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ABSTRACT

The continuum of western North American hydroclimate during the last millennium

is analyzed here using instrumental records, proxy data, and global climate model

(GCM) simulations. We find that variance at long timescales (low frequencies) is

generally more substantial than variance at short timescales (high frequencies). We

find that local sources of autocorrelation (e.g., soil moisture storage) likely explain

the tendency for variance to increase from monthly to interannual timescales, but

that variance at longer timescales requires remote climate sources of variability. Our

analysis of global climate model data indicates that at least one fully coupled GCM

can reproduce the characteristics of the continuum on short (interannual) and long

(multicentury) timescales, but that proxy spectra and GCM spectra disagree about

the amount of variance present on intermediate (decadal to centennial) timescales.

Since instrumental records, as well as multiple independent types of paleoclimate

records, provide evidence that variance increases with timescale at these frequen-

cies, and because numerical experiments indicate that local autocorrelation is not

a likely source of variance at these timescales, we argue that climate model simula-

tions underestimate the full range of low-frequency drought variability. Moreover,

the models may also underestimate the risk of future megadroughts, which we at-

tempt to quantify using a new method that combines frequency information from

observational data with projections of 21st century hydroclimate. Our results indi-

cate that the risk of a severe, decadal-scale drought during the coming century is

at least 1-in-10 for most of the US Southwest, and may be as high as 1-in-3. These

findings should be incorporated into adaptation and mitigation strategies to cope

with regional climate variability and climate change.
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INTRODUCTION

0.1 Motivation

During the 20th century, North America experienced two periods of prolonged arid-

ity: the 1930s “dust bowl” and 1950s Southwest drought. Archives of hydroclimate

fluctuations during the last few millennia indicate that droughts like these occur

naturally one or two times per century, and that much more prolonged periods

of aridity (megadroughts) are also part of the natural range of variability (e.g.,

Woodhouse and Overpeck, 1998). In the past, megadroughts have had devastating

consequences for people and societies worldwide. The first step in preventing simi-

lar impacts in the future is to assess how likely these events are to occur. To do so

requires us to understand the spatial and temporal characteristics of megadroughts,

and ideally to elucidate their mechanistic origins. Since megadroughts occur in-

frequently and on long timescales, 20th century records alone paint an incomplete

picture of the full range of low-frequency hydroclimate behavior (e.g., Cook et al.,

2004, 2010). To explore a more comprehensive range of megadrought behavior, we

must therefore turn to paleoclimate archives of hydroclimate fluctuations in the past,

and multi-century climate model simulations. Both of these types of data provide

a more robust view of the frequency, magnitude, and duration of megadroughts.

To compare paleoclimate indicators of drought and hydroclimate variables in

climate model simulations, we rely heavily on spectral analysis, which allows us to

ignore the time-evolving characteristics of drought and focus instead on the relative

importance of different frequency components across a continuum of timescales. This

research is particularly motivated by the observation that drought variance is gener-

ally greater at long timescales than at short timescales – a phenomenon referred to

as “redness.” Although there are many plausible sources of redness, we focus on two

extreme cases: redness caused by non-climate sources of local “autocorrelation,” and

redness caused by the climate system. In other words, we are interested in determin-
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ing if redness in hydroclimate arises because drought variables behave like weakly-

damped, stochastically-forced processes (Delworth and Manabe, 1989; Hasselmann,

1976), or because the climate continuum itself is red (Huybers and Curry, 2006). It

is important to distinguish between these two possibilities for several reasons. First,

redness caused by local autocorrelation could give rise to megadroughts, but at a

much more infrequent rate (e.g., Pelletier and Turcotte, 1997). Hence understanding

the continuum of hydroclimate variability could also improve our risk assessments

of drought in the future. Second, if the sources of redness in drought variables are

local, then drought variability may not be very predictable on timescales longer than

a few months or seasons. On the other hand, if there are climate sources of redness

that can identified, they may offer the most potential for making decadal “forecasts”

of climate, which in turn would be highly valuable tools for policymakers and water

resource managers during the coming years (e.g., Meehl et al., 2009).

0.2 Overview of Appendices

Presented here are four studies that characterize several crucial aspects of drought

and megadrought variability in western North America. They represent a uni-

fied subset of more general research into the decadal-scale variability in western

North America that has included: (1) analysis of tropical Pacific coral archives of

sea surface temperature variability (Ault et al., 2009); (2) estimates of the impor-

tance of decadal to multidecadal precipitation variability (Ault and St George, 2010;

St. George and Ault, 2011); and (3) diagnosis of the synoptic, interannual, and long-

term controls on the timing of spring in western North America (Ault et al., 2011).

To varying degrees, these four chapters examine the phenomena of megadrought

in the context of a null hypothesis that assumes these events occur as a conse-

quence of high-frequency fluctuations that have been integrated through time (e.g.,

Hasselmann, 1976)

In the first Appendix (A), we test whether or not the amplitude of low-frequency

drought variance in observations, paleoclimate data, and climate model simula-
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tions is significantly different from what would be expected from a weakly damped,

stochastically-forced process (Hasselmann, 1976; Delworth and Manabe, 1988). We

develop this null hypothesis using a Monte Carlo approach to generate realizations

of an order-1 autoregressive (AR(1)) process, whose autocorrelation term operates

at the monthly timescale to reflect local sources of “memory” (such as soil moisture,

ecological processes and snow accumulation). We then employ spectral analysis to

compare the variance of these Monte Carlo realizations with the variance of in-

strumental, paleoclimate, and global climate model (GCM) data. We use spectral

analysis because it allows us to overcome the reality that the time evolution of hy-

droclimate fluctuations would have evolved differently in climate models than in

nature, even if the two types of data exhibited a fundamentally similar range of

low-frequency hydroclimatic variability.

The results in Appendix A indicate that a simple (AR(1)) null hypothesis cannot

explain the full range of low-frequency behavior in instrumental data, lake and cave

records of hydroclimate, and long, moisture-sensitive tree-ring chronologies. On the

other hand, the spectral densities of hydroclimatic variability computed from various

GCM experiments, as well as the densities computed from many tree-ring based re-

constructions of hydroclimate, are consistent with the expectations developed from

the null hypothesis. In other words, high-frequency variance, autocorrelation, and

sufficient time could produce a range of megadrought variability that is consistent

with the range that has been reconstructed from tree-rings and is simulated by long,

unforced climate model simulations. We argue that this view is incomplete, how-

ever, because tree-ring data are typically “pre-processed” using methods that remove

long-term non-climate (and climate) variability, and because the long control simula-

tions lack the time-evolving boundary conditions that have operated during the last

few millennia. When long tree-ring records, other proxies, and transient climate

model simulations are considered, hydroclimate variance emerges along a contin-

uum of drought that can be characterized by a “red” power spectrum. Yet there

is still a discrepancy between the paleoclimate and climate model data on decadal

(10yr) to multicentury timescales, with the former supporting substantially more
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low-frequency variance than the latter. This discrepancy, in turn, has implications

for our view of megadrought risk, much in the same way that long-term variability in

stock markets influences our view of economic risk (Mandelbrot and Hudson, 2004),

a point we explore further in Appendix B.

The second Appendix (B) asks “how likely are megadroughts in the coming

century?” To answer this question, we broaden our view beyond North America

to consider global megadrought risk as it is represented by 18 GCMs used in the

IPCC 4th Assessment (Solomon et al., 2007). We summarize the relationship be-

tween timescale and variance using power-law coefficients (m) that relate frequency

(f) to spectral density (S(f)) such that: f−m ∝ S(f). Since higher values of this

parameter are associated with greater megadrought risk, we refer to the parameter

as the megadrought risk parameter, which we calculate from observations, paleo-

climate data, and climate models. We also calculate this parameter from a new

reconstruction of Colorado River flow (presented for the first time in this study),

which preserves variance across the widest possible range of timescales.

We find that the values of the megadrought risk parameter (m) differ greatly

between observational data (instrumental and paleoclimate) and GCMs. Observa-

tional data support positive values of m, while values of m calculated from GCMs

are near zero or negative, particularly in the tropical pacific where interannual vari-

ability is driven by highly-energetic El Nino/La Nina variability (Guilyardi et al.,

2009).

In Appendix B, we also develop a definition of “megadrought” that characterizes

the well-known 1150’s interval of aridity that occurred in reconstructed Colorado

River streamflow (Meko et al., 2007). Using this definition, we map out the risk of

such an event during the coming century, and find that in most of the arid regions

the risk of a megadrought is at about 1-in-10, and higher than 1-in-2 in the most

extreme cases. Since we argue that the GCMs underestimate the megadrought

risk parameter (m), we conduct a second megadrought-risk analysis whereby the

precipitation projections are rescaled to exhibit a value of m that is consistent with

observational data. When we perform this analysis in the Southwest, the level of



17

risk of a megadrought in the next century rises from 1-in-10 to 1-in-4.

In Appendix C we turn our attention to the Sonoran Desert, a region already

experiencing serious water resource challenges (e.g., MacDonald, 2010). Impor-

tantly, many of these water resources come from underground aquifers, and hence

we have developed a new speleothem proxy for regional hydroclimate over the last

1500 years. To aid in our interpretation of this record, and to compare it with pre-

cisely dated tree-ring chronologies from the Southwest, we develop a Monte Carlo

age modeling scheme. This scheme allows us to develop families of age models and

explicitly quantify the effects of our assumptions on the distribution of these age

model families. It also allows us to treat correlations with annually-precise tree-ring

records in a probabilistic context. These modeling experiments, and experiments

from an earlier study (Truebe et al., 2010), suggest that the most robust (and inter-

pretable) timescales recorded by the record are multidecadal and longer. Findings

also suggest that the cave record is winter sensitive, and that it has recorded several

megadroughts over the past millennium and a half. It also depicts the interval from

1000AD to 1500AD as a period of enhanced variability.

In Appendix D we return to the null hypothesis for drought considered in Ap-

pendix A, but we modify it to account for spatial variability as well. That is, we

are interested in determining if low-frequency drought variance in large-scale spatial

patterns might arise from high-frequency fluctuations with spatial structure and au-

tocorrelation. To develop this null hypothesis further, we begin by examining the

time evolution of the worst droughts of the 20th century. We then identify robust

patterns of large-scale drought variability that are present in a variety of drought

indices, and across a wide range of timescales. We explore the seasonal charac-

teristics of these patterns, and examine their association with hemispheric climate

variability. All of these analyses show that atmospheric variability at the synoptic

timescale can synchronize regional hydroclimate anomalies, and they further show

that autocorrelation can cause these anomalies to persist.

To rigorously test the null hypothesis that autocorrelation and spatial correlation

explain persistent, large-scale megadroughts, we run 1000 millennial-scale statisti-
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cal simulations of North American climate. Simulations are run at the monthly

timestep, and they preserve the spatial correlations of precipitation and tempera-

ture, but do not contain any climate sources of persistence outside of the annual

cycle. We then calculate drought from the statistically-simulated climate fields, and

use multi-variate spectral methods (Mann and Park, 1999) to calculate spatial pat-

terns of variability in these climates across a wide range of frequencies. We also

estimate large-scale patterns of variability at different timescales in reconstructed

drought (Cook et al., 2004), drought in a long GCM control run (Collins et al.,

2006), and a transient simulation (Kaufman et al., 2009).

Even with the more rigorous null hypothesis used in Appendix D, we find that

the spatial patterns of drought in nature are more energetic than stochasticity, auto-

correlation, and spatial correlation would predict. We also find that climate model

simulations of drought are more energetic than the null would predict, and that both

climate model simulations and reconstructions of drought are consistent with each

other. As in Appendix A, however, we stress that this finding relies on what is likely

a conservative estimate of low-frequency hydroclimate variance because the authors

of the reconstructed drought dataset explicitly remove variance at long timescales

(see supplementary material of Cook et al., 2004). Nonetheless, the similarity be-

tween global climate model drought patterns and paleoclimate patterns of drought

is remarkable, and it implies that the mechanisms of drought may be similar across

a continuum of timescales.

0.3 Implications

In general, low-frequency hydroclimate variability in North America is more ener-

getic than high-frequency variability. On short timescales (interannual to decadal)

and long timescales (multi-century to millennial), paleoclimate proxies and global

climate model simulations provide a consistent view of hydroclimate continuum in

western North America (see schematic drawing in Figure 1). On short timescales,

redness arises from local autocorrelation, either because of soil-moisture storage or
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other sources of “memory” at monthly (and shorter) time intervals. On the very

long timescales, redness arises from the dynamic nature of the boundary conditions

themselves. There is considerable disagreement, however, on decadal to centennial

timescales between the “proxy view” of hydroclimate and the GCM view. Proxies

indicate that the spectrum is red, but GCMs do not simulate this redness. Since

redness of proxy records cannot be explained by interannual variability and auto-

correlation alone, it implies that the background state of the whole hydroclimate

system is always varying because of the influence of large-scale climate sources of

variability. Since the GCMs do not simulate the observed redness on decadal to

centennial timescales, it is possible that there are important climate phenomena

that operate at these timescales that the GCMs are not simulating.

There are several known, large-scale limitations to the dynamics of GCMs used

in the IPCC 4th assessment, all of which could be linked to North American hy-

droclimate. First, there has been an observed widening of the Hadley cell that

GCMs do not simulate (Seidel et al., 2008); second, the winds are faster and win-

ter precipitation is greater in GCMs than in nature (McAfee et al., 2011); and

thirdly, the CMIP3 generation of GCMs simulate highly-energetic 2-4 year fluctua-

tions in the tropical Pacific (Guilyardi et al., 2009), whereas observational records

of tropical Pacific variability indicate that it too may exhibit red spectrum on long

timescales (Urban et al., 2000; Cobb et al., 2003; Conroy et al., 2008; Ault et al.,

2009). Of these three candidates, the third source has the most potential to ex-

plain the differences between the observed and modeled North American hydro-

climate continuum because tropical Pacific variability is closely linked to western

North American hydroclimate (Ropelewski and Halpert, 1987; Seager et al., 2005a;

Herweijer and Seager, 2008; Findell and Delworth, 2010; Schubert et al., 2009).

If redness in western North American drought does indeed reflect redness in trop-

ical Pacific sea surface temperature variability, this finding would call into question

the existing paradigm of El Niño/Southern Oscillation (ENSO) variability being

a fundamentally interannual phenomena (Neelin et al., 1998). Nonetheless, this

view is not outside the scope of several existing, alternative paradigms. For in-
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stance, Clement and Cane (1999) showed that ENSO-like variability emerges in a

very long (150,000 year) control run of the Zebiak-Cane model Zebiak and Cane

(1987), and Clement et al. (2011) has shown that red spectra arise in the thermody-

namic mixed layer, “slab ocean,” experiments of several IPCC models. On decadal

timescales Meehl and Hu (2006) has shown that slow-moving Rossby waves modu-

late thermocline depth in the western Pacific, which triggers a variety of feedbacks

in the region leading to sustained, low-frequency variability in a long coupled con-

trol run. In multi-millennial, fully coupled simulations with fixed (pre-industrial)

boundary conditions, Wittenberg (2009) and Delworth (2010) have demonstrated

that multicentury-scale variability arises in the variance of the interannual ENSO

signal. These findings encompass a myriad of modeling paradigms that give rise

to ultra-low ENSO-like variability. Isolating the physical mechanisms of variability

across a wide range of timescale in the tropical Pacific, therefore, may afford the

most promise for understanding the physical drivers of the continuum of drought

variability in western North America.

Even if the ultimate origins of megadroughts are currently unknown and unpre-

dictable, the results of these studies strongly support the view that megadrought

risk in the coming century is substantial. Any long-term water resource management

strategies would benefit from developing plans to cope with droughts that are more

severe and prolonged than anything witnessed during the last century. At the same

time, future paleoclimate and climate modeling studies should work to elucidate the

physical processes that contribute variance to the continuum, which will ultimately

help refine our view of future drought and megadrought risk.
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Figure 1: Schematic representation of the power spectrum of western North Amer-
ican hydro climate. At high frequencies, “redness” arises from local autocorrela-
tion. At intermediate (decadal to centennial) frequencies, proxy drought records
and global climate models disagree about the shape of the spectrum: proxies (or-
ange line) indicate that variance increases at lower frequencies, climate models (blue
line) exhibit a relatively flat spectrum. On long timescales (centennial and longer)
the proxies and the models are back in agreement (red lines), with both providing
evidence that dynamic boundary conditions contribute redness to the lowest resolv-
able frequencies. The gray area represents the region where disagreement between
proxies and models leads to uncertainty in the “true” shape of the power spectrum.
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APPENDIX A

AMERICAN DROUGHT: RED, WHITE OR BLUE?
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Otto-Bliesner5, C. Deser5, and C. Woodhouse6
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6. Department of Geography, Univ. of Arizona, Tucson, AZ

A.1 Abstract

The distribution of natural climatic variance across the frequency spectrum has sub-

stantial importance for anticipating how future climate change will evolve. Here we

analyze the spectrum of drought-related climate variance in a large array of instru-

mental, proxy, and climate model data for western North America (WNA). We esti-

mate the linear relationship between log-transformed frequency and log-transformed

variance (e.g., the power-law coefficient, β) in data and model output. We then use

these values of β to test the significance of low-frequency variability against the null

hypothesis that it arises from local sources of autocorrelation (e.g., soil moisture).

We find evidence that in several types of hydroclimatic time series, a simple autore-

gressive (AR(1)) model cannot explain the full range of low-frequency variability.

We show that observed values of β vary spatially and by timescale: at interannual

(2 to 10 year) periods the precipitation spectrum resembles white noise, whereas the

spectra of soil moisture and PDSI is much redder. At longer periods (greater than
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10 year) values of β agree more closely among observed variables. Global climate

models simulate realistic power-law scaling only when forced with realistic transient

boundary conditions or observed global SSTs, but not when run with fixed radiative

forcing conditions or 20th-century forcings. This finding suggests that the risk of

severe droughts, which are part of the natural variability, may be underestimated

by projections of future climate change.

A.2 Introduction

An important insight from many paleoclimate studies has been that intervals of

aridity unlike anything seen in the 20th occur naturally in western North America

(Woodhouse and Overpeck, 1998; Stahle et al., 2007; Cook et al., 1999; Meko et al.,

2007). Woodhouse and Overpeck (1998) showed that droughts like those of the

1950’s and 1930’s occurred once or twice per century and that far more severe

and more persistent dry intervals occurred as recently as the 16th century. Tree-

ring based reconstructions of flow on the Colorado River over the last 1200 years

(Meko et al., 2007) show that the mid-12th century experienced a 15% reduction in

the long-term mean flow. In addition, Woodhouse, Gray, and Meko (2006) showed

that the early part of the 20th century-the period upon which Colorado River alloca-

tions were made-was one of the wettest in the last 500 years. Reconstructed Palmer

Drought Severity Index (PDSI) (Cook et al., 2004) and a collection of other proxy

records (Graham et al., 2007) provides further evidence for a prolonged period of

widespread drought between ca. 800 to 1200 years ago, as well as multiple decadal

scale intervals matching or exceeding the range of 20th century PDSI variability

(Cook et al., 2004).

Megadroughts provide an important benchmark of natural variability for assess-

ing climate model simulations. That is, if climate models can accurately assess the

risk of future hydroclimate regimes, they should also reproduce a realistic range of

natural drought variability when properly forced and integrated for many centuries.

If they do not simulate a realistic natural range of drought variability (either when
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forced with realistic boundary conditions or allowed to run for many centuries), then

they may underestimate the risk of megadroughts in the future. Since many long

control, 20th century, and paleoclimate simulations have been performed on the

Community Climate System Model III (CCSM3) and Community System Model

1.4 (CSM1.4) (both based at the National Center for Atmospheric Research), they

provide a test bed for this hypothesis.

Several factors complicate proxy-model drought comparisons. First, the time

evolution of droughts in long model simulations will differ from the actual pale-

odrought history, even if both types of data exhibit similar underlying behavior.

Second, mean model precipitation is greater than observed precipitation through-

out much of western North America (WNA). This means that modeled “droughts”

can be wetter than observed average conditions. Third, proxy records of hydrocli-

mate have been filtered by the climate sensor itself (trees, lakes, peat bogs, etc...),

which can distort the underlying climate signal. In contrast, there is no error in the

measurement of model variables.

We attempt to minimize the limitations above by focusing on the power spectra

of drought indices calculated from model output and observed drought indicators

(e.g., instrumental records and indices, tree-ring reconstructions and chronologies,

and paleoclimate records of hydroclimate variability). Specifically, we estimate the

power-law scaling parameter (β) that relates hydroclimate variance to timescale

(e.g., Huybers and Curry, 2006; Pelletier and Turcotte, 1997). This approach allows

us to ignore the time evolution of drought variability and data-model differences in

the mean and variance of drought. If the model simulates a realistic spectrum, then

it should also simulate a realistic relationship between timescales of variability, and

hence capture the relative risk and magnitude of megadroughts. Since a power-law

distribution is not necessarily the best fit to the power spectra of all records con-

sidered here (e.g. Clauset et al., 2009), we refer to the values of β we estimate as

“spectral slopes,” which give us insight into the underlying relationship between

time scale and variance across disparate types of data. We use values of β to com-

pare different types of data and also to determine if the spectrum of hydroclimatic
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variability in western North America is redder than would be expected by stochastic

variability alone.

Power-laws relate variance to timescale such that S(f) ∝ f−β where f is fre-

quency and S(f) is the power spectrum. Values of β near zero describe “white”

spectra, which have an approximately uniform distribution of variance across fre-

quencies and no significant autocorrelation. “Red” spectra, and “redness” in the

power spectrum, are associated with time series that exhibit more variance at longer

timescales. If time series are red and stationary, they are usually characterized by

β values between 0.5 and 1.0 (e.g., Pelletier and Turcotte, 1997). Non-stationary

processes are described by β values greater than 1 and, by definition, never stabilize

around a long-term mean. Negative values of β, on the other hand, describe ”blue”

spectra. Such spectra can arise in systems with negative autocorrelation, because

from one time step to the next the system is pushed away from its previous value.

