
To appear in International Journal of Social Robotics
Special Issue on People Detection and Tracking, 2010

Real-time Motion Tracking from a Mobile Robot

Boyoon Jung · Gaurav S. Sukhatme

the date of receipt and acceptance should be inserted later

Abstract A mobile robot needs to perceive the mo-

tions of external objects to perform tasks successfully
in a dynamic environment. We propose a set of al-

gorithms for multiple motion tracking from a mobile

robot equipped with a monocular camera and a laser

rangefinder. The key challenges are 1. to compensate

the ego-motion of the robot for external motion detec-
tion, and 2. to cope with transient and structural noise

for robust motion tracking. In our algorithms, the robot

ego-motion is directly estimated using corresponding

feature sets in two consecutive images, and the posi-
tion and velocity of a moving object is estimated in

image space using multiple particle filters. The esti-

mates are fused with the depth information from the

laser rangefinder to estimate the partial 3D position.

The proposed algorithms have been tested with vari-
ous configurations in outdoor environments. The algo-

rithms were deployed on three different platforms; it

was shown that various type of ego-motion were suc-

cessfully eliminated and the particle filters were able to
track motions robustly. The real-time capability of the

tracking algorithm was demonstrated by integrating it

into a robot control loop.

Keywords mobile robot, motion tracking, particle

filter.

Boyoon Jung
NavCom Technology, Inc.,
A John Deere Company,
Torrance, USA.
E-mail: bjung@navcomtech.com

Gaurav S. Sukhatme
Robotic Embedded Systems Laboratory,
Center for Robotics and Embedded Systems,
University of Southern California,
Los Angeles, USA.
E-mail: gaurav@robotics.usc.edu

1 Introduction

Motion tracking is a fundamental capability that a mo-

bile robot must have in order to operate in a dynamic

environment. Moving objects (eg., people) are often sub-
jects for a robot to interact with, and in other con-

texts (eg., traffic) they could be potentially more dan-

gerous for safe navigation compared to stationary ob-

jects. Further, capabilities like localization and map-

ping critically depend on separating moving objects
from static ones. Finally motion is the most critical

feature to track for many surveillance or security appli-

cations. Robust motion detection and tracking are key

enablers for many mobile robot applications.

The motion tracking problem from a mobile robot
is illustrated in Figure 1. There are multiple moving

objects in the vicinity of a mobile robot, and their po-

sitions are measured using the on-board sensors; some

measurement errors are added during the process. An
estimation process is required to compute the positions

and velocities of the moving objects in the robot’s local

coordinate system from the measurement contaminated

with noise. In the variant of the problem studied here,

we require real-time estimates without prior knowledge
about the number of moving objects, the motion model

of objects, or the structure of the environment.

There are two main challenges in the motion track-

ing problem. First, there are two independent motions

involved - the ego-motion of the mobile robot and the
external motions of moving objects. Since these two

motions appear blended in the sensor data, the ego-

motion of the robot needs to be eliminated so that

the remaining motions, which are due to moving ob-
jects, can be detected. Second, there are various types

of noise added at various stages. For example, real out-

door images are contaminated by various noise sources

2

Fig. 1 Motion tracking from a mobile robot.

Fig. 2 Processing sequence of motion tracking system.

including poor lighting conditions, camera distortion,

unstructured and changing shape of objects, etc. Per-

fect ego-motion compensation is rarely achievable, thus
it adds another type of uncertainty to the system. Some

of these noise terms are transient and some of them are

constant over time.

Our approach to the problem is to design a simple

and fast ego-motion compensation algorithm in the pre-
processing stage for real-time performance, and to de-

velop a probabilistic filter in the post-processing stage

for uncertainty and noise handling. Since the sequence

of camera images contains rich information of object

motion, a monocular camera is utilized for motion de-
tection and tracking. A laser rangefinder provides depth

information of image pixels for partial 3D position esti-

mation. Figure 2 shows the processing sequence of our

motion tracking system.

The rest of the paper is organized as follows. Sec-
tion 2 summarizes the related work on this topic. The

detailed ego-motion compensation algorithm is given in

Section 3, and the design of the probabilistic filter is ex-

plained in Section 4. Section 5 describes how to fuse the

estimation result in image space with laser rangefinder
data, and Section 6 reports the experimental results and

analyzes the performance of the proposed algorithms.

The current status and possible improvements are dis-

cussed in Section 7.

2 Related Work

The target tracking problem in general has been studied

by various research group from different points of view,

and a huge body of literature has been produced. In

this section, we confine the scope of literature coverage

to the research on motion detection and tracking using

visual sensor(s) from a mobile platform.

The most fundamental requirement to achieve sta-
ble motion detection from a mobile platform is to com-

pensate the motion of a sensor. The computer vision

community has proposed various methods to stabilize

camera motions by tracking features [48,6,58,15,27] and
computing optical flow [31,44,18]. These approaches fo-

cus on how to estimate the transformation (homography)

between two image coordinate systems. However, the

motions of moving objects are typically not considered,

which often leads to poor estimation. Other approaches
that extend these methods for motion tracking using a

pan/tilt camera include those in [34,33,11]. However,

in these cases the camera motion was limited to trans-

lation or rotation. When a camera is mounted on a
mobile robot, the main motion of the camera is a for-

ward/backward movement, which makes the problem

different from that of a pan/tilt camera. There is other

research on tracking from a mobile platform with simi-

lar motions. [57,7] tracks objects in imagery taken from
an airborne, moving platform, and [3,50] track cars in

front using a camera mounted on a vehicle driven on a

paved road.

Extracting motions from a sequence of images is
another challenging issue. The most popular approach

is to construct a background model and subtract the

model from input images [55,45,8], which is applica-

ble to the case of stationary sensors restrictively. There

have been research on maintaining the integrity of the
background model even when a sensor moves [37,17,

22], but those solutions still require the assumption

of small, pan/tilt camera-type motions. Another well-

known technique is to use optical flow [31,4,52]. Motion
can be segmented using the characteristics of optical

flow vectors in an image sequence, but this method is

sensitive to noise and computationally more expensive

than the background subtraction method. Other tech-

niques include [53,56]. More general methods for visual
people detection are summarized in [40]. The perfor-

mance of visual detection can be improved by utilizing

multiple cameras [1,10], by combining with other types

of sensors (e.g. laser range scanner) [43], or by exploit-
ing domain-specific, priori knowledge [30].

Once motions have been identified, objects in the

scene need to be tracked over time. The Kalman fil-

ter has been extensively used for single motion track-

ing because of its mathematical soundness and compu-
tational efficiency [36,22], but it performs poor when

the state variable does not follow Gaussian distribu-

tion. The limitation has been overcome by utilizing par-

3

ticle filter technique as shown in [16,32]. In order to

track multiple motions, data association issue needs to

be addressed. Joint Probability Data Association Fil-

tering (JPDAF) [35] and Multiple Hypothesis Track-

ing (MHT) [9] are popular statistical data association
techniques. As dedicated mothods for spatial tracking,

[46] introduced Bayesian inference method using track

graph, and [26] presented a group tracking method when

maintaining the state of individual people would be in-
tractable. Recently [29] introduced a learning method

to build the dynamic models of moving objects.

