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Abstract

We explore the idea of evidence accumulation (EAC) for combining the results of multiple clusterings. First, a

clustering ensemble - a set of object partitions, is produced. Given a data set (n objects or patterns in d dimensions),

different ways of producing data partitions are: (1)- applying different clustering algorithms, and (2)- applying the

same clustering algorithm with different values of parameters or initializations. Further, combinations of different

data representations (feature spaces) and clustering algorithms can also provide a multitude of significantly different

data partitionings. We propose a simple framework for extracting a consistent clustering, given the various partitions

in a clustering ensemble. According to the EAC concept, each partition is viewed as an independent evidence of

data organization, individual data partitions being combined, based on a voting mechanism, to generate a new n × n

similarity matrix between the n patterns. The final data partition of the n patterns is obtained by applying a hierarchical

agglomerative clustering algorithm on this matrix. We have developed a theoretical framework for the analysis of the

proposed clustering combination strategy and its evaluation, based on the concept of mutual information between data

partitions. Stability of the results is evaluated using bootstrapping techniques. A detailed discussion of an evidence

accumulation-based clustering algorithm, using a split and merge strategy based on the K-means clustering algorithm,

is presented. Experimental results of the proposed method on several synthetic and real data sets are compared with

other combination strategies, and with individual clustering results produced by well known clustering algorithms.
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I. Introduction

Data clustering or unsupervised learning is an important but an extremely difficult problem. The

objective of clustering is to partition a set of unlabelled objects into homogeneous groups or clusters. A

number of application areas use clustering techniques for organizing or discovering structure in data,

such as data mining [1], [2], information retrieval [3], [4], [5], image segmentation [6], and machine

learning. In real world problems, clusters can appear with different shapes, sizes, data sparseness,

and degree of separation. Further, noise in the data can mask the true underlying structure present

in the data. Clustering techniques require the definition of a similarity measure between patterns,



which is not easy to specify in the absence of any prior knowledge about cluster shapes. Additionally,

quantitative evaluation of the quality of clustering results is difficult due to the subjective notion of

clustering.

A large number of clustering algorithms exist [7], [8], [9], [10], [11], yet no single algorithm is

able to identify all sorts of cluster shapes and structures that are encountered in practice. Each

algorithm has its own approach for estimating the number of clusters [12], [13], imposing a structure

on the data [14], [15], [16], and validating the resulting clusters [17], [18], [19], [20], [21], [22].

Model-based techniques assume particular cluster shapes that can be given a simple and compact

description. Examples of model-based techniques include: parametric density approaches, such as

mixture decomposition techniques [23], [24], [25], [26]; prototype-based methods, such as central

clustering [14], square-error clustering [27], K-means [28], [8] or K-medoids clustering [9]; and shape

fitting approaches [15], [6], [16]. Model order selection is sometimes left as a design parameter to be

specified by the user, or it is incorporated in the clustering procedure [29], [30], [25]. Most of the

above techniques utilize an optimization procedure tuned to a particular cluster shape, or emphasize

cluster compactness. Fisher et al. [31] proposed an optimization-based clustering algorithm, based on

a pairwise clustering cost function, emphasizing cluster connectedness. Non-parametric density based

clustering methods attempt to identify high density clusters separated by low density regions [5] [32],

[33]. Graph-theoretical approaches [34] have mostly been explored in hierarchical methods, that can

be represented graphically as a tree or dendrogram [7], [8]. Both agglomerative [28], [35] and divisive

approaches [36] (such as those based on the minimum spanning tree - MST [28]) have been proposed;

different algorithms are obtained depending on the definition of similarity measures between patterns

and between clusters [37]. The single-link (SL) and the complete-link (CL) hierarchical methods [7], [8]

are the best known techniques in this class, emphasizing, respectively, connectedness and compactness

of patterns in a cluster. Prototype-based hierarchical methods, which define similarity between clusters

based on cluster representatives, such as the centroid, emphasize compactness. Variations of the



prototype-based hierarchical clustering include the use of multiple prototypes per cluster, as in the

CURE algorithm [38]. Other hierarchical agglomerative clustering algorithms follow a split and merge

technique, the data being initially split into a large number of small clusters, merging being based

on inter-cluster similarity; a final partition is selected among the clustering hierarchy by thresholding

techniques or based on measures of cluster validity [39], [5], [40], [41], [42], [43]. Treating the clustering

problem as a graph partitioning problem, a recent approach, known as spectral clustering, applies

spectral graph theory for clustering [44], [45], [46].

Among the various clustering methods, the K-means algorithm, which minimizes the squared-error

criteria, is one of the simplest clustering algorithm. It is computationally efficient and does not require

the user to specify many parameters. Its major limitation, however, is the inability to identify clusters

with arbitrary shapes, ultimately imposing hyper-spherical shaped clusters on the data. Extensions of

the basic K-means algorithm include: use of Mahalanobis distance to identify hyper-ellipsoidal clusters

[28]; introducing fuzzy set theory to obtain non-exclusive partitions [20]; and adaptations to straight

line fitting [47].

While hundreds of clustering algorithms exist, it is difficult to find a single clustering algorithm

that can handle all types of cluster shapes and sizes, or even decide which algorithm would be the

best one for a particular data set [48], [49]. Figure 1 illustrates how different algorithms, or even the

same algorithm with different parameters, produce very distinct results. Considering that clustering

is an important tool for data mining and exploratory data analysis, it is wise to apply several different

clustering algorithms to the given data and then determine the best algorithm for the data.

Inspired by the work in sensor fusion and classifier combination [50], [51], [52], a clustering combi-

nation approach has been proposed [53], [54], [55]. Fred and Jain introduce the concept of evidence

accumulation clustering, that maps the individual data partitions in a clustering ensemble into a new

similarity measure between patterns, summarizing inter-pattern structure perceived from these clus-

terings. The final data partition is obtained by applying the single-link method to this new similarity
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(a)Input data.
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(b)K-means clustering, k = 8.
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(c)Clustering with the SL method,

threshold at 0.55, resulting in 27 clus-

ters.
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(d)Clustering with the SL method, forc-

ing 8 clusters.
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(e)Clustering with the CL method,

threshold at 2.6, resulting in 22 clusters.
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(f)Clustering with the CL method, forc-

ing 8 clusters.

Fig. 1. Results of clusterings using different algorithms (K-means, single-link – SL, and complete-link – CL) with

different parameters. Each cluster identified is shown in a different color/pattern.

matrix. The results of this method show that, the combination of “weak”clustering algorithms such as

the K-means, which impose a simple structure on the data, can lead to the identification of true un-

derlying clusters with arbitrary shapes, sizes and densities. Strehl and Ghosh [56] explore the concept

of consensus between data partitions and propose three different combination mechanisms. The first

step of the consensus functions is to transform the data partitions into a hyper-graph representation.