Many studies have shown that power spectra of temperature fluctuations in the

ocean and atmosphere are characterized by a power-law distribution, with β rang-

ing from approximately zero to 0.5 on land, and near 1.0 for most of the ocean

(Huybers and Curry, 2006; Fraedrich and Blender, 2003). Hydroclimate variables,

which reflect the terrestrial P-E balance, have also been shown to exhibit simi-

lar scaling behavior, with β estimated near 0.5 for globally averaged spectra of

river discharge, tree-ring widths, and precipitation records (Pelletier and Turcotte,

1997). Indeed, the earliest studies into the relationship between timescale and vari-

ance (Hurst, 1951) found the scaling coefficient H to be near 0.7 for Nile River

discharge and for tree-ring widths in the western US (H is related to β such that

β = −(2 ∗ H − 1), Heneghan and McDarby (2000)). These findings, and similar

behavior in other complex systems, led Mandelbrot and Wallis (1968) to propose a

family of statistical models of precipitation. Termed “fractional Gaussian noises”

these time series exhibit more variance on long timescales, realistic scaling coeffi-

cients, and instability or non-stationarity of the long-term mean depending on the

value of β specified. However, as noted by Klemes (1974) these models are limited

by the fact that they do not represent the underlying physical processes responsible
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for power-law scaling behavior. Pelletier and Turcotte (1997) therefore proposed

that a simple 2-layer advection-diffusion model of global moisture transport in the

atmosphere to explain the observed spectrum. While their model elucidates the

underlying characteristics of ocean-atmosphere interactions that may cause power-

law scaling, it does not provide insight into the regions that are most susceptible to

this type of behavior, nor does it highlight the specific dynamical mechanisms that

cause hydroclimate to vary on long timescales. More recently, Vyushin and Kushner

(2009) and Vyushin et al. (2009) have used global climate model (GCM) and reanal-

ysis data to link power-law behavior in the troposphere to tropical SST variability

and similar behavior in the stratosphere to volcanic activity.

To some extent, low-frequency variability in many drought indicators must arise

because of the way in which the phenomenon is defined, and how it is recorded. For

example, one of the most widely used drought indicators, the Palmer Drought Sever-

ity Index (PDSI), has a built-in autocorrelation term of 0.897 at the monthly time

step (Alley, 1984). Although this number is specified a priori in PDSI, it agrees well

with autocorrelation in simulated soil moisture during the 20th century (Figure A.1).

Likewise, biological, geochemical, and physical archives of past droughts integrate

hydroclimate variability through time: tree-ring widths during a given year may be

influenced by previous years; lakes may store information from one year to the next.

Importantly, autocorrelation tends to tends attenuate high-frequency fluctuations

while enhancing low-frequency variance. Here we explore this tendency by testing

the possibility that local autocorrelation related to surface processes accounts for

the low-frequency energy in drought indicators.

Understanding hydroclimate scaling behavior in North America is important

because it helps characterize the risk of persistent megadroughts. Without any

scaling, drought indices could not persist below (or above) their long-term mean for

any consequential amount of time. Clearly, this is not how 20th century droughts or

paleodroughts tend to behave. Hence some frequency scaling is required to explain

the tendency for arid anomalies to persist. The higher the value of β describing

a particular time series, the longer it can deviate from its long-term mean. For
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instance, Pelletier and Turcotte (1997) showed that the risk of a megadrought on

the Colorado is five times higher during any given century if the river’s underlying

spectrum is best characterized by a power-law distribution rather than an AR(1)

process.

A.3 Data & Methods

A.3.1 Data

We estimated the parameter β and its significance from a variety of sources (Table

A.4):

1. Gridded precipitation and temperature from the University of East Anglia’s

TS2.1 datasets for WNA (20◦N to 55◦N; 125◦W to 100◦W). The TS2.1 product

is derived from interpolating monthly station data to a 0.5◦ x 0.5◦ grid and is

continuous from January 1901 through December 2002 (Mitchell and Jones,

2005).

2. Gridded Palmer Z-Index (a measure of P-E before autocorrelation has been

introduced) and PDSI (Palmer, 1965; Alley, 1984) calculated from CRU pre-

cipitation and temperature in WNA.

3. Simulated soil moisture of the 20th Century using the Variable Infiltration

Capacity (VIC) model (Liang et al., 1994; Andreadis et al., 2005). The forcing

for this data was gridded (0.5◦ x 0.5◦ resolution) observations from the US

HCN. We report β values here for the second layer in the VIC model, which

represents depths of 0.2 to 2.4m. The spatial domain of data available in WNA

from this product only covers US soil.

4. Gridded (2.5◦ x 2.5◦ ) reconstructed PDSI from the North American Drought

Atlas (Cook et al., 2004) spanning 1000AD to 2000AD. Again, only gridpoints

in WNA were considered.
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5. Twenty-five precipitation and 8 streamflow reconstructions from tree-ring

studies at various sites across WNA (Tables A.1 and A.2). These

data have been processed as described in original references; all data

and references are available on the NOAA Paleoclimatology web page

(http://www.ncdc.noaa.gov/paleo/recons.html). All available reconstructions

of WNA hydroclimate were used.

6. Ten multicentury moisture-sensitive tree-ring chronologies from a recently de-

veloped 5-needle pine database (Kipfmueller and Salzer, 2010). Chronologies

were selected if they (a) showed a significant (p − value < .01) relationship

with local precipitation; (b) had at least 900 years of data from 1000AD to

2000AD; and (c) were at least 250m below treeline, which we required to en-

sure stable sensitivities through time (e.g., Salzer et al., 2009). We use long

chronologies (with high sample depth) to minimize the effects of the “segment

length curse,” which removes variance from chronologies at long timescales

(i.e., Cook et al., 1995). Finally, we normalized each chronology to exhibit

unit variance over the last 200 years for comparison with modern records.

This simple rescaling ensures that variance outside the range of the last 200

years is represented by spectral energies that are correspondingly greater, but

it does not alter the shape of the power spectrum.

7. Two high-resolution lake records and two high-resolution cave records from

WNA. Records were included if they were high-resolution (decadal), spanned

at least 1000 years, and contained data from after 1800 A.3. As with the tree

ring chronologies, we normalized each time series so that it would exhibit unit

variance over the last 200 years.

8. Model data from several simulations using NCAR’s CCSM3 (Collins et al.,

2006). We used 8 simulations of the 20th century (Solomon et al., 2007), as

well as 5 long control runs and a paleoclimate simulation (Table A.6). The 20th

century simulations were fully coupled and forced with evolving greenhouse

gasses (GHG) and aerosols from 1870 to 2000. The control simulations were
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also fully coupled and run with forcings fixed at pre-industrial (four runs)

or 1990 (one run) values. We analyzed climate model output from one very

long (2300 year) transient “Mid-Holocene” CCSM3 simulation as well (details

of the model are described in the supplementary material of Kaufman et al.,

2009).

9. We also examined one long (1000 year) simulation using NCAR’s Community

Climate System Model version 1.4 (CSM1.4) (Ammann et al., 2007). This

model was forced with evolving reconstructed solar variability (Lean, 2000)

from 1000 AD to 2000AD and reconstructed volcanic forcing (Ammann et al.,

2007).

10. Finally, we computed values of β for output from two types of sea surface

temperature (SST) forcing experiments run on the Community Atmospheric

Model III (CAM3). The first were “Tropical Ocean/Global Atmosphere”

(TOGA) simulations, in which gridded instrumental SST values were used

to force the atmosphere from 20◦S to 20◦N , while SST values poleward of

these latitudes were fixed at their climatological averages. In the “Global

Ocean/Global Atmosphere” (GOGA) simulations, time-evolving SSTs were

used throughout the world. Both the TOGA and GOGA simulations consist

of 5-member ensembles and were performed with SST values from 1950-2000

with no additional forcing. We averaged variables in time from the 5-member

ensembles to isolate the SST-forced component of variability.

We estimated power spectra from instrumental and simulated 20th century an-

nual drought indicators using the multi-taper method (Thomson, 1982). Since

paleoclimate data (excluding tree-rings) tend to be unevenly sampled in time,

we used the Lomb-Scargle method (Lomb, 1975; Scargle, 1982) to estimate their

spectra to minimize frequency bias (Schulz and Stattegger, 1997). We normalized

all paleoclimate data to exhibit unit variance prior to spectral analysis. As in

Huybers and Curry (2006), we estimated the slope (β) of individual power spec-

tra by performing a least-squares regression of log-transformed spectral density
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against log-transformed frequency. To avoid biasing the regression towards the

higher frequencies (Huybers and Curry, 2006), we averaged spectral density esti-

mates to evenly spaced log-frequency bins prior to calculating β. We ensured that

the values of β were not unduly influenced by long-term trends, which would arti-

ficially inflate variance at the lowest frequencies, by performing the regression over

the frequency domain fq to 2/N , where fq is the highest resolvable frequency (the

Nyquist Frequency) and N is the length of the record in years. This step effectively

sets the upper limit of our limit of our analyses to half the dataset length (e.g., to

50yr periods for instrumental data).

A.3.2 A Null Hypothesis for Drought

Since the power spectrum of white noise would be characterized by a spectral slope

close to zero, we test the values of β against the null hypothesis that they are not

significantly different from zero. To do so, however, requires the null hypothesis to

be applied differently depending on the variable being examined and the frequency

domain being considered. That is, atmosphere-only variables (e.g., precipitation

and the Palmer Z-index, a metric of P-E) do not have a built-in autocorrelation

term, hence we evaluate the significance of β calculated from these variables as the

p− value of the linear regression of log-transformed spectral density (S(f)) against

log-transformed frequency (f).

In contrast to the atmosphere-only variables, drought indicators such as PDSI,

soil moisture, tree-ring records, and other paleoclimate records are subject to au-

tocorrelation that arises locally and does not reflect low-frequency behavior in the

climate system. Here, we develop a null hypothesis for the power spectrum of

these drought indicators by using the autocorrelation parameter that is built in

to the PDSI model (Alley, 1984). Specifically, we are interested in determining

if the PDSI’s monthly autocorrelation term is sufficient to explain the power spec-

trum of simulated soil moisture, instrumental and reconstructed PDSI, reconstructed

streamflow and precipitation, normalized paleoclimate records of drought, and PDSI

calculated from climate models. We begin by examining the expected power spec-
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trum of an autoregressive process with lag-1 autocorrelation ρ (e.g., Bartlett, 1978):

S(f) = So

1− ρ2

1− 2ρ cos π f

fN
+ ρ2

(A.1)

Where f is frequency, fN is the Nyquist frequency (in this case frequencies

corresponding to 2 month wavelengths), and So is mean spectral density, which is

related to the white noise variance (σ2) by:

So =
σ2

1− ρ2
. (A.2)

Figure A.3a shows an example of this analytical expectation. In the case where

the input of the white noise variance (σ2) is unknown, but the time series have

been normalized to unit variance a posteriori, the value of So will be equal to unity

(Figure A.3b). However, here we will be considering time series that have been

annualized, but that are assumed to exhibit monthly autocorrelation close to 0.897

(i.e., the built-in autocorrelation in the PDSI model). In this case, the spectral

density on interannual timescales will be given by:

S(fyr) =

(

So

< S(f) >

)

1− ρ2

1− 2ρ cos π fyr
fN

+ ρ2
, (A.3)

Where only frequencies corresponding to wavelengths of 2 years or longer (0 <

fyr ≤ 0.5) are considered, So is given by equation A.2, and < S(f) > is the spectral

average of S(f) in equation A.1. This spectrum is shown in Figure A.3. Note that

autocorrelation, even at the monthly timescale, reddens the power spectrum out to

decadal (10 year) frequencies. We therefore consider the slope of the power spectrum

on interannual timescales (βI) separately from decadal-and-longer timescales (βD).

We use a Monte Carlo procedure to establish confidence limits for the power

spectra of drought indicators and for the overall value of β, the interannual spectral

slope βI and the decadal spectral slope βD. First, we generated 1000 realizations of a

random, autoregressive (AR(1)) process with monthly autocorrelation set to 0.897.

Each realization was run for 12000 months, averaged to produce synthetic annual

time series, and normalized to exhibit unit variance. We then computed the power
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spectrum of each of these realizations to generate upper and lower 95% confidence

limits of the variance in the power spectrum (Figure A.4a) as well as the spectral

slope (β) on interannual (Figure A.4b) and decadal (Figure A.4b) timescales.

A.4 Results

Results from our Monte Carlo analysis give us upper and lower confidence limits

for the values of β calculated from an annually averaged, unit variance time series

with monthly autocorrelation equal to 0.897. Overall, the upper and lower 90%

confidence limits of β are 0.11 and 0.42, respectively. On interannual timescales, βI

these limits are 1.06 and 1.56, and on decadal βD timescales the limits are −0.27

and 0.31 (i.e., close to zero). We deem values outside of these limits significant.

These expectations are consistent with the shape of the analytical spectra in A.3

and A.4, which show how autocorrelation reddens the spectrum at 1/2 year to 1/10

year frequencies.

Figure A.5 shows frequency-averaged spectral densities for western North

America from Precipitation, Z-index, PDSI and soil moisture. As in

Pelletier and Turcotte (1997), we find that the spectrum of precipitation does not

exhibit much redness (βI = 0.03) on interannual timescales. We also observe that

the spectra of Z-index and precipitation are virtually identical. PDSI, in con-

trast, exhibits a much steeper (albeit non-significant) slope at interannual timescales

(βI = 0.74), as would be expected from the analytical AR(1) red-noise spectrum

(Figure A.5c, dotted line). The change in slope is not as dramatic for soil moisture

(βI = 0.27, βD = 0.2). On longer timescales, the slope of precipitation, Z-index,

PDSI, and soil moisture (βD = 0.27, 0.26, 0.33, and 0.2, respectively) are more simi-

lar. The higher value of the PDSI slope (0.33) reflects the slight attenuation of high

frequencies from autocorrelation.

Figure A.6 shows the value of β mapped out across WNA for precipitation,

Z-index, PDSI, and soil moisture. Values of β calculated from precipitation and

Z-index are significantly different from zero (p − value < 0.1) throughout much of
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the region (Figure A.6, top row, first two columns). Values of β calculated from

PDSI and Z-index are also significantly different from the range of values expected

from our AR(1) null hypothesis (Figure A.6, top row, third and fourth columns).

At interannual timescales, significant values of βI are restricted to small regions of

the Pacific Northwest and northern Mexico in precipitation and Z-index (Figure

A.6, second row, first two columns). The values of βI calculated from PDSI and

soil moisture are not significant throughout most of WNA. In contrast, at long

timescales there are large regions where the value of βD is significantly different

from zero in precipitation and Z-index and significantly different from the AR(1)

null hypothesis in PDSI and Z-index (Figure A.6, third row). Importantly, the maps

for precipitation, Z-index and PDSI are nearly identical. Positive values (βD > 0.5)

occur in the Southwest, the Rocky Mountains, and the northern US Great Plains.

The pattern of βD is similar for soil moisture (Figure A.6).

The frequency-averaged power spectrum for tree-ring reconstructed PDSI is

shown in Figure A.7a. The spectral slope of the average reconstructed WNA PDSI

power spectrum is not significantly different (at the 90% confidence limit) from the

AR(1) expectation at interannual (β = 0.70) or decadal (βD = −0.08) timescales.

Overall the value is close to zero (β = 0.09), which is also non-significant (at the

90% confidence level). Also shown in Figure A.7 are maps of β, βI and βD calculated

from WNA. They indicate that the slope is significant at interannual timescales, but

not overall and not at decadal timescales (Figure A.7b-d).

Figure A.8 shows spectral averages from reconstructed, normalized precipitation

and streamflow, as well as other paleodrought indicators from across WNA. At

high frequencies, average spectra from normalized reconstructions and from the long

chronologies are more energetic than the AR(1) expectation. At lower frequencies,

the reconstructions are well within the AR(1) expectation, but the mean spectra

from the longest 5-needle pine chronologies are not. Spectral variance in other

paleodrought records (Figure A.8, symbols) is within the AR(1) expectation on

decadal to 100 year timescales. At longer timescales, however, there is more variance

in these records than the null hypothesis alone can account explain. Interestingly,
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the variances and slopes of the paleodrought records are in good agreement with

the variance and slope records of the 5-needle pine chronologies.

We now turn our attention to three types of coupled modeling experiments:

long control runs, 20th century simulations used in the IPCC’s 4th Assessment, and

paleoclimate simulations of the late Holocene. First, we examine the mean power

spectra of PDSI in the unforced, coupled model simulations (Figure A.9a). The

shape of these spectra closely resembles the analytical AR(1) expectation, and their

spectral slopes are not significant overall, or at interannual or decadal timescales

(Table A.6). In the “20th century” simulations, the shape of the spectra is again

consistent with the analytical AR(1) expectation, and most of the overall, decadal

and interannual slopes A.6. Two exceptions occur (β from 20th Century “run-a”

as well as β and βD from 20th Century “run-f”), but further inspection of these

spectra showed the significant values were spurious and non-significant at a slightly

higher (95%) confidence limit. Finally, we examine PDSI spectra calculated from

long, transient, paleoclimate simulations of CCSM3 and CSM1.4. Both of these

spectra exhibit redness at interannual timescales that is quite similar to the AR(1)

analytical spectrum, and neither one produces significant values of β, βI or βD. On

long timescales, the spectrum of PDSI calculated from the CSM1.4 simulation is

quite similar to the AR(1) spectrum. The mid-Holocene transient simulation run

on CCSM3 also exhibits some redness in PDSI on multi-centennial (and longer)

timescales that is clearly not explained by the AR(1) spectrum. Although the

decadal spectral slope (βD) is not significant, slopes calculated at even longer (e.g.,

centennial to millennial timescales) are significant.

A.5 Discussion

A.5.1 Megadroughts: a consequence of time and memory?

Our results suggest that β varies with hydro-climate indicator, geography, and

frequency domain. These results are consistent with the idea that scaling arises

from a variety of sources (Klemes, 1974) and is not uniform through space
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(Kantelhardt et al., 2006). For example, precipitation exhibits almost no persistence

on interannual timescales, yet the autocorrelation of the PDSI reddens the spectrum

considerably at these frequencies in observations (Figure A.5) and in models. While

the built-in PDSI autocorrelation coefficient was derived from local observations of

soil moisture at a small spatial scale (Palmer, 1965; Alley, 1984), it is within the

range of simulated soil moisture autocorrelation in the west (Figure A.1). If this

estimate is indeed realistic for WNA, then we cannot rule out the possibility that

interannual redness in PDSI, soil moisture, and tree-ring records can arise solely

from local persistence, and does not exclusively reflect remote sources of climate

variability.

Analysis of reconstructed PDSI, precipitation, and streamflow reveals that most,

if not all, of the low-frequency variance of these records can be explained by monthly

autocorrelation related to local storage. This result is clear in Table B.1, Figure A.7

and Figure A.8: values of β and βD are not significant and the variance in these spec-

tra is within the AR(1) expectation. This finding implies that we cannot rule out

the null hypothesis as a possible explanation for the range of low-frequency variance

in these tree-ring based hydroclimate reconstructions. In other words, stochastic

variability in the atmosphere, realistic autocorrelation, and sufficient time may pro-

duce a range of drought variability that is consistent with tree ring reconstructions

of North American hydroclimate during the last millennium. If this is the case, then

long control runs and forced simulations of the 20th Century century exhibit low-

frequency variability that is in fundamentally good agreement with tree-ring based

reconstructions and the monthly AR(1) null hypothesis. We stress that this finding

refers to the underlying continuum of hydroclimate variability and not to specific

narrow-band features that may arise in nature and in coupled models as a conse-

quence of deterministic sources of variability (e.g., Meehl and Hu, 2006). We also

stress that there are a number of practical and statistical limitations to the infer-

ences about low-frequency variability that one can make from tree-ring reconstruc-

tions Cook et al. (1995); Moberg et al. (2005). Most notably, the “segment-length

curse” and removal of non-climate, low-frequency variance would be expected to
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diminish variance at the longest timescales.

Despite the good agreement between the AR(1) spectrum and spectra calcu-

lated from reconstructed PDSI, precipitation, and streamflow, there is evidence

that more low-frequency variance exists in WNA hydroclimate than the AR(1) ex-

pectation alone can explain. This evidence comes from the spectrum of the longest,

moisture-sensitive chronologies in the 5-needle pine database, and from the spec-

tra of several high-resolution paleodrought indicators (Table B.1, Figure A.8, and

supp. mat.). Moreover, the null hypothesis cannot account for low frequency scal-

ing of observed PDSI and soil moisture at timescales longer than 10 years. Since

the spectrum at these frequencies is relatively free of local autocorrelation effects,

the spectral slope reflects the behavior of the underlying climate system. Finally,

the null hypothesis cannot account for the low-frequency scaling of precipitation

because precipitation fluctuations are not autocorrelated at timescales longer than

a few days (Kantelhardt et al., 2006). Trends in precipitation may influence the

apparent spectral slope, but we removed frequencies lower than 1/(2N) from our

calculation of βD to avoid this bias. We also computed decadal spectral slopes (βD)

for precipitation from different 20th century time windows, detrended time series,

Historical Climate Network station data, and wet-day frequency. Each of these

analyses supported a mean value of βD that was positive and significant for western

North American precipitation. Since observations and proxies all highlight the im-

portance low-frequency redness, we argue that this behavior is a robust feature of

precipitation in western North America. That is, we reject the AR(1) null hypothe-

sis as an explanation for low-frequency hydroclimate variance on decadal-and-longer

timescales.