3 Ego-motion Compensation

The ego-motion compensation is a coordinate conver-

sion procedure. Assume that a sensory data acquisition
process is as follows: (1) one set of data D is acquired at

time t when a robot is located at (x, y, α)1, (2) the robot

(and the sensors) moves to (x+∆x, y+∆y, α+∆α) for

∆t, and (3) another set of data D′ is acquired at time

t + ∆t. In this case, the data D and D′ cannot be com-
pared directly because they are captured in different

coordinate systems. Therefore, the data D should be

compensated for the ego-motion (∆x, ∆y, ∆α), which

means that the data D should be transformed as if it
were acquired when a robot was located at (x+∆x, y+

∆y, α+∆α). The goal of the ego-motion compensation

step is to compute this transformation T . The transfor-

mation can be estimated directly or indirectly.

The indirect method is to estimate a robot pose each

time using various sensors (eg. gyroscope, accelerom-

eter, odometer and/or GPS), and compute the ego-

motion (∆x, ∆y, ∆α) first. Once the ego-motion is com-

puted, the transformation T can be computed based on
the geometric properties of sensors. The pose estima-

tion technique has been well studied [25,39], and the

indirect method may be effective when the transfor-

mation error is constrained linearly in the ego-motion
estimation error. However, when a projection operation

is involved in the transformation, as in our case, the in-

direct method is not appropriate since a tiny angular

error in the motion estimation step would induce a huge

position error after being projected into the data space.
Therefore, we choose the direct method.

The direct method is to infer the transformation

T by corresponding salient features in the data set D

to those in the data set D′. The feature selection and
matching techniques for various types of sensors has

been studied by [48,31,12,28,14]. Since the transfor-

mation is estimated using the corresponding feature set

1 (x, y) represents the 2D position in a global coordinate sys-
tem, and α represents the heading of a robot.

directly, the quality of the transformation relies on the

quality of selected features from the data sets. Unfor-

tunately, in our case, the quality of the features is poor

due to independently moving objects in image data.

Therefore, a transformation model and outlier detec-
tion algorithm needs to be designed so that the esti-

mated transformation is not sensitive to those object

motions.

3.1 Feature Selection and Tracking

Image feature selection and matching technique has

been studied for various vision-based applications in-

cluding object recognition, shape analysis, motion anal-

ysis, and stereo matching. Two most successful visual

features are corner and SIFT features.

A corner feature is characterized by the high inten-
sity changes in both horizontal and vertical directions,

and well-known corner detection algorithms are KLT

(Kanade-Lucas-Tomasi) corner detector [48,31] and Har-

ris corner detector [15]. Those corner detectors are of-

ten used jointly with optical flow techniques to track
the corners in a video sequence assuming their displace-

ments are small.

SIFT (Scale Invariant Scale Transform) feature [27,

24] is more advanced visual feature, which is known to

be relatively invariant to image translation, scaling and

rotation and partially invariant to changes in illumina-
tion and local image deformations. The feature is repre-

sented as a multi-dimensional vector called a key-point

descriptor, and the matching between two features can

be performed simply by computing their distance in
the multi-dimensional space. However, searching a key-

point and creating its descriptor is computationally in-

tensive, and it is not suitable for real-time applications,

unless the algorithm is implemented in hardware as

in [2,41].

We adopt the KLT feature tracking algorithm [42,5]
to select and correspond features between two images

mainly due to its computational efficiency. Given two

consecutive images (the previous image It−1 and the

current It), a set of features (F t−1) is selected from

the image It−1, and a corresponding feature set (F t) is
constructed by tracking the same features on the image

It.

3.2 Transformation Estimation

Once the correspondence F =< F t−1, F t > is known,
the ego-motion of the camera can be estimated using a

transformation model and an optimization method. We

have studied three different models.

4

Affine Model :
"

f t
x

ft
y

#

=

"

a0 ft−1
x + a1 ft−1

y + a2

a3 ft−1
x + a4 ft−1

y + a5

#

Bilinear Model :
"

f t
x

ft
y

#

=

"

a0 ft−1
x + a1 ft−1

y + a2 + a3 f t−1
x ft−1

y

a4 ft−1
x + a5 ft−1

y + a6 + a7 f t−1
x ft−1

y

#

Pseudo-perspective Model :
"

f t
x

ft
y

#

=

2

4

a0 ft−1
x + a1 ft−1

y + a2 + a3 ft−1
x

2
+ a4 ft−1

x ft−1
y

a5 ft−1
x + a6 ft−1

y + a7 + a4 ft−1
x ft−1

y + a3 ft−1
y

2

3

5

When the interval between consecutive images is very

small, most ego-motions of the camera can be estimated

using an affine model, which can cover translation, ro-
tation, shearing, and scaling motions. However, when

the interval is long, the camera motion in the interval

cannot be captured by a simple linear model. For ex-

ample, when the robot moves forward, the features in

the image center move slower that those near the image
boundary, which is a projection operation, not a simple

scaling. Therefore, a nonlinear transformation model is

required for those cases. On the other hand, an over-

fitting problem may be caused when a model is highly
nonlinear, especially when some of the selected features

are associated with moving objects (outliers). There is

clearly a trade-off between a simple, linear model and a

highly nonlinear model, and it needs more empirical re-

search for the best selection. We used a bilinear model
for the experiments reported in this paper.

When the transformation from the image It−1 to

the image It is defined as T t
t−1, the cost function for

least square optimization is defined as:

J =
1

2

N
∑

i=1

{

f t
i − T t

t−1

(

f t−1
i

)}2
(1)

where N is the number of features. The model parame-

ters for ego-motion compensation are estimated by min-

imizing the cost. However, as mentioned before, some of

the features are associated with moving objects, which
lead to the inference of an inaccurate transformation.

Those features (outliers) should be eliminated from the

feature set before the final transformation is computed.

The model parameter estimation is thus performed us-

ing the following two-step procedure:

1. compute the initial estimate T0 using the full feature

set F .

2. partition the feature set F into two subsets Fin and

Fout as:
{

fi ∈ Fin if |f t
i − T0

t
t−1(f

t−1
i)| < ǫ

fi ∈ Fout otherwise
(2)

Fig. 3 Outlier feature detection (ǫ = 3).

3. re-compute the final estimate T using the subset Fin

only.

Figure 3 shows the partitioned feature sets: Fin is marked
with empty circles, and Fout is marked with filled cir-

cles. Note that all features associated with the pedes-

trian are detected as outliers. It is assumed for outlier

detection that the portion of moving objects in the im-
ages is relatively smaller compared to the background;

the features which do not agree with the main motion

are considered as outliers. This assumption will break

when the moving objects are very close to the camera.

However, most of the time, these objects pass by the
camera in a short period (leading to transient errors),

and a high-level probabilistic filter is able to deal with

the errors without total failure.