The hyper-graph-partitioning algorithm (HGPA) obtains the combined partition by partitioning the

hyper-graph into k unconnected components of approximately the same size, by cutting a minimum



number of hyper-edges. The meta-clustering algorithm (MCLA) applies a graph-based clustering to

hyper-edges in the hyper-graph representation. Finally, CSPA uses a pair-wise similarity, as defined

by Fred and Jain [55], and the final data partition is obtained by applying the METIS algorithm of

Karypis and Kumar to the induced similarity measure between patterns.

In this paper we further explore the concept of evidence accumulation clustering (EAC). A formal

definition of the problem of combining data partitions is given in section II. Assuming no restrictions

on the number of clusters in the data partitions to be combined, or on how these data partitions

are produced, we introduce the EAC framework in section III. The proposed voting mechanism for

clustering combination performs a mapping of the data partitions into a new similarity matrix between

patterns, to which any clustering algorithm can be applied. We explore the single-link (SL) and the

average-link (AL) methods for this purpose. An improvement of the well-known SL method, by explor-

ing nearest neighbor relationships, leads to a more efficient algorithm than the one introduced in [53],

[54], [55], and extends the range of applicability of the proposed technique to larger data sets. Section

IV addresses performance evaluation issues. We use the concept of mutual information for measuring

the consistency between data partitions (section IV-A). This leads to a theoretical framework for the

analysis of clustering combination results, and an optimality criteria (section IV-B) that focuses on

consistency and robustness properties. Stability of clustering combination solutions is evaluated based

on perturbation/variance analysis, using a bootstrap technique. An evidence accumulation-based algo-

rithm based on the K-means algorithm, is presented and discussed in section V. Experimental results

(section VI) on both synthetic and real data, illustrate the versatility and robustness of the proposed

methods, as compared to individual clusterings produced by well known clustering algorithms, and

compared to other ensemble combination methods.



II. Problem Formulation

Let X = {x1, x2, . . . , xn} be a set of n objects, and let X = {x1, x2, . . . , xn} be the representation

of these patterns; xi may be defined, for instance, over some d−dimensional feature space, xi ∈ Rd,

such as when adopting vector representations, or xi = xi1xi2 . . . ximi
may be a string, mi being the

string length, when using string descriptions. A clustering algorithm takes X as input and organizes

the n patterns into k clusters, according to some similarity measure between patterns, forming a data

partition P . Different clustering algorithms will, in general, produce different partitions for the same

data set, either in terms of cluster membership and/or the number of clusters produced. Different

clustering results can also be produced by the same clustering algorithm by using different algorithmic

parameter values or different initializations, or by exploring different pattern representations or feature

spaces.

Consider N partitions of the data X, and let P represent the set of N partitions, which we define

as a clustering ensemble:

P = {P 1, P 2, . . . , PN} (1)

P 1 =
{
C1

1 , C
1
2 , . . . , C

1
k1

}

...

PN =
{
CN

1 , CN
2 , . . . , CN

kN

}
(2)

where Ci
j is the jth cluster in data partition P i, which has ki clusters, and ni

j is the cardinality of Ci
j,

with
∑ki

j=1 ni
j = n, i = 1, . . . , N .

The problem is to find an “optimal”data partition, P ∗, using the information available in N different

data partitions in P = {P 1, P 2, . . . , PN}. We define k∗ as the number of clusters in P ∗. Ideally, P ∗

should satisfy the following properties:

(a) Consistency with the clustering ensemble P;

(b) Robustness to small variations in P;

(c) Goodness of fit with ground truth information (true cluster labels of patterns), if available.



The first property focuses on the agreement of the combined data partition, P ∗, with the individual

partitions, P i, i = 1, . . . , N . By robustness we assume that the number of clusters and the cluster

membership in P ∗ are essentially invariant to small perturbations in P. The last requirement assumes

the knowledge of the ground truth, which, considering the unsupervised nature of the clustering process,

seems to be a contradiction. However, true cluster labels of patterns, if available, are used only as an

additional validation tool for the proposed methods.

III. Evidence Accumulation Clustering

In order to address the cluster ensemble combination problem, we propose the concept of evidence

accumulation clustering. We make no assumptions on the number of clusters, ki, in each data par-

tition, P i, and on the number of clusters k∗ in the combined data partition, P ∗. It is expected that

the combined data partition, P ∗, will better explain natural groupings of the data compared to the

individual clustering results, P i.

The idea of evidence accumulation clustering is to combine the results of multiple clusterings into a

single data partition, by viewing each clustering result as an independent evidence of data organization.

This requires us to address the following three issues: (1) how to collect evidence or generate the

clustering ensemble?, (2) how to combine the evidence?, and (3) how to extract a consistent data

partitioning from the combined evidence?

A. Producing Clustering Ensembles

Clustering ensembles can be generated by following two approaches: (1) choice of data representa-

tion, and (2) choice of clustering algorithms or algorithmic parameters. In the first approach, different

partitions of the objects under analysis may be produced by: (a) employing different pre-processing

and/or feature extraction mechanisms, which ultimately lead to different pattern representations (vec-

tors, strings, graphs, etc.) or different feature spaces; (b) exploring sub-spaces of the same data



representation, such as using sub-sets of features; (c) perturbing the data, such as in bootstrapping

techniques (like bagging), or sampling approaches, as, for instance, using a set of prototype samples to

represent huge data sets. In the second approach, we can generate clustering ensembles by: (i) applying

different clustering algorithms; (ii) using the same clustering algorithm with different parameters or

initializations; (iii) exploring different dissimilarity measures for evaluating inter-pattern relationships,

within a given clustering algorithm.

A combination of these two main mechanisms for producing clustering ensembles leads to exploration

of distinct views of inter-pattern relationships. From a computational perspective, clustering results

produced in an “independent way”facilitate efficient data analysis by utilizing distributed computing,

and reuse of results obtained previously.

B. Combining Evidence: The Co-Association Matrix

In order to cope with partitions with different numbers of clusters, we propose a voting mechanism

to combine the clustering results, leading to a new measure of similarity between patterns. The

underlying assumption is that patterns belonging to a “natural”cluster are very likely to be co-located

in the same cluster in different data partitions. Taking the co-occurrences of pairs of patterns in the

same cluster as votes for their association, the N data partitions of n patterns are mapped into a n×n

co-association matrix:

C(i, j) =
nij

N
,

where nij is the number of times the pattern pair (i, j) is assigned to the same cluster among the N

partitions.