A.5.2 Sources of redness in WNA hydroclimate

The spectra of PDSI variability calculated from CCSM3’s long control runs and

20th century simulations are consistent with the AR(1) expectation, but they do

not capture the low-frequency variance inferred from instrumental and proxy records

at longer timescales. However, when transient boundary conditions are used to
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force the model, substantially more variance appears at the low frequency end of

the spectrum than the AR(1) expectation can explain. Since the proxy records

analyzed here record variance on these ultra-low frequencies, it is likely that the

spectral slope on centennial to millennial timescales reflects a forced response to

dynamical boundary conditions.

At intermediate (decadal to centennial) frequencies, however, there is generally

more redness in nature than there is in the long Mid-Holocene simulation (i.e., there

is a “flat” region of the spectrum in Figure A.10). The 20th Century and control

simulations are also not in agreement with observations at these frequencies. One

possible explanation for this discrepancy is that the model oceans exhibit inadequate

low-frequency variability, and hence fail to produce realistic long-term droughts on

land. Alternatively, internal variability in the GCM atmosphere may distort low-

frequency information from the oceans before it reaches land. To discern between

these two possibilities, we examine global maps of β calculated from precipitation

in two idealized SST-forcing experiments (TOGA and GOGA). We focus here on

precipitation to isolate the atmospheric component, which allows us to ignore the

effects of local autocorrelation.

Global SST-forced precipitation patterns of β are shown for the GOGA and

TOGA experiments in Figure A.11. In the TOGA simulations (Figure A.11a),

precipitation fluctuations in the tropical Pacific and along the west coast of North

America exhibit sufficient variance at high frequencies to produce blue (β < 0) spec-

tra. However, when forced with the entire global ocean (Figure A.12b), the negative

values of β disappear from western North America and from most of the tropical

Pacific. The results in Figure A.11 help elucidate the near-zero values of β calcu-

lated from control runs and 20th century simulations: the ENSO region of CCSM3

is highly energetic on a biennial time scale (Collins et al., 2006; Guilyardi et al.,

2009) and is strongly teleconnected to western North American hydroclimate (e.g.,

Ropelewski and Halpert, 1987; Seager et al., 2005a,b; Herweijer and Seager, 2008).

These slopes are estimated only through periods of 25yr, but suggest that the tropi-

cal Pacific is a source of interannual variability strong enough to minimize apparent
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power-law behavior over these time scales in teleconnected regions.

This interpretation is further supported by Figure A.12, which shows the value of

β calculated from observed (Kaplan et al., 1998) and simulated (using pre-industrial

boundary conditions) SST. Model values of β are generally lower than those calcu-

lated from instrumental data (zonal averages in panels (b) and (d) of Figure A.12,

and this difference is most dramatic in the tropical Pacific. In fact, in the western

tropical Pacific (∽ 180◦W) instrumental values of β are positive (β = 0.5) while

CCSM3 values are negative (β = −0.5). Yet this discrepancy cannot be the sole

cause of the spectral differences in modeled versus observed precipitation because

when CAM3 was forced with only tropical Pacific observations in the TOGA ex-

periments, the spectra along the western coast of North America remained blue

(Figure A.11. It is therefore possible that the differences in spectral slopes arise

because the atmospheric model itself responds too weakly to mid-latitude, low-

frequency variability in the oceans, which has been implicated as a possible source

of low-frequency variability in North American hydroclimate (e.g., McCabe et al.,

2004; Kushnir et al., 2010; Schubert et al., 2009). It is also possible that low-

frequency variability in the tropical Pacific, which is not well resolved in instrumental

records (Cole et al., 1993; Urban et al., 2000; Cobb et al., 2003; Conroy et al., 2008;

Ault et al., 2009), is responsible for the redness in WNA hydroclimate at decadal

timescales and longer. Finally, modeled slopes may be incompletely estimated be-

cause our analysis of these 50 year simulations does not extend beyond periods of

25 years.

A.5.3 Implications for Drought Risk

The differences between modeled hydroclimate and observational hydroclimate spec-

tra are not very noticeable when considering only interannual to decadal timescales:

the redness imposed by the PDSI in the model mimics redness in the observed

system. However, at longer timescales, the discrepancies between modeled hydro-

climate variability and proxy-inferred hydroclimate become much more important.

To illustrate this point, we generated two different sets of 1000 year long Monte
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Carlo “red-noise” time series with variance equal to the Southwest PDSI average.

The first set was generated by calculating AR(1) time series with monthly auto-

correlation of 0.897, then analyzing them. The second set was generated from 1000

year realizations of random, annually resolved white-noise time series that were then

filtered to exhibit spectral slopes that were at the lower end of the instrumental and

proxy range (β = 0.4 to 0.6). We generated these red noise realizations using the

same technique employed by Pelletier and Turcotte (1997) and described more thor-

oughly in Pelletier (2008). We examine drought regimes across different timescales

in these two sets of red noise time series by tallying the number of years in each

realization when 3/5 (60%) of the antecedent years were below a given threshold.

We then calculated the percentage of time each MC realization spent at a given

duration-magnitude combination, and averaged these percentages across all realiza-

tions. The resulting average distributions are contoured in Figure A.13.

At interannual to decadal timescales, the differences in drought-risk distributions

between AR(1) time series and those scaled by realistic spectral slopes are not very

noticeable. However, at longer timescales, the two types of red noise data present

very different views of drought-risk. For instance, according to the AR(1) average

distribution, there is no risk of a 30 year or a 50 drought regime when 60% of the

years experience PDSI values at or below -1. In contrast, the MC realizations that

have been rescaled by a realistic spectral slope tend to spend about 15% of the

time in such a regime at the 30 year timescale, and they spend about 10% of their

time in this regime at the 50 year timescale. We can also interpret these findings

in terms of other hydroclimate variables, such as streamflow on the Colorado River,

by simply rescaling the Monte-Carlo realizations to exhibit the same variance as the

variable of interest. The -1 threshold (1 standard deviation) would correspond to

4.37 MAF, which, for reference, is roughly the state of California’s entire allocation.

Clearly, any decadal drought regimes at this magnitude would pose unprecedented

challenges to water resource managers. Yet, our results suggest that this type of

behavior is realistic for the region.

Since forcing experiments with dynamical boundary conditions and long control
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runs do not necessarily simulate positive spectral slopes at low-frequencies, the risk

of events that occur on long timescales is difficult to assess. However, our results

indicate that their spectra tend to resemble the AR(1) spectrum, which according

to Figure A.13, likely underestimate the risk of low-frequency megadroughts.

A.6 Conclusions

Our analysis uses a wide range of observed and simulated datasets to examine the

distribution of variance in the hydroclimatology of western North America. By

comparing spectral slopes against a clearly defined null hypothesis of variance dis-

tribution, we are able to identify where hydroclimatic variance appears to follow

a power-law distribution, in which variability at low frequencies is significantly

stronger than that at high. One of our most compelling findings is that nearly

all observational datasets indicate substantial power-law behavior at decadal and

longer periods, with the exception of tree-ring reconstructions (in which such vari-

ance has been minimized by preprocessing). Such behavior is only rarely apparent

in any of the climate simulations we analyze here (nor have we observed it in other

coupled models; Ault et al. 2011 and unpublished analyses). If such a discrepancy

continues in the latest, AR5 generation of coupled models, it may lead to underes-

timation of future megadrought risk in the next IPCC AR5 analysis.

Our analysis supports the idea that variability in western North America hy-

droclimate scales with a power-law distribution and a spectral slope between about

02-0.8. We have examined whether paleoclimate data, which define the larger end

of this range, might overestimate this slope due to internal, proxy specific pro-

cesses. Where such processes add autocorrelation (e.g. groundwater storage terms

for cave records Truebe et al., 2010), they would simply create an AR(1) spectrum

that should flatten at multidecadal periods; this is not what we observe here. The

low-frequency slopes defined by instrumental data are also likely conservative, as

our detrending process removes variance with a period longer than half the record

(for instrumental data, roughly 50 years).
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Several different processes likely explain the significant, positive spectral slopes

of North American hydroclimate. These processes vary depending on frequency

interval and geography. At interannual timescales, precipitation and the Palmer

Z-index exhibit spectral slopes that are near zero (β = 0.03) and non-significant,

whereas soil moisture and PDSI are considerably redder (β = 0.52 and β = 0.42,

respectively). At decadal and lower frequencies, the spectrum of precipitation con-

verges with the PDSI and soil moisture spectrum, implying that at low frequencies,

terrestrial hydroclimate variability and precipitation input are fundamentally sim-

ilar. Moisture sensitive tree-ring chronologies, lake and cave records all support

significant, positive values of β. The TOGA and GOGA simulations we describe

point to the tropical Pacific as a source of exceptionally strong interannual vari-

ance in the model. Coupled simulations indicate that transient forcings can impart

substantial low-frequency variance (presumably as in the real world).

Future modeling experiments may help clarify certain aspects of our analysis.

First, we were limited to SST forcing experiments run for only 50 years, which gives

us only a modest understanding of the low frequency response of precipitation scaling

to SST forcing. Longer, continuous SST forcing experiments may help determine

if the scaling we observed in the GOGA experiments extends to lower frequencies

still. Extending model simulations using coral-based reconstructions of SST (e.g.,

Cane, 2005) may help determine if tropical variability imparts low frequency scaling

when sufficiently long windows of time are considered. Analysis of AR5 coupled

models is planned to assess whether model improvements, particularly in the tropical

Pacific, have yielded more realistic representations of low-frequency hydroclimatic

variability. Meanwhile, assessments of future drought risk may need to incorporate

paleoclimatic insights if they are to encompass the full range of variability apparent

in hydroclimatic observations.
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A.7 Tables and Figures

Table A.1: Estimates of the parameter β from a variety of precipitation reconstruc-
tions in WNA. Bold numbers are significant against the AR(1) null hypothesis at
th 90% confidence limits.

Region Reference N/2 β βI βD

Durango, CO Cleaveland et al. (2003) 304 0.15 0.08 0.28
Chihuahua, Mexico Diaz et al. (2002) 173 -0.15 0.23 -0.19
D7, OR Garfin and Hughes (1996) 138 0.25 0.27 0.45
D8, OR Garfin and Hughes (1996) 138 0.28 0.47 0.4
Bighorn, WY Gray et al. (2004a) 370 -0.32 0.08 -0.8
Uinta, UT Gray et al. (2004b) 388 0.42 0.83 0.21
Malpais, NM Grissino-Mayer (1995) 1065 0.53 0.1 0.55
D6, NV Hughes and Gramlich (1996) 1498 0.12 0.05 0.22
D1, AZ Ni et al. (2002) 495 0.35 0.23 0.37
D2, AZ Ni et al. (2002) 495 0.21 0.69 0
D3, AZ Ni et al. (2002) 495 0.42 0.57 0.3
D4, AZ Ni et al. (2002) 495 0.47 0.79 0.31
D5, AZ Ni et al. (2002) 495 0.29 0.46 0.16
D6, AZ Ni et al. (2002) 495 0.3 0.45 0.21
D7, AZ Ni et al. (2002) 495 0.6 0.53 0.52
D1, NM Ni et al. (2002) 495 0.32 0.59 0.11
D2, NM Ni et al. (2002) 495 0.52 0.62 0.48
D3, NM Ni et al. (2002) 495 0.49 0.4 0.39
D4, NM Ni et al. (2002) 495 0.53 0.59 0.48
D5, NM Ni et al. (2002) 495 0.62 0.49 0.48
D6, NM Ni et al. (2002) 495 0.56 0.42 0.41
D7, NM Ni et al. (2002) 495 0.53 0.41 0.41
D8,NM Ni et al. (2002) 495 0.54 0.48 0.46
Saltillo, Mexico Pohl et al. (2003) 110 0.07 0.13 0.47
Colorado Plateau Salzer and Kipfmueller (2005) 709 -0.06 0.55 -0.51
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Table A.2: Estimates of β, βI and βD from several reconstructed streamflow in
several basins in WNA.

Region Reference N/2 β βI βD

Yellowstone R., MT Graumlich et al. (2003) 147 -0.76 0.36 -1.76
Clear Creek, CO Woodhouse (2000) 152 -0.15 0.23 -0.19
Salinas, CA Griffin (2005) 298 0.1 0.27 0.05
Boulder Creek, CO Woodhouse (2001) 143 0.28 0.47 0.4
Feather R., CA Meko (2001) 539 -0.55 0.08 -1.09
Upper Colorado R. Meko et al. (2007) 622 0.37 0.83 0.16
Lees Ferry, AZ Woodhouse et al. (2006) 255 0.52 0.1 0.56
Sacramento R., CA Meko et al. (2001) 555 0.05 0.05 0.11

Table A.3: Estimates of βD from four high-resolution, moisture-sensitive paleocli-
mate records from WNA. Since the shortest resolvable frequencies in these records
are decadal, βD and β would be the same. For clarity, we report the values in terms
of βD

Variable Reference βD

Moon Lake Salinity Laird et al. (1996) 0.84
Pyramid Lake δ18O Benson et al. (2002) 1.16
Carlsbad Cave Band Thickness Polyak and Asmerom (2001) 0.63
Hidden Cave Band Thickness Rasmussen et al. (2006) 0.82
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Table A.4: Summary of spectral slopes calculated from mean spectra for western
North America (20◦N to 55◦N; 125◦W to 100◦W). Slopes were calculated as the linear
least squares regression between frequency and spectral density. Estimates of β were
made from 2 year to 50 year timescales (i.e., the shortest resolvable frequencies to
frequencies corresponding to one half of the lowest resolvable wavelength), as well
as from 2 to 10 year timescales (βI) and 10 to 50 year timescales (βD). In the case
of precipitation and the Z-index, significance of the slope was determined by the p-
value of the regression line. Significance of the slope of PDSI and soil moisture was
determined using a Monte Carlo method. Bold indicates values that were significant
at the 90% confidence limit or higher.

Variable Source β βI βD

Precipitation CRU TS2.1 (Mitchell and Jones, 2005) 0.2 0.03 0.27
Z-Index CRU TS2.1 (Mitchell and Jones, 2005) 0.19 0.03 0.22
PDSI CRU TS2.1 (Mitchell and Jones, 2005) 0.52 0.74 0.33
Soil Moist. VIC (Andreadis et al., 2005) 0.42 0.27 0.2

Table A.5: Same as Table A.4, but for paleoclimate records. Since the highest
resolvable frequencies from the lake and cave records used here correspond to 10
year wavelengths, estimates of βD and β would be the same. For clarity, we report
these values in terms of βD.

Variable Reference β βI βD

N. American Drought Atlas Cook et al. (2004) 0.09 0.7 -0.08
Precip. Reconstructions See Table A.1 0.1 0.24 0.01
Streamflow Reconstructions See Table A.2 -0.02 0.19 -0.14
5-Needle Pine Chronologies Kipfmueller and Salzer (2010) 0.59 0.3 0.57
WNA Lakes and Caves See See Table A.3 – – 0.86
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Table A.6: Same as Tables A.4 and B.1, but for PDSI calculated from climate model
data. Values that are significant at the 90% confidence limit are shown in bold. The
column marked Nyrs indicates the number of years included in the run.

Model Resolution Experiment Nyrs β βI βD

CCSM3 T42 1k pre-industrial control 1000 0.2 0.85 0.09
CCSM3 T31 Pre-industrial control 100 0.15 0.77 -0.24
CCSM3 T42 Pre-industrial control 200 0.29 0.94 0.06
CCSM3 T85 Pre-industrial control 200 0.4 0.82 0.24
CCSM3 T85 1990 control 600 0.19 0.84 0.06
CCSM3 T85 20th Century (run-a) 130 0.44 0.82 0.11
CCSM3 T85 20th Century (run-b) 130 0.34 0.72 -0.12
CCSM3 T85 20th Century (run-c) 130 0.29 0.7 -0.26
CCSM3 T85 20th Century (run-d) 130 0.37 0.7 -0.08
CCSM3 T85 20th Century (run-e) 130 0.22 1.08 -0.3
CCSM3 T85 20th Century (run-f) 130 0.43 0.66 0.37
CCSM3 T85 20th Century (run-g) 130 0.39 0.72 0.21
CCSM3 T85 20th Century (run-h) 130 0.22 1.09 -0.44
CCSM3 T31 Mid-Holocene Transient 2300 0.36 1.02 0.3
CSM1.4 T31 Last Millennium 1150 0.17 0.76 0.03
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Figure A.1: Monthly autocorrelation parameter estimated from a VIC soil mois-
ture model simulation of the 20th century using instrumental data (Andreadis et al.,
2005).
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Figure A.2: Time series (left) and spectra (right) for hydro-climate indicators av-
eraged for “Montana” (114◦W to 105◦W; 45◦N to 50◦N) as an example of how β
is calculated from annually averaged precipitation, Z-index, PDSI and Soil Mois-
ture. Grey lines show the original monthly time series and spectra, black lines show
the time series and spectra of the annual average. Time series were normalized to
unit standard deviation before computing the spectrum. Annual spectra are offset
from monthly spectra because they exhibit less variance. For reference, the ana-
lytical AR(1) spectrum is shown on the bottom two panels on the right-hand side
(thin, dotted line). Red lines on the right panel show the overall spectral slope (β)
calculated from 1/2 year to 1/50 year frequencies.
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Figure A.3: Examples of the analytical AR(1) spectrum to illustrate the effects of
different normalizations. (a) An AR(1) process with unit white-noise variance and
autocorrelation of 0.897 at the monthly time step (Equation A.1). (b) An AR(1)
process that has been normalized to exhibit unit variance overall (Equation A.2. (c)
An AR(1) process with monthly autocorrelation of 0.897 that has been averaged to
annual resolution and normalized to unit variance (Equation A.3.



49

10
-3

10
-2

10
-1

10
-1

10
0

10
1

f (yrs-1)

S
(f

) 
(σ

2 )

0.8 1 1.2 1.4 1.6 1.8
0

10

20

30

40

β
int

%

a.

b.

c.

-1 -0.5 0 0.5 1
0

10

20

30

40

β
Dec

%

Figure A.4: Results of Monte Carlo simulations of an AR(1) process to establish con-
fidence limits for the spectral slope overall (β) and at interannual (βI) and decadal
(βD) timescales. (a) The upper and lower 90% confidence limits from all Monte-
Carlo spectra (gray) shown with the analytical expectation (black line). (b) The
distribution of βI values at interannual timescales (2-10 years). (c) The distribution
of βD on > 10 year timescales.
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Figure A.5: Mean North American spectra (gray lines) and corresponding values of β
computed over interannual and decadal frequencies (black lines) for: (a) CRU TS2.1
precipitation; (b) the Palmer Z-index (a measure of the P-E balance) calculated from
CRU TS2.1 precipitation and temperature; (c) PDSI also calculated from CRU
TS2.1 data; and (d) soil moisture simulated by the VIC model (Andreadis et al.,
2005). Diamonds indicate the mean value of the spectrum at the points used to
perform regression calculations, and they are evenly spaced in log-transformed units
frequency. The dotted line on panel (c) shows the theoretical AR(1) spectrum for
red noise with autocorrelation equal to the built-in monthly autocorrelation of the
PDSI.
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Figure A.6: Scaling exponents calculated for various instrumentally-based datasets
from western North America (125◦W to 100◦W; 20◦N to 55◦N) at 2 to 50 year,
interannual (2 to 10 years), and decadal (10 to 50 years) timescales.
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Figure A.7: (a) Mean spectral density (i.e., the WNA average at each frequency)
calculated from tree-ring reconstructed PDSI (Cook et al., 2004). As in Figure A.5,
the gray line shows the mean power spectrum, the straight black lines show the
spectral slopes at interannual and decadal frequencies (βI and βD), and the black
diamonds show the spectral bins that were used to calculate those slopes. The
thin dotted line shows the analytical AR(1) spectrum. (b) The overall value of β
(there are no significant values at the 90% confidence limit). (c) Estimates of βI .
Significant spectral slopes are outlined in black (values to the west of this line are
significant at the 90% confidence limit). (d) the decadal spectral slope βD, which is
not significant anywhere in WNA.
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Figure A.8: Analytical AR(1) spectrum (black) and upper and lower 90% Monte-
Carlo confidence limits shown with spectral averages from a variety of paleoclimate
archives (see supp. mat. for information about the individual records that con-
tribute to spectral averages shown here). The red line shows the spectral average of
reconstructed streamflow from 8 sites in WNA, and the purple line shows the spectral
average of 25 precipitation reconstructions. Mean spectral density from 10 moisture
sensitive, long, 5-needle pine chronologies are shown in gold. Symbols show the
spectra of four paleoclimate time series that have been averaged into evenly spaced
log-transformed bins. These records include: a diatom-inferred salinity record from
Moon Lake, ND (Laird et al., 1998) (circles); an oxygen isotope record from Pyra-
mid Lake, CA (Benson et al., 2003) (triangles); a speleothem band-thickness record
from Carlsbad Caverns, NM (Polyak and Asmerom, 2001) (stars); and a cave δ18O
record from Hidden Cave, NM (Rasmussen et al., 2006) (squares). The thick gray
line is the average spectral density from the four paleoclimate records, and the
dashed black line shows the regression line for that average. The regression line
(dotted) for the Colorado River power spectrum is also shown
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Figure A.9: North American spectral means for PDSI computed from five long
control runs (a) and eight 20th century simulations (b). The smooth black line
shows the theoretical mean spectrum of PDSI.



