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GLLAMM Manual

Sophia Rabe-Hesketh, Anders Skrondal, and Andrew Pickles

Abstract

This manual describes a Stata program gllamm that can estimate Generalized Lin-
ear Latent and Mixed Models (GLLAMMs). GLLAMMs are a class of multilevel
latent variable models for (multivariate) responses of mixed type including con-
tinuous responses, counts, duration/survival data, dichotomous, ordered and un-
ordered categorical responses and rankings. The latent variables (common factors
or random effects) can be assumed to be discrete or to have a multivariate normal
distribution. Examples of models in this class are multilevel generalized linear
models or generalized linear mixed models, multilevel factor or latent trait mod-
els, item response models, latent class models and multilevel structural equation
models. The program can be downloaded from http://www.gllamm.org.



Introduction and Disclaimer

gllamm is a Stata program to fit GLLAMMs (Generalized Linear Latent and Mixed Models).
GLLAMMs are a class of multilevel latent variable models for (multivariate) responses of mixed
type including continuous responses, counts, duration/survival data, dichotomous, ordered and
unordered categorical responses and rankings. The latent variables (factors or random effects)
can be assumed to be discrete or to have a multivariate normal distribution. Examples of
models in this class are multilevel generalized linear models or generalized linear mixed models,
multilevel factor or latent trait models, latent class models and multilevel structural equation
models. The program runs in the statistical package Stata (see http://www.stata.com).

This manual replaces the earlier version (Technical Report 2001/01). We have changed the
notation to be consistent with our papers and books, added descriptions of some new options,
updated the references, and made some corrections. We have also reworked the examples in
Stata 8 (which has much more attractive graphics). However, we have not added new examples.
This is partly because we are writing a book on the gllamm program, including the model
framework and applications, to be published by Stata Press. This book will replace the manual
and complement the more theoretical account given in

– Skrondal, A. and Rabe-Hesketh, S. (2004). Generalized Latent Variable Modeling:
Multilevel, Longitudinal and Structural Equation Models. Boca Raton: Chapman
& Hall/CRC.

Further examples using gllamm, including applications from the above book are available
from:

http://www.gllamm.org/examples.html

The program and manual are free. In return, we ask you to refer to gllamm if you use it in
publications and give one of the citations below:

• For generalized linear mixed models or multilevel regression models and adaptive quadra-
ture:

– Rabe-Hesketh, S., Skrondal, A. and Pickles, A. (2005). Maximum likelihood estima-
tion of limited and discrete dependent variable models with nested random effects.
Journal of Econometrics, in press.

– Rabe-Hesketh, S., Skrondal, A. and Pickles, A. (2002). Reliable estimation of gen-
eralized linear mixed models using adaptive quadrature. The Stata Journal 2 (1),
1-21.
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• For factor, IRT or structural equation models:

– Rabe-Hesketh, S., Skrondal, A. and Pickles, A. (2004a). Generalized multilevel struc-
tural equation modelling. Psychometrika 69 (2), 167-190.

• For nominal data, discrete choice data and rankings:

– Skrondal, A. and Rabe-Hesketh, S. (2003b). Multilevel logistic regression for polyto-
mous data and rankings. Psychometrika 68 (2), 267-287.

• For nonparametric maximum likelihood estimation (NPMLE) and covariate measurement
error models:

– Rabe-Hesketh, S., Pickles, A. and Skrondal, A. (2003a). Correcting for covariate
measurement error in logistic regression using nonparametric maximum likelihood
estimation. Statistical Modelling 3 (3), 215-232.

– Rabe-Hesketh, S., Skrondal, A. and Pickles, A. (2003b). Maximum likelihood esti-
mation of generalized linear models with covariate measurement error. The Stata
Journal 3 (4), 385-410.

Chapter 1 of this manual describes the models, Chapter 2 describes the program and subse-
quent chapters give examples. The examples are arranged in chapters according to the structure
of the models (chapters 2 to 5) and, for complex response processes, according to the type of
response (chapters 6 to 9). There are obvious gaps in these chapters and we hope to include
more examples in the future.