The process of evidence accumulation is illustrated using the three-cluster data set containing 400

patterns in figure 2(a): outer ring (200 patterns); rectangular shaped cluster (50 patterns); 2-D gaussian

cluster (150 patterns). A clustering ensemble with 30 partitions (N = 30) was produced by running

the K-means algorithm with random initialization with k randomly chosen in the interval [10, 30].



−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

(a)Data set with concentric clusters.
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(b)First run of K-means, k = 25.
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(c)Second run of K-means, k = 11.
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(d)Plot of the inter-pattern similarity

matrix for the data in (a).
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(e)Co-association matrix for the clustering in

(b).
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(f)Co-association matrix for the clus-

tering in (c).
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(g)Co-association matrix based on the combi-

nation of 30 clusterings.
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(i)Evidence accumulation data parti-

tion.

Fig. 2. Individual clusterings and combination results on concentric clusters using the K-means algorithm.



Figures 2(b) and 2(c) show results of two runs of the K-means algorithm; the corresponding matrices

of associations are given in figures 2(e) and 2(f), respectively; result of the combination, by plotting the

final co-association matrix, is shown in fig. 2(g). For comparison, the plot of the similarity between

the original patterns, based on the Euclidean distance, is represented in figure 2(d): sim(xi, xj) =

maxxk,xl
{dE(xk, xl)} − dE(xi, xj), with dE denoting the Euclidean distance. Matrix coordinates in

figures 2(d) to 2(g) indicate pattern indices: 1-200 - outer ring; 201-250 - bar-shaped cluster; 251-400

- gaussian cluster. In figures 2(d) to 2(g), colors are in a gradation from white (zero similarity) to

dark black (highest similarity), as shown on the color bars. In plots 2(e) and 2(f) the white spots

within the lower right square are associated with the splitting of the gaussian cluster into several

small clusters. It can be seen that, although individual data partitions are quite different, neighboring

patterns fall in the same cluster in most of the partitions. As a result, the true structure of the

clusters becomes more evident in the co-association matrix: notice the more clear separation between

the clusters (large white zones) in figure 2(g) as compared to the original similarity matrix in figure

2(d). It is interesting to analyze the representation of the ring-shaped cluster in figure 2(g): the

black spots connect neighboring patterns; the large white zone corresponds to the similarity between

non-neighboring patterns. By moving along the ring, one can always find a path of highly similar

patterns.

The evidence accumulation mechanism thus maps the partitions in the clustering ensemble into a

new similarity measure between patterns (summarized in the co-association matrix C), intrinsically

performing a non-linear transformation of the original feature space into a new representation. Figure

2(h) illustrates this transformation by showing the 2-dimensional plot of the result of applying multi-

dimensional scaling over the matrix C in figure 2(g). Black dots correspond to the outer ring in figure

2(a), blue circles correspond to the inner gaussian data, and red crosses are the transformation of the

rectangular shaped cluster.



C. Recovering Natural Clusters

The core of the evidence accumulation clustering technique is the mapping of partitions into the co-

association matrix, C. This corresponds to a non-linear transformation of the original feature space into

a new representation, summarized in the similarity matrix, C, induced by inter-pattern relationships

present in the clustering ensemble. We can now apply any clustering algorithm over this new similarity

matrix in order to find a consistent data partition. We herein emphasize neighborhood relationship

and apply the single link and the average-link methods to the matrix C; the decision on the number

of clusters is based on cluster lifetime, as illustrated in figure 3. We define k−cluster lifetime as the

range of threshold values on the dendrogram that lead to the identification of k clusters. Lifetimes

of 2−, 3−, and 4−cluster partitions are represented in figure 3 as l2, l3 and l4, respectively. For

instance, the lifetime of the 3−cluster solution, l3 = 0.3600, is computed as the difference between the

minimum (0.4) and the maximum (0.76) threshold values that lead to the separation of patterns into

three clusters. The 1-cluster lifetime is a special case of the above, defined as the difference between

the minimum threshold value that leads to the 1-cluster solution (0.94) and the maximum distance

value (1.0).

l2

l3

l4

Fig. 3. Dendrogram produced by the SL method using the similarity matrix in figure 2(g). Distances (1− similarity)

are represented along the graph ordinate. From the dendrogram, the following cluster lifetimes are identified: 2-

clusters: l2 = 0.18; 3-clusters: l3 = 0.36; 4-clusters: l4 = 0.14; 5-clusters: 0.02. The 3-cluster partition (shown in

fig. 2(i)), corresponding to the longest lifetime, is chosen (threshold on the dendrogram is between 0.4 and 0.76).



D. Outline of the Evidence Accumulation Clustering Algorithm

A well known difficulty of the single-link method is its quadratic space and time complexities,

related to the processing of a n× n proximity matrix for large n. To circumvent this, we pre-compute

a n× p matrix which stores the indices of the p nearest neighbors for each of the n patterns. The SL

algorithm is now applied to the corresponding n × p similarity matrix. The nearest neighbor matrix

can be computed [57] as a pre-processing step. In the rest of the paper the value p = 20 will be used, a

value high enough to ensure correct results with the SL method. The proposed evidence accumulation

method, when using the SL method for obtaining the final data partition, is summarized in table I.

When using the AL method, the n× n proximity matrix is used instead, and the AL is used in step 2

to compute the dendrogram.

TABLE I

Data clustering using Evidence Accumulation (using SL).

Input: n - number of patterns n× p nearest neighbor matrix p - nearest neighbor index

N - number of clusterings P =
{
P 1, . . . PN

}
- clustering ensemble

Output: P ∗ - Combined data partition.

Initialization: Set the n× p co-association matrix, C(., .), to a null matrix.

1. For each data partition P l ∈ P do:

1.1. Update the co-association matrix: for each pattern pair (i, j) in the pth neighbor list, that

belongs to the same cluster in P l, set C(i, j) = C(i, j) + 1
N

.

2. Compute the SL dendrogram of C; the final partition, P ∗, is chosen as the one with the highest

lifetime.

IV. Figures of Merit for the Evaluation of Clustering Combination Results

According to the problem formulation in section II, the quality of combination results can be evalu-

ated in terms of consistency with the clustering ensemble P, robustness to small variations in P, and,



whenever possible, goodness of fit with the ground truth information. These requirements assume a

measure of similarity or agreement between the data partitions. We follow an information theoretic

approach, exploring the concept of mutual information to define the similarity between data partitions.