55

10
-2

10
-1

10
0

10
1

Frequency (yr-1)

S
(f

)

 

 

AR1 expectation
Transient (paleo)
Last 1k (CSM1.4)

Figure A.10: Mean PDSI spectra for North America from two paleoclimate simula-
tions: (gray line) a 4000BC to 2700BC simulation with transient solar and stochastic
volcanic forcing using CCSM3, and (black line) a 1000AD to 2000AD simulation us-
ing reconstructed solar variability and stochastic volcanic forcing from a simulation
on CSM1.4.
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Figure A.11: Global maps of β values computed from two 5-member ensemble av-
erages from CAM3 SST-forcing experiments. (a) shows the values of β computed
between 1/2 and 1/25 year frequencies from the TOGA experiments and the bottom
panel shows the values of β computed from ensemble averages of the GOGA forcing
experiments.
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Figure A.12: (a) Spectral slopes computed from instrumental SSTs from 1870-
2000 (Kaplan et al., 1998). (b) The zonal means for the global oceans (black),
Pacific Ocean (blue), and Atlantic Ocean (red). Choice of data product does not
substantially impact this result. (c) β for a long CCSM3 control run. (d) Zonal
mean values of β from the long CCSM3 control run for all oceans (black), the Pacific
(blue) and the Atlantic (red).
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Figure A.13: Duration versus magnitude diagram of Monte Carlo (MC) PDSI sim-
ulations of droughts in the Southwest. In this case, a drought is defined as a year in
which 3/5 of the antecedent years exhibited PDSI values below a given threshold.
The thresholds are shown on the x-axis and the length of the time window consid-
ered is shown on the y-axis. The shading indicates the percentage of time (averaged
across MC realizations) spent at different duration-magnitude combinations. (a)
shows the average distribution for AR(1) time series; (b) shows the average distri-
bution for time series that have been rescaled to exhibit a realistic spectral slope.
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APPENDIX B

HOW LIKELY ARE MEGADROUGHTS IN THE FUTURE?

T.R. Ault1, G.T. Pederson2, J.E. Cole1, J.T, Overpeck1,3, D. Meko 4

1. Dept. of Geosciences, Univ. of Arizona, Tucson, AZ

2. Northern Rocky Mountain Science Center, USGS, Bozeman, MT

3. Institute of the Environment, Univ. of Arizona, Tucson, AZ

4. Laboratory of Tree-Ring Research, Tucson, AZ

B.1 Abstract

Projected changes in global rainfall patterns have the potential to dramatically al-

ter water supplies and ecosystems in semiarid regions during the coming century.

Instrumental and paleoclimate data indicate that low-frequency hydroclimate fluc-

tuations tend to be more energetic than high-frequency fluctuations. This tendency

can be quantified using a “megadrought-risk coefficient” (equivalent to a power-law

coefficient) that relates spectral density to frequency. Here we show that global

climate models used in the 4th IPCC assessment do not generally reproduce the

megadrought-risk coefficients observed in nature, even when run for many centuries

or forced by 20th century boundary conditions. Our findings suggest that these

models underestimate the risk of future decadal and longer megadroughts. To in-

clude quantitative information from paleoclimate records in future megadrought-risk

assessments, we propose a method for rescaling projected precipitation changes us-

ing local estimates of the megadrought-risk coefficient. Where observational data

are reliable, this method can provide a more complete view of megadrought risk. In

the Southwest, for instance, IPCC projections suggest the risk of a megadrought in

the coming century is about one in ten; our analysis suggests that the risk is at least
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one in six for most of the Southwest, and as high as one in three in certain regions.

Our results also indicate that observed southwest megadroughts in Colorado River

streamflow were approximately 30% more severe than previous estimates, which by

itself has major implications for drought risk management in the region.

B.2 Introduction

Many studies have shown that the 20th century does not depict the

full range of drought variability Woodhouse and Overpeck (1998); Stahle et al.

(2007); Cook et al. (2004); Meko et al. (2007). Paleoclimate records, for

instance, provide evidence of dry intervals unlike anything seen dur-

ing the last century Woodhouse and Overpeck (1998). These multidecadal

epochs of aridity (megadroughts) occur naturally and throughout the world

Woodhouse and Overpeck (1998); Shanahan et al. (2009); Buckley et al. (2010);

Haug et al. (2003); deMenocal (2001). If they were to occur again, the ecological

and societal consequences would be severe. In a megadrought during the 1150s, for

example, the 25-year average of reconstructed Colorado River streamflow dropped

by 15% (2.25 MAF) of the 20th century mean for a Meko et al. (2007). In modern

terms, this would be roughly equivalent to losing the entire allocation for the state

of Arizona, on average, year after year.

Assessing the risk of megadroughts in the future is challenging because the 20th

century record is too short to reliably estimate the rate at which these events oc-

cur. For example, the instrumental record of Colorado River streamflow alone is

insufficient to determine if decadal-scale droughts would be expected to strike ev-

ery 100 years or every 500 years Pelletier and Turcotte (1997). This limitation

has been partly addressed by using reconstructions of Colorado River streamflow

to estimate the underlying distribution of variance across timescales in the recon-

struction, and using that distribution to generate Monte Carlo realizations of flow

Meko et al. (2010). This approach indicates that events like the 1150s drought

would be expected to occur every 400 to 600 years, which is consistent with the
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existing reconstructed record Meko et al. (2010, 2007). This view of risk is incom-

plete, however, because 21st century climate will likely be dramatically influenced

by rising temperatures from anthropogenic greenhouse gases Solomon et al. (2007),

implying that the risk of future megadroughts will depend on the natural rate at

which these events occur as well as the forced component of change. In the US

Southwest, for instance, precipitation is projected to decrease as a consequence of

forced changes in the average position of winter storm tracks Seager et al. (2007b).

Any assessment of future megadrought risk, therefore, should account for both the

natural variability inferred from the past few centuries and the changes in rainfall

patterns that are projected to occur in the coming century. To that end, we present

here a megadrought-risk analysis that uses instrumental and paleoclimate records

of hydroclimate to make statistical adjustments to global climate model (GCM)

projections of precipitation during the 21st century.

We compute power spectra from drought proxies, instrumental records, and

GCMs, and we use power laws to summarize the information in these spectra across

a wide range of time scales (here we use the term “time scale” to refer to a group

of similar frequencies). This approach allows us to ignore the time evolution of

drought events, which differs between models and observations, and focus on the

importance of low-frequency (multidecadal to multicentury) variance with respect

to high-frequency (interannual) variance. Although a power-law distribution might

not necessarily be the best fit to the power spectra of all instrumental, model, and

paleodrought records (e.g., Clauset et al. (2009)), power laws give us critical insight

into the underlying relationship between time scale and variance across disparate

types of data.

Power-law coefficients have been widely used to characterize the power spec-

tra of temperature fluctuations in the ocean and atmosphere on monthly to multi-

millennial time scales Wunsch (2003); Huybers and Curry (2006); Pelletier (1998).

Such coefficients relate frequency f to spectral density S(f) such that S(f) ∝ f−m.

Power spectra with higher values of m correspond to time series that exhibit more

variance at lower frequencies. For terrestrial temperature records, the parameter m
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ranges from approximately zero to 0.5, whereas in the oceans it tends to be somewhat

higher (0.5 to 1.5) Huybers and Curry (2006); Fraedrich and Blender (2003). In con-

trast to temperature, the power spectrum of precipitation tends to resemble that

of “white noise” (m ≈ 0) on interannual time scales Rajagopalan and Lall (1998);

Pelletier and Turcotte (1997). On longer time scales, and in other types of hydrocli-

mate variables, variance tends to increase at lower frequencies Pelletier and Turcotte

(1997); Kantelhardt et al. (2006); Koscielny-Bunde et al. (2006), with power-law co-

efficients estimated near 0.5 for globally averaged spectra of river discharge, in-

strumental precipitation records, and tree-ring widths from moisture-sensitive trees

Pelletier and Turcotte (1997).

B.3 Data and Methods

We use paleoclimate data, instrumental records, and climate model simulations to

estimated power spectra and power-law coefficients (m) for various hydroclimate in-

dicators. Since these coefficients relate the amount of variance at long timescales to

the variance at short timescales, they also indicate how often persistent phenomena

(such as megadroughts) are expected to occur Pelletier and Turcotte (1997). We

therefore refer to this coefficient (m) as the “megadrought-risk coefficient:” higher

values of m will be associated with more frequent intervals of severe, persistent arid-

ity. Figure B.6 illustrates this concept in more detail using Monte Carlo realizations

of Colorado River streamflow that have been scaled by different megadrought-risk

coefficients. For values of m near zero, megadrought conditions are uncommon; for

higher values of m, these conditions become considerably more prevalent (Figure

B.6).

The shortness of the instrumental record makes it difficult to estimate the

megadrought-risk coefficient (m) on multidecadal, centennial, and longer time scales.

We therefore examine the power spectra of paleoclimate records from the central

and southwestern US and West Africa. We use a new reconstruction of flow on the

Colorado River and four precipitation-sensitive paleoclimate records from the World
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Data Center for Paleoclimatology (Supplementary Table B.1). The new Colorado

River flow reconstruction is described in detail in the Supplementary Materials sec-

tion. It was developed using methods aimed at preserving low-frequency variance,

and multiple different methodological choices were tested to ensure that our results

were stable. We also analyzed other paleoclimate records from the western US

(125◦W to 100◦W, 30◦N to 48◦N) if they met all of the following criterion: (1) they

were at least 1000 years long; (2) they contained data from the last 500 years; (3)

they exhibited at least decadal (10 year) resolution on average; and (4) they were

primarily drought indicators. Lastly, we calculated m for two paleoclimate records

from Lake Bosumtwi, Ghana, which was the only record that fit our selection crite-

rion for western sub-Saharan Africa. Since paleoclimate data tend to be unevenly

sampled in time, we used the Lomb-Scargle method Lomb (1975); Scargle (1982) to

estimate their spectra. We normalized all paleoclimate data to exhibit unit variance

prior to spectral analysis.

We also estimated power spectra and megadrought-risk coefficients (m) from in-

strumental and simulated 20th century annual precipitation records using the multi-

taper method Thomson (1982). Instrumental precipitation data originate from

the University of East Anglia’s Climate Research Unit’s (CRU) TS 2.1 database

Mitchell and Jones (2005), which spans 101 years from 1901-2002. Precipitation

time series at each grid point were averaged to annual (Jan-Dec) resolution. We

focus on precipitation because of its obvious link to hydroclimate, but temperature

may also play an important role in exacerbating drought. To assess this possibility,

we estimated m from the Palmer Z-Index (a measure of P-E) as well. We also es-

timated m for precipitation data from 18 GCMs used in the IPCC 4th Assessment

Solomon et al. (2007) that were annualized in the same way as the instrumental CRU

TS2.1 data. The simulations considered here were the forced “Climates of the 20th

Century” experiments (77 runs), the longest (>500 year) unforced “Pre-industrial”

control runs (6 runs), and projections of the 21st century from the SRESA1B (57

runs) and SRESA2 (37 runs) Solomon et al. (2007) scenarios.

As in Huybers and Curry (2006), we estimated the value of m from individual
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power spectra by performing a least-squares regression of log-transformed spectral

density against log-transformed frequency. To avoid biasing the regression towards

the higher frequencies Huybers and Curry (2006), we averaged spectral density es-

timates to evenly spaced log-frequency bins prior to calculating m. We ensured

that the values of m were not unduly influenced by long-term trends, which would

artificially inflate variance at the lowest frequencies, by performing the regression

over the frequency domain fq to 2/N , where fq is the highest resolvable frequency

(the Nyquist Frequency) and N is the length of the record in years (Supplemen-

tary Table S1). Since the power spectrum of white noise would be expected to be

characterized by a value of m near zero, we calculate the p-value of the regression

slope to determine the probability that the value of m is significantly different from

zero. Finally, we used an alternative method (detrended fluctuation analysis, DFA,

Peng et al. (1994)) to test the robustness of the spatial patterns of m shown here

(see supplementary material).

Global megadrought risk during the 21st century was estimated from unad-

justed and rescaled versions of the SRESA1B and SRESA2 climate model simula-

tions. The rescaling was done using an approach similar to the one described by

Pelletier and Turcotte (1997) and explained thoroughly in Pelletier (2008). In the

earlier work, the authors first used a random number generator to produce white

noise time series (x(t), where t is time). They then calculated the Fourier transform

(x(k), where k are the standard Fourier frequencies) of these time series, and filtered

them to conform to a predefined value ofm. These filtered Fourier transforms (x̂(k))

where then used to calculate filtered time series (x̂(t)) by taking the real part of the

inverse Fourier transform of x̂(k). Finally, the mean and variance of the rescaled

time series were adjusted to desired values. We applied essentially the same algo-

rithm, but used precipitation projections instead of white noise time series. We also

forced the mean and variance of the rescaled precipitation projections to be equal

to the original time series. The values of m that were used to rescale precipitation

globally were derived from instrumental data (CRU), and (for the US southwest

only) proxy data. Figure B.7 illustrates the application of this method to a single
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time series from one model.

Here, we define a megadrought as a period of 10 years when the running 25-

year projected precipitation mean drops below 85% of the 20th century mean of a

given model at a given grid point. We chose this definition because it would char-

acterize a well-known megadrought that occurred on the Colorado River during the

1150s Meko et al. (2007). We calculated the risk of such an event by querying each

SRESA1B projection from each model (57 runs total) to determine whether such an

event occurred. Finally, we mapped out the percentage of all runs that experienced

a megadrought for unadjusted and rescaled versions of projected precipitation data.

We subtracted the two maps from one another to show where rescaling might matter

most for future megadrought risk.

B.4 Results and Discussion

The time series of our new Colorado River reconstruction is shown in Figure B.1,

and discussed further in the supplementary material. During the 20th Century,

it is in very good agreement with naturalized streamflow from the Colorado river

(Figure B.1a) and the reconstruction in another recent study Meko et al. (2007).

Over the last millennium, however, it differs from the earlier reconstruction in sev-

eral important regards. First, the long-term mean of the 25-year moving average of

our reconstruction is 12.43 MAF, whereas the long-term mean of the earlier recon-

struction was 14.66 MAF. This offset represents primarily lower mean streamflow

values prior to the 20th century (see supplementary material), and the presence of

megadroughts in our reconstruction that are even more severe than those previously

identified Meko et al. (2007). Second, the variance of the 25-year moving average is

somewhat greater in our reconstruction (1.8 MAF2) as opposed to the variance in

the earlier reconstruction (0.58 MAF2) Meko et al. (2007). This difference can be

clearly seen in the distributions of the 25-year moving averages (Figure B.1c), and

most notably in the power spectra of the reconstructions shown in Figure B.1d.

The megadrought-risk coefficient (m) is positive (m = 0.42) for the power
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spectrum of our new 1200-year Colorado River flow reconstruction (Figure B.2a).

This indicates that long-term fluctuations in streamflow exhibit more variance than

shorter-term fluctuations. Also shown in Figure B.2a are the individual and compos-

ite spectra from four independent paleodrought records in the US Southwest. These

are lower resolution (decadal) records that span a longer time interval than the Col-

orado River reconstruction, and they too support a positive value of m (m = 0.84

for the mean spectrum of all four records).

In Figure B.2b we show the power spectrum of West African annual precipitation

(averaged over 5◦N to 15◦N and 17.5◦W to 20◦E) along with two drought records

from Lake Bosumtwi, Ghana. They span the last 2,500 years and support a value

of m close to 1.04, which is in good agreement with precipitation for the region

(m = 0.94).

Global estimates of the megadrought-risk parameter (m) are mapped in Fig-

ure B.3 for 20th century instrumental precipitation, and results show that most

regions of the world experience more low-frequency hydroclimate variability than

high-frequency variability. The highest values of the megadrought-risk coefficient

(m) occur in Australia, Brazil, West Africa, and the western and northern parts of

North America. Accordingly, low-frequency (decadal) variance in these regions is

substantially more energetic than variance at higher frequencies (e.g., interannual).

We found that the values of m calculated from the Palmer Z-Index (a measure of

P-E) were virtually identical to those calculated from precipitation alone (Supple-

mentary Figure B.8). Estimates of a related parameter using DFA Peng et al. (1994)

also support the values of m we have shown in Figure B.3.

The GCMs do not appear to simulate the geographic pattern, nor the magnitude,

of the megadrought-risk coefficient (m) in precipitation (Figure B.10). This is true

for most of the individual models (Figure B.11) and also the longest (>500 year)

available pre-industrial control experiments from the IPCC 4th assessment (Figures

B.12 and B.13). Instead, values of m are close to zero for most parts of the world,

and negative (indicating very energetic high-frequency variance) in the equatorial

tropical Pacific. This likely reflects the effect of interannual “El Niño” and “La
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Niña” variability that is exceptionally energetic in GCM simulations Guilyardi et al.

(2009).

Figure B.4 shows the results of our global megadrought-risk analysis from raw

(Figure B.4a) and rescaled (Figure B.4b) SRESA1B projections. In many regions,

our rescaling does not increase the likelihood of megadroughts (Figure B.4c). This

is partly because in higher latitudes (e.g., poleward of 45-50◦N in Europe and

North America) and near the equator, the projections suggest it will get wetter

Solomon et al. (2007), making megadroughts less likely. It is also partly because,

in many regions, the coefficient during the 20th century is not very different from

zero, so rescaling precipitation has little impact. However, for several regions where

drought is already common (e.g. Australia, the US Southwest, and parts of West

Africa), megadroughts are considerably more likely under the rescaled analysis than

under the unadjusted projections. Our results also imply that megadrought risk is

underestimated across parts of South Asia, South Africa, and the Amazon region of

South America.

The megadrought-risk maps in Figure B.4 are sensitive to the choice of the

megadrought-risk coefficient, and in the US Southwest estimates of this value differ

between 20th century instrumental data (m = 0.25) and proxies (m = 0.42 to 1.0).

We therefore construct another set of megadrought-risk maps for the US Southwest

using unadjusted SRESA1B precipitation (Figure B.5a), rescaled precipitation using

20th century estimates of m (Figure B.5b), and rescaled precipitation using the low

(conservative) end of our proxy estimates of m (m = 0.4) (Figure B.5c). According

to the raw SRESA1B precipitation estimates, the risk of a megadrought is less than

10% for most of the domain. If only instrumental estimates ofm are used, our results

imply that there is a 10% to 20% chance of an 1150s-style megadrought during the

coming century (Figure B.5b). However, if we rescale SRESA1B precipitation using

proxy estimates of m, we see that there is at least a one-in-six (15%) chance of such

an event in most of the Southwest, and a one-in-four (25%) or one-in-three (30%)

chance in some areas. These estimates are conservative: we used the low end of

the proxy range of m, and the SRESA1B scenario assumes some emission cuts in
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the coming century. Maps of megadrought risk in the SRESA2 scenario show even

higher likelihoods (i.e., up to 30% to 50%; Figures B.14 and B.15).

B.5 Conclusions

We have focused our analysis of megadrought risk to a relatively small part of the

globe (the US Southwest) because there are abundant high-resolution and high-

quality hydroclimate proxies from this area, which give us confidence in the values

of m we have estimated for this region. Here, cold season precipitation has been,

and likely will be, the primary driver of megadrought variability. However, in the

southern part of this region (as in many other areas of the world), monsoonal vari-

ability contributes considerable amounts precipitation during the warm season, and

some GCMs may not simulate the intensity, nor certain dynamics, of summertime

precipitation Liang et al. (2008); Cavazos et al. (2008). If this is the case, then the

GCMs may provide an incomplete view of the full range of future hydroclimatic

changes that could occur in monsoon-sensitive regions, and hence our megadrought-

risk assessments may also be constrained by these limitations. Future research could

therefore apply the tools we have developed here to a subset of GCMs that simulate

desirable characteristics of monsoonal variability.

Future work should also identify the likely physical mechanisms that contribute

variance to the power spectrum of precipitation at different timescales. One pos-

sibility is that high-latitude, low-frequency forcing paces hydroclimate in nature

Kushnir et al. (2010); Schubert et al. (2009), but that in models the higher fre-

quency, tropical Pacific fluctuations dominate the power spectrum. Another pos-

sibility is that low-frequency variability in the tropical Pacific, which is not well

resolved in instrumental records Cole et al. (1993); Urban et al. (2000); Cobb et al.

(2003); Conroy et al. (2008); Ault et al. (2009) or GCMs Guilyardi et al. (2009), is

responsible for the low-frequency behavior in hydroclimate at decadal timescales

and longer in some regions. It is also possible that the recent observed “widening of

the tropics,” which models do not completely simulate Seidel et al. (2008), is linked
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to natural components of variability that influence low-frequency precipitation vari-

ance.

B.6 Implications

Droughts in the past have had dramatic human and financial costs. In the US alone,

for instance, the Federal Crop Insurance Corporation spent $1.7 billion in losses per

year from 1980-2005 on average Stephenson (2007). In the future, such losses might

be curtailed if the full range of “natural” and “forced” hydroclimatic variability can

be included in megadrought-risk mitigation strategies. Here, we have described a

method for combining insights from observational data and projections from climate

models to estimate the risk of persistent intervals of aridity in the coming century. In

some regions (such as northern Africa), this risk is extremely high (>50%) whether

unadjusted or rescaled projections are considered. In Australia, the US Southwest,

and Central America, the risk is about 15% to 30% if unadjusted projections are

considered, but higher (20% to 50%) if observational estimates of the megadrought-

risk coefficient (m) are used to rescale precipitation. In the US Southwest, where

high-quality proxy records of hydroclimate are abundant, risk is about 10% for most

of the region if unadjusted projections are used, but as high as 30% if proxy-based

megadrought-risk coefficients are used.
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B.8 Figures
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Figure B.1: a. Naturalized flow on the Colorado River at Lee’s ferry (black line)
shown with a recent reconstruction Meko et al. (2007) (gray) as well as our new
reconstruction (red) during the 20th century. b. 25-year running mean of our
new reconstruction (red) shown with the 25-year mean of the reconstruction in
Meko et al. (2007) (gray). c. Distribution of 25-year running means in the earlier
reconstruction Meko et al. (2007) and our reconstruction to illustrate that the mean
of our reconstruction is lower (12.43 MAF compared with 14.66 MAF in Meko et al.
(2007)) and the decadal variance is higher (1.8 MAF2 as opposed to 0.58 MAF2).
This finding is further illustrated in d., which shows the power spectra of the two
reconstructions. Clearly, more low-frequency variance is present in our reconstruc-
tion, which can be seen by the more energetic power spectrum (red line in d.; see
supplementary material for further discussion of this finding).
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Figure B.2: a. Spectra and megadrought-risk coefficients (m) from reconstructed

Colorado River Flow (red line) and four paleodrought indicators (symbols). These

records include: a diatom-inferred salinity record from Moon Lake ND Laird et al.

