similar to the defini-
tion of releasable (see Figure 13 on page 14), as a mapping from a protocol pattern at the conops
level to a single event at the global level. We assume that the function Recipient : Data - Root
gives us the identity of the intended recipient of the data, and then use subtyping to limit the ap-
plicability of the mapping to those messages that have MISSI_users as recipients.

5 This mapping seems methodologically dubious, but it does not offer any problems for the transformation
of the prose into precisely formalized requirements.

17

observe
from MISSI_releasable, wan_conn.release where (security_classification() = secret_high)
match (?content : Data)
[* rel union] (MISSI_releasable(?content) — wan_conn.release(?content))
union [* rel ~] MISSI_releasable;
end;

Figure 18: MISSI releasability restriction

rule
(?ws : COTSWorkstation; ?content : Data)
(?ws.net_conn.to_node(Confidentiality, ?content)

?ws.net_conn.to_node(Non_repudiation, ?content)

?ws.net_conn.to_node(Recipient_validation, ?content)
1>
MISSI_releasable(?content);;

Figure 19: A variant on the releasability definition

2(d) “If a recipient is capable of providing authentic receipts and the originator of the data requests
a receipt, all data transferred outside of a secret-high enclave must be protected by a proof of
receipt non-repudiation service.”

This requirement mixes references to capabilities of enclaves (offering an authentication
service) and events (the data being transferred with a return receipt request). To be “receipt con-
firmation capable” is modeled by adding a node Receipt_authentication_enclave to the type
structure, introducing a subtype of the Enclave type. Stated in protocol terms, a receipt acknowl-
edgment must be generated whenever data leaves a secret-high enclave addressed to a receipt
confirmation capable component. There are a number of ways one can phrase this. As a negative,
one can write that for each release event and all its (causally) subsequent acknowledgments for
the receipt of the release, the set of acknowledgments cannot be empty (Figure 20).

observe (?content : Data; ?recipient : receipt_authentication_enclave; ?address : Address)
wan_conn.release(?content, ?2address)
where (security_classification() = secret_high and ?recipient = ?2address.enclave),
- ([* rel ~] receipt_acknowledge(?content.ack))
not match
wan_conn.release;
end;

Figure 20: A negative form of constraint 2(d)

Or one can write it in positive terms — for each release event and all its (causally) subsequent
acknowledgments for the receipt of the release, the set of acknowledgments has to contain at
least one acknowledgment (Figure 21).

observe (?content : Data; ?recipient : Receipt_authentication_enclave; ?address : Address)
wan_conn.release(?content, ?address)
where (security_classification() = secret_high and ?recipient = ?2address.enclave),
- ([* rel ~] receipt_acknowledge(?content.ack))
match
wan_conn.release - ([+ rel ~] receipt_acknowledge);
end;

Figure 21: A positive form of constraint 2(d)

18

In both cases, the Rapide form is one of (1) filtering the set of events to extract those sub-
sets (possibly overlapping) that are of interest (in this case to each single release and its (possibly
empty) set of responding acknowledgments), and then (2) specifying the pattern these events
have to comply with (in this case that the set of acknowledgments be non-empty).

3(a) “An authorized receiver for an enclave must be a MISSI certificate holders and reside within
the enclave in question.”

3(a) is similar to 2(a), and is dealt with in the same way.

3(b) “Any data admitted to a secret-high enclave from the outside must be protected by an integ-
rity service, must pass an admissibility check for the enclave, and must have a designated re-
cipient within the enclave who is authorized to receive external data.”

3(b) is similar to 2(b), and is dealt with in the same way.

4(a) “All sensitive administrative data must be protected by an integrity service while in transit or
in storage.”

As with 2(b) and (c) there are two, quite distinct, perspective on this kind of constraint.

One can either view the requirements as related to state, i.e., every piece of (administrative)
data has some state attribute indicating whether it is in storage, in transit or in (possibly) other
modes. In which case the natural mode of expression is one of first order logic (as in [7]), but at
the cost of reduced checkability and increased complexity of expression — data and other basic
types would acquire an ever-growing set of more or less obvious attributes, an attribute collection
which may become intractable as the abstract notion of data becomes refined.