Next, objective functions, optimality criteria, and associated figures of merit are proposed and used

to evaluate the performance of combination methods.

A. Measuring the Consistency of Data Partitions Using Mutual Information

A partition P a describes a labelling of the n patterns in the data set X, into ka clusters. Taking

frequency counts as approximations for probabilities, the entropy [58] of the data partition P a is

expressed by H(P a) = −∑ka

i=1
na

i

n
log

(
na

i

n

)
, where na

i represents the number of patterns in cluster

Ca
i ∈ P a. The agreement between two partitions P a and P b is measured by the mutual information

I(P a, P b), as proposed by Strehl and Ghosh [56]

I(P a, P b) =
ka∑
i=1

kb∑
j=1

nab
ij

n
log




nab
ij

n

na
i

n
· nb

j

n


 , (3)

with nab
ij denoting the number of shared patterns between clusters Ca

i and Cb
j , Ca

i ∈ P a and Cb
j ∈

P b. From the definition of mutual information [58], it is easy to demonstrate that I(P a, P b) ≤
(
H(P a) + H(P b)

)
/2. We define the normalized mutual information (NMI) between two partitions

P a and P b as NMI(P a, P b) = 2·I(P a,P b)
H(P a)+H(P b)

, which, after simplification, leads to

NMI(P a, P b) =
−2

∑ka

i=1

∑kb

j=1 nab
ij log

(
nab

ij ·n
na

i ·nb
j

)

∑ka

i=1 na
i log

(
na

i

n

)
+

∑kb

j=1 nb
j log

(
nb

j

n

) . (4)

Note that 0 ≤ NMI(., .) ≤ 1. Equation (4) differs from the mutual-information based similarity

between partitions proposed in [56] in terms of the normalizing term; the entropy terms H(P a) and

H(P b) have been replaced in [56] by the upper bounds log(ka) and log(kb), respectively.

We define NMI(P,P) as the average normalized mutual information between P , an arbitrary data

partition, and the elements in the clustering ensemble, P:

NMI(P,P) =
1

N

N∑
i=1

NMI(P, P i). (5)



We further define the average agreement between partitions in a clustering ensemble P by

NMI(P,P) =
N−1∑
i=1

N∑
j=i+1

NMI(P i, P j)/

(
N

2

)
. (6)

B. Objective Functions and Optimality Criteria

Let P̌k
=

{
P̌ 1k

, . . . , P̌mk
}

, m = 1
k!

∑k
l=1

(
k
l

)
(−1)k−lln, represent the set of all possible partitions of

the n patterns in X into k clusters. We define k-cluster consensus partition, P ∗k , P ∗k ∈ P̌k
, as the

k-cluster partition that best fits the clustering ensemble P in the sense of maximizing the objective

function NMI(P̌
k
,P):

P ∗k = arg max
i

{
NMI(P̌ ik ,P)

}
. (7)

For each value of k, the criterion in equation (7) satisfies the property (a) in section II. The data

partition, P ∗k , can be seen as a k-cluster prototype representation of the set of partitions, P.
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(a)P 1: Nc=2.
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(b)P 2: Nc=3.
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(c)P 3: Nc=4.
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(d)P 4: Nc=5.
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(e)P 5: Nc=10.

Fig. 4. Five different partitions of the “cigar”data set: Nc indicates the number of clusters in the partition.

The average normalized mutual information function tends to assign higher values of similarity to

partitions with equal or similar number of clusters, when compared to partitions with different number

of clusters. This is illustrated in figures 4 and 5, concerning a data set formed by 4 gaussian clusters,

which we refer to as “cigar”data. We generated three different clustering ensembles, by applying the



K-means algorithm with random initialization, and N = 50. The three different clustering ensembles

Pk correspond to three different values of k, the number of clusters specified for the K-means algorithm:

(i) k = 10, (ii) k = 20, and (iii) random selection of k within the interval [4, 20] ( P4−20). We produced

8 plausible reference partitions, P i, i = 1, . . . 8, with the following numbers of clusters: Nc = 2, 3, 4, 5,

10, 15, 20, and 50. For Nc from 2 to 5, these partitions correspond to the two dense clusters relatively

well separated from the remaining clusters; for higher values of Nc, each of the two dense gaussian

clusters forms a cluster, and each of the sparse gaussians is split into several clusters using the K-means

algorithm. Figure 4 presents the first 5 of these partitions. As shown in figure 5, NMI(P i,Pk) tends

to take its maximum value for situations where Nc (the number of clusters in P i) is similar to k (blue

and red curves), having a steep increase as Nc approaches k, and smoothly decreasing with higher Nc

values. The black curve, corresponding to NMI(P i,P4−20), is similar to the curve for NMI(P i,P10);

this suggests that the average normalized mutual information values for clustering ensembles with

uniform compositions of the number of clusters, approaches the corresponding similarity measure of

a clustering ensemble with a fixed number of clusters, given by the average number of clusters in the

clustering ensemble.

It is apparent from figure 5 that the absolute value of NMI(P i,P) cannot be used for identifying

the correct number of clusters underlying a clustering ensemble, as it is biased towards the average

number of clusters in P. Therefore, the objective function in equation (7) can only be used for finding

a consensus clustering, as proposed in [56], under the assumption that the number of clusters in

the combined partition, k∗, is known. The optimal partition, summarizing the overall inter-pattern

relationships and that is consistent with the clustering ensemble P, should be obtained by searching

amongst the set of P ∗k solutions of equation (7), for various values of k. The appropriate value for k∗

is identified based on the robustness property, mentioned earlier.

In order to address the robustness property (b) in section II, we perturb the clustering ensemble

P, using a bootstrap technique, and compute the variance of the resulting NMI values. Let PB =
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Fig. 5. Plot of NMI(P i,Pk) for the partitions, P i, with the number of clusters in P i ranging from 2 to 50. Pk refers

to a clustering ensemble formed by 50 data partitions produced by the K-means algorithm, for fixed k (k = 10 - red

curve; k = 20 - blue curve), and for k randomly selected within the interval [4, 20] (dark line).