3.3 Frame Differencing

The image It−1 is converted using the transformation

model before being compared to the image It in order

to eliminate the effect of the camera ego-motion. For
each pixel (x, y):

Ic(x, y) = It−1
(

T t
t−1

−1
(x, y)

)

(3)

Figure 4 (c) shows the compensated image of Figure 4 (a);

the translational and forward motions of the camera
were clearly eliminated. The valid region ℜ of the trans-

formed image is smaller than that of the original image

because some pixel values on the border are not avail-

able in the original image It−1. The invalid region in
Figure 4 (c) is filled black. The difference image be-

tween two consecutive images is computed using the

compensated image:

Id(x, y) =

{

| (Ic(x, y) − It(x, y)) | if (x, y) ∈ ℜ

0 otherwise
(4)

Figure 5 compares the results of two cases: frame differ-

encing without ego-motion compensation (Figure 5 (a))
and with ego-motion compensation (Figure 5 (b)). The

results show that the ego-motion of the camera is de-

composed and eliminated from image sequences.

5

(a) Image at time t − 1 (b) Image at time t

(c) Compensated image of (a)

Fig. 4 Image Transformation.

(a) without compensation (b) with compensation

Fig. 5 Results of frame differencing (ǫ = 3, ∆t = 0.2).

4 Motion Detection in 2D Image Space 2

The Frame Differencing step in Figure 2 generates the

sequence of difference images, I0
d , I1

d , · · · , It
d, whose pixel

values represent the amount of motion occurred in the

position. However, as described earlier, the difference
images contain two different types of errors. There are

transient errors caused by imperfect ego-motion com-

pensation, and this type of error should be filtered out

using their temporal properties. There are also persis-
tent errors caused during data acquisition. Since the

camera positions are different when two consecutive im-

ages are captured, it is inevitable that some information

is newly introduced to the current image It or some in-

formation of the previous image It−1 is occluded in the
image It.

To deal with those errors, a probabilistic approach is

adopted. The normalized pixel values in the difference

images can be interpreted as the probability of the ex-
istence of moving objects in that position, and the po-

sition and size of the moving objects are estimated over

time. This estimation process can be modeled using a

2 More detailed description including all algorithms and
configurations can be found in [20]

Bayesian formulation. Let xt represent the state (eg.

the position and velocity) of a moving object (a motion

blob in images).

x = [x y ẋ ẏ]T (5)

The posterior probability distribution Pm(xt) of the
state is derived as follows.3

Pm(xt) = P (xt|I0
d , I1

d , · · · , It
d)

= ηt P (It
d|x

t)

∫

P (xt|xt−1)Pm(xt−1) dxt−1

(6)

Now the posterior probability distribution can be up-

dated recursively by applying a perception model P (It
d|x

t)

and a motion model P (xt|xt−1) over time.

4.1 Bayesian Filter Design

Equation 6 shows how the sequence of difference images

and the motion model of a moving object are integrated

into the state estimation process. However, there are
still three questions to answer: (1) how to define a per-

ception model, and (2) how to define a motion model,

and finally (3) how to represent the posterior probabil-

ity distribution.
The perception model P (It

d|x
t) captures the idea

that if there is a motion at position xt, then the differ-
ence values of the pixel in that position and its neigh-
bors should be big. For example, let us assume a small
moving object that occupies a single pixel pt−1 on a
camera image. When the object moves to its neighbor
pixel pt, then the difference values of both pixels pt−1

and pt would be big. This neighborhood can be mod-
eled using a multi-variate Gaussian, and the perception
model can be defined as

P (It
d |xt) =

Z

It
d(x) ×

1
p

(2π)d|Σs|
e−

1

2
(x−x

t)T Σ−1

s (x−x
t) dx

(7)

where d is the dimension of the state x, and the covari-

ance matrix Σs controls the range of effective neighbor-

hood, which is determined empirically.
The motion model P (xt|xt−1) captures the best guess

about the motion of a moving object. Since no prior

knowledge of an object motion is assumed, a constant

velocity model is a natural choice. The uncertainty of
an object motion is modeled by the covariance matrix

Σm of a multi-variate Gaussian.

µ =









xt−1 + ∆t × ẋt−1

yt−1 + ∆t × ẏt−1

ẋt−1

ẏt−1









(8)

3 ηt in the derivation process is a normalizer.

6

P (xt |xt−1) =
1

√

(2π)d|Σm|
e−

1

2
(xt

−µ)T Σ−1

m (xt
−µ) (9)

The choice of a representation for the posterior prob-
ability distribution is important for real-time system

design because the update equation (Equation 6) con-

tains an integral operation and the required computa-

tion is intensive. Even when the size of a camera image

is small, the state space is sizeable because the state is
four-dimensional. The most compact representation is

to use a single Gaussian, like the Kalman filter [54,23],

but this approach is not appropriate because (1) the

initial state of a moving object is not given in priori,
and (2) image segmentation is avoided for real-time re-

sponse, which makes it hard to construct a measure-

ment matrix. In this paper, we adopt the sample-based

representation.

4.2 Particle Filter Design

The Particle filter [19,47] is a simple but effective algo-

rithm to estimate the posterior probability distribution

recursively, which is appropriate for real-time applica-
tions. In addition, its ability to perform multi-modal

tracking is attractive for unsegmented object detection

and tracking from camera images. An efficient vari-

ant, called the Adaptive Particle Filter, was introduced

in [13]. This changes the number of particles dynam-
ically for a more efficient implementation. We imple-

mented the Adaptive Particle Filter to estimate the

posterior probability distribution in Equation 6. As de-

scribed in Section 4.1, particle filters also require two
models for the estimation process: a perception model

and a motion model.

The perception model is used to evaluate a particle

and compute its weight (or importance). Equation 7

provides a generic form of the perception model. How-
ever, the perception model is simplified for computa-

tional efficiency. The ramification of the simplification

needs to be studied further quantitatively. A step func-

tion is used instead of a multi-variate Gaussian, and the
evaluation range is also limited to m×m fixed area. The

m × m mask should be big enough (usually 5 × 5) so

that salt-and-pepper noise is eliminated. The weight ωt
i

of the ith particle (st
i = [xt

i yt
i ẋt

i ẏt
i]T) is computed

by

ωt
i =

1

m2

m/2
∑

j=−m/2

m/2
∑

k=−m/2

Id

(

xt
i − j, yt

i − k
)

(10)

As shown in Equation 10, only the position information

is used to evaluate particles.

Fig. 6 Particle filter tracking.

The motion model is used to propagate a newly

drawn particle according to the estimated motion of

a moving object. The motion model in and Equation 9

describes how to compute the probability of the new
state xt when the previous state xt−1 is given. How-

ever, for particle filter update, the motion model should

describe how to draw a new particle st
i when the previ-

ous particle st−1
i and its weight ωt

i are given. Therefore,

the motion model is defined as

st
i =











xt−1
i + ∆t × ẋt−1

i + Normal(
γp

ωt
i

)

yt−1
i + ∆t × ẏt−1

i + Normal(
γp

ωt
i

)

ẋt−1
i + Normal(γv

ωt
i

)

ẏt−1
i + Normal(γv

ωt
i

)











(11)

where ∆t is a time interval, and γp and γv are noise pa-

rameters for position and velocity components respec-

tively. The function Normal(σ) generate a Gaussian

random variate with zero mean and the standard de-
viation σ. As shown in Equation 11, the parameter-

ized noise is added to the constant-velocity model in

order to overcome an intrinsic limitation of the par-

ticle filter, which is that all particles move in a con-
vergence direction. However, a dynamic mixture of di-

vergence and convergence is required to detect newly

introduced moving objects. [47] introduced a mixture

model to solve this problem, but in the image space

the probability P (xt|It
d) is uniform and the dual MCL

becomes random. Therefore, we used a simpler, but ef-

fective method by adding inverse-proportional noise.4

Figure 6 shows the output of the particle filter. The
dots represent the position of particles, and the hor-

izontal bar on the top-left corner of the image shows

the number of particles being used at the moment5.