Or one can view it more dynamically, and focus on the action of storing or putting into tran-
sit a piece of data, in which case the assertion of being protected by an integrity service is tied to
the transitional event itself. This is the path taken in the formalization of 2(b) and (c), and would
be repeated for 4(a), here.

4. Putting a Rapide reference architecture to use

Given a Rapide formalization of the reference model we can put it to a number of different uses.

The most obvious is as a precise definition of the model itself — being expressed in a formal lan-

guage it allows us to draw unambiguous conclusions from the formalization based on testable

arguments within a formal framework (in the case of Rapide constraints the framework is a sim-
ple one of sets and partial orders).

Since Rapide is supported by a growing toolkit of visualization and testing modules [21,
22], the reference architecture can be the target for conformance testing by implementations pur-
porting to satisfy the architecture’s requirements. Such automatic conformance testing requires
two things:

* An instrumentation of the implemented system which supplies the tools with the informa-
tion required to compare the implementation to the reference architecture. Such an instru-
mentation can in many cases be automatically generated by a modified set of compilers,®
generating the code necessary to create events and maintain the dependency graph.

* An abstraction map essentially defining how the patterns of events generated by the instru-
mentation correspond to the types of events and components referred to in the architecture.”

Such a map makes the conformance argument precise, and adds documentation as
to how the implementor thought her system relates to the reference architecture.

6 Such an instrumented compiler-set exists for Java, Verilog and CORBA IDL besides for Rapide itself.
7 We have already made use of such maps in defining how the abstract releasable event occurs as an ab-
straction from a pattern of lower-level events.

19

Given such instrumentation and the argument how conformance is obtained, the system
conformance test becomes automatic, and can become a standard part of any regression test one
might wish to subject the system to as its implementation evolves.

Furthermore, the instrumentation together with its conformance map can become an em-
bedded, permanent part of the production system. The result is another layer of security check-
ing, where the different perspective on the system offered by the conformance argument may
detect architecture violations that might otherwise go unnoticed.

A variant of the conformance testing is the use of the tools for scenario testing and presenta-
tions. The Rapide toolkit has been applied to such diverse models as the SPARC V9 reference
hardware architecture and a stock market model, as well as a simple scenario for security proto-
cols based on elements of the MISSI reference architecture.

In the security model scenario we constructed a model vertically partitioned into three lay-
ers.

At the bottom layer we defined an executable conops model of users, workstations, protocol
servers, firewalls, and networks.

The topology was one of a set of LANSs, each with its workstations, firewalls and servers, and
each workstation with its users. The LANs were connected by means of a WAN, through their
respective firewall modules.

All the networks were broadcast networks.

This bottom layer corresponds to an actual system, a flat, relatively unorganized set of com-
ponents communication hither and thither — possibly in conformance with the requirements of
the reference architecture. Or possibly not — that is what the toolkit checks.

The second level is an intermediate one. Each
e pe architecture is an enclave, each of which ig accom-
\ T panied by a set of the enclave_-_related requwemen_ts

/ LAH wall 1| (such as 2(b), about releasability). Each enclave in

the intermediate architecture is the target for a

Rapide map, which transforms patterns of conops
Stanford || model behaviors into activities defined for enclaves

Ginger Hac

(e.g., as in the definition of the releasability map,
see Figure 13). Some components of an enclave is
shown in Figure 22 (from an animation of the
conformance check), an enclave with two users, two workstations, a LAN and a firewall (besides
the local servers, not shown in this figure).

The third level is that of the global architecture, consisting of enclaves, WANSs, etc. (Figure 23
gives an abbreviated view, from an animation of the reference architecture conformance test of a
model with four enclaves.) At this level we check the constraints relating to multi-enclave con-
cerns, such as the global requirement of page 8, prohibiting covert channels. The architecture
level can be obtained by maps directly from the conops model, or in two stages: by the maps
from the conops model to the intermediate level, and then maps from the intermediate level on
to the global level. Which of these one chooses is a question of whether the intermediate models
contain all the information required for the global architecture model (e.g., the notion of general
internal activity) or not.