{
Pb1 , . . . ,PbB

}
be B bootstrap clustering ensembles produced by sampling with replacement from P,

and let P∗B = {P ∗b1 , . . . , P ∗bB} be the corresponding set of combined data partitions. The mean value

of the average normalized mutual information between k-cluster combined partitions, P ∗kB , and the

bootstrap clustering ensembles is given by

NMI(P ∗kb ,Pb) =
1

B

B∑
i=1

NMI(P ∗kbi ,Pbi), (8)

and the corresponding variance is defined as follows

var{NMI(P ∗kb ,Pb)} =
1

B − 1

B∑
i=1

(
NMI(P ∗kbi ,Pbi)−NMI(P ∗kb ,Pb)

)2

. (9)

It is expected that a robust data partition combination technique will be stable with respect to minor

clustering ensemble variations. This leads to the following minimum variance criterion. Find a partition

P ∗ such that

P ∗ = P ∗k : min
k

{
var{NMI(P ∗kb ,Pb)

}
is achieved. (10)



Let us define the variance of NMI between the bootstrap clustering ensembles as

var{NMI(Pb,Pb)} =
1

B − 1

B∑
i=1

(
NMI(Pbi ,Pbi)−NMI(Pb,Pb)

)2

, (11)

with NMI(Pb,Pb) = 1
B

∑B
i=1 NMI(Pbi,Pbi). Minimization of the variance criterion in equation (10)

implies the following inequality:

var{NMI(P ∗kb ,Pb)} ≤ var{NMI(Pb,Pb)}. (12)

In the following, standard deviations (std) will be used instead of variances.

V. Combining Data Partitions Based on the K-Means Algorithm

We now consider clustering ensembles produced by the K-means algorithm. We follow a split and

merge strategy. First, the data is split into a large number of small, spherical clusters, using the K-

means algorithm with an arbitrary initialization of cluster centers. Multiple runs of the K-means lead

to different data partitions (P 1, P 2, . . . , PN). The clustering results are combined using the evidence

accumulation technique described in section III, leading to a new similarity matrix between patterns,

C. The final clusters are obtained by applying the single-link method (or the AL method - in this

section, we shall be using the SL; application of the AL is reported in the next section) on this matrix,

thus merging small clusters produced in the first stage of the method. The final data partition is

chosen as the one with the highest lifetime, yielding P ∗.

Two different algorithms are considered, differing in the way k is selected to produce the K-means

clustering ensemble:

• Algorithm I Fixed k: N data partitions are produced by a random initialization of the k cluster

centers.

• Algorithm II Random k: the value of k for each run of the K-means is chosen randomly within an

interval [kmin, kmax]. N data partitions are produced by a random initialization of the k cluster centers.

These algorithms will be evaluated using the following data sets: (i) random data in a 5-dimensional



hyper-cube (figure 6(a)); (ii) half-rings data set (figure 6(b)); (iii) three concentric rings (figure 6(c));

(iv) cigar data set (figure 4(c)); (v) Iris data set.
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Fig. 6. Test data sets.

A. Evidence Accumulation Combination Results

Both the fixed k and the random k versions of the K-means based evidence accumulation algorithms

were applied on the test data sets, with N = 50.

For the random data set in figure 6(a), a single cluster was identified no matter what fixed k value

or interval for k value was considered. Algorithms I and II correctly identified the “natural”clusters in

the three synthetic data sets, as plotted in figures 4(c), 6(b) and 6(c). Based on perceptual evaluation,

the resulting clusters are considered the optimal partitions for these data. As expected, a direct

application of the K-means algorithm to these four data sets leads to a very poor performance; the

K-means algorithm can therefore be seen as a weak clusterer for these data sets. These examples

show that the performance of weak clusterers, such as the K-means for data sets with complex shaped

clusters, can be significantly improved by using the evidence accumulation strategy.

The Iris data set consists of three types of Iris plants (Setosa, Versicolor and Virginica), with 50

instances per class, represented by 4 features. This data, extensively used in classifier comparisons, is

known to have one class (Setosa) linearly separable from the remaining two classes, while the other two



classes partially overlap in the feature space. The most consistent combined partition obtained consists

of two clusters, corresponding to a merging of the two overlapping classes Virginica and Versicolor,

and a single cluster for the Setosa type. This example illustrates the difficulty of the K-means based

evidence accumulation method using the SL in handling touching clusters. Section VI proposes a

technique to address this situation.

B. Optimality Criteria and Adequacy of the Highest Lifetime Partition Criterion

The results presented in the previous section are concerned with combined partitions extracted

from the dendrogram produced by the SL method according to the highest lifetime partition criterion,

defined in section III-C. We now investigate the optimality of these results and the ability of this

criterion on deciding the number of clusters in the combined partition.

The typical evolution of NMI(P ∗kb ,Pb) and of std{NMI(P ∗kb ,Pb)} is illustrated in figure 7(a) (curve

and error bars in black, referred to as NMI(P ∗, P )) for the cigar data set; statistics were computed

over B = 100 bootstrap experiments, and P ∗kb partitions were obtained by forcing k−cluster solutions

using the SL method on the co-association matrices produced by combining N = 50 data partitions,

with fixed k = 15. While the average normalized mutual information grows with increasing k (with

a maximum at the number of clusters in the clustering ensemble, k = 15), the variance is a good

indicator of the “natural” number of clusters, having a minimum value at k = 4; the partition lifetime

criterion for extracting the combined partition from the dendrogram produced by the SL method, leads

precisely to this number of clusters, corresponding to the partition in figure 4(c). This also corresponds

to the perceptual evaluation of the data, which we represent as P o. The curve and error bars in red

represent NMI(P ∗kb , P o) ≡ NMI(P o,P∗kB) and std{NMI(P ∗kb , P o)}, respectively. Now, zero variance

is achieved for the 2-cluster and the 4-cluster solutions, meaning that a unique partition is produced as

the corresponding k−cluster consensus partition; the maximum agreement with perceptual evaluation

of the data, NMI(P o,P∗k
B) = 1, is obtained for k = 4, which coincides with the minimum variance of
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(b)Half-rings data set, k = 15.
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(c)Half-rings data set, k ∈ [20; 40].
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(d)Variance plots for several data sets.

Fig. 7. Evolution of NMI(P ∗k
b ,Pb) and of std{NMI(P ∗

k
b ,Pb)} as a function of k, the number of clusters in the combined

data partition, P ∗, for various data sets, with N = 50 and B = 100.

NMI(P ∗kb ,Pb). Figures 7(b) and 7(c), corresponding to the half-rings data set, show that the same

type of behavior is observed independently of using the fixed k or the random k version of the K-

means evidence accumulation algorithm; in this case, minimum variance occurs for k = 2, the number

of natural clusters in this data set, which also coincides with the value provided by the highest lifetime

partition criterion.

Figure 7(d) further corroborates these consistency and robustness results, showing plots of

std{NMI(P ∗kb ,Pb)} (solid line curves) and of std{NMI(Pb,Pb)} (dashed lines) for several data sets.