4 Empirically it has been proven that the added noise helps
detecting a new object faster; however, the effect of the noise term
on the convergence properties of the filter needs to be studied
further.

5 The range of particles is set to 1000∼5000 for all experiments.

7

Fig. 7 Particle clustering.

4.3 Particle Clustering

The particle filter generates a set of weighted particles
that estimate the posterior probability distribution of

a moving object, but the set of particles are not easy to

process in the following step. More intuitive and mean-

ingful data can be extracted by clustering the particles.

A density-based algorithm using a kd-tree is introduced
for efficient particle clustering. The main idea is to con-

vert a set of weighted particles into a lower-resolution,

uniform-sized grid. The grids can be represented using

a kd-tree efficiently, and all clustering operations are
performed using the grids instead of particles. There-

fore, the required computation is reduced drastically.

However, since each grid maintains enough information

about the particles in the grid, the statistics of each

cluster can be calculated without any accuracy loss.

Figure 7 shows the output of the particle clustering
algorithm. The dots represent the position of particles,

and the ellipsoid represents the mean and covariance of

each cluster.

4.4 Multiple Particle Filters for Multiple Motion

Tracking

The particle filter has many advantages as described

in [21,47]; one of the advantages is multi-modality. This
property is attractive for multi-target tracking because

it raises the possibility that a single set of particles can

track multiple objects in an image sequence. However,

the particle filter is known to be poor at consistently

maintaining the multi-modality of the target distribu-
tions in some cases [51]. Its multi-modality property is

valid only under the following two conditions:

1. The perception model should be “bad” enough so

that particles converge slowly, and eventually stay

on multiple objects.
2. All objects should be introduced in the beginning of

estimation process. As explained in Section 4.1, par-

ticles shows a convergence tendency, and consequently

Fig. 8 Projection of laser scans.

converged particles do not diverge unless the tracked
object disappears.

Since those conditions are not valid for the tracking

problem, we introduce a tracking system using multiple

particle filters. The main idea is to maintain an extra

particle filter for a newly introduced or detected ob-
ject. Since the number of objects is not known in priori,

particle filters should be created and destroyed dynam-

ically. Whenever the extra particle filter converges on

a newly detected object, a new particle filter is created

(as long as the number of particle filters is smaller than
the maximum limit Nmax). Similarly, whenever a parti-

cle filter diverges due to the disappearance of a tracked

object, it is destroyed. In order to prevent two parti-

cle filters from converging on the same object, when-
ever a particle filter is updated, the difference image is

modified for subsequent processing such that difference

values covered by the filter are cleared.

5 Position Estimation in 3D Space

A monocular image provides rich information for ego-
motion compensation and motion tracking in 2D image

space. However, a single camera has limits on retriev-

ing depth information, and an additional sensor is re-

quired to construct 3D models of moving objects. Our
robots are equipped with a laser rangefinder, which pro-

vides depth information within a singe plane. Given the

optical properties of a camera and the transformation

between the camera and the laser rangefinder, distance

information from the laser rangefinder can be projected
onto the image coordinates (Figure 8).

Given the heading α and the range r of a scan, the

projected position (x, y) in the image coordinate system

is computed as follows:

[

x

y

]

=





w
2 ×

(

1 − tan(α)
tan(fh)

)

h
2 ×

(

1 +
(

d − d
r × (r − l)

)

× 1
l×tan(fv)

)





(12)

where the focal length of the camera is l, the horizon-

tal and vertical field of view of the camera are fh and

8

Fig. 9 Projected laser scans.

fv, the height from the laser rangefinder to the cam-

era is d, and the image size is w × h. This projection

model assumes a very simple camera model (a pin-hole

camera) for fast computation. As a result of the projec-
tion, the image pixels at the same height as the laser

rangefinder will have depth information as shown in

Figure 9. For ground robots, this partial 3D information

can be enough for safe navigation assuming all mov-

ing obstacles are on the the same plane as the robot.
In terms of moving object tracking, if the region of a

moving objects in image space and those pixels are over-

lapped, then the distance between a robot and the mov-

ing object can be estimated.

This naive integration of the 2D motion estimates
and range scans from a laser rangefinder is a reasonable

practical solution. However, using two separate sensors

requires another estimation problem potentially, which

is the fusion of multiple asynchronous inputs. A pre-
ferred route (not investigated here) would be to use

stereo vision for depth information retrieval. If com-

putational power allows one can exploit the facts that

stereo (1) provides full depth information of an im-

age space, and (2) a single input source provides syn-
chronous data and better fusion result can be expected.

6 Experimental Results and Discussion

The proposed motion tracking system was tested in var-

ious scenarios. First, the robustness of ego-motion com-

pensation and motion tracking algorithms was tested

using three different robot platforms. The performance
is analyzed in Section 6.1. Second, the multiple-motion

tracking system described in Section 4.4 was tested us-

ing various scenarios. The results are presented in Sec-

tion 6.2. Finally, the tracking system was integrated
with an actual robot control system. The result is dis-

cussed in Section 6.3.6

6 The first and the second experiments were conducted using
a monocular camera only. The laser data fusion described in Sec-
tion 5 is applied to the last experiment only.

6.1 Tracking a Moving Object from Various Platforms

The ego-motion of a mobile robot is diverse according to
its actuator design and the way the camera is mounted

on the platform. For example, a down-facing camera

mounted on an UAV (Unmanned Aerial Vehicle) would

show a different ego-motion from a forward-facing cam-

era mounted on a walking robot. In addition, the com-
plexity of the ego-motion increases through the inter-

action with rough terrain. The tracking performance is

also affected by the distribution of occlusive obstacles

in an environment. Therefore, the ego-motion compen-
sation and the motion tracking algorithms should be

tested on various environments with a wide variety of

mobile platforms.

6.1.1 Experimental Setup

The tracking algorithms were implemented and tested
in various outdoor environments using three different

robot platforms: robotic helicopter, Segway RMP, and

Pioneer2 AT. Each platform has unique characteristics

in terms of its ego-motion7.

The Robotic Helicopter [38] in Figure 10 (a) is an
autonomous flying vehicle carrying a monocular camera

facing downward. Once it takes off and hovers, planar

movements are the main motion, and moving objects

on the ground stay at a roughly constant distance from

the camera most of the time; however, pitch and roll
motions still generate complicate video sequences. Also,

high-frequency vibration of the engine adds motion-blur

to camera images.

The Segway RMP in Figure 10 (b) is a two-wheeled,

dynamically stable robot with self-balancing capabil-
ity. It works like an inverted pendulum; the wheels are

driven in the direction that the upper part of the robot

is falling, which means the robot body pitches when-

ever it moves. Especially when the robot accelerates or
decelerates, the pitch angle increases by a significant

amount. Since all sensors are directly mounted on the

platform, the pitch motions prevent direct image pro-

cessing. Therefore, the ego-motion compensation step

should be able to cope with not only planar movements
but also pitch motions.