(1998) (circles); an oxygen isotope record from Pyramid Lake, CA Benson et al.

(2003) (triangles); a speleothem band-thickness record from Carlsbad Caverns, NM

Polyak and Asmerom (2001) (stars); and a cave δ18O record from Hidden Cave, NM

Rasmussen et al. (2006) (squares). The least-squares regression line is shown in gray

and was obtained by regressing the log-transformed average spectral density of all

four proxies against log-transformed frequency. The megadrought-risk coefficient

(e.g., the slope of the least squares regression line) is 0.86 for the proxy average.

The least squares regression line for the Colorado River power spectrum shown in

black (m = 0.42). b. The West African precipitation spectrum (red) and spectra of

paleodrought proxies from Lake Bosumtwi (symbols) Shanahan et al. (2009). The

Lake Bosumtwi δ18O record indicates evaporation during dry epochs, and the Lake

Bosumtwi Si record is a proxy for terrigenous flux into the lake, which tends to

increase during lake low stands. Again, the regression line for the proxy spectral

average is shown in gray (m − 1.04), and the regression line for precipitation is

shown in black (m = 0.94). Spectral densities of all records were averaged into

evenly spaced log-frequency bins and used to calculate m.
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Figure B.3: Map of the megadrought-risk coefficient (m) calculated from annually
averaged (Jan-Dec) precipitation. The parameter m was estimated by regressing
log-transformed precipitation power spectra against log-transformed frequency at
each grid point. To avoid introducing bias from long term trends, the value of m
was calculated between periods of 2 years and 50 years. Regions where the value is
significantly different from zero (p < 0.01) are shaded. Warm colors indicate regions
where long-term moisture anomalies are more energetic than short-term fluctuations
(blue colors indicate the opposite)
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Figure B.4: Risk of a 21st century megadrought in SRESA1B IPCC AR4 simulations
(shown as percentage of all runs). a. Risk in unadjusted SRESA1B annual precip-
itation projections. b. Risk in rescaled precipitation projections. c. Difference in
percentages obtained by subtracting a from b.
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Figure B.5: Risk of a 21st century megadrought in the US Southwest (as in Figure
B.4, shown as a percentage of runs). a. Risk in unadjusted SRESA1B annual precip-
itation projections; b. risk in precipitation projections rescaled using instrumental
values of m; c. risk in precipitation projections rescaled using our proxy-based
estimate of m (m = 0.4).
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B.9 Supplementary Material

B.9.1 Monte Carlo Realizations of Streamflow

To illustrate usefulness of the power-law coefficient (m) as a drought risk indicator,

we performed Monte Carlo simulations of Colorado River streamflow. In each Monte

Carlo simulation, a random (white noise) time series was generated with the same

mean and variance as 20th century observations of Colorado River flow, then rescaled

by a predefined power law using methods described in the text. Next, we tallied

the total number of years where the 25-year running mean dropped below the 20th

century mean, and averaged this count by the total number of centuries (twelve)

in our simulation. This provides us with an average of the number of years that

experienced megadrought conditions for each of the 1000 Monte Carlo realizations

at each value of m (we chose values between zero and 1.6 in increments of 0.2).

Note that this average number of years differs slightly from the definition of “a

megadrought” used in the text: this choice was made to include a more complete

view of the average number of years that experienced megadrought conditions instead

of the total number of decadal megadroughts per century.

B.9.2 Colorado River Reconstruction

Methodological Details

We produced a new Colorado River reconstruction using methods that pre-

served variance across the widest possible range of time scales given the avail-

able tree-ring data. We began with raw ring-width measurements from 9 sites

in the upper Colorado River basin (Table B.2 and Figure B.16); these were

all used in an earlier study (1), referred to as M07 from here on. Raw data

(ring-width files) are all available from the International Tree-Ring Data Bank

(http://www.ncdc.noaa.gov/paleo/treering.html). First, we selected only segments

that were at least 400 years long, then detrended these segments using splines whose

frequency response was 95% at 400 year wavelengths. This left us with 283 samples,
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which were averaged together to produce a “master chronology.” We then used

least-squares regression to derive a linear model to predict 20th century Colorado

River flow at Lee’s Ferry from the master chronology. The model was then validated

using a “leave-one-out” technique: for the 99 years of overlap, 98 years were used

to calibrate the model, and 1 observation was used to validate it. This process was

repeated 99 times and the root-mean-squared error and R2 values were calculated

from the validation procedure. Since regression-based reconstructions can deflate

variance, we also reconstructed flow by rescaling the mean and variance of the mas-

ter chronology to match 20th century flow. We obtained such similar reconstruction

and validation statistics that we only report the regression-based results here (Ta-

ble B.3). However, the mean and variance rescaling approach suggested that the

low-flow intervals in our reconstruction may have been even more severe, hence our

results may be a slightly conservative estimate of the worst droughts on the Colorado

River.

The methodology of our reconstruction differs from M07 in three regards. First,

the earlier study selected segments that were 250 years long and longer, whereas

we used segments that were at least 400 years long. Naturally, this left us with

fewer segments (283 total). Second, M07 detrended segments using splines whose

frequency response was 95% at twice the segment length. This would mean that

the splines used to detrend the shortest series would have a 95% frequency response

at 500 years, but that the frequency response would be different for segments of

different lengths. In our reconstruction the frequency response is nearly the same

for each segment because we used splines with a 95% frequency response at 400

year wavelengths, and used only segments that were 400 years long or longer. This

removed almost all variance at wavelengths longer than 400 years from all segments.

In effect, we used conservative detrending as a high-pass filter to maintain more

control over the frequency response. Thirdly, M07 used the first principal component

time series of site chronologies in nested models, but we constructed a single master

chronology and used it as a predictor of Colorado River flow. Despite the differences

our methodologies and those employed by M07, the resulting reconstructions are
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remarkably similar (Figure B.17 and B.18).

We compared our reconstruction with M07 by constructing two additional master

chronologies and repeating the regression analysis (summarized in Table B.3). We

first returned to the raw ring-width measurements and selected segments that were

250 years or longer as in M07. We detrended these segments using splines with

a 95% frequency response at 100 years. Next, we detrended the network of 283

samples used in our reconstruction using the more flexible splines (95% response at

100 years). The results are reported in rows b and c of Table S3.

The 25-year means of these additional reconstructions are shown in Figure B.18.

During the 20th century, all three of our reconstructions are in good agreement

with M07 as well as naturalized 20th century flow. Validation statistics for our

reconstruction are also quite good (Table S3). In earlier centuries, the dry intervals

appear drier in our reconstruction from conservatively detrended segments (Figure

B.3, top left). In contrast, the 25-year means of our other two reconstructions (which

removed more low-frequency variance) are nearly identical to the 25-year mean of the

M07 reconstruction. Clearly, the reconstruction is more sensitive to the detrending

choices we made than to the network of trees we used, which helps us rule out the

possibility that differences in data account for differences in the reconstructions.

Instead, we argue that our conservative detrending methods account for nearly all

of the differences between our reconstruction and M07.

To further examine the impact of our different detrending methods, we modeled

hypothetical power law distributed spectra whose low-frequency variance had been

removed using the two different criteria used here (95% at 100 years and 95% at 400

years). The stiffness, or flexibility, of a spline is determined in part by the spline pa-

rameter, p, which is usually specified to yield a desired frequency response (2). Since

the definition of the spline parameter in (2) is somewhat different than the definition

used in MATLAB©(the software we use), we apply the equations provided by J.

Dupouey (INRA, Forest Ecology and Ecophysiology Unit, Chanmpenoux, France)

to determine the expected frequency response of a given spline with parameter p:
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u(f) =
1

[

1 + 12

(

1−p

p

)

(cos 2πf−1)2

(cos 2πf+2)

] (B.1)

Where f is frequency. Note that u(f) is normalized so that it attains a maxi-

mum value of 1.0 (i.e., 100% of the variance would be removed below some frequency

interval, f0). The residual energy in the power spectrum, therefore, could be ap-

proximated by: S ′(f) = S(f)− u(f), where S(f) is spectral density.

Since the spline parameter p varies slightly from sample to sample, the expected

frequency response will also vary. We therefore use equation (1) to model a set

of hypothetical spectra (gray lines in Figure B.19 and B.20). These spectra are

assumed to have a power-law distribution (S(f) ∝ f−m) with m = 0.5 and have

reduced variance at low frequencies according to each of the values of p used to de-

trend the individual ring-width measurements in our reconstruction. This is only an

approximation, however, because in reality ring-width measurements are detrended

by dividing by a spline curve, not by subtracting that curve. Nonetheless, the hy-

pothetical spectra give us a good sense for the point in the power spectrum where

detrending the individual ring-widths is likely to impact the final master chronology.

When conservative detrending is used, this point occurs at multicentury time scales

(Figure B.19); when more aggressive detrending is used, it occurs at multidecadal

time scales (Figure B.20).

Key Features of the New Reconstruction

A distinctive difference in our new reconstruction, when compared to M07, is an

early 1900s shift, centered on about 1905 (Figure B.18). This makes the entire 20th

century look wet with respect to the previous 1000 years. We examine the source of

the early 20th century shift in our reconstruction by averaging the ring-with indices

that have at least 90 years of data during the 20th century (Figure B.21a), which

rules out the possibility that the shift is driven by changes in the network. Next,

we divided all ring-width indices into pre- and post-1900’s intervals, then took the

mean of each index during those two intervals. The distribution of these pre- and
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post-1900’s means are shown in the box plots in Figure B.21b. Importantly, this

results shows that the shift doesn’t seem to be driven by outliers. Finally, we rebuilt

the chronologies used in M07 after filtering out the segments that were shorter than

400 years or had less than 90 years of data during the 20th century (Figure B.22).

This step confirmed that the shift is present in most of the individual chronologies.

Taken together, these three analyses suggest that the shift is not an artifact of the

data or methods, but instead reflects a fairly ubiquitous increase in ring width that

occurred near the turn of the 20th century.

References Cited in Supplementary Material
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B.9.3 Supplementary Figures
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Table B.1: Summary of paleoclimate data from the southwestern United States and southern Great Plains used in this
study. The parameter m was calculated between the shortest resolvable periods (twice the sampling resolution) and
periods half the length of the record; the resolution of each record is shown in the fourth column (“Resolution”), and
the length of the record divided by two is shown in the fifth column (“N/2”).

Type of record Reference Location Resolution N/2
Diatom inferred Laird et al., 1998 Moon Lake 5yr 1167
Salinity (46.6◦N, 98.16◦W)

Lake δ18O Benson et al., 2002 Pyramid lake 4-8yr 2236
(40.066◦N, 119.56◦W)

Speleothem Band Polyak et al., 2001 Carlsbad Caverns 1yr 2230
Thickness (32◦N, 104◦W )

Speleothem δ18O Rasmussen et al., 2006 Hidden Cave 1yr 2265
(32◦N, 104◦W)
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Table B.2: Basic information about tree-ring sites used in our Colorado River re-
construction. The first column is the site name. The second is the original file name
of the “.rwl” (ring-width) file that contain the segments used to build our master
chronology. The “species” column is the species code (PSME for Pseudotsuga men-
ziesii, PIED for Pinus edulis). Latitude, longitude, and elevation (in meters above
sea level) are shown in columns 4-6. The number of ring-width indices used from
the original chronology are shown in the last column (N).

Site File Species Lat Lon Elev N
Harmon Canyon har2 PSME 36.7◦N 110.5◦W 2012 43
Beef Basin bfb3 PSME 36.7◦N 110.5◦W 2012 23
Wells Draw wed2 PIED 40◦N 110.2◦W 2027 13
Eagle egl11 PSME 39.4◦N 105.2◦W 2103 20
Pump House pum86 PSME 40◦N 106.5◦W 2194 22
Wild Rose wil44 PSME 39◦N 108.2◦W 2636 26
Trail Gulch trg55 PSME 39.7◦N 107◦W 2210 14
Lands End lan34 PSME 39◦N 108.2◦W 2987 26
Green Mtn Res gmr20 PSME 39.9◦N 106.2◦W 2514 26

Table B.3: Reconstruction statistics for three different pre-processing methods: a.
conservative detrending and long segments; b. flexible detrending and short seg-
ments; and c. flexible detrending and long segments. A spline designed to remove
95% of the variance at periods 400 years and longer was used for “conservative de-
trending,” whereas a spline designed to remove 95% of the variance at 100 years
and longer was used for “flexible detrending.” Segments were included in the “long
segment” network if they were at least 400 years long, and included in the “short
segment” network if they were 250 years long or longer. The network is therefore
exactly the same in a. and c.

Model N R2 R2
adj RE RMSEv r PRESS D-W Years

a. PFIT5 99 66.1 65.7 64.85 2.56 0.813 659.24 1.57 800-2007
b. PFIT3 99 74.9 74.6 73.77 2.20 0.865 491.84 1.96 800-2007
c. PFIT3 99 73.6 73.3 72.46 2.26 0.858 516.50 1.99 800-2007
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Figure B.6: An illustration of how the “drought-risk coefficient” (m) relates to
the frequency of years that experience megadrought conditions. Here 1000 Monte
Carlo simulations of flow on the Colorado river were conducted with predefined
megadrought-risk coefficients (shown on the x-axis), and the average number of
megadrought years per century are shown on the y-axis for each of the 1000 realiza-
tions for each of the given values of m.
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Figure B.7: (a) Raw (blue) and rescaled (orange) projections of annual precipitation
amounts from the GFDL CM2.0 model show to illustrate the effects of rescaling on
megadrought occurrence. (b) 25-year means of the precipitation amounts shown in
(a), along with the 20th century mean (gray) and the megadrought threshold we
use to identify events. In the raw projection, no megadrought is detected in the
25-year mean, in the rescaled projection, a megadrought occurs starting in 2080.
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Figure B.8: Same as Figure 1a, but for the Palmer Z-Index calculated from instru-
mental CRU TS2.1 precipitation and temperature.
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Figure B.9: Hurst scaling exponents (H) obtained from Detrended Fluctuation
Analysis (5 ) performed on global annual precipitation. As in Figure 1, warm colors
indicate regions with more energy at longer time scales. The Hurst scaling exponent
is related to m by m = −(2 ∗H − 1) (8 ); the values of H in, say, Brazil (0.8 to 1.2)
are consistent with the values of m (0.5 to 1) in the same region.
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Figure B.10: Map of m calculated for precipitation fields from 18 IPCC AR4 sim-
ulations of the 20th century and averaged across models. When multiple ensemble
members were available for a single model, the ensemble-average map of m was
calculated first and used in the multimodel average shown here.
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Figure B.11: Scaling coefficient (m) mapped out for each of the 18 individual model
“20th Century” simulations used to make the composite map in Figure 3. In the
cases where multiple ensembles were available for a single model, m was calculated
for each member individually, then averaged (the ensemble average is shown here).
All data were obtained from the “Earth System Grid” FTP site (ftp-esg.ucllnl.org).
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Figure B.12: Maps of m for each of the individual pre-industrial control simulations
used in Figure B.11.
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Figure B.13: Mean value of m averaged across 6 long (>500 year) pre-industrial
control simulations.
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Figure B.14: Same as Figure 3 in the text, but using the SRESA2 scenario: a.
Risk in unadjusted SRESA2 annual precipitation projections. b. Risk in rescaled
precipitation projections. c. Difference between a and b.
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Figure B.15: Risk of a 21th century megadrought in the US Southwest (same as
Figure 4 in the text, but for the SRESA2 scenario). a. Risk in unadjusted SRESA2
annual precipitation projections. b. Risk in precipitation projections rescaled from
instrumental values of m. And, c. risk in precipitation projections rescaled using
our proxy-based estimate of m (m = 0.4).
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Figure B.16: Map showing the location of each site where tree-ring samples were
taken and used in our Colorado River reconstruction. Data are all available through
the NOAA Paleoclimatology pages (www.ncdc.noaa.gov/paleo/treering.html)



96

Figure B.17: Naturalized (e.g., observed) and reconstructed flow during the 20th
century. a. Time series of the Colorado River at Lee’s Ferry (green), the M07
reconstruction (black), and the new suite of reconstructions (gray). During the
20th century, they are all in very good agreement. b. Power spectra of naturalized
and reconstructed flow using short (>250 year) segments for the time period when
the naturalized and reconstructed records overlap (the 20th century). c. Power
spectra of naturalized and reconstructed flow using long (>400 year) segments for
the 20th century only.
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Figure B.18: Top: (left) 25 year mean of reconstructed Colorado River flow from
M07 (gray) and from our new reconstruction (black); (right) power spectra of the
M07 reconstruction (gray) and our new reconstruction (black). In our reconstruction
segments were only included if they were at least 400 years long and were deterended
with a conservative spline designed to remove 95% of the variance at periods 400
years and longer. Middle: Same as top, but for our reconstruction (black) using
short segments (>250 year) and flexible deterending. Bottom: Same as Top, but
for flexible detrending applied to the network of long segments. The network of
samples used in the reconstructions on the top and bottom, therefore, were exactly
the same (see Table 1).
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Figure B.19: Power spectrum (black line) of the raw master chronology used in our
reconstruction. This master chronology is built from long segments (>400 years)
that were detrended with a conservative spline designed to remove 95% of the vari-
ance removed at periods 400 years and longer. The gray lines show the expected
frequency response from detrending segments who are assumed to follow a power
law (1/f−m) distribution with m set to 0.5. This analysis shows that our detrending
methods are expected to preserve variance up to the millennial time scale, and that
the master chronology generally exhibits more variance at lower frequencies.
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Figure B.20: Same as Figure 4, but for the power spectrum (black) the master
chronology used in the reconstruction summarized in row “b” of Table S1. This
chronology was built from short segments (>250 years) that were detrended with a
spline designed to remove 95% of the variance at time scales longer than 100 year.
The figure demonstrates that the use of shorter segments and flexible detrending is
expected to damp variance at periods approximately 100 years and longer, which in
turn would bias the calculation of the parameter m.
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Figure B.21: a. Mean index value (black line) of 400 year-long segments with at
least 90 years of data during the 20th century. The number of segments used to
make the black line is shown in gray. b. Box plots of the population of means of
each ring-width index before and after 1900. The red line on the box plot indicates
the median, and the box encompasses the upper and lower quartiles. The whiskers
show the 95% limits of the distribution of the data, and the “+” symbols indicate
outliers.
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Figure B.22: Time series of new chronologies that were re-built from only segments
with at least 400 years of data and 90 years of coverage during the 20th century.
The name of the chronology is printed in bold with the number of segments used
in parenthesis. The dotted line marks the 1905 shift present in our Colorado River
reconstruction. These findings further substantiate the result that the early 20th
century change is real and driven by climate.
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APPENDIX C

MONTE CARLO AGE MODELS

Novel tools for analyzing paleoclimate data and their application to a new

speleothem record of Southwest hydroclimate during the last 1500 years.

Toby R. Ault1, Ali Kimbrough1, Julia E. Cole1, and Sarah S. Truebe1

1. Dept. of Geosciences, Univ. of Arizona

C.1 Abstract

Understanding the full range of past hydroclimatic variability requires multiproxy

reconstructions to address the full spectrum of variance. As a complement to re-

gional tree-ring records, we have developed a new millennium-length δ18O record

from a cave in Southern Arizona. Comparing this record with absolutely dated

dendroclimatic reconstructions requires that we quantify dating uncertainties. Here

we develop a new Monte Carlo approach to model time uncertainty of radiometri-

cally dated records, whereby “families” of age models are generated from a given

set of assumptions, then applied to the δ18O series. Results indicate that traditional

approaches of using a single linear or spline-based age model may be misleading be-

cause these models are, in effect, single realizations of time depth curves drawn from

a much richer probability distribution. As an alternative, we propose a method for

generating stochastic models of age uncertainty. We also develop a method for cor-

relating entire families of age models with single time series, and apply this method

to correlate our new δ18O record with annual tree-ring proxies of hydroclimate in the

region. We find that variance at long timescales (multidecadal and longer) is much

less sensitive to our age-modeling choices than variance at shorter timescales. The
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new speleothem record confirms that several well-known megadroughts (and plu-

vials) extended well into the Sonoran desert, and that there has been a long-term

trend towards wetter conditions during the last 1500 years.

C.2 Introduction

The southwestern U.S. has been one of the fastest-growing regions of the coun-

try during the last few decades. To cope with the increasing demand on regional

water resources, managers require realistic estimates of future water availability.

This entails integrating the natural range of hydroclimatic variability with pro-

jections of the future. Since the instrumental record alone is not long enough

to reliably estimate the natural range (e.g., Cook et al., 2004), researchers have

turned to a variety of high-resolution proxies during recent years to develop regional

climate histories of change during the last few centuries. Tree-ring records have

been widely used in this capacity to reconstruct a wide range of hydroclimate vari-

ables, most notably Colorado River flow during the last 1200 years (Meko et al.,

2007) and the Palmer Drought Severity Index (PDSI) (Cook et al., 2004). In a

now-classic paper reviewing a large number of hydroclimate proxies from the west,

Woodhouse and Overpeck (1998) showed that droughts such as the 1930’s Dust

Bowl and 1950’s drought occurred once or twice per century since 1600AD, and

that multidecadal “megadroughts” occurred once every 500 years during the last

few millennia (Woodhouse and Overpeck, 1998).