It is interesting to note that, in the absence of a multiple clusters structure, the std{NMI(P ∗kb ,Pb)}

curve for the random data set (in red) has high values, for k ≥ 2, compared to std{NMI(Pb,Pb)}, not



obeying the inequality in equation (12); the evidence accumulation algorithm identifies a single cluster

in this situation (figure 6(a)). With the remaining data sets, the evidence accumulation clustering

decision corresponds to the minimum of std{NMI(P ∗kb ,Pb)}, which falls below std{NMI(Pb,Pb)},

thus obeying the inequality (12).

C. On the Selection of Design Parameters

The K-means based evidence accumulation method has two design parameters: N , the number of

clusterings in the clustering ensemble, and k, the number of clusters in the K-means algorithm. The

value of N is related to the convergence of the algorithm. Typically, convergence is achieved for values

of N near 50, when an appropriate value of k is selected; with complex data sets (complexity meaning

a departure from spherical clusters), we use N = 200, a value high enough to ensure convergence of

the method. Figure 8 shows convergence curves for the half-rings data set. Each plot shows the mean

and standard deviation of k∗, the number of clusters in the combined partition P ∗, as a function of N ,

for three different values of k, computed over 25 experiments. As seen, faster convergence is achieved

with higher values of k.
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(c)k = 30.

Fig. 8. Convergence curves for the K-means based evidence accumulation combination algorithm, using a fixed k

value, on the half-rings data set. Average and standard deviation values were estimated over 25 different clustering

ensembles.

The influence of k on the fixed-k version of the algorithm is illustrated in figure 9, showing the



(a)Evidence accumulation clustering, k = 5. (b)Evidence accumulation clustering, k = 15.

(c)Evidence accumulation clustering, k = 80. (d)Dendrogram produced by the SL method directly

applied to the input data of figure 6(b), using the Eu-

clidean distance.

Fig. 9. Half-rings data set. Vertical axis on dendrograms (a) to (c) corresponds to distances, d(i, j), with d(i, j) =

1− C(i, j).

dendrograms produced by the single-link method over the co-association matrix, C, for several values

of k, and N = 200. Small values of k are not able to capture the complexity of the data, while large

values may produce an over-fragmentation of the data (in the limit, each pattern forming its own

cluster). By using the mixture decomposition method in [25], the data set is decomposed into 10

gaussian components. This should be a lower bound on the value of k to be used with the K-means, as

this algorithm imposes spherical shaped clusters, and therefore a higher number of components may

be needed for evidence accumulation. This is in agreement with the dendrograms in figures 9(a)- 9(c).

Although the two-cluster structure starts to emerge in the dendrogram for k = 5 (Fig. 9(a)), a clear

cluster separation is present in the dendrogram for k = 15 (fig. 9(b)). As k increases, similarity values

between pattern pairs decrease, and links in the dendrograms progressively begin to form at higher

levels, causing the two natural clusters to be less clearly defined (see fig. 9(c) for k = 80); as a result,



the number of clusters obtained in the combined partition increases with k.

(a)k ∈ [2; 10]. (b)k ∈ [2; 20].

(c)k ∈ [60; 90]. (d)k ∈ [2; 80].

Fig. 10. Combining 200 K-means clusterings, with k randomly selected within an interval [kmin, kmax]. Each figure

shows the dendrogram produced by the SL method over the co-association matrix, when using the indicated range

for k.

Algorithm II, with k randomly chosen in an interval, provides more robust solutions, being less

sensitive to the values of kmin and kmax. Figure 10 shows the combination of clustering ensembles

produced by K-means clustering with k uniformly distributed in the interval [kmin, kmax]. Several

intervals were considered, with N = 50 and N = 200. The dendrograms in figures 10(a) and 10(b)

show how the inability of the K-means clustering to capture the true structure of data with low values

of k is progressively overcome as wider ranges of k are considered. Low values of k, characterized by

high similarity values in the co-association matrix, C, contribute to a scaling up of similarity values,

where as high values of k produce random, high granularity data partitions, scaling down the similarity

values (see figure 10(c)). Thus, using a wide range for values of k has an averaging effect and leads to

identification of the true structure, as seen in figure 10(d).



In conclusion, there is a minimum value of k that is needed in order for the clustering structure to

capture the structure of the data, using the K-means algorithm. Algorithm I should use a k value

higher than this minimum. Although algorithm II is more robust than algorithm I, it is important

to ensure that the range (kmin, kmax) is not completely below the minimum k value. Therefore, in

order to adequately select these parameters, one could either: (i) gather a priori information about

the minimum k value, such as the one provided by an algorithm performing gaussian mixture decom-

position; or (ii) test several values for k, kmin and kmax, and then analyze the stability of the results.

The mutual information indices defined previously can help us in this task.

VI. Experimental Results

Results of the application of the algorithms I and II on several synthetic data sets were already

presented in section V-A. In this section we further apply the evidence accumulation clustering (EAC)

paradigm, using either the single-link algorithm (EAC-SL) or the average-link algorithm (EAC-AL),

on the following data sets: (1) Complex image - data set of figure 1; 739 patterns distributed in 8

clusters (the 10 points of the outer circle are considered one cluster); (2) Cigar data - 4 clusters (see

figure 4); (3) Half-rings - 2 clusters in figure 6(b); (4) 3-rings – figure 6(c), three clusters; (5) Iris data

- three clusters; (6) Wisconsin Breast-cancer (683 patterns represented by 9 integer-valued attributes,

with two class labels - benign and malignant), available at the UCI Machine Learning Repository; (7)

Optical digits - from a total of 3823 samples (each with 64 features) available at the UCI repository

(we used a subset composed of the first 100 samples of all the digits); (8) Log Yeast and (9) Std

Yeast consist of the logarithm and the standardized version (normalization to zero mean and unitary

variance), respectively, of gene expression levels of 384 genes over two cell cycles of yeast cell data [59];

(10) Textures - consists of 4,000 patterns in a 19-dimensional feature space, representing an image with

4 distinct textures, distributed in a 2× 2 grid (fig. 11) [25].

The first set of experiments with the split-and-merge strategy described in section V aims at: (i)



Fig. 11. Texture image.

assessing the improvement of the combination technique over single run of clustering algorithms; (ii)

comparing the EAC with other combination methods. For these purposes, we have compared our

experimental results with: (a) single run of the well-known clustering algorithms K-means (KM),

SL, and AL, and the spectral clustering algorithm (SC) by Ng et al. [45]; (b) the cluster ensemble

combination methods by Strehl and Ghosh [56], CSPA, HPGA and MCLA. The spectral clustering

algorithm requires the setting of a scaling parameter, σ, in addition to the number of clusters, k, to

partition the data. For each value of k, we run the algorithm for values of σ in the interval [0.08; 3.0],

in steps of 0.02; results herein presented correspond to the selection of σ according to the minimum

square error criterion described in [45]. Combination methods were applied to clustering ensembles

obtained by K-means clustering, with random initialization of cluster centers, and a random selection

of k in large intervals.