The Pioneer2 AT in Figure 10 (c) is a typical four-

wheeled, statically stable robot. Since the Pioneer2 robot

is the only statically stable platform among these robot

platforms, we drove the robot on the most severe test
environment. Figure 13 shows the rocky terrain where

the robot was driven. In addition, the moving objects

7 All input & output videos are available on
http://robotics.usc.edu/∼boyoon/mt.html.

9

(a) Robotic Helicopter (b) Segway RMP (c) Pioneer2 AT

Fig. 10 Robot platforms for experiments.

were occluded occasionally because of the trees in the

environment.

The computation was performed on embedded com-

puters (Pentium III 1.0 GHz) on the robots. Low res-

olution (320x240 pixels) input images were chosen for
real-time response. The maximum number of particles

was set to 5,000, and the minimum number of parti-

cles was set to 1000. Since the algorithm is supposed to

run in parallel with other processes (eg. navigation and

communication), less than 70 percent of the CPU time
was dedicated for tracking; the tracking algorithm was

able to process five frames per second.

6.1.2 Experimental Results

The performance of the tracking algorithm was evalu-

ated by comparing with the positions of manually tracked

objects. For each video sequence, the rectangular region

of moving objects were marked manually and used as
ground truth. Figure 11–13 show this evaluation pro-

cess. The upper rows show the input image sequence,

and the positions of manually-tracked objects are marked

with rectangles. The lower rows show the set of par-

ticles and the clustering results. The position of each
particle is marked with dots, and the horizontal bar on

the top-left corner of the image indicates the number

of particles being used. The clustering result is repre-

sented using an ellipsoid and a line inside. The ellipsoid
shows the mean and covariance of the estimated object

position, and the line inside of the ellipsoid represents

the estimated velocity vector of the object.

The final evaluation result is shown in Table 1. Frames

is the number of image frames in a video sequence, and

Motions is the number of moving objects. Detected is

the total number of detected objects, and True + and
False + are the number of correct detections and the

number of false-positives respectively. Detection Rate

shows the percentage of moving objects correctly de-

tected, and Avg. Error is the average Euclidean dis-
tance in pixels between the ground truth and the out-

put of tracking algorithm. The average distance error

should not be considered as actual error measurement

since the tracking algorithm does not perform an ex-

plicit object segmentation; it may track a part of an

object that generates motion while the ground truth

always tracks the whole objects even though only part
of the object moves.

The Robotic helicopter result shows that the track-

ing algorithm missed seven objects, but five of them

were the cases when a moving object was introduced
and showed only partially on the boundary of the im-

age plane. Once the whole object entered into the field

of view of the camera, the tracking algorithm tracked

it robustly. For the Segway RMP result, the detection

rate was satisfactory, but the average distance error was
larger than the others. The reason was that the walk-

ing person was closer to the robot and the tracking

algorithm often detected the upper body only, which

caused a constant distance error. The Pioneer2 AT re-
sult shows the higher ratio of false-positives; however,

as explained in the previous section, the terrain for the

experiment was more challenging (rocky) and the input

images were more blurred and unstable. Overall various

types of ego-motions were successfully eliminated from
input images, and the particle filter was able to track

motions robustly from diverse robot platforms.

6.2 Tracking Multiple Moving Objects

The multiple-motion tracking system using multiple par-
ticle filters was introduced in Section 4.4. Since the ro-

bustness of an individual filter was analyzed in Sec-

tion 6.1, we focus on analyzing how multiple filters are

created and destroyed effectively when the number of

moving objects changes dynamically.

6.2.1 Experimental Setup

The Segway RMP in Figure 10 (b) was selected for

the experiment because of its complex ego-motion. The

Segway RMP is a dynamically stable platform, and its

8 The actual frame rate achieved on the Pentium III (1.0 GHz)
computer was roughly 5 Hz.

10

(a) t = 13 (b) t = 21 (c) t = 34

(d) t = 13 (e) t = 21 (f) t = 34

Fig. 11 Moving object tracking from Robotic helicopter.

(a) t = 57 (b) t = 119 (c) t = 195

(d) t = 57 (e) t = 119 (f) t = 195

Fig. 12 Moving object tracking from Segway RMP.

(a) t = 35 (b) t = 56 (c) t = 191

(d) t = 35 (e) t = 56 (f) t = 191

Fig. 13 Moving object tracking from Pioneer2 AT.

11

Table 1 Performance of moving object detection algorithm

Platform Frames8 Motions Detected True + False + Detection Rate Avg. Error

Robotic helicopter 43 35 28 28 0 80.00 % 11.90

Segway RMP 230 220 215 211 4 95.90 % 21.31

Pioneer2 AT 195 172 158 146 12 84.88 % 15.87

pitching motions for self-balancing are combined into
linear and angular motions. The combination of these

motions causes complicated ego-motions even when the

robot is driven on a flat terrain or when the robot stops

in place. The robot was driven on the USC campus dur-

ing the daytime when there are diverse activities in the
environment including walking people and automobiles.

The tracking performance is analyzed for three dif-

ferent cases. As explained in Section 4.4, if one of the

following two conditions is not satisfied, a single particle
filter fails to track multiple objects even though it sup-

ports multi-modality in theory: (1) all objects should

be introduced before a particle filter converges, and (2)

the convergence speed of a particle filter should be sac-

rificed by using a “bad” perception model. The first two
cases are when one or both conditions can not be sat-

isfied. In the first case, there are three people walking

by, but the people are introduced in the input image

sequence one by one, which violates the first condition.
In the second case, there are two groups of automobiles

passing by, and they are introduced sequentially with a

big time interval between them. In addition, the auto-

mobiles move fast enough so that the convergence speed

of a particle filter cannot be sacrificed, which violates
the second condition. The results for both cases show

how the multiple particle filter approach overcomes the

limitation of a single particle filter. The stability of this

approach is also clear. In the last case, it is observed
how multiple particle filters behave when two people

walk in different directions and intersect in the middle.

The computation was performed on a Pentium IV

(2.1 GHz) computer, and the image resolution was fixed

to 320x240 pixels. The maximum number of particle
filters was fixed to five, and for an individual particle

filter, the range of the number of particles was set to

(1000 ∼ 5000). The number of frames processed per

second varies based on how many particle filters have
been created, but roughly 10 frames were able to be

processed.

6.2.2 Experimental Results

The snapshots of the multiple particle filter tracking
multiple moving objects are shown in Figure 14–16.

The upper rows of the figures show input image se-

quences and manually-tracked moving objects in the

images. The manually-tracked objects are marked with
rectangles. The lower rows show particle filters and the

covered area (the minimum rectangular region enclos-

ing each ellipsoid that is generated by the particle clus-

tering algorithm) by each particle filter. Only converged

particle filter is visualized on the images. Each particle
filter is drawn with different colored dots, and the cov-

ered areas are marked with rectangles.