Potential users of gllamm are reminded to be extremely careful if using this program for
serious statistical analysis. It is the user’s responsibility to check that the models are identified,
that the program has converged, that the quadrature approximation used is adequate, etc. The
manual provides quite a number of examples of different model structures where gllamm yields
results identical to those reported elsewhere obtained using more specialized programs. Though
this provides some validation of the code, nonetheless some bugs may remain. Both the program
and the manual will continually be updated.

Bug reports, comments and suggestions are all welcome! Please contact Sophia Rabe-Hesketh
at sophiarh@berkeley.edu. We would also be grateful if you could let us know of any publications
(including ‘in press’) using gllamm so we can add the reference to the list of publications at:

http://www.gllamm.org/pub.html

Thanks to Kit Baum, the program can be obtained from the Statistical Software Components
(SSC) archive; use the Stata commands

ssc describe gllamm
ssc install gllamm, replace

and see

http://www.gllamm.org/install.html

http://www.bepress.com/ucbbiostat/paper160
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for more information on installing gllamm. Importantly, this web page shows how you can make
sure you are actually using the most current version of gllamm. The most common reason for
errors is due to older versions of any of the gllamm ado files being located higher up in the
adopath.

All sorts of information on gllamm, including worked examples for books and papers, in-
formation on courses and workshops and an up-to-date list of publications and are available
at

http://www.gllamm.org

Note that gllamm6 (Rabe-Hesketh, Pickles and Taylor, 2000) is a very out-of-date version
of the program. We would like to acknowledge Colin Taylor for his help in the early stages of
gllamm development, in particular his guidance on recursive programming and quadrature.
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Chapter 1

Generalized linear latent and mixed
models

GLLAMMs (Generalized Linear Latent And Mixed Models) are a class of multilevel latent vari-
able models for (multivariate) responses of mixed type including continuous responses, counts,
duration/survival data, dichotomous, ordered and unordered categorical responses and rank-
ings. Examples of models in this class are multilevel generalized linear models or generalized
linear mixed models, multilevel factor or latent trait models, latent class models and multilevel
structural equation models.

We will only give a very brief overview of GLLAMMs here and refer to Skrondal and
Rabe-Hesketh (2004) and Rabe-Hesketh, Skrondal and Pickles (2004a) for detailed accounts
of GLLAMMs and their applications.

GLLAMMs can be defined by specifying:

1. The conditional expectation of the responses given the latent and observed explanatory
variables,

2. The conditional distribution(s) of the responses given the latent and observed explanatory
variables,

3. Structural equations for the latent variables including regressions of latent variables on
explanatory variables and regressions of latent variables on other latent variables,

4. The distributions of the latent variables.

These specifications are covered in Sections 1.1 to 1.4.

Terminology: latent variables and levels

The models include latent or unobserved variables represented by the elements of a vector η. As
we will see later, the latent variables can be interpretable as random effects (random intercepts
and coefficients) or common factors.

In addition, the latent variables can vary at different ‘levels’ so that we can have level-2
factors, level-3 random effects, etc. In the case of hierarchical data, the term ‘level’ is often used
to describe the position of a unit of observation within a hierarchy of units, typically reflecting
the sampling design. Here level-1 units are nested in level-2 units which are nested in level-3
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8 CHAPTER 1. GENERALIZED LINEAR LATENT AND MIXED MODELS

units, a typical example being pupils in classes in schools. In this context, a random effect is
said to vary at a given level, e.g. at the school level, if it varies between schools but, for a given
school, is constant for all classes and pupils belonging to that school.

We will use the term level to refer to the position of a ‘unit’ within the structure of a model,
not necessarily within the sampling structure of the data. The models assume that lower level
‘units’ are conditionally independent given the higher level latent variables and the explanatory
variables. An example where the distinction between the levels of a hierarchical data structure
and the levels of the model becomes important are multivariate multilevel models. Here the
variables of the multivariate response are often treated as level-1 units and the original units
as level-2 clusters so that the levels of the model do not correspond with the levels reflecting
the hierarchical structure of the data (except, possibly in the case of repeated measures or
longitudinal data).