Despite the pressing need for reliable records of paleodrought in the region, there

are few continuous, high-resolution records of regional hydroclimate that span the

last millennium. This is partly because tree-ring reconstructions are limited to the

higher-elevations where trees can grow, and partly because the length of tree-ring

records is limited by the lifespan of trees. Moreover, dendroclimatic reconstruc-

tions are absolutely dated and linked to hydroclimatic variability with exceptional

statistical rigor, but they likely miss ultra-low frequency (century-scale and longer)

variability due to the “segment-length curse” described by Cook et al. (1995). A
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complete picture of the full range of drought variability requires that paleorecords

sensitive to low-frequency variability be developed to complement the dendrocli-

matic and instrumental perspectives. However, there are very few lakes in the

Southwest that could yield sediment-based histories of the last few millennia. Some

insights have emerged from packrat middens (Holmgren et al., 2003) and cave de-

posits (Asmerom et al., 2007; Polyak and Asmerom, 2001; Rasmussen et al., 2006),

but linking these to precisely-dated annual tree-ring reconstructions is a notable

challenge (Betancourt et al., 2002; Tan et al., 2006). Nonetheless, a recent analysis

of instrumental and paleoclimatic records from the western U.S. argues that the nat-

ural range of low-frequency variability is considerable and needs to be constrained

for future adaptation and mitigation strategies (Ault et al.).

In arid regions, changes in speleothem oxygen isotope ratios reflect changes in

the hydrologic budget at the surface. Radiometric dating methods provide precise

constraints on the progression of isotopic changes. This should make speleothems

ideal proxies for recording the timing, magnitude, duration and severity of pale-

odroughts during the past. Ideally, we would want to compare and calibrate the

isotopic variability in cave records with instrumental and tree-ring records of hy-

droclimate to build confidence in our interpretations of climate variability inferred

from speleothems. This poses a challenge because even well-dated, high-resolution

cave records of climate lack the age precision of instrumental and dendroclimatic

records. We require a method to quantify and constrain the impact of age model

uncertainty on such comparisons.

Here, we approach the challenge of comparing cave-based and tree-ring based

climate reconstructions, using a new interannual δ18O record from an Arizona cave

spanning the past 1400 years, and a new set of methods for age model development.

Our approach explicitly recognizes that single age-depth curve fits do not fully rep-

resent the potential range of age-depth models that are possible for a given suite

of radiometric dates (and their associated uncertainties). We offer two alternative

methods: a set of statistical spline-based fits of varying stiffness to age-depth points

(as in Blaauw, 2010), and a statistical approach that simulates annual speleothem
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accumulation as a stochastic process constrained by explicit assumptions and by the

radiometric dates. We represent our δ18O record as a distribution of plausible time

series given our age model uncertainty. This process allows us to compare our family

of reconstructions with dendroclimatically based records and more rigorously assess

whether, for example, particular extreme intervals are truly coeval. We conclude

that the cave record does track multidecadal wet and dry anomalies, a finding that

holds promise for extending this cave record back in time.

C.3 Methods

In 2002 we removed a 19.5cm-long stalagmite formation from “Fort Huachuca Cave”

(FHC) (32◦N ,111◦W ). The formation was then cored with a 48mm-diameter drill

bit, and the center portion of that core was sliced into a 5mm thick slab. The top

146mm of the center portion of that slab was divided along the apparent axis of

growth, so that we could use one side (side “L”) for our radiometric (U/Th) dating

and the other (side “R”) for our isotopic analysis (Figure C.1). Consecutive 500µm

samples of the carbonate material were drilled from side “R” using a micromill.

Isotopic analysis of these carbonate samples was conducted on a Micromass Optima

dual inlet stable isotope mass spectrometer at University of Arizona (with <0.08

‰ analytical precision for δ18O). Eight pieces of material from various depths (Table

C.1) were sent to Oxford University for U/Th dating on a Nu-Plasma MC-ICP-MS.

In 2007, we re-molded the cored formation and restored it to its original location

inside the cave. Since 2007, we have visited the cave periodically to check the surface

of the formation for any new calcite growth and collect water samples for isotopic

analysis.

C.3.1 Monte Carlo Age Models

We develop a Monte Carlo age modeling approach that allows us to use the un-

certainty in our U/Th to produce “families” of age models (Table C.1). First,

we assume that the U/Th dates we obtained were normally distributed around the
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mean date with the standard deviations given by the 1σ error bars of the U/Th dates

(Table C.1, right column). Next, we develop spline-based Monte Carlo families of

age models by drawing random numbers from each dates’ probability distribution

function (PDF), then fitting a spline through those randomly selected dates. This

approach is quite similar to the one employed by Blaauw (2010). All age models are

reported in “Years AD” for comparison with tree-ring records.

The “stiffness” (flexibility) of a spline is specified a priori using a single parame-

ter, p (usually called the “spline parameter”). We therefore generate three different

families of spline-based age models using different values of this parameter. To gen-

erate the first family, we use p = 0, which is equivalent to fitting a linear model

to each Monte Carlo draw of U/Th dates . We generate a second family of spline-

based age models using wigglier splines (p = 10−5) that are sufficiently flexible to

pass through the distribution of each U/Th date, which keeps growth rates from

rapidly changing but sometimes prevents age models from being able to fit through

the mean U/Th date of each depth. The final family of spline-based age models

is generated using a more flexible spline parameter (p = 10−4), which we selected

to ensure that the splines would be flexible enough to fit through the midpoint of

all dates. Increasing p further would lead to age reversals between dates, which we

deemed unacceptable.

Although widely used, spline-based age models may be of limited utility because

they do not necessarily reflect the actual physical processes that govern formation

growth. They also do not allow for the possibility that growth rates may vary irreg-

ularly between points where dated material is available. An alternative approach

(e.g., Ramsey (2008)) is to model accumulation of the material in a proxy archive

as a stochastic variable that is constrained by the available radiometric dates. To

develop such stochastic models of growth for Fort Huachuca Cave, we begin by

treating time as a random variable as (Xd) whose distribution we want to model as

a function of depth. At the points where we have U/Th dates, we expect the values

of X to be normally distributed with means and variances specified by the dates

we have: {Xk ∽ N(µk, σ
2
k); k = 1, 2, . . . , H} where H is the total number of dated
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pieces of material (in this case, the samples reported in Table C.1.

We now consider the distribution of possible ages at the first sample (Xi) located

at a depth (di) directly above a dated piece of material (Xk). We assume that the

distribution of possible ages corresponding to this piece of material (Xi) will depend

on the age of the previous piece of (dated) material (Xk) and the addition of some

known quantity of time. That is Xi = Xk + Y , where Y is a random variable whose

distribution and parameters we will discuss below. We also assume that the point

dl directly below a piece of dated material will have a distribution that depends on

the date at Xk minus some quantity of years: Xl = Xk − Y .

Under these assumptions, an age model can be thought of as a random walk

between two dates (Xa and Xc) at two known depths (da and dc), where a and c are

the depths of dated pieces of material, and between those two points da < dj < dc

and therefore Xa < Xj < Xc. The greatest age uncertainty would be expected to

occur at the midpoint between those dates. That is, if b is the midpoint (in depth)

between two samples, then:

Xj =











Xj−1 + Y, if a < j < b;

Xj+1 − Y, if b ≤ j < c.
(C.1)

To implement this framework numerically between each piece of dated material,

we generate two suites of “random walkers.” The first suite is comprised of “forward

random walkers,” which are generated from the first part of equation C.1. The

second suite, the “backward random walkers,” are generated from the second part

of the equation. Finally, to adjoin the forward walkers with the backward walkers,

we use a “Frankenstein” approach whereby the individual members of each suite

are sutured to a nearby neighbor. This is achieved at the depth db−1 by drawing

a value from Y , adding it to the forward walker’s value at Xb−1 and determining

if there is a backward walker whose value at Xb is less than or equal to the value

drawn from Y and added to Xb−1. If no suitable backward walker is available,

another backwards random walk is generated and the routine is repeated. Note

that by adjoining the forward random walker to the backward random walker in
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increments that are randomly selected from the distribution of Y , the distribution

of ages between each depth remains the same between the two endpoints.

We need to select an appropriate distribution (and parameters) for Y . Ideally, we

would be able to use some prior information about the processes that cause carbon-

ate to precipitate to inform our choice. In reality, we do not completely understand

the controls on carbonate precipitation or how these processes may vary on decadal

to millennial timescales. Nonetheless, we can make several general requirements

using intuition and the limited number of observations we have from ongoing moni-

toring efforts in Fort Huachuca Cave and other caves in southern Arizona. First, we

note that carbonate does not precipitate during some years, but accumulates rapidly

during others. Second, we do not expect there to be any age reversals because this

would entail older carbonate material being contained in younger material; this un-

likely and would be visually apparent. Finally, we note that the average growth

rate, no matter how variable, must be equal to the linear slope between two depths.

The above stipulations on our distribution lead us to select a gamma distribu-

tion (Y ∽ Γ(k, θ)), from which we will draw values to generate random walkers.

We choose the gamma distribution because it is continuous and, depending on the

“shape” (k) and “scale” (θ) parameters, will allow the distribution of years to be

skewed towards zero most of the time, but occasionally larger. Very similar re-

sults could be (and were) obtained using a log-normal distribution or a Poisson

distribution. Ultimately the specific type of distribution is less important than the

parameters selected for it.

Since we want the mean of our Gamma distribution (E(Y )) to be equal to the

linear age-depth slope (µ) between two pieces of dated material, we select k and θ by

introducing another parameter m, such that: θ = µ/m and k = 1/m. This preserves

the mean slope because E(Γ(k, θ)) = θ
k
for the gamma distribution. The value of µ

we estimate as the linear slope between two points, while the parameter m, which

governs the variance of the age models, must be estimated more subjectively. We

constrained values of with a “leave-one-out” approach in which we modeled ages

between two dates and determined what values of m would allow the age-depth
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curve to pass through a third, intermediate-age, date C.3. Clearly, if the value of

m is too low, the models will be too linear, growth rates too stable, and the models

would not generally be variable enough to encompass the range of dates we have.

On the other hand, if m is too large, the distributions of years will be extremely

skewed, which will lead to very blocky growth rates (long hiatuses followed by rapid

growth). We picked values of m = 1, 3 and 5 to encompass a range of realistic

growth rates and variances for this site, and used these values to produce three

distinct gamma-based families of age models.

C.3.2 Correlation Analysis

To compare our record with tree-ring records, we calculate the linear (Pearson’s)

correlation coefficient between all members of each Monte Carlo family (both the

spline-based families and the gamma-based families) and 25-year averages of recently

developed local tree-ring chronologies. These chronologies are 355 year indices of

summer and winter precipitation that have been developed from stands of trees

within a few kilometers of Fort Huachuca cave, and they closely track 20th century

variability (D. Griffin, personal communication). We also correlate the different age

model families with 25-year running averages of the reconstructed Palmer Drought

Severity Index (Cook et al., 2004) for the 5x5 degree grid point corresponding to

our site. This reconstruction spans 1AD to 2003AD (2003 years total). We estimate

the significance (p-value) of each individual correlation coefficient by approximating

the degrees of freedom as N ′ = N/w − 2, where N is the number of years when

the tree-ring data and the cave record overlap, and w is length of the smoothing

window (25 years, in this case). This is equivalent to the number of non-overlapping

25-year windows. For the summer and winter precipitation chronologies, N ′ is 14;

for the longer PDSI reconstruction, N ′ is estimated as 60. Since we are using an a

priori significance criterion for our correlations, we would expect approximately 50

spurious significant correlations to occur at the 95% confidence limits.
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C.3.3 Forward modeling and spectral analysis

To evaluate the continuum of hydroclimatic variability and the potential for periodic

low-frequency forcing mechanisms, we calculated the spectra of each member of each

age model family using the Lomb-Scargle method(Lomb, 1975; Scargle, 1982). We

compare these spectra with results from an earlier study that simulated dripwater

δ18O using a two-layer model of “soil” (from the “leaky bucket” model proposed

by Huang et al. (1996)) and “rock” (simulated as a well mixed reservoir). Herein

we will refer to this model of isotopes in caves as the “isocave” model. The study

found that even without low-frequency climate input, the combination of stochastic

precipitation input and storage created variability at interannual and decadal time

scales. The ratio of rock-to-soil (rock:soil) governs the shape of the modeled power

spectrum and determines the point at which the cave record was expected to be rela-

tively free from local “storage” effects. Here we compare the spectral densities of our

new cave δ18O time series with the median spectral densities of the earlier studies’

1:1, 2:1, 3:1, and 5:1 rock:soil experiments (black lines in Figure 2 of Truebe et al.

(2010)). No adjustments were made to the parameters of the isocave model, nor the

input data used to drive the model, because the earlier results are applicable to the

climates and caves of Southern Arizona (i.e., it is not a site-specific model).

Spectral peaks associated with the Fort Huachuca record are deemed “signifi-

cant” if they meet both of the following criterion. First, they should rise above the

level of variance expected to occur as a consequence of cave processes predicted by

the isocave model. Second, they should be relatively insensitive to the different age

modeling choices we make. To reconstruct the temporal evolution of the timescales

of variability that satisfy these criteria, we use singular spectrum analysis (SSA)

(Ghil et al., 2002). SSA relies on estimating temporal patterns of variability from

the lag-covariance matrix of a time series, and requires a user-defined “lag-window”

(w), which we set to 100 years. However, we found that the leading reconstructed

components (RCs) of variability were insensitive to this choice.
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C.4 Results

The mean of our δ18O record is -8.0 ‰(VPDP). We performed a “Hendy Test”

(Hendy, 1971) and found that δ18O and δ13C did not covary along growth hori-

zons. We further show that δ18O and δ13C do not generally covary through time

(Figure C.2). Taken together, these two pieces of evidence suggest that the calcite

formed under equilibrium conditions (Mickler et al., 2006). However, instrumental

measurements of cave dripwater δ18O from various excursions into the cave from

2007-2010 have yielded a value of -10.0 ‰VSMOW across several sites throughout

the cave, and with almost no variability within or between years. Since the average

annual temperature of the cave is 17◦C, calcite precipitating in equilibrium would

be expected to have a δ18O value of -10.7 ‰VPDB (using the fractionation factors

provided by Kim and O’Neill (1997)), hence there is an offset between the long-term

mean value of cave calcite δ18O and the predicted value from modern measurements.

This offset is nearly the same as that reported in Wagner (2006) and in several other

nearby caves currently being monitored (S. Truebe, personal communication).

C.4.1 Age modeling

Based on the full range of age model families, our new δ18O record spans approxi-

mately the past 1500 years. The linear, spline-based (p = 0) family of Monte Carlo

age models for the Fort Huachuca Cave record is shown in Figure C.4a, and the

corresponding family of time series (one for each age model) is shown in Figure

C.4b. The average rate of carbonate accumulation for the duration of the record

was approximately 113µm/yr, which we calculated as the slope of the least squares

regression line through our U/Th dates and their corresponding depths. However,

this rate varies slightly, and during the most recent interval (from 1400AD onward)

it was approximately 62µm/yr, whereas in the earlier portion of the record is was

closer to 138µm/yr. In terms of the 500µm samples we collected, this means there

are 4.4 yr/sample overall, 8.0 yr/sample during the most recent period, and 3.6

yr/sample during the earlier period. Clearly, a single “line of best fit” does not
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capture the full range of growth rate variability in our record.

We turn next to the other two spline-based families of models (Figures C.5 and

C.6). Both of these are able to accommodate the variability in U/Th dates, and

this variability is reflected in the greater spread in the time series of δ18O. The

distributions of both of these families are in very good agreement with those de-

veloped using the “classical age modeling” software described by Blaauw (2010).

However, the bends between points (indicative of changes in the growth rate) occur

according to the spline parameter. For instance, we have U/Th dates at 142mm

and 122.75mm that are dated at 625 (±11.5 yr) AD and 888 (±10.0 yr) AD, respec-

tively. The spline-based families indicate that growth rates would have been fastest

nearest these dates, and slowed down for some time in between them. However,

this necessarily reflects the characteristics of the spline, and not any information

pertaining to the characteristics of the record itself.

Finally, we examine the three families of stochastic (gamma-based) age models

(Figures C.7, C.8, and C.9). As expected, the distribution of age models is greatest

between points and for the larger values of m (panel a. of Figures C.7, C.8, and

C.9). This translates into large uncertainties in the timing of individual events in

the time series of δ18O (panel b. of Figures C.7, C.8, and C.9)

C.4.2 Correlation Analysis

Figure C.10 shows the distribution of correlation coefficients between 25-year aver-

ages of several tree-ring indices of regional hydroclimate and all members of all age

model families for the Fort Huachuca Cave record. The number of significant correla-

tions is reported in Table C.2. Since we are using the 95% confidence limits to assess

significance, we would expect 50 out of the 1000 correlations to be significant just

by chance. For summer and winter chronologies (which are 355 years in length), the

number of significant correlations is inconsistent depending on whether the spline-

based families are considered or the gamma-based age models are considered. In the

former case, winter correlations have a greater-than-expected number of significant

correlations when the spline parameter (p) is zero or when p = 10−5. However, we
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observe a greater-than-expected number of significant correlations between summer

chronologies and δ18O when the more flexible spline parameters are used, or when

the gamma-based age models are used. In all cases except for the spline-based linear

model, however, the correlations with PDSI rise well above expectation (Table C.2,

last column).

C.4.3 Power Spectra

The spectra calculated from each member of each family are shown in Figure C.11

(gray lines). For the linear model, there is almost no difference between the spectra

individual models. As the splines are allowed to be more flexible, there tends to be

greater disagreement between models at higher frequencies (left column, middle and

bottom panel). This effect is even more pronounced for the gamma-based models. In

all cases, however, the agreement between models is highest at the lowest frequencies.

These frequencies are also more energetic than expected from our forward modeling

experiments (Figure C.11), and hence we deem them significant.

Since the lowest frequencies characteristics of the Fort Huachuca Cave record

are relatively insensitive to our choice of age model, we show the temporal evolution

of these frequency components using the mean age model from the flexible spline-

based family. Using just one age model makes it easier to depict the low-frequency

behavior through time, and we are only considering timescales that are insensitive

to age-model uncertainty, which means that the temporal evolution of these low-

frequency components does not vary too much between individual family members

or across families. The first three reconstructed components (RCs) from SSA exhibit

variability at 1750, 140, and 90 year timescales. We sum these components together

to produce a filtered δ18O time series in Figure C.12. The filtered times series

highlights a long-term trend towards more-negative values, and enhanced variability

from 1000AD through 1500AD.
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C.5 Discussion

We have developed a millennial-scale record of isotopic variability from a mid-

elevation cave in the Sonoran Desert of Southern Arizona. We applied the standard

test for disequilibrium effects in the record, and did not find any evidence that such

effects might be present anywhere in the core. Nonetheless, there is an offset between

the predicted value of δ18O (-10.7 ‰) that we calculated from modern dripwater

δ18O and the long-term mean value of -8.0 ‰. If calcite is indeed precipitating in

equilibrium, then the offset may reflect a difference between the temperature of the

water at the formation’s surface (where the calcite forms) and the mean air tem-

perature of the cave. Alternatively, the offset could simply reflect a difference in

the long-term mean from modern dripwater δ18O, or there could be disequilibrium

effects that we are unable to detect using standard methods.

In a typical study of high-resolution proxies with age model uncertainty, it is

common to develop a single age model based on a limited number of dated samples,

then apply this model to the remaining samples and make interpretations. Our

results suggest that this approach may be misleading for two reasons. First, spurious

correlations may arise if only one model is used out of the many thousands of possible

models given the uncertainty in the dated pieces of material. Second, in our case

(and presumably others) we lack sufficient information to select one age modeling

approach over another. Although we can probably rule out the spline-based “linear”

model as a reasonable method (since it fits the U/Th dates so poorly), we cannot

tell if a flexible spline is better than a stiff spline. On the one hand, if we do not

completely trust our U/Th dates and we expect growth rates to be approximately

linear, then a somewhat stiff spline might be a good choice (e.g., in Figure C.5).

On the other hand, if we have high confidence in our radiometric dates, we would

choose a more flexible spline, although this would necessarily introduce variability

in growth rates between dates that was not mediated by any physical influences,

but instead by the statistical characteristics of the spline itself (as in Figure C.6).

As an alternative to the spline-based age models, we have also presented families
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of age models that are generated by assuming that time uncertainty at each depth

increment is a function of a random value drawn from a pre-defined probability

distribution function and added to (or subtracted from) the date of the adjacent

depth. In this case, the variance of the individual models is greatest between U/Th

dates, and it is highly sensitive to our choice of parameters for the distribution. We

therefore have shown the results from several different parameter choices.

Uncertainties in time translate to uncertainties in the spectral estimates of indi-

vidual models, which can clearly be seen in Figure C.11. When the age models are

all constrained by a liner best fit, this effect is small. When more flexible splines are

used, this effect gives rise to spectral density estimates that differ by 1-2 orders of

magnitude, and it is even more dramatic when the stochastic (gamma-based) mod-

els are used. However, the variance estimates at longer timescales (> 100 years) are

remarkably consistent within each of the six families, and even across families. This

finding implies that not only the timing of low-frequency events, but also the vari-

ance of low-frequency events, may be more robust than events occurring at higher

frequencies.

Despite the uncertainty we have depicted, there are several findings that appear

to be insensitive to the different age modeling choices we have described. First,

regardless of the choice of the parameter m, the distribution of correlations with

tree-ring indices of summer rainfall, winter rainfall, and the PDSI are all remark-

ably similar (Figure C.10). In contrast, this is not the case for the spline-based age

models. Second, the limited number of degrees of freedom (14) leave some ambigu-

ity in the significance of the correlations with chronologies from adjacent mountains

(summer or winter). The number of significant correlations between reconstructed

PDSI, however, exceeds the number of significant correlations expected by chance

for all families (except for the linear/spline-based family). These significant corre-

lations are all negative and cluster near a value of -0.3, which would suggest that

drier conditions inferred from tree-ring widths are associated with more enriched

δ18O values. This finding is consistent with previous studies of the relationship be-

tween winter precipitation δ18O and precipitation amount (e.g., Wright et al. (2001);
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Wagner et al. (2010)).