In order to evaluate the final partitioning we computed the error rate by matching the clustering

results with ground truth information, taken as the known labelling of the data of the real data sets,

or taken as the perceptual grouping of the synthetic data sets. The K-means algorithm is known to

be sensitive to initialization. For each value of k we performed 50 runs of the K-means algorithm with

random initialization of cluster centers, and retained only the result that corresponded to the best

match obtained over these 50 experiments (minimum error rates attained) for comparison purposes,

although a large variance on the error rates was observed.



Single run of algorithms Combination methods

Data Set KM SL AL SC EAC-SL EAC-AL CSPA HPGA MCLA

Complex image 41.5 52.5 48.4 1.2 18.7 12.5 41.3 34.6 -

Cigar 31.0 39.6 12.8 0.0 0.0 29.2 39.6 27.2 39.6

Half-rings 17.5 24.3 5.3 0.0 0.0 0.0 25.0 28.5 25.3

3-Rings 59.1 0.0 56.4 0.0 0.0 0.0 22.2 22.9 44.4

Iris 11.3 32.0 9.3 32.0 25.3 10.0 2.0 2.7 2.0

Breast Cancer 3.4 34.9 5.7 5.1 35.4 2.9 15.2 12.0 15.0

Optical Digits 20.3 89.4 24.3 12.3 60.0 21.0 16.0 22.0 12.0

Log Yeast 63.0 65.1 71.4 52.3 63.0 59.0 66.0 68.0 68.0

Std Yeast 26.3 63.8 34.1 29.2 52.0 33.0 47.0 43.0 46.0

TABLE II

Error rates (in percentage) for different clustering algorithms (KM: K-means; SL: single-link; AL:

average-link; SC: spectral clustering) and combination methods (EAC-SL and EAC-AL are the

proposed combination methods; CSPA, HPGA and MCLA are graph-based combination methods by

Strehl and Gosh).

Table II summarizes the error rates obtained on the different data sets, when assuming k, the number

of clusters, is known. Combination methods combined 50 (N = 50) partitions; experiments with N =

100 and N = 200 led to similar results. The dash in the MCLA column means that the computation

was interrupted due to high time/space complexity. Comparing the results of the proposed EAC

paradigm (columns EAC-SL and EAC-AL) with the graph-based combination approaches (last three

columns), we can see that evidence accumulation has the best overall performance, achieving minimum

error rates for all the data sets, except for the Iris and the Optical Digits cases. The difference in the

results is particularly significant in situations of arbitrary shaped clusters (the first four data sets),



demonstrating the versatility of the EAC approach in addressing the cluster shape issue. Furthermore,

the lifetime criterion associated with the EAC technique, provides an automatic way to decide on

the number of clusters, when k is not known and clusters are well separated. Comparison of the

EAC-SL and the EAC-AL shows that EAC-AL is more robust, producing, in general, better results,

especially in situations of touching clusters (last 5 data sets), a situation that is poorly handled by

the SL method. In situations of well separated clusters, however, best performance is achieved by the

EAC-SL method (notice the 29% error rate of the EAC-AL in the cigar data set, as compared to 0%

error with the EAC-SL). Although the EAC-SL appears to perform worse for the complex image data

set, this is because we forced the algorithm to find an 8-cluster partition. If we apply the lifetime

criterion for deciding the number of clusters, a 13-cluster partition is obtained corresponding to a 1.2%

error rate; the data partition obtained is plotted in fig. 12(a), showing that the basic clusters are

correctly identified, the 10 patterns in the outer circle being either merged into a nearby cluster, or

isolated as a single cluster.
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(b)Spectral clustering - 8 clusters.

Fig. 12. Clustering of the data set in figure 1(a) using EAC-SL and SC: the same error rate is achieved.

It can be seen from table II that the EAC-AL has an overall better performance than the single run

of the KM, SL and AL algorithms. The best performing single run algorithm is the spectral clustering;

the basic philosophy of this method consists of mapping the original space into a new, more compact



feature space, by means of eigenvector decomposition, followed by clustering (K-means clustering, in

the algorithm by Ng et al.), a computationally expensive procedure (O(n3) time complexity, with n

being the number of samples). Both the SC and the EAC-SL are able to correctly identify the well

separated clusters in data sets 2 to 4. Concerning the touching clusters, the EAC-AL wins in data sets

Iris and Breast Cancer, and has a lower performance for the last three data sets. The difficulty of the

EAC-SL to handle touching clusters is however notorious.

Data Set k∗ KM (av) EAC-SL EAC-AL CSPA HPGA MCLA

Complex image 8 59.4 59.4 59.4 62.0 72.9 -

Cigar 4 37.6 12.4 26.3 43.1 54.0 38.4

Half-rings 2 25.5 25.5 25.0 25.5 50.0 25.5

3-Rings 3 65.0 55.1 63.8 65.4 63.56 65.4

Iris 3 18.1 11.1 11.1 13.3 37.3 11.2

Breast Cancer 2 3.9 4.0 4.0 17.3 49.9 3.8

Optical Digits 10 27.4 56.6 23.2 18.1 40.7 18.5

Log Yeast 3 69.3 66.6 68.5 72.5 74.0 69.9

Std Yeast 3 38.8 44.1 31.8 42.2 45.3 43.1

TABLE III

Combining data partitions produced by K-means clustering with a fixed number of clusters equal

to the “natural”number of clusters k∗.

In a second set of experiments we tried to evaluate the behavior of the several combination techniques,

assuming the number of clusters is known, when the partitions in the clustering ensemble each have k∗

clusters, with k∗ being the “natural”number of clusters for the data set. The corresponding results are

summarized in table III, showing average error rates computed over 20 repetitions of the combination

experiments, using N=50. Abandoning the split and merge strategy, that was analyzed and justified



in section V, the overall performance of combination techniques degraded, as expected, in particular

in situations of complex shaped clusters. The issue in these experiments is to find a consensus data

partition by combining the partitions in the clustering ensemble, the underlying philosophy of Strehl

and Gosh’s methods. It can be seen from table III that, once again, the proposed EAC technique

produces, in general, better results than the graph-based combination approaches. Furthermore, the

error rates obtained with the EAC-AL method are systematically lower or comparable to the average

error rates obtained with the individual clusterings in the clustering ensembles (third column of table

III). With the EAC-SL, combination results outperform average error rates computed over individual

partitions in the clustering ensemble when dealing with well separated clusters; this result is not

always observed in situations of touching clusters. The graph-based combination approaches, however,

produced, most of the times, poorer performances than the average performance of single run of

K-means.