The experimental result of the first case is shown in

Figure 14. The estimation process starts with a single

particle filter. When the first person enters into the field
of view of the camera as in Figure 14 (a), the particle

filter converges and starts to track the person as in Fig-

ure 14 (d), and a new particle filter is created to explore

the remained area. When the second person enters as
in Figure 14 (b), the new particle filter converges and

starts to track the second person as in Figure 14 (e),

and another particle filter is created. This process is

repeated whenever a new object is introduced. At the

end when three people are in the input image as in Fig-
ure 14 (c), the total number of particle filters becomes

four; three filters for people and one extra filter to ex-

plore.

Figure 15 shows the experimental result of the sec-
ond case. The estimation process is performed in the

same way with the first case. Whenever a new auto-

mobile is introduced, a new particle filter is created.

When the automobile leaves from the field of view of

the camera, the particle filter that tracks the automo-
bile diverges and is destroyed eventually.

The experimental result of the third case is shown in

Figure 16. There are two people walking in different di-

rections as in Figure 16 (a), and two particle filters are

created to track them individually as in Figure 16 (d).
The pedestrians intersect in the middle, and keep walk-

ing in each direction. Figure 16 (e) and (f) demonstrate

that the particle filters track them successfully without

being confused by the intersection.

The detailed evaluation result is shown in Table 2.
There were untracked motions in common; however, it

happens only right after a new object is introduced and

before a filter converges on the object. Once a parti-

cle filter converges and is associated with the object, it
never fails to track the object. For the second case, the

detection rate is lower than the other two cases. This is

reasonable since the motion of an automobile is much

12

(a) t = 49 (b) t = 95 (c) t = 132

(d) t = 49 (e) t = 95 (f) t = 132

Fig. 14 Tracking people.

(a) t = 51 (b) t = 66 (c) t = 85

(d) t = 51 (e) t = 66 (f) t = 85

Fig. 15 Tracking automobiles.

(a) t = 27 (b) t = 38 (c) t = 67

(d) t = 27 (e) t = 38 (f) t = 67

Fig. 16 Intersectional particles.

13

faster than that of a person, and it took longer for a

particle filter to converge on it. The false-positives ob-

served in the second case are also related to the faster

motion. When an automobile leaves from the camera

field of view, it disappears quickly enough so that the
particle filter stays converged for one or two frames.

In general, the multiple particle filter approach shows

stable performance for all cases.

6.3 Close the loop: Following a Moving Object

The proposed tracking system is integrated with a robot

control loop, and its robustness and real-time capability

are tested. For this experiment, the task of a robot is
to wait for a moving object to appear and follow the

object.

6.3.1 System Design and Implementation

A robot needs two capabilities to accomplish the task:

motion detection and tracking, and local navigation.

For motion detection and tracking, the system described
in Section 3-5 is utilized. This module takes the se-

quence of camera images and the laser range scans as

inputs, and computes the existence of moving object(s)

and the estimation of target positions in the robot’s

local coordinates. For local navigation, VFH+ (Vector
Field Histogram +) [49] algorithm is implemented. In-

ternally, VFH+ algorithm performs two tasks: (1) it re-

trieves range scans from a laser rangefinder, and build

a local occupancy grid map for obstacle avoidance, and
(2) when the estimated target position is given, the

algorithm generates both translational and rotational

motor commands for point-to-point navigation.

The system architecture is presented in Figure 17.

The implemented system was deployed on a Segway

RMP robot. The computation was performed on an em-
bedded computer (Athlon 1.0 GHz) on the robot, and

the image resolution was fixed at 320x240 pixels.

6.3.2 Experimental Result

The snapshots of the robot following a person are shown

in Figure 18. When the person entered into the field

of view of the camera as in Figure 18 (a), the parti-
cle filter converged on him, and the Segway started to

follow it. As shown in Figure 18 (b)-(g), there were au-

tomobiles, a golf car, and pedestrians passing by in the

background. However, the tracking system was not con-

fused by them; the Segway was able to track the person

9 The actual frame rate achieved on the Pentium IV (2.1 GHz)
computer was roughly 10 Hz.

Fig. 17 Control architecture for motion following system.

without a single failure. When the person stopped and

stood still as in Figure 18 (i), the particle filter diverged,

which made the robot stop. However, when the person
re-started to walk as in Figure 18 (j), the particle fil-

ter was able to detect the motion again, and the robot

re-started to follow the person.

7 Conclusion

We have presented a set of algorithms for multiple mo-

tion tracking from a mobile robot in real-time. There

are three challenges: 1) Compensation for the robot ego-

motion: The ego-motion of the robot was directly mea-

sured using corresponding feature sets in two consecu-
tive images obtained from a camera rigidly attached to

the robot. In order to eliminate the unfavorable effect

of a moving object in the image sequence, an outlier de-

tection algorithm has been proposed. 2) Transient and
structural noise: An adaptive particle filter has been

designed for robust motion tracking. The position and

velocity of a moving object were estimated by combin-

ing the perception model and the motion model incre-

mentally. Also, the multiple target tracking system has
been designed using multiple particle filters. 3) Sensor

fusion: The depth information from a laser rangefinder

was projected into the image space, and the partial 3D

position information was constructed in the region of
overlap between the range data and the image data.

The proposed algorithms have been tested with var-
ious configurations in outdoor environments. First, the

algorithms were deployed on three different platforms

(Robotic Helicopter, Segway RMP, and Pioneer2 AT),

and tested in different environments. The experimental

results showed that various type of ego-motions were
successfully eliminated from input images, and the par-

ticle filter was able to track motions robustly. Second,

the multiple target tracking algorithm was tested for

different types of motions. The experimental results
show that multiple particle filters are created and de-

stroyed dynamically to track multiple targets introduced

at different times. Lastly, the tracking algorithm was in-

14

Table 2 Performance of moving object detection algorithm

Case Frames9 Motions Detected True + False + Detection Rate Avg. Error

(1) Pedestrians 141 285 274 274 0 96.14 % 8.68

(2) Automobiles 123 120 95 92 3 76.67 % 20.40

(3) Intersection 81 162 156 156 0 96.30 % 12.34

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 18 Snapshots of a Segway RMP robot following a person

tegrated with a robot control loop to test its real-time

capability, and the task of following a moving object

was successfully accomplished.

The proposed algorithms are expected to be uti-
lized in various application domains as a key enabler.

Localization and mapping problems have been studied

actively by the mobile robotics community, and there

are many well-developed techniques widely used. How-
ever, most techniques assume a static environment, and

their performance is degraded significantly when there

are dynamic objects in an environment. Our algorithm

provides a robust method to detect dynamic objects

in an environment, and it can be exploited in a pre-
processing step to filter out data that are associated

with the dynamic objects. Safe navigation is another

fundamental problem in mobile robotics, and most so-

lutions generate motion commands based on local po-
sitions of obstacles. However, those solutions become

unreliable when obstacles are dynamic, especially when

the obstacles move faster than the robot. In this case,

a mobile robot needs to predict obstacle position in

the near future to avoid collision. The motion veloc-

ity (speed and direction) estimation capability of our
algorithm could fulfill this requirement. Human-robot

interaction is active research area in service robot ap-

plications, and locating a subject to interact with is a

key problem. Our algorithm is applicable in this regard.

Needless to say, surveillance and security applications
could make use of our algorithms to detect and track

moving targets.

