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Abstract In this
Y@+ P30y + pa()y = 4*p(x)y,0< x<a
yD(©=0j=01

paper, we  consider the  spectral  problem of the  form:

Where A is a spectral parameter in which A =0c+i5 , where

4
> (w )y @) =0j=23

k=1

i=v-1; P3(X), pa(x) and p(x) are real valued functions and we assume that p(x) >0, ps(x) € C[0,a] ,
P3(x) € C2[0, a] and p(x) e C*[0,a] . Asymptotic formulas for eigenvalues and solutions of the consider boundary

value problem are established.
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1. Introduction

The history of spectral theory is the history of a
beautiful and important area of mathematics with close
links to physics and with a strong influence on the
development of functional analysis. Its roots lies in three
areas :1) discrete systems described by matrices (or
quadratics forms) and continuous systems described by 2)
differential equations or 3) integral equations.

The spectral theory of linear operators has as its basic
origins, on the one hand, linear algebra-more precise
theorems on the reduction of quadratic forms to sums of
squares-and on the other hand, problems in the theory
oscillations(vibration strings, membranes, etc).

Many authors studied the asymptotic formulas for
eigenvalues and corresponding eigen functions to different
types of spectral problems [1,2,3] and [5,6,7].

In this paper, we study the behavior of the solutions and
asymptotic behaviors of eigenvalues of the fourth order
boundary value problem of the form:

1(y) =y + p3()y + ps(0)y = 2*p(x)y,0< x< a
U;(y)=yP(0)=0j=01 (1)

4
Uj(y) = (w2 'y @ 1) =0,j=23
k=1

Where p3(x), p4(x) and p(x) are real-valued functions
and p(x)>0 and A is a spectral parameter in which

ﬂ:d+ir,a,reR,i:\/?1.

Here we assume that p,(x) € C[0,a], p3(x)e CZ[O,a] ,
and p(x) e C4[0, a]. We have introduced the sectors T,
and their conjugates T_k (relative to the x-axis). Let 1
be located in some fixed sector T, or T, , and let wj's
for j=0,12,3 be different roots of unity of degree 4,
and ordered so that for all AT, (orT,) satisfied the
inequality:

Re(iw 4) < Re(iwy ,12), for(k =0,2) (2)

Numbering depends on the selected sector. Entire

complex plane of 4 =0 +ir, is divided into 8 sector T

and T_k ( in the plane 4 which is determined by the

inequalities I%Sargsk?”+%,k=0,1,2,3 and we

assume that w, =41 and ¢ = iw, 4/p(x).

2. The Behavior of the Solution of Fourth
Order Boundary Value Problem
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The aim of this section is to estimate the behavior of the
solutions to the given fourth order boundary value
problem and finding their coefficients Aj(x),i=0,1,2,34
from the following theorem:

Theorem 1:

All coefficients A(x),i=0,1,2,3,4 in the linear
independent solutions
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Proof:
From [4], proved that the solutions of equation (1) for

sufficient large | A | which can be written in the form

X
l_[(pk (t)dt
Y (x,2) =e O

4
alO TS (3)
(iZ:(:) P (25))

By differentiating (3) up to fourth order with respect to
X, the following relations are obtained:
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Now, we substitute the resulting equations (3),(4) and

(5)

With equation in the equation (1), we obtain the results.

3. Asymptotic Behaviors of Eigenvalues to
the Problem (1)

The aim of this section is to study the asymptotic
behaviors of eigenvalues in the following cases:

a. p(a)=1&p (a) %0
b. p(a)=1p (a)=0&p (a) #0

C. p(&) =14 (8) = 0,0 (8) = 0& 9" () + P3(@) 0

pl&) =15 (@) =0.0'(@) =0, p"(@) + ps(a) =0
d.

1 @ 3
and - — p®(a)-2 p.(a a)=0
6P (a) 2D3()+p4()¢

to the given spectral problem by the theorem :
Theorem 2:

Asymptotic behavior of eigenvalues for sufficiently
large A of the spectral boundary value problem in the

i
irreqular case and in the sector CoszC(p,q),

a
d= jf‘/p(t)dt has the form:
0

A = k K (rm+ 2 Inm+i In(ZaX k)——InCO)+0(1)

Where A, €Ty.
and
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Where A4, e'ITk
m=N+1 N +2,...,N is natural number,
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Proof: Since from the given boundary conditions, we can
write all as follows
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4
Ujly)= kz (iw; 1)<y (a,2)=0,j=2,3
=1

A(4) =det|Ui(y;)[=0,i,]=01,2,3

Proceed to finding the zeros of determinant A(A) for
| A]— oo in this irregular case p(a)=1.

21
Let f(1)=p 2(0).(i1)’
Therefore, by [5], we have

L
Where Cy :_Z'C(p,q) , Where the <<+ >> in front of
the imaginary unit is taken as A €T, <<—>> for sector
Ty

Let ATy

ezi@m _ [4(:0 1]

Solving this equation by the same way in [1], we obtain:

amw,  2iw iw InC
I = N A == =) +o)
Taking the initial approximation ﬂozﬁn;wk , the

method of successive approximations we obtain:
. %(nm +2ilnm+i |n(”dﬂ) —%In Co) +0(1)

and

A =%(nm—2i Inm—i In(ﬂdﬂhéln Co)+0(1)

Where A, eT_k, m=N+1N+2,...,N is natural number.
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