To show the most robust features of our data more clearly, and compare them

with the tree-ring reconstructions of PDSI over the last millennium, we generate

singe δ18O averages from each family (excluding the poor-performing linear spline-

based family). These time series are generated by first averaging the δ18O values

of each member in each family to evenly-spaced 25-year bins, then averaging these

evenly-spaced 25-year averages across all members of a given family. The results

are shown in Figure C.13 (gray lines), and are extremely similar to the SSA-filtered

results shown in Figure C.12. From about 500AD to 1400AD there is a general trend

towards more negative δ18O values, and trend in reconstructed PDSI towards more

positive values. Both of these trends suggest gradually increasing moisture. After

about 1400 AD, the speleothem δ18O and the PDSI reconstruction flatten out on av-

erage, but exhibit greater multidecadal variance than earlier. This variance includes

multidecadal dry intervals (megadroughts) but also periods of increased moisture

(pluvials). The megadroughts occurred around 630AD, 1150AD, and 1450AD – all

well-known periods of persistent aridity. The wettest interval appears to have oc-

curred during the 14th century, which again is consistent with previous studies of

decadal-scale pluvials (e.g. Meko et al., 2007).

C.6 Conclusion

We have presented a new, high-resolution record of δ18O from Fort Huachuca Cave

in Southern Arizona. Even with the precise U/Th dates available for this record,

age model uncertainty makes it extremely difficult to understand interannual- to

decadal- scale climate variability in the Forth Huachuca Cave record (and probably

others). This is evident from both the power spectra in Figure C.11 and also the

smoothness of the time-averaged δ18O in Figure C.13. This finding compliments an

earlier study that suggested in situ cave processes may generate substantial non-

climatic, decadal-scale variability, and hence cave records from this region might

be most meaningful climate proxies on longer timescales (Truebe et al., 2010). De-
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spite these limitations, it is likely that the cave record has archived important low-

frequency information from the climate system over the last millennium.

Despite these limitations, it is likely that the cave record has archived impor-

tant low-frequency information from the climate system over the last millennium.

Correlations with PDSI, and earlier studies of 20th century variability, indicate that

wetter conditions are associated with lower δ18O values, while aridity is associated

with more positive values. At least three megadroughts inferred from tree-rings are

present the new cave record (630AD, 1150AD, and 1450AD), and isotopic variance

appears to have increased from 1000AD to 1500AD. Overall, there is a long-term

trend towards more negative values, which would indicate that the region has become

wetter over the last millennium, a result consistent with tree-ring reconstructions.

To develop more refined age models in the future, research could focus on

constraining the dynamics of carbonate growth rates so that a physical model of

speleothem growth could be used instead of the stochastic models we have shown.

Further work could also apply a Bayesian hierarchical modeling scheme to constrain

the distribution of ages as a function of depth and the statistical or process model

used to represent formation growth, as in Ramsey (2008). Finally, other, longer

records from this same cave (or other similar caves) might provide valuable insights

into the magnitude and behavior of century-scale, forced and unforced, climate vari-

ability of the region.
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C.7 Figures
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Figure C.1: Picture of the stalagmite slab from Fort Huachuca Cave used for analysis
here. The portion on the right was used for isotopic analysis; the portion on the left
was used for U/Th dating.
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Figure C.2: Scatter plot of δ13C against δ18O. Coloring indicates the depth of the
sample and is included to illustrate that there are not any portions of the core where
the two variables appear to covary.
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Figure C.3: Illustration of how the value of m is selected for the gamma distribution
used in the second set of MC models. Here, three U/Th dates from the middle of
the core are shown, and different values of m are used to generate a Monte Carlo
family of age models, then compared with the third (middle) date. If small values
of m are used, none of the models would be adequately wiggly to contain the third
date. However, for larger values, this is not the case. We therefore suggest that a
value of m greater than 3 might be most appropriate for the particular cave we are
working in.
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Figure C.4: (a) U/Th dates (squares) and our linear, spline-based (p = 0) Monte
Carlo family of age models for the Fort Huachuca Cave δ18O record. Depth (from
surface) of the samples is shown on the y-axis, age (in years AD) is shown along
the x-axis. The shading indicates the number of overlapping age models that run
through given point (as indicated by the color scale on the right): areas that are
lighter and more transparent have few overlapping age models. (b) The δ18O time
series for each of our 1000 Monte Carlo age models (one time series per model).
Again, shading is indicated by the transparency of the line as shown by the color
scale on the right. the thin black line indicates the time series that would be obtained
by averaging together all age models and using this as a single age model for the
δ18O measurements.
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Figure C.5: Same as figure C.4, but for a more flexible spline parameter (p =
0.00001).
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Figure C.6: Same as Figures C.4 and C.5 , but for a spline parameter that is
sufficiently flexible as to be able to pass through the midpoint of each individual
U/Th date (p = 0.0001.
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Figure C.7: Same as Figure C.4, but now a stochastic model has been used to model
the distribution of time values at each depth. Here the distribution has been scaled
to exhibit relatively little variance between each depth step, which is controlled by
the parameter m (in this case m = 1).
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Figure C.8: Same as Figure C.7, but for m = 3.
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Figure C.9: Same as Figure C.7, but for m = 5.
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Figure C.10: Correlation coefficients obtained from correlating each δ18O time series
from each member of each family of age models with the 25yr averages of tree-ring
data. (Left) distribution of correlation coefficients between tree-ring chronologies
and each of the families of spline-based age models. (Right) Distributions of corre-
lation coefficients between tree-ring data and each of the stochastic age models. The
tree ring data used for comparison were: (top row) summer-sensitive chronologies
from the Huachuca Mountains in Southern Arizona; (middle row) winter-sensitive
chronologies from the Huachuca Mountains; and (bottom) reconstructed PDSI from
southern Arizona. 25-year means of all chronologies were used to calculate correla-
tions.
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Figure C.11: Spectra of δ18O variability from each member of each family of age
models. Panels on the left side show results from the spline-based age models,
and panels on the right show results from the gamma-based models. The thin
black lines show expected median spectral densities from caves in the region based
on a forward model of cave isotopic variability developed by Truebe et al. (2010):
differences in these expectations arise from differences in the assumptions about the
ratio of rock:soil reservoir sizes (which are indicated by the numbers to the right of
the lines).
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Figure C.12: Raw time series (gray) and low-frequency filtered time series (black) of
the Fort Huachuca cave record. In this case, the average of all flexible spline-based
models is used as a single age-depth curve. The low-frequency time series consists of
the sum of three SSA-based reconstructed components with approximately 1750yr,
140yr, and 90yr timescales.
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Figure C.13: (Top) Plot of the 25-year mean of reconstructed PDSI (light green),
shown with a smoothing spline to highlight the decadal-to-century scale variability.
(Bottom) Time-averages of all δ18O time series of all 6 Monte Carlo families of age
models considered here (gray lines).
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Table C.1: Depths (left column), ages (second column) and standard deviations
(third columns) of carbonate samples taken from 7 pieces of the Fort Huachuca
Cave core.

Depth (mm) Date (AD) ±σ
-2.5 1885.73 15.11
-9.5 1819.55 4
-33 1414 8.78
-48.5 1338.46 9
-63 1216.33 11.21
-86.5 1021.5 15
-122.75 888.43 10
-142 625 11.5

Table C.2: Number of significant (at the 95% confidence level) correlations between
each tree ring index of hydroclimate (rows) and each family of 1000 age models
(columns)

Summer Winter PDSI
Spline (p = 0) 47 0 1
Spline (p = 0.00001) 410 158 315
Spline (p = 0.0001) 296 26 568
Gamma (m = 1) 221 24 926
Gamma (m = 3) 172 21 851
Gamma (m = 5) 169 16 788
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APPENDIX D

NORTH AMERICAN DROUGHT PATTERNS

Toby R. Ault1 and Julia E. Cole1

1. Dept. of Geosciences, Univ. of Arizona

D.1 Abstract

Continental-scale megadroughts have occurred in the past, and since they comprise

part of the natural variability they will likely occur again. Understanding their

causes requires an understanding of their spatial distribution, as well as a distinc-

tion between forced low-frequency variability and low-frequency patterns of drought

variability that may arise simply from spatial correlation and autocorrelation. Here

we examine how different indices of drought lead to different interpretations of their

temporal and spatial evolution. We also identify patterns of drought variability that

are robust across indices and a wide range of timescales. We test the spectral energy

in large-scale spatial patterns of drought against the null hypothesis that it arises as

a consequence of high-frequency variability with spatial structure and autocorrela-

tion using 1000 millennial-scale statistical simulations of North American precipita-

tion and temperature. These statistical simulations preserve the spatial correlations

of temperature and precipitation, but do not contain low-frequency persistence on

timescales longer the annual cycle. We compare the MTM-SVD spectra of these

stochastic climates against MTM-SVD spectra estimated from reconstructed (from

tree-rings) drought and drought in climate model simulations. Both reconstructed

drought and modeled drought are more energetic at low frequencies that would be

expected from our null hypothesis. This finding implies that a continuum of dy-

namically interesting mechanisms may be responsible for low-frequency droughts in

western North America, but that at higher-frequency timescales it is not always
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possible to disentangle remote and local sources of persistence, even if the droughts

have large spatial scales.

D.2 Introduction

Decadal-scale droughts that encompass most of western North America (WNA)

have been observed in a wide range of proxy records (Stine, 1990; Laird et al.,

1996; Woodhouse and Overpeck, 1998; Graham et al., 2007; Cook et al., 2004;

Meko et al., 2007). The prevailing view is that these large-scale, low-frequency

“megadroughts” are sufficiently unusual, with respect to the 20th century, that

they must arise from exotic sources of variability in the ocean or atmosphere, or that

the must be forced by changes in the Earth’s boundary conditions (Graham et al.,

2007; Herweijer et al., 2007; Seager et al., 2007a). On the other hand, Meehl and Hu

(2006) has shown that megadroughts in WNA may arise from internal variability

alone, and Hunt (2010) has pointed out that sufficient time and static boundary

conditions may be sufficient to generate megadroughts that are comparable to those

that have occurred in the past.

Previous studies of both climate models and observational data have failed to

put the observations of low-frequency variability in the context of an appropriate

null hypothesis. That is, to some extent large-scale, low-frequency drought behavior

is expected to occur simply because drought records and drought proxies are “auto-

correlated,” meaning that drought indicators carry information from one year to the

next year. Autocorrelation, in turn, damps out higher-frequency fluctuations while

emphasizing lower-frequency ones. Similarly, the interannual-scale and synoptic-

scale mechanisms responsible for delivering moisture to WNA exhibit a high degree

of spatial correlation, which reflects the size of winter storms, the mean position

of the subtropical jet stream, and planetary waves (e.g., Barry and Chorley, 1998).

It is therefore plausible that high-frequency variability in the patterns of moisture

delivery, and autocorrelation from local sources, would together produce large-scale

megadroughts if given enough time.
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As an analogy, consider the Pacific Decadal Oscillation (PDO) Mantua et al.

(1997): it has a well-defined spatial pattern and it exhibits a high degree of low-

frequency variability. However, the amount of low-frequency variance in the PDO,

as well as its spatial pattern, can be explained by high-frequency El Niño/Southern

Oscillation (ENSO) teleconnections and heat storage in the ocean (Newman et al.,

2003). Here, we test whether a similar paradigm might be applicable to the low-

frequency energy and the large-scale patterns of western North American (WNA)

drought variability.

Section D.3 reviews several widely-used indices of drought, and Section D.4.1 uses

one of these indices to examine how four of the worst 20th century droughts evolved

at the monthly timescale. Section D.4 then illustrates that the large-scale patterns of

drought are relatively insensitive to our choice of index. We argue that the results in

D.4.1 and D.4 support the view that interannual variability with large-scale spatial

structures of covariability in the atmosphere may account for the droughts we have

seen in the 20th century. We therefore test this hypothesis more rigorously in section

D.5 by running 1000 statistical simulations of the last millennium that preserve the

spatial correlations and autocorrelations of 20th century climate, but do not have

longer-term climate variability embedded within them. These simulations serve

as a benchmark against which we test the amount of variance in large-scale, low-

frequency drought patterns in millennial tree-ring based drought reconstructions of

drought and climate model simulations.

D.3 Data and Methods

We compute the standardized precipitation index (SPI) (McKee et al., 1993;

Guttman, 1999), the Palmer “Z-Index” and the Palmer Drought Severity Index

(PDSI) (Alley, 1984; Palmer, 1965) from gridded 20th century observations. The SPI

was developed specifically to describe droughts on multiple timescales to address the

variable responses of different components of the terrestrial system. That is, the top

few centimeters of soil may respond relatively quickly to moisture anomalies, whereas
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streams and river levels may take a bit more time, and large lakes, reservoirs, and

aquifers may take longer still. Since the SPI may be computed over any timescale of

interest, it can be easily adapted to the specific system being studied. Computation

of the SPI is relatively straightforward. First the climatological distribution of pre-

cipitation is computed then transformed to fit a normal distribution. Precipitation

values for any given month are similarly transformed and compared against their ex-

pected values from the (transformed) climatological distribution. SPI time series are

therefore normally distributed with zero-mean and 95% of their values fall between

-2 and 2. SPI values of -1, -2, -3 and lower may be interpreted as corresponding to

moderate, serious, severe, and extreme drought conditions, respectively. SPI may be

computed for longer intervals by summing together monthly scores over 3 months,

6 months, 12 months, or even several years. To calculate SPI, we used code written

by N. Guttman (http://www1.ncdc.noaa.gov/pub/data/csd/palmer/spinew.f). In

this algorithm, a Pearson’s Type III distribution is fitted to the precipitation val-

ues, which is then transformed to a normal distribution and used to compute SPI

values. Guttman (1998) found that such a distribution was a robust fit for most

precipitation records. We computed SPI for 1, 12, 24, 48 and 120 month (1mo,

1yr, 2yr, 4yr, and 10yr) timescales using the “TS2.1” gridded precipitation dataset

produced by the Climate Research Unit (CRU) at the University of East Anglia

(Mitchell and Jones, 2005).

Calculation (and interpretation) of the PDSI is less transparent than SPI, and

its strengths and weaknesses have been extensively explored (Alley, 1984; Guttman,

1999; Redmond, 2002; Wells et al., 2004; Dai et al., 2004). At its core it is a simpli-

fied, two-layer model of soil moisture that is exhibits approximately unit variance

and mean of zero. In calculating PDSI, first the precipitation minus evaporation

(and runoff) balance is calculated to produce a monthly index of anomalies called

the Z-index. Autocorrelation is then added to the Z-index to mimic the persistence

inherent to soil moisture at monthly timescales (Alley, 1984), and the resulting in-

dex is then re-normalized. We use Matlab code provided by D. Meko (pers. comm.)

to calculate both the Z-index and PDSI. Again, we used CRU precipitation on a 1.5
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x 1.5 degree grid, as well as CRU temperature on the same grid.

We also calculate SPI and PDSI from two long CCSM3 simulations

(Collins et al., 2006). The first is a 1000 “1990” control run (with forcings de-

scribed in Solomon et al., 2007, Chapter 8), and the second is a 2300 year forced,

transient simulation of mid-Holocene (Kaufman et al., 2009). In the latter simula-

tion, the Earth’s boundary conditions evolved slowly by adjusting the orbital, solar,

and greenhouse-gas forcing parameters from 6000 to 3600 BP. Vegetation adjust-

ments to climate were resolved dynamically and volcanic variability was simulated

stochastically (see supporting on line material of Kaufman et al., 2009).

Reconstructed PDSI fields spanning the last millennium are from the “North

American Drought Atlas” (Cook et al., 2004). This product provides gridded PDSI

time series for the entire North American domain going back to about 1400 AD, and

back to 2 BC for western North America (24N to 52N, 95W to 125W). However, be-

fore about 1000 AD the number of trees used in the reconstruction is low (see supple-

mentary material of Cook et al. (2004)). We therefore focus our analysis on the last

millennium because it provides a reasonable compromise between extensive temporal

coverage and reasonable spatial coverage. During the last millennium the reconstruc-

tions are quite reliable and have been shown to exhibit pronounced, continental-scale

intervals of megadroughts (Cook et al., 2004; Herweijer et al., 2007).

We use principal components analysis (PCA) to identify large-scale patterns of

SPI variability in instrumental, proxy and model data. PCA reduces large noisy

datasets into a small set of orthogonal (in space) eigenvectors (empirical orthogonal

functions called EOFs) and corresponding principal component (PC) time series.

We use a Monte Carlo (rule N) approach to test the significance of the leading

eigenmodes in instrumental and model data. We performed PCA on all the SPI

fields, on the instrumental Z-index and PDSI fields, and on the tree-ring PDSI

fields. We rotated the leading EOFs corresponding to the leading PCs to satisfy the

varimax criterion described by Richman (1986). To interpret the large-scale controls

on the leading PCs we identify, we correlate these time series with 250mb heights,

zonal wind, and meridional wind from NCEP reanalysis data (Kalnay et al., 1996),
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and with sea surface temperature (SST) data (Kaplan et al., 1998)

D.4 Patterns of Drought

D.4.1 20th century case studies (monthly resolution)

We use SPI to examine the temporal evolution of several of the worst droughts during

the 20th century. These years can be readily identified by a “drought area index”

(DAI), which we compute here as the percentage of North America experiencing

12mo-SPI values below -1 Figure D.1. Using this definition of DAI, the worst years of

drought were 1931, 1934, 1936, 1956-1957, 1976-1977, and 1988. Different thresholds

for calculating the DAI, and even different indices, also highlight these years (e.g.,

Cook et al., 2004; Schubert et al., 2004a; Seager et al., 2005b). However, the DAI

time series calculated from 1mo SPI (gray line in Figure D.1) shows that there were

several other short-lived (monthly) events of similar magnitude to the time windows

we choose to examine here.

In the time-evolving maps of SPI (Figures D.2,D.3), we can observe how dry

conditions worsened through the spring and summer of 1934 across most of the

continent. Comparing the 12mo SPI maps in Figure D.2 with the 1mo SPI maps in

Figure D.3, we can infer that much of the drought consisted of moderate (−1) SPI

values at the monthly timescale, which are intensified considerably by the extreme

SPI values (<-3) during May of 1934. We also note that the high degree of spatial

structure apparent in the 12mo SPI is not present in the shorter, 1mo SPI field.

The spatial pattern of the 1956-1957 drought is quite different from the 1934

drought and is shown in Figure D.4. As in the earlier interval, most of the continent

was already experiencing moderate drought (SPI values <-1), but conditions deteri-

orated in the late summer and fall of 1956 for the entire US Southwest. By January

1957, virtually the entire domain is in moderate (−1), severe (−2), or extreme (−3)

drought. Once again, the 1mo SPI maps depict a different, noisier evolution of

the drought: extreme aridity occurred in the southwest during March, June, and

September of 1956, and remained present (although less severe) through November
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and December (Figure D.5).

In the SPI depiction of the 1976-1977 drought, the event appears to have started

as early as June of 1976 near the Great Lakes region, then spread through the

following fall, winter, and spring until most of the domain is encompassed by SPI

values below −1 (Figure D.6. By the summer of 1977, conditions had improved

slightly in the great lakes region, but remained dry along the west coast of North

America. From the 1mo SPI maps in Figure D.7, we can see that the much of the

drought’s intensity was related to extreme conditions in November and December

in 1976, as well as February and April of 1977.

Finally, in 1988 the 12mo SPI data depict extreme mid-continent aridity during

spring and summer of 1988 in the middle of the continent that did not completely

abate until even December of 1989 (Figure D.8). This event appears far less re-

markable, however, in the 1mo SPI maps, which suggest that April, May and June

played the most important roles in initiation the drought, and conditions in October

worked to sustain the drought.

D.4.2 PCA Results

To reduce the number of drought patterns down to a more manageable number

(rather than considering every month of every year), we now turn our attention to

the results from PCA performed on a variety of different drought indicators (e.g.,

Karl and Koscielny, 1982). These results depict at least two large-scale drought

patterns that together explain 20% to 50% of the total variance in the 5 different

drought datasets we examined (Figure D.10). These patterns explained more vari-

ance the 12mo SPI, PDSI, and reconstructed PDSI datasets than they explained in

the 1mo SPI and Z-index data (but still comprised the top 2 PCs). Patterns are

depicted here as correlations (as opposed to raw EOFs) between PC time series and

the original raw data so that the units are comparable across datasets. The first

pattern we show (which is either the first or second PC for each index; see figure

for details) is a “domain-wide” feature with maximum strength in the center of the

continent. The second is a north-south dipole pattern with “centers of action” of
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opposite sign in the US Southwest and Northwest. We also identified an east-west

pattern in some of the indices (as in Woodhouse et al., 2009), but found that this

feature was less stable across indices and timescales. Other patterns (not shown)

explained less variance and were also less robust with respect to our choice of index

and our decisions about rotation. In general, however, the consisted of regionally-

synchronous patterns, as opposed to the continental-scale ones shown here.

The temporal evolution of the domain-wide pattern is shown in Figure D.11 for

the different datasets we analyzed, and the evolution of the second pattern is shown

in Figure D.12. All PC time series are in good agreement with each other for both

patterns. They show major intervals of drought associated with the domain-wide

pattern in the 1930’s, as well as the late 1970s and 1980s. The north-south pattern

depicts Southwestern droughts during the 1910s, 1920s and most especially during

the 1950s.

Figure D.13 shows the results of performing PCA on SPI datasets that have been

constructed to emphasize variability at timescales from 1 month to 10 years. Again,

two primary patterns emerge (a domain-wide pattern and an north-south pattern).

From this analysis, it appears that the domain-wide pattern exhibits greater strength

further west at longer timescales, whereas the north-south pattern is more timescale-

independent. Again, the PCs corresponding to the domain-wide pattern in Figure

D.14 are quite similar across timescales, although they necessarily become smoother

as the length of the SPI timescale increases. At the longest timescale, it is evident

that the domain-wide pattern characterizes the 1930s drought, and the north-south

pattern characterizes the 1950s drought.