1.1 Conditional expectation of the responses

We refer to a particular response simply as y, omitting subscripts for the units of observation.
The conditional expectation of the response y given two sets of explanatory variables x and z
and the vector of latent variables η is specified via a link function g(·) and a linear predictor ν
as

g(E[y|x,η, z]) = ν (1.1)

where the link can be any of the links used in generalized linear mixed models. For a model
with L levels, and Ml latent variables at level l, the linear predictor has the form

ν = x′β +
L∑

l=2

Ml∑

m=1

η(l)
m z(l)

m
′λ(l)

m (1.2)

with the first element of λ(l)
m set to 1, i.e.

λ
(l)
m1 = 1. (1.3)

The elements of x are explanatory variables associated with the ‘fixed’ effects β, η
(l)
m is the mth

latent variable at level l and η in equation (1.1) is the vector of latent variables,

η = (η(2)
1 , η

(2)
2 , . . . , η

(2)
M2

, η
(3)
1 , η

(3)
2 , . . . , η

(3)
M3

, . . . , η
(L)
1 , η

(L)
2 , . . . , η

(L)
ML

) (1.4)

Each latent variable is multiplied by a linear combination of explanatory variables z(l)
m
′λ(l)

m .
Here the superscript of z(l)

m denotes that the corresponding latent variable varies at level l

(generally, z(l)
m will vary at a lower level than l). The vector z in (1.1) has the same structure

as η. The latent variables at the same level are generally mutually correlated whereas latent
variables at different levels are independent.

The model in equation (1.2) includes multilevel generalized linear models (or generalized
linear mixed models) and multilevel factor models as special cases.

http://www.bepress.com/ucbbiostat/paper160



1.1. CONDITIONAL EXPECTATION OF THE RESPONSES 9

1.1.1 Multilevel generalized linear models

There are a large number of books on multilevel models, see for example Skrondal and Rabe-
Hesketh (2004), Raudenbush and Bryk (2002), Snijders and Bosker (1999), Longford (1993),
Goldstein (2003) and McCulloch and Searle (2001).

To write down a multilevel generalized linear model, or generalized linear mixed model, simply
use one explanatory variable z

(l)
m1 for each latent variable (with λ

(l)
m1 = 1) so that the latent

variable can be interpreted as a random coefficient or random slope. Multilevel generalized
linear models are therefore a special case of GLLAMMs with

η = x′β +
L∑

l=2

Ml∑

m=1

η(l)
m z

(l)
m1, (1.5)

where, typically, z
(l)
11 = 1 so that there is a random intercept at each level. Omitting the random

terms yields a generalized linear model.
An example of a three level model (using subscripts i, j, k for levels 1,2,3, respectively) with

random intercepts at levels 2 and 3 and a random coefficient at level 2 is

νijk = x′ijkβ + η
(2)
1jk + η

(2)
2jkz

(2)
2ijk + η

(3)
1k . (1.6)

(Here z
(2)
1ijk and z

(3)
1ijk were set to 1.)

Multilevel generalized linear models are sometimes defined by first writing down the rela-
tionship between the response variable and the level-1 covariates, where some coefficients vary
at level 2 (e.g. Raudenbush and Bryk, 2002). These coefficients are then regressed on level-2
covariates and have level 2 residuals, etc. For a two-level linear random coefficient model (using
subscripts i and j for levels 1 and 2), the relationship between the response variable and the
level 1 covariates has the form

yij = η0j + η1jxij + εij , (1.7)

where xij is a unit-level covariate and η0j and η1j are the intercept and slope for the jth cluster,
respectively. This is sometimes called the level-1 model. The between-cluster variability of the
intercept and slope is modeled using level-2 models,

η0j = γ00 + γ01wj + ζ0j ,

η1j = γ10 + γ11wj + ζ1j . (1.8)

Substituting (1.8) for the coefficients η0j and η1j in the level-1 model (1.7), we obtain the reduced
form

yij = γ00 + γ01wj + ζ0j︸ ︷︷ ︸
η0j

+ (γ10 + γ11wj + ζ1j)︸ ︷︷ ︸
η1j

xij + εij

= γ00 + γ01wj + γ10xij + γ11(wjxij) + ζ0j + ζ1jxij + εij .