We further evaluated how these evidence accumulation algorithms would perform when the original

data are represented by a set of prototypes, thus reducing their computational complexity and extend-

ing their applicability to very large data sets. In order to improve the robustness of the EAC-SL to

touching clusters, we propose a noise removal technique that combines sampling with density-based se-

lection of prototypes. We start by decomposing the data set into a large number of small and compact

clusters using the K-means algorithm, and representing each cluster by its centroid. Each centroid is

seen as a prototype of a region in the feature space. The next phase is to remove noisy patterns based

on density analysis. We build on the ideas of Jarvis and Patrick [60] and Ertoz- et al. [61] to obtain a

set of “core”points from the available data. Jarvis and Patrick defined a shared nearest neighbor graph

by the process of k-nearest neighbor sparsification: a link between patterns i and j is defined if and

only if both i and j are included in their q nearest neighbor lists. The strength or weight of this link

is defined by w(i, j) =
∑shared neighbors

l=1 (k + 1−ml) (k + 1− nl) , where ml and nl are the positions of

the shared neighbor l in the i and j lists, respectively. The weight w(i, j) is a measure of the similarity



between pattern pairs based on the connectivity. By adopting the graph theoretic point of view, we

estimate point densities by the sum of the similarities of a point’s nearest neighbors, that is, its total

link strength defined as [61]: ls(i) =
∑

j∈{q−nearest neighbors of i} w(i, j). We use q = 20, as the number

of neighbors. The higher the density ls(i) (strong connectivity), the more likely it is that point i is

a core or representative point. On the contrary, the lower the density, the more likely the point is a

noise point or an outlier. Points that obey the criterion ls(i) ≥ (lsav − αlsstd), where lsav and lsstd

are the average and the standard deviation, respectively, of ls, are defined as the core points; α is

chosen to eliminate a small fraction of the patterns. We refer to this technique for selecting prototypes

as the shared nearest neighbor (SNN) technique. The data set representatives thus obtained are then

clustered using the techniques described previously. The final data partition is obtained by assigning

the original patterns to clusters according to the nearest neighbor rule: assign pattern xi to the cluster

to which its nearest core point belongs.

Single run of algorithms Combination methods

Data Set #prot KM SL AL SC EAC-SL EAC-AL CSPA HPGA MCLA

Textures 301 4.5 47.6 29.5 8.4 36.2 8.0 10.1 10.7 8.1

Textures, k = 4 301 4.5 47.6 29.5 8.4 10.1 8.1 9.25 28.8 8.1

Iris 122 11.3 32.0 14.0 32.0 10.0 10.0 8.7 14.7 16.0

TABLE IV

Clustering using prototypes. The column “#prot”indicates the number of prototypes used.

Table IV shows some of the results obtained. For the Texture data set we selected 301 core points

out of 4000 in the original data using the SNN technique; the first row in table IV concerns the

construction of clustering ensembles using k ∈ [2; 20], N = 200, while in the second row the clustering

ensemble used a fixed k = 4, which is equal to the true number of classes. Once again, the proposed

EAC paradigm produces better results than the graph-based combination techniques. While the EAC-



AL outperforms the SL, AL and the SC algorithms, selection of the best single run of the K-means

algorithm, with k = 4, over 50 experiments leads to the best error rate, suggesting a compact structure

of the clusters; this is further corroborated by the significant reduction in the error rate by the EAC-

SL method when using a fixed-k composition of the clustering ensemble (10% error), as compared

to the mixed-k composition (36.2%). As shown in the last row of table IV, the performance of the

EAC-SL is also significantly improved by the sampling technique on the Iris data set, achieving similar

results to the EAC-AL method (10% error). The same happens with the Breast Cancer database:

by applying the SNN technique, 199 prototypes were used leading to an error rate of 3.1% with the

EAC-SL method, a results comparable to the EAC-AL, and better than all the remaining algorithms

and combination methods. The spectral kernel method described in [46] achieves a 20.35% error rate

when using a Gaussian kernel, and 2.71% error with a linear kernel on the Breast Cancer data.

Concerning computational time complexity, the split-and-merge strategy of cluster ensemble com-

bination comprises two phases: (1) building the cluster ensemble using the K-means algorithm, which

takes O(nkN) time, with n being the number of samples, k the number of clusters in each data parti-

tion, and N is the number of partitions in the clustering ensemble; (2) combining the data partitions.

The proposed EAC combination method, associated with the SL or the AL algorihms, is O(n2N);

compared to the CSPA (O(n2Nk)), HPGA (O(nNk)), and MCLA (O(nk2N2)) combination methods,

HPGA is the fastest. Except for the spectral clustering method (O(n3)), ensemble methods are com-

putationally more expensive than the single run clustering algorithms analyzed (K-means, SL, and

AL); however, as demonstrated empirically, they provide increased robustness and performance, being

able to identify complex cluster structures, not adequately handled by these algorithms.

VII. Conclusions

We have proposed a method for combining various clustering partitions of a given data set in order to

obtain a partition that is better than individual partitions. These individual partitions could have been



obtained either by applying the same clustering algorithm with different initialization of parameters

or by different clustering algorithms applied to the given data. Our evidence accumulation technique

maps the clustering ensemble into a new similarity measure between patterns, by accumulating pairwise

pattern associations. Different clustering algorithms could be applied on the new similarity matrix.

We have explored the evidence accumulation clustering approach with the single-link and average-link

hierarchical agglomerative algorithms, to extract the combined data partition. Furthermore, we have

introduced a theoretical framework, and optimality criteria, for the analysis of clustering combination

results, based on the concept of mutual information, and on variance analysis using bootstrapping.

A K-means based evidence accumulation technique was analyzed in light of the proposed optimality

criteria. Results obtained on both synthetic and real data sets illustrate the ability of the evidence

accumulation technique to identify clusters with arbitrary shapes and arbitrary sizes. Experimental

results were compared with individual runs of well known clustering algorithms, and also with other

cluster ensemble combination methods. We have shown that the proposed evidence accumulation

clustering performs better compared to other combination methods. It is expected that the application

of the evidence accumulation technique to more powerful clustering methods than K-means, can lead

to even better partitions of complex data sets.
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