Spectra of the domain-wide and north-south patterns are shown in Figure D.16.

Importantly, the spectra of both PC time series derived from the 1mo SPI and the

Z-index (e.g., the indices that have no built-in “memory”) are the whitest, meaning

that they exhibit a uniform distribution of variance across timescales. In contrast,

the 12mo SPI and PDSI are much redder, particularly on monthly to interannual

timescales, while the tree-ring reconstructions of PDSI fall somewhere in between.

This idea is consistent with the argument that soil moisture behaves like a weakly
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damped, stochastically forced process (Delworth and Manabe, 1989).

Our PCA results indicate that the most robust patterns of large-scale drought

variability are not sensitive to the choice of index. They do, however, highlight a

limitation of smoothed indices, such as the SPI on timescales longer than 1 month,

PDSI and reconstructed PDSI. This limitation can be seen quite clearly in Figure

D.16 because the 1mo SPI and the Z-index are computed at monthly timescales, and

hence best reflect the timescales of variability inherent to the atmospheric controls

on drought. In contrast, the 12mo SPI and PDSI are smoother in time and redder

in frequency, and hence their low-frequency components are emphasized. However,

we can plainly see from Figures D.11, D.12 D.14, D.15, and D.16 that this tendency

is not an intrinsic feature of the climate inputs to the drought indices, a point also

made by Ault and St George (2010).

D.4.3 Seasonal characteristics

The domain-wide and north-south spatial structures shown in Figure D.10 may vary

in their importance to North American hydroclimate on seasonal timescales. To test

this idea, we map out the month-by-month expression of these patterns in Figures

D.17 and D.18. These maps were generated by taking the 1mo PC amplitudes of

each pattern at each month and correlating it with the original 1mo SPI data at

that month for the entire length of the dataset. By focusing on the 1mo SPI we

can ensure that the patterns are not driven by antecedent conditions, but rather the

state of the atmosphere during the months of interest.

The domain-wide pattern is apparent throughout the year (Figure D.17), al-

though it reaches its greatest strength and spatial extent during winter and fades

somewhat as summer approaches. It then re-emerges in its importance during fall.

Notably, during spring months (Mar, Apr, May) and in the beginning of summer

(Jun) the pattern exhibits a di-pole pattern with centers of action in northern Mex-

ico and just southwest of the US Great Lakes.

Like the domain-wide pattern, the north-south pattern is most pronounced dur-

ing boreal winter, while in the fall its spatial extent is reduced to the US Southwest
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and northern Mexico.

D.4.4 Teleconnections

Correlation fields between the domain-wide pattern and NCEP 250mb height fields

are shown in Figure D.19. The winter-time correlations depict a wave-train emanat-

ing out of the western mid-latitude Pacific ocean that is strongly reminiscent of the

Pacific North American (PNA) pattern (Wallace and Gutzler, 1981). High 250mb

heights above northwestern North America correlate with drier PC values, and low

heights correlate with negative PC values. The pattern is similar year-round, but

in summer spatial extent of significant correlations is much less than in winter and

fall.

As with the domain-wide pattern, the extent of the significant correlations be-

tween the north-south PC and 250mb heights is greatest in winter (D.20). These

correlation patterns also vary considerably with season. In winter, high 250mb

heights correspond along the US west coast correspond to aridity in the southwest

and wetter conditions in the northwest. Highs along the US west coast are correlated

with a wet Southwest and a dry Southwest.

Monthly correlations of SST with the domain-wide pattern are shown in Figure

D.21. During winter (DJF), these correlation fields emphasize the relationship be-

tween drought anomalies and the North Pacific. During the rest of the year, the

oceans do not seem to be significantly correlated with anomalies in the PC time

series of the domain-wide pattern.

Correlations between the north-south pattern and tropical Pacific SST are pos-

itive during fall (OND) and late winter as well as spring (FMAM) (Figure D.22).

Interestingly, the correlations during January are not as widely significant. Corre-

lations are strongest with tropical Pacific SSTs during November and December.

During summer, significant correlations are not generally present.
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D.4.5 Discussion and Interpretation

Thus far, we have examined the temporal evolution of some of the worst drought

episodes in North America during the 20th century, diagnosed the primary pat-

terns of drought variability and their behavior through time, and elucidated cer-

tain seasonal characteristics of the large-scale atmospheric and oceanic correlations.

To varying degrees, all three of these analyses emphasize that a non-unique va-

riety of remote mechanisms can generate drought patterns of drought that are

highly similar. For instance, the 1930s Dust Bowl droughts and the 1988 summer

drought share many similar features including their seasonality and spatial expres-

sion, yet there is no firm consensus on their ultimate causes. The earlier drought has

been explained recently in the context of anomalous SST forcing (Schubert et al.,

2004b), dust forcing (Cook et al., 2008), and internal atmospheric (and stochas-

tic) variability (Hoerling et al., 2009). The 1988 drought has been variably

linked to anomalous SST forcing in the equatorial pacific (Trenberth et al., 1988;

Trenberth and Branstator, 1992; Trenberth and Guillemot, 1996), atmospheric vari-

ability (Lyon and Dole, 1995; Chen and Newman, 1998), and most recently, variabil-

ity in the strength of the Caribbean Low-Level Jet (Cook and Vizy, 2010).

From the perspective of our analysis, the idea that different causal mechanisms

have similar impacts is not surprising: the domain-wide pattern exhibits variabil-

ity year-round, and hence must be driven by fundamentally different dynamical

processes depending on the season. Since ENSO exhibits a dipole-like pattern in

western US precipitation during the winter (Rasmusson and Arkin, 1993; Dai et al.,

2004; Woodhouse et al., 2009), variability in the tropical Pacific likely influences the

structure of the di-pole pattern shown here. Nonetheless, this pattern is present even

during summer months when it does not appear to be correlated to ENSO, hence

other processes may also generate this pattern during summer. Earlier studies have

also argued that the Northern Annular Mode (NAM) may exert a similar influ-

ence to ENSO on North American storm tracks and hence precipitation patterns

(Quadrelli and Wallace, 2004; McAfee and Russell, 2008).
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Our results also raise the possibility that much of the low-frequency character

of drought arises from the definition of the phenomena, and not, as is usually as-

sumed, by the inherent low-frequency behavior of the climate system. This clearly

seems to be the case in our analysis of the worst droughts of the 20th Century

(Figures D.2 through D.9, our PCA of different drought indices (Figures D.11 and

D.12) and SPI at different timescales (Figures D.11 and D.12), and especially in

the power spectra of the leading PC time series of the drought patterns we have

described D.16. Essentially, our results raise the possibility that the spectrum of

North American drought variability is consistent with a weakly-damped, stochastic

forcing that exhibits some large-scale spatial covariability (Delworth and Manabe,

1989; Hasselmann, 1976). In the next section (D.5), we test this hypothesis using

statistical simulations of North American climate (with 20th century statistics) for

1000 years. We calculate drought indices from these climates and compare them

with long tree-ring based reconstructions of drought and with long climate model

simulations.

D.5 Do megadroughts require a low-frequency mechanism?

Here we explore the possibility that low-frequency behavior in drought arises sim-

ply from high-frequency fluctuations with large-scale spatial structure and auto-

correlation. To test this possibility, we turn our attention to reconstructed PDSI

(Cook et al., 2004), PDSI calculated from GCM output (see section D.3), and PDSI

calculated from 1000 year long bootstrap simulations of the 20th century. To gen-

erate bootstrap realizations of climate, which we term “null climates,” we first pool

all of the monthly temperature and precipitation maps from the CRU TS2.1 dataset

(Mitchell and Jones, 2005) into 12 sets of 102 maps (one map for each month of each

year). Simulations are run by starting in January and selecting a year at random

from the 102 the CRU TS2.1 January precipitation and temperature fields. A small

amount of noise is added to these fields (with noise variance equal to the variance

of the raw data), then the simulations move on to the next month and repeat the
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procedure until 1000 years of monthly data have been assembled. We then calculate

PDSI from these simulations, and average PDSI values together to produce annual,

gridded PDSI fields with 1000 years of data to compare with the annually-resolved

PDSI reconstructions. Our bootstrap re-sampling of temperature and precipitation

preserves three important characteristics of 20th century climate: (1) the means

and standard deviations of temperature and precipitation at each grid point; (2)

the spatial correlation structures of both precipitation and temperature; and (3) the

covariance between temperature and precipitation. However, no low-frequency in-

formation is present at longer timescales. Essentially, we are simulating 1000 years

of 20th century climate with monthly deviations from the annual cycle that are

uncorrelated between time steps before PDSI is calculated.

We use two metrics that allow us to compare the range of PDSI variability

in our null climates, reconstructed PDSI, and PDSI in climate models. First, we

examine the distribution of the drought area index (DAI), which is a single time

series calculated from each PDSI field. It indicates the percentage of western North

American grid points experiencing PDSI values below −1 (Cook et al., 2004). Here

we simply tally the total number of years that are spent at various DAI values, and

express this tally as a percentage of all years, allowing us to compare time series of

different lengths. Second, we examine the raw (unnormalized) MTM-SVD spectrum

(Mann and Park, 1999). We use these metrics because they allow us to ignore the

time-evolution of climate, which is expected to differ between the reconstructions,

our stochastic simulations, and the long CCSM3 runs. The MTM-SVD method

is particularly useful in this regard because it measures the amount of spectral

variance associated with a (complex-valued) spatial pattern, hence both the spectra

and the patterns of variability can be compared between the different types of data

considered here.

D.5.1 Results

Figure D.23 shows the distribution of the DAI from 1000 null climates, tree-ring re-

constructions, and two climate model simulations. The null climates are distributed
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around a DAI value near 10%, meaning that about 10% of western North America

would be expected to experience drought conditions at or below −1 most of the

time. DAI values above 40% are not common in the null climates. In contrast,

DAI values calculated from tree-ring reconstructions of PDSI exhibit a much wider

distribution. This is also true for the CCSM3 control runs and the long transient

CCSM3 simulation.

Our MTM-SVD results clearly show that there is more variance in PDSI recon-

structed from tree-rings, and simulated by climate models, than would be expected

from our null hypothesis (Figure D.24). However, on interannual timescales, the

shape of the null climate spectra, the tree-ring spectra, and the climate model spec-

tra are all very similar: variance tends to increase from 2yr to 10yr timescales. Since

the null climates do not have any sources of low-frequency variability, outside of the

autocorrelation imposed by calculating PDSI, it follows that the PDSI’s built-in

autocorrelation may explain some of the tendency for variance to increase from 2yr

to 10yr timescales in both the reconstructions and in the climate model.

The CCSM3 control run and the tree-ring reconstructed MTM-SVD spectra

agree closely across most frequencies, and they even exhibit similar peaks at the

centennial timescale. At longer timescales they disagree, with the PDSI spectrum

tending to support more variance than the CCSM3 control spectrum. The CCSM3

transient spectrum, on the other hand, exhibits similarly enhanced multi-centennial

to millennial variance (reflecting the dynamical boundary conditions at those lower

frequencies). The CCSM3 transient spectrum also generally comparable to the tree-

ring PDSI spectrum on interannual to centennial timescales.

As a final comparison between the climate model simulations and the reconstruc-

tions of PDSI, we examine the spatial pattern of drought associated with a particular

time scale of variability across biennial to centennial periods. Figures D.25 through

D.27 show the variance weights we used were just the MTM-SVD spectra ampli-

tudes corresponding to each frequency for each map. In the reconstructed PDSI

field, the centennial band is characterized by a domain-wide pattern that evolves

roughly synchronously throughout the region. On multidecadal timescales, the pat-
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tern is more complicated: it begins with weak loadings in the west, evolves into a

N-S dipole, then switches sign. We found that the interannual patterns were dif-

ferent at 4-7 year timescales than at 2-4 year timescales, and hence we show them

as separate components here. Like the centennial timescale, the 4-7 year timescale

is characterized by a domain-wide, in-phase pattern. At the higher frequency end

of the interannual band (2-4 years), there is a N-S dipole that decays into a weak

domain-wide pattern, then switches sign before decaying again.

In the CCSM3 control run (D.26, the patterns of variability at centennial, multi-

decadal, and interannual timescales are very similar to the patterns of reconstructed

PDSI variability. There is a domain-wide, roughly-synchronous pattern at the cen-

tennial timescale. There are also N-S dipole patterns at the multidecadal and in-

terannual (2-4 year) timescales. Again, the lower-frequency (4-7 year) interannual

pattern is more regionally-expansive than its 2-4 year counterpart. The forced tran-

sient simulation, on the other hand, exhibits just one pattern that is roughly the

same across timescales (Figure D.27).

D.5.2 Discussion

If high-frequency mechanisms and autocorrelation were a viable explanation for

megadrought variance, we would have seen tree-ring spectra and climate model

spectra that fell within the confidence limits determined by our statistical simula-

tions of North American climate. Instead, we note that the MTM-SVD spectra of

both tree-ring and model drought rise quit well above the null expectation on long

timescales. This finding is important because it implies that dynamically interesting

climate mechanisms are needed to account for the full range of decadal to centennial-

scale drought behavior in the west, a point that has often been assumed but that we

have now shown more conclusively. Moreover, we have shown that the MTM-SVD

spectrum of reconstructed PDSI is in reasonably good agreement with at least one

climate model (CCSM3). This agreement is remarkable when the raw MTM-SVD

spectra of the CCSM3 control run and the reconstruction are compared, and also

when comparing the transient simulation with PDSI. Variance in the forced simu-
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lation is even higher in the CCSM3 transient simulation than in the reconstructed

PDSI spectrum, indicating that the evolving boundary conditions have a marked

effect on the power spectrum of drought on centennial to millennial timescales.

It should be noted, however, that the reconstructions of PDSI likely reflect a

conservative estimate of low-frequency variability in drought because tree-ring data

must be “pre-processed” to remove low-frequency, non-climate variability before

they can be used in any reconstruction. In the case of the PDSI drought atlas, the

details of this pre-whitening are given in the supplementary material of Cook et al.

(2004). Briefly, they entailed (1) removal of growth trends from tree-ring chronolo-

gies; (2) pre-whitening of predictor variables; and (3) statistical rescaling of the

autocorrelation term to better-agree with instrumental data. Since steps (1) and

(2) would be expected to remove some low-frequency climate variability (as well as

non-climate variability), we emphasize that the good agreement between the prox-

ies and the models might be somewhat artificial. Nonetheless, the range of drought

that has been discussed using the drought atlas is apparently consistent with an

unforced, fully coupled 1000 year climate model simulation.

The patterns of drought in both the reconstruction and in the CCSM3 control

run are very similar across timescales. Moreover, the patterns of PDSI variability

are robust: we tested several other methods including “standard” principle compo-

nents analysis and multichannel singular spectrum analysis Ghil et al. (2002), and

found that these spatial structures and their corresponding timescales were generally

consistent across methodologies. Since we have limited our analysis to the western

half of North America (because of PDSI sample depth issues), the patterns shown in

this section are only indirectly comparable to the patterns discussed in the previous

section (section D.4). However, additional analysis suggested that the west-wide

pattern shown in Figure D.25 corresponds to the domain-wide pattern in Section

D.4, and the north-south pattern in D.25 corresponds to the north-south pattern in

the earlier section. These findings confirm that the domain-wide and north-south

patterns exhibit variance across a broad continuum of timescales.

Despite their differing time evolutions, we have shown that tree-ring reconstruc-
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tions of PDSI and climate models are in agreement with each other in terms of the

magnitude and patterns of low-frequency drought in WNA. This finding suggests

that the spatial patterns of drought may reflect a deterministic response to certain

aspects of the climate system that differ on interannual to centennial timescales.

Understanding the dynamics of these patterns could, therefore, present the greatest

potential for predicting climate decadal timescales.

D.5.3 Conclusion

The findings presented here allow us to confidently reject the null hypothesis that

megadroughts arise simply from autocorrelation, spatial structure in the atmosphere,

and sufficient time. Instead, more interesting mechanisms likely push substantial

portions of western North America into severe droughts and keep those regions

locked into those arid conditions for long periods of time. In contrast to the exist-

ing paradigm, we do not find evidence that these mechanisms need to be remote

sources of climate forcing such as volcanic or solar activity, because a similar range

of PDSI variability is seen in an unforced global climate model simulation. Dynamic

boundary conditions do, nonetheless, enhance variance at the longest timescales.

Future work could expand our analysis of climate model data to include a larger

spatial domain, which in turn could help elucidate the dynamics of decadal to

centennial-scale variability in the models. Other models could also be diagnosed

to determine how robust our results are across models.
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D.6 Figures
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Figure D.1: Drought area index for 1mo (gray) and 12mo (black) 20th century SPI
values, calculated as the percentage of the grid (y-axis) experiencing SPI values
below -1 through time.
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Figure D.2: Monthly values of the 12mo SPI calculated from CRU TS2.1 data.
Coloring indicates the magnitude of SPI anomalies, which are normally distributed
with unit variance and a mean of zero. Hence, a -3 value is at the 95% edge of the
distribution and would be considered very rare (and hence very extreme) for that
region. Here the evolution of one of the 1930s era “dust bowl” droughts centered
on 1934.
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Figure D.3: Same as Figure D.2, but for the 1mo SPI.
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Figure D.4: Same as Figure D.2, but for 12mo SPI centered on the 1956 drought.
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Figure D.5: Same as Figure D.4, but for 1mo SPI.
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Figure D.6: Same as Figure D.2, but for 12mo SPI centered on the 1977 drought.
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Figure D.7: Same as Figure D.6, but for 1mo SPI.
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Figure D.8: Same as Figure D.2, but for 12mo SPI centered on 1988.
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Figure D.9: Same as Figure D.8, but for 1mo SPI.
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Figure D.10: Maps of correlation coefficients between the PC time series correspond-
ing to the domain-wide pattern (left) an the north-south Pattern (right). The PC
number and variance explained is indicated to the left of each map for each data
product.
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Figure D.11: PC time series associated with the domain wide pattern from each
drought index considered here.
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Figure D.12: Same as Figure D.11, but for the north-south pattern.
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Figure D.13: Same as Figure D.10, but for the domain-wide (left) and north-south
(right) patterns derived from SPI datasets calculated at different timescales. The
SPI timescales are indicated on the left hand side of the maps along with the per-
centage of variance explained by the corresponding EOF (in parenthesis).
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Figure D.14: Principal component time series of the domain-wide pattern from
various SPI timescales (indicated on the top right of each panel).
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Figure D.15: Same as Figure D.14, but for the north-south Pattern.
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Figure D.16: Power spectra calculated from the five drought indices considered in
Figure D.10 for the domain-wide pattern and the north-south pattern.
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Figure D.17: Correlations between the 1mo PC of the domain-wide pattern and
monthly raw 1mo SPI. Correlations are calculated from all years at each month
indicated on the 12 panels above. All shaded correlations are significant at the 95%
confidence limit.
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Figure D.18: Same as D.17, but for the north-south pattern.
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Figure D.19: Correlations between the values of the domain-wide pattern and
monthly 250mb heights, meridional, and zonal winds from NCEP reanalysis data.
As in Figure D.17, correlations are calculated between the values of the PC and the
spatial fields at each month indicated in the 12 panels. Thick black lines indicate
regions where correlations are significant at the 95% confidence limit.
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Figure D.20: Same as D.19, but for the north-south pattern.
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Figure D.21: Same as D.19, but for the correlations between the domain-wide pat-
tern PC and SST (Kaplan et al., 1998).
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Figure D.22: Same as D.21, but for the correlations between the north-south pattern
PC and SST (Kaplan et al., 1998).
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Figure D.23: Histograms of millennial-scale drought area index (DAI) values from
from paleoclimate and climate model data, calculated for western North America
(24N to 52N, 125W to 95W). Drought area indices were calculated (as in Cook et al.
(2004)) by summing the number of grid points with PDSI values below -1, and
expressing that count as a percentage of the total number of grid points through
time. Histograms were then generated by tallying the total number of years spent
at different DAI values (which are shown on the x-axis). To compare millennial-
scale data of different lengths, we express these counts as percentages of all years
(values on the y-axis). The gray lines show the results from our 100 “null climate”
simulations’; the green line shows the distribution from reconstructed PDSI; the red
line shows the DAI distribution from on 1,000 year long pre-industrial control run
from CCSM3; the black line shows the DAI distribution from a 2,3000 year long
mid-Holocene transient simulation.
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Figure D.24: Results from performing MTM-SVD (Mann and Park, 1999) on PDSI
reconstructed from tree-ring data and calculated from climate model data as well
as our null climate data. Shown here are the MTM-SVD spectra from each dataset;
each point in the power spectrum depicts the amount of variance (the singular value
from SVD at frequency) associated with a corresponding spatial pattern. Gray
lines show spectra from MTM-SVD performed on PDSI from all 1000 null climate
statistical simulations, and green lines show the spectra from MTM-SVD performed
on gridded, reconstructed PDSI over the last millennium. The left panel also shows
the MTM-SVD spectrum from a 1000 year CCSM3 control run (red), while the left
panel shows the spectrum from a long transient (e.g., evolving boundary conditions)
simulation on CCSM3 (black).
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Figure D.25: Spatial patterns of drought variability (reconstructed PDSI from
Cook et al., 2004) associated with different timescales of variability estimated from
MTM-SVD. Here the maps are shown as an average (weighted by the variance in
the power spectrum) of the MTM-SVD spectral EOFS over a range of frequencies.
Since raw MTM-SVD spectral EOFs are complex numbers, which can be hard to
visualize, we show their time evolution here in “phase-space” by calculating the am-
plitude of each spectrally-averaged pattern as it completes one cycle (passing from
zero through 360◦). The units are normalized so that the maximum value any point
can have is 1.
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Figure D.26: Same as figure D.25, but for a long pre-industrial control run.
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Figure D.27: Same as figure D.25, but for a long forced (mid-Holocene) transient
simulation.
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