Figure 22: Some components of an in-
termediate level model architecture

20

A model (or a system in testing or produc-
tion) typically generates a large number of events.
When investigating data for possible non-
conformance it is critical that the number of data
elements — events of possible interest — be reduced
as early as possible. The Rapide toolkit offers two
means to achieve this end. The first is the use of
architecture maps in structuring the instrumenta-
tion. Each map construct results in the automatic

Bosnia

HAN

\Stanford

construction of a transformational filter (or sieve),

which passes on only those events that are consid-
ered significant in the abstraction, possibly trans-

Figure 23: A global level
architecture

formed so as to aggregate event patterns into single events or simpler event patterns.

|CONFIDEN TIALIY.TO_NODE |

/

| CONFIDENTIALIY. TO_USER|

AN

| WS_CONN.TO_NODE |

Y

WS_CONN.TO_NET

A
| FW_CONN.TO_NODE |

N

| WAN_CONN.TO_NET |

INCONSISTENT

Figure 24: Detecting a protocol
violation

The second is the visualization toolset of Rapide.
This part of the toolset allows the user to apply various
patterns of events to a given execution, displaying only
those events fitting patterns of interest. Combined with
the Raptor [22] animator this makes it possible to
watch an animation of a running system at a chosen
level of abstraction. Then, if interesting events (such as
protocol violations) are detected, the user can move to
the POV (poset visualizer) [21] and use it to investigate
the causal patterns leading up to the events that piqued
her interest. In particular, the POV allows the efficient
removal of extraneous information, to ease the identifi-
cation of interesting events among the clutter of all the
events of the system.

As an example, consider the events of Figure 24.
These were culled from the execution of a network
model, after the occurrence of an inconsistent event was
observed at the global level. (An inconsistent event sig-
nals the system’s detection of a constraint violation, in
this case the global releasability constraint of Figure
18, page 18). By moving from the global architecture
to the conops architecture, using the POV, and then

following the causal links past-wards from the inconsistent event, we identify its cause: the ab-
sence of the Integrity and Encryption steps of the protocol making a piece of information releas-
able. As the user only engaged the Confidentiality server, once the information was transmitted
from the firewall to the WAN, she was in violation of the reference architecture constraints.

5. Conclusion

We have indicated how one may use the event based language of Rapide to capture elements of
a reference architecture. Both the structural and the operational requirements of the architecture
can be stated precisely in Rapide, and the resulting specification may become the basis for (1)
analysis, (2) model checking, (3) implementation conformance testing and (4) production code

conformance surveillance.

A key element in the successful application of an architecture description language to the
design of reference or other software architectures is the degree to which it allows one to state all
aspects of the architecture, and the flexibility of the abstraction mechanisms that may be applied
when the conformance requirements are stated (as part of the architectural design). Distinct ar-
chitectural perspectives require distinct abstraction mappings, and it is important that the de-

21

signer be able to separate such perspectives from each other — giving separate reference architec-
tures for each perspective, as appropriate.

Furthermore, an ADL is only as good as the tools that support it — in the absence of tool
support, design capture and conformance reasoning easily devolves into vague hand-waving. The
tool support should help automate conformance testing and other aspects of architecture design
analysis, as well as allowing the designer to construct test scenarios and visualize the behavior of
architecture conforming systems.

We have found that the Rapide ADL with its supporting toolset offers an interesting ap-
proach to the design of distributed architectures. In particular, the event orientation of the sys-
tem, coupled with its sophisticated ability to identify causal chains and patterns of behaviors
where causal relationships may play an integral role are quite enticing.

6. References

1. Allen, R., Garlan, D.: Formalizing architectural connection. In Proceedings of the Sixteenth
International Conference on Software Engineering. IEEE Computer Society Press, May 1994.