Acknowledgement

This work is supported in part by DARPA grants DABT63-

99-1-0015, and 5-39509-A (via UPenn) under the Mo-
bile Autonomous Robot Software (MARS) program,

DOE RIM under grant DE-FG03-01ER45905, and NSF

CAREER grant IIS-0133947.

15

References

1. Max Bajracharya, Baback Moghaddam, Andrew Howard,
Shane Brennan, and Larry H. Matthies. Results from a real-
time stereo-based pedestrian detection system on a moving
vehicle. In Proceedings of the IEEE ICRA 2009 Workshop
on People Detection and Tracking, 2009.

2. Timothy D. Barfoot. Online visual motion estimation using
FastSLAM with SIFT features. In Proceedings of the 2005
IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 579–585, Alberta, Canada, August 2005.

3. Alireza Behrad, Ali Shahrokni, and Seyed Ahmad Motamedi.
A robust vision-based moving target detection and tracking
system. In the Proceeding of Image and Vision Comput-
ing Conference, University of Otago, Dunedin, New Zealand,
November 2001.

4. Michael J. Black and P. Anandan. The robust estima-
tion of multiple motions: parametric and piecewise-smooth
flow fields. Computer Vision and Image Understanding,
63(1):75–104, 1996.

5. Jean-Yves Bouguet. Pyramidal implementation of the Lucas
Kanade feature tracker: Description of the algorithm. Tech-
nical report, Intel Research Laboratory, 1999.

6. Alberto Censi, Andrea Fusiello, and Vito Roberto. Image
stabilization by features tracking. In Proceedings of the 10th
International Conference on Image Analysis and Processing,
pages 665–667, Venice, Italy, September 1999.

7. Isaac Cohen and Gerard Medioni. Detecting and tracking
objects in video surveillance. In Proceeding of the IEEE
Computer Vision and Pattern Recognition 99, pages 319–
325, Fort Collins, June 1999.

8. R. Collins, A. Lipton, H. Fujiyoshi, and T. Kanade. Algo-
rithms for cooperative multisensor surveillance. In Proceed-
ings of the IEEE, volume 89, pages 1456–1477, October 2001.

9. Ingemar J. Cox and Sunita L. Hingorani. An efficient imple-
mentation of Reid’s multiple hypothesis tracking algorithm

and its evaluation for the purpose of visual tracking. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
18(2):138–150, February 1996.

10. A. Ess, K. Schindler, B. Leibe, and L. van Gool. Improved
multi-person tracking with active occlusion handling. In Pro-
ceedings of the IEEE ICRA 2009 Workshop on People De-
tection and Tracking, 2009.

11. Gian Luca Foresti and Christian Micheloni. A robust feature
tracker for active surveillance of outdoor scenes. Electronic
Letters on Computer Vision and Image Analysis, 1(1):21–34,
2003.

12. David A. Forsyth and Jean Ponce. Computer Vision: A Mod-
ern Approach. Prentice Hall, 2003.

13. Dieter Fox. KLD-sampling: Adaptive particle filter. In Ad-
vances in Neural Information Processing Systems 14. MIT
Press, 2001.

14. Jens-Steffen Gutmann and Christian Schlegel. Amos: Com-
parison of scan matching approaches for self-localization in
indoor environments. In Proceedings of the 1st Euromicro
Workshop on Advanced Mobile Robots, pages 61–67, 1996.

15. Chris Harris and Mike Stephens. A combined corner and
edge detector. In Proceedings of the Fourth Alvey Vision
Conference, pages 147–151, Manchester, 1988.

16. Carine Hue, Jean-Pierre Le Cadre, and Patrick Pérez. A
particle filter to track multiple objects. In IEEE Workshop
on Multi-Object Tracking, pages 61–68, Vancouver, Canada,
July 2001.

17. Michal Irani and P. Anandan. Video indexing based on mo-
saic representation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 86(5):905–921, 1998.

18. Michal Irani, Renny Rousso, and Shmuel Peleg. Recovery
of ego-motion using image stabilization. In Proceedings of
the IEEE Computer Vision and Pattern Recognition, pages

454–460, March 1994.
19. Michael Isard and Andrew Blake. Condensation – condi-

tional density propagation for visual tracking. International

Journal of Computer Vision, 29(1):5–28, 1998.
20. Boyoon Jung. Cooperative Target Tracking using Mobile

Robots. PhD thesis, University of Southern California, Los
Angeles, CA, 2005.

21. Boyoon Jung and Gaurav S. Sukhatme. Detecting moving

objects using a single camera on a mobile robot in an outdoor
environment. In International Conference on Intelligent Au-
tonomous Systems, pages 980–987, The Netherlands, March
2004.

22. Jinman Kang, Isaac Cohen, and Gerard Medioni. Continuous
multi-views tracking using tensor voting. In Proceedings of
the IEEE Workshop on Motion and Video Computing, pages
181–186, Orlando, Florida, December 2002.

23. Jinman Kang, Isaac Cohen, and Gerard Medioni. Continuous
tracking within and across camera streams. In Proceedings of
the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pages 267–272, Madison, Wiscon-
sin, June 2003.

24. Yan Ke and Rahul Sukthankar. PCA-SIFT: A more distinc-
tive representation for local image descriptors. In Proceed-
ing of the IEEE Computer Vision and Pattern Recognition,
pages 506–513, Washington, DC, June 2004.

25. Alonzo Kelly. A 3D state space formulation of a naviga-
tion Kalman filter for autonomous vehicles. Technical Report
CMU-RI-TR-94-19, The Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA 15213, May 1994.

26. Boris Lau, Kai O. Arras, and Wolfram Burgard. Multi-modal
hypothesis group tracking and group size estimation. In Pro-
ceedings of the IEEE ICRA 2009 Workshop on People De-
tection and Tracking, 2009.

27. David G. Lowe. Distinctive image features from scale-
invariant keypoints. International Journal of Computer Vi-
sion, 60(2):91–110, 2004.

28. Feng Lu and Evangelos Milios. Robot pose estimation in
unknown environments by matching 2D range scans. Journal
of Intelligent and Robotic Systems, 18:249–275, 1997.

29. Matthias Luber, Kai O. Arras, Christian Plagemann, and
Wolfram Burgard. Classifying dynamic objects: An unsuper-
vised learning approach. Autonomous Robotis, 26(2–3):141–
151, 2009.

30. Matthias Luber, Gian Diego Tipaldi, and Kai O. Arras. Spa-
tially grounded multi-hypothesis tracking of people. In Pro-
ceedings of the IEEE ICRA 2009 Workshop on People De-
tection and Tracking, 2009.

31. Bruce D. Lucas and Takeo Kanade. An iterative image reg-
istration technique with an application to stereo vision. In
Proceedings of the 7th International Joint Conference on Ar-
tificial Intelligence, pages 674–697, 1981.

32. John Maccormick and Andrew Blake. A probabilistic ex-
clusion principle for tracking multiple objects. International
Journal of Computer Vision, 39(1):57–71, 2000.

33. Don Murray and Anup Basu. Motion tracking with an ac-
tive camera. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 16(5):449–459, May 1994.