2. Boehm, B. W.: Software Process Architectures. In Proceedings of the First International
Workshop on Architectures for Software Systems. Seattle, WA, 1995. Published as CMU-
CS-TR-95-151.

3. Garlan, D.: Research directions in software architectures. ACM Computing Surveys, 27(2):
257-261. 1995.

4. Garlan, D., Shaw, M.: An Introduction to Software Architecture. Volume 1. World Scientific
Publishing Company, 1993.

5. Ellis, W.J. et al.: Toward a Recommended Practive for Architectural Description. In Pro-

ceedings 2nd IEEE International Conference on Engineering of Complex Computer Systems,
Montreal, Canada, 1996.

6. Gennart, B. A., Luckham, D. C.: Validating Discrete Event Simulations Using Pattern
Mappings. In Proceedings of the 29th Design Automation Conference (DAC), IEEE Computer
Society Press, June 1992, pp. 414-4109.

7. Johnson, D. R., Saydjari, F. F., Van Tassel, J. P.: MISSI security Policy: A Formal Ap-
proach. R2SPO Technical Report R2SPO-TR001-95, NSA/Central Security Service, July
1995.

8. Luckham, D. C.: Programming with Specifications: An Introduction to ANNA, A Language for

Specifying Ada Programs, Springer-Verlag, Texts and Monographs in Computer Science,
October, 1990.

9. Luckham, D. C., Vera, J., Meldal, S.: Key Concepts in Architecture Definition Languages.
Submitted to the CACM. Also published as technical report CSL-TR-95-674, Stanford
University, 1996.

10. Luckham, D.C., Vera, J.: An event-based architecture definition language. IEEE Transac-
tions on Software Engineering, 21(3):253-265, June 1993.

11. Luckham, D.C.: Rapide: A Language and Toolset for Simulation of Distributed Systems
by Partial Orderings of Events, DIMACS Partial Order Methods Workshop 1V, Princeton
University, July 1996.

12. Meldal, S.: Supporting architecture mappings in concurrent systems design. In Proceed-
ings of the Australian Software Engineering Conference. IREE Australia, May 1990.

22

13.

14.

15.

16.

17.
18.
19.

20.
21.
22.

23.

24.

Meszaros, G.: Software Architecture in BNR. In Proceedings of the First International Work-
shop on Architectures for Software Systems. Seattle, WA. 1995. Published as CMU-CS-TR-
95-151.

Moriconi, M., Qian, X.: Correctness and composition of software architectures. In Pro-
ceedings of ACM SIGSOFT'94: Symposium on Foundations of Software Engineering. New Or-
leans, LA. December 1994,

Mitchell, J.C., Meldal, S., Madhav, N.: An Extension of Standard ML Modules with Sub-
typing and Inheritance. In Proceedings of the 18th ACM Symp. on the Principles of Program-
ming Languages, ACM, ACM Press. 1991, pp. 270-278. Also published as Technical Re-
port CSL-TR-91-472, Computer Systems Laboratory, Stanford University.

PAVG: The Rapide Architecture Description Language Reference Manual.
<http://anna.stanford.edu/rapide/lrms/architectures.ps>

PAVG: Rapide toolset information. <http://anna.stanford.edu/rapide/tools.html>
PAVG: Rapide Examples. In preparation.

PAVG: The Rapide Pattern Language Reference Manual.
<http://anna.stanford.edu/rapide/lrms/patterns.ps>

PAVG: The Rapide Constraint Language Reference Manual. In preparation.
PAVG: POV-a partial order browser. <http://anna.stanford.edu/rapide/tools-release.html>

PAVG: Raptor—animating architecture models. <http://anna.stanford.edu/rapide/tools-
release.html>

Santoro, A., Park, W.: SPARC-V9 architecture specification with Rapide. Technical report
CSL, Stanford University (to appear).

Soni, D., Nord, R.L., Hofmeister, C.: Software Architecture in Industrial Applications. In
Proceedings of the 17th International Conference in Software Engineering. ACM, April 1995.

23