34. Peter Nordlund and Tomas Uhlin. Closing the loop: Detec-
tion and pursuit of a moving object by a moving observer.
Image and Vision Computing, 14:265–275, May 1996.

35. Christopher Rasmussen and Gregory D. Hager. Probabilis-
tic data association methods for tracking complex visual ob-
jects. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 23(6):560–576, 2001.

16

36. Stan Sclaroff Roḿer Rosales. 3d trajectory recovery for
tracking multiple objects and trajectory guided recognition
of actions. In IEEE Conference on Computer Vision and

Pattern Recognition, pages 117–123, 1999.

37. Simon Rowe and Andrew Blake. Statistical mosaics for track-
ing. J. Image and Vision Computing, 14:549–564, 1996.

38. Srikanth Saripalli, James F. Montgomery, and Gaurav S.
Sukhatme. Visually-guided landing of an unmanned aerial
vehicle. IEEE Transactions on Robotics and Automation,
19(3):371–381, June 2003.

39. Srikanth Saripalli, Jonathan M. Roberts, Peter I. Corke,
Gregg Buskey, and Gaurav S. Sukhatme. A tale of two heli-
copters. In Proceedings of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pages 805–810,
October 2003.

40. Bernt Schiele, Mykhaylo Andriluka, Nikodem Majer, Stefan
roth, and Christian Wojek. Visual people detection - dif-
ferent models, comparison and discussion. In Proceedings of
the IEEE ICRA 2009 Workshop on People Detection and
Tracking, 2009.

41. Stephen Se, Timothy Barfoot, and Piotr Jasiobedzki. Vi-
sual motion estimation and terrain modeling for planetary
rovers. In IEEE International Conference on Robotics and
Automation, pages 2051–2058, South Korea, May 2001.

42. Jianbo Shi and Carlo Tomasi. Good features to track. In Pro-
ceedings of IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 593–600, Seattle, Washington, June
1994.

43. Luciano Spinello, Rudolph Triebel, and Roland Siegwart. A
trained system for multimodal perception in urban environ-
ments. In Proceedings of the IEEE ICRA 2009 Workshop
on People Detection and Tracking, 2009.

44. Sridhar Srinivasan and Rama Chellappa. Image stabilization
and mosaicking using the overlapped basis optical flow field.
In Proceedings of IEEE International Conference on Image
Processing, pages 356–359, October 1997.

45. Chris Stauffer and Eric L. Grimson. Learning patterns of ac-
tivity using real-time tracking. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 22(8):747–757, 2000.

46. J. Sullivan, P. Nillius, and Stefan Carlsson. Multi-target
tracking on a large scale: Experiences from football player
tracking. In Proceedings of the IEEE ICRA 2009 Workshop
on People Detection and Tracking, 2009.

47. Sebastian Thrun, Dieter Fox, Wolfram Burgard, and Frank
Dellaert. Robust Monte Carlo localization for mobile robots.
Artificial Intelligence, 128:99–141, 2001.

48. Carlo Tomasi and Takeo Kanade. Detection and tracking of
point features. Technical Report CMU-CS-91-132, Carnegie
Mellon University, Pittsburgh, PA, April 1991.

49. Iwan Ulrich and Johann Borenstein. VFH+: Reliable obsta-
cle avoidance for fast mobile robots. In Proceeding of the
IEEE International Conference on Robotics and Automa-
tion, pages 1572–1577, Leuven, Belgium, May 16–21 1998.

50. Marinus B. van Leeuwen and Frans C.A. Groen. Motion
interpretation for in-car vision systems. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 135–140, EPFL, Lausanne, Switzerland,
October 2002.

51. Jaco Vermaak, Arnaud Doucet, and Patrick Perez. Maintain-
ing multi-modality through mixture tracking. In Proceedings
of the 9th IEEE International Conference on Computer Vi-
sion, pages 1110–1116, 2003.

52. Rene Vidal. Multi-subspace methods for motion segmenta-
tion from affine, perspective and central panoramic cameras.
In Proceedings of the 2005 IEEE International Conference
on Robotics and Automation, pages 1216–1221, 2005.

53. John Y.A. Wang and Edward H. Adelson. Representing mov-
ing images with layers. IEEE Transactions on Image Pro-
cessing, 3(5):625–638, 2004.

54. Greg Welch and Gary Bishop. An introduction to the
Kalman filter. Technical Report 95-041, Department of Com-
puter Science, University of North Carolina at Chapel Hill.

55. Christopher R. Wren, Ali Azarbayejani, Trevor Darrell, and
Alex Pentland. Pfinder: Real-time tracking of the human
body. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 19(7):780–785, 1997.

56. Jiangjian Xiao and Mubarak Shah. Accurate motion layer
segmentation and matting. In Proceedings of the 2005 IEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition, pages 698–703, Washington, DC, 2005.

57. Alper Yilmaz, Khurram Shafique, Niels Lobo, Xin Li, Teresa
Olson, and Mubarak a. Shah. Target-tracking in FLIR im-
agery using mean-shift and global motion compensation. In
Workshop on Computer Vision Beyond the Visible Spec-
trum, pages 54–58, Kauai, Hawaii, December 2001.

58. I. Zoghlami, O. Faugeras, and R. Deriche. Using geometric
corners to build a 2D mosaic from a set of images. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 420–425, 1997.

Boyoon Jung is a Senior Robotics Engi-
neer in Intelligent Mobile Equipment Tech-
nology (IMET) division at John Deere. He
received his Ph.D. (2005) and M.Sc. (2001)
in Computer Science in Computer Science
from University of Southern California (USC)
with specialization in Robotics and Au-
tomation. He also received his M.Sc. (1998)
and B.Sc. (1996) in Computer Science from
Sogang University, Korea, with specializa-

tion in Artificial Intelligence. His research interests include ve-
hicle safeguarding, precise positioning, object classification and
tracking, multi-robot cooperation, probabilistic robotics, machine
learning, and computer vision.

Gaurav S. Sukhatme is a Professor of

Computer Science (joint appointment in
Electrical Engineering) at the University
of Southern California (USC). He received
his undergraduate education at IIT Bom-
bay in Computer Science and Engineering,
and M.S. and Ph.D. degrees in Computer
Science from USC. He is the co-director
of the USC Robotics Research Laboratory
and the director of the USC Robotic Em-

bedded Systems Laboratory which he founded in 2000. His re-
search interests are in multi-robot systems and sensor/actuator
networks. He has published extensively in these and related ar-
eas. Sukhatme has served as PI on numerous NSF, DARPA and
NASA grants. He is a Co-PI on the Center for Embedded Net-
worked Sensing (CENS), an NSF Science and Technology Cen-
ter. He is a senior member of IEEE, and a member of AAAI
and the ACM. He is a receipient of the NSF CAREER award
and the Okawa foundation research award. He has served on
many conference program committees, and is one of the founders
of the Robotics: Science and Systems conference. He is one of
the program chairs of the 2008 IEEE International Conference
on Robotics and Automation. He is the Editor-in-Chief of Au-
tonomous Robots. He has served as Associate Editor of the IEEE
Transactions on Robotics and Automation, the IEEE Transac-
tions on Mobile Computing, and on the editorial board of IEEE
Pervasive Computing.