We have only used one explanatory variable z
(2)
m1 per latent variable to set up these standard

models. However, the use of several explanatory variable enables us to allow the random effects
variances to vary between groups of individuals. For example, consider a two-level random
intercept model. If the level-1 units i are the measurement occasions of a longitudinal study
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10 CHAPTER 1. GENERALIZED LINEAR LATENT AND MIXED MODELS

and the level-2 units j are children, we can allow the intercept variance to differ between boys
and girls by defining dummy variables for boys and girls, say zbij and zgij , respectively, and
specifying

νij = x′ijβ + η
(2)
j (zbij + λgzgij) (1.9)

so that the random intercept variance is Var(η(2)
j ) for boys and λ2

gVar(η(2)
j ) for girls. Het-

eroscedasticity of the random effects can be specified at any of the levels. In addition, we
can allow the level-1 variances to depend on covariates (see Section 1.2). Models with discrete
random effects, such as latent trajectory models, are discussed in Section 5.2.

Examples of multilevel generalized linear models are given in Chapter 3. Papers using gllamm
for such models include Rabe-Hesketh et al. (2001b), Leese et al. (2001) and Marshall et al. (2004)
in psychiatry, Dohoo et al. (2001), Stryhn et al. (2000) and Vigre et al. (2004) in veterinary
medicine, Kaufman et al. (2003) and Skrondal and Rabe-Hesketh (2003) in epidemiology, Ebel
et al. (2003), Vincent et al. (2003), Glance et al. (2003), Panageas et al. (2003), Daucourt et al.
(2003) and others in other areas of medicine, Boylan (2004) in law, Holmås (2002) in economics
and Grilli and Rampichini (2003) and Pagani and Seghieri (2002) in education.

1.1.2 Multilevel factor and item response models

For a treatment of factor models for continuous and discrete responses, see Skrondal and Rabe-
Hesketh (2004) and Bartholomew and Knott (1999). Multilevel factor models for continuous
data are discussed in Longford (1993) and for discrete data in Rabe-Hesketh, Skrondal and
Pickles (2004).

By treating the variables of a multivariate response as level 1 units in a multilevel dataset
(the original units become level 2 units), and by defining appropriate dummy variables, factor
models can be defined. As mentioned earlier, we will use the term ‘level’ to refer to the position
of a latent variable in the structure of the model; for a non-hierarchical multivariate dataset
consisting of responses to questionnaire items by subjects, the common factor will be a level 2
latent variable. To see this, consider a simple example. Let there be up to I variables i = 1, . . . , I
observed on each subject j and stack the variables into a single response vector indexed ij. This
is shown in the table below:

variable i subject j z11i z12i · · · y

1 1 1 0 · · · y11

2 1 0 1 · · · y21
...

...
...

...
...

...
1 2 1 0 · · · y12

2 2 0 1 · · · y22
...

...
...

...
...

...

A single level unidimensional factor model can be written as

νij = β1x1i + β2x2i + . . . + η
(2)
1j (λ(2)

11 z
(2)
11i + λ

(2)
12 z

(2)
12i + λ

(2)
13 z

(2)
13i + . . .)

= βi + η
(2)
1j λ

(2)
1i , (1.10)

where λ
(2)
11 = 1 and xpi = z

(2)
1pi with

http://www.bepress.com/ucbbiostat/paper160



1.1. CONDITIONAL EXPECTATION OF THE RESPONSES 11

z
(2)
1pi =

{
1 if p = i
0 otherwise

(1.11)

In equation (1.10), βi is the intercept, η
(2)
j is the common factor and λ

(2)
1i is the factor loading

for the ith variable. The scale of the factor is identified through the constraint that the first
factor loading equals 1. For normally distributed responses, the specific factors are simply the
level-1 error terms εij since yij = νij + εij . In factor models for non-normal responses, the level
1 variability is implicit in the distribution family of the chosen generalized linear model (see
Section 1.2).

A two-factor model at a single level can be defined as

νij = β1x1i + β2x2i + . . . + η
(2)
1j (λ(2)

11 z
(2)
11i + λ

(2)
12 z

(2)
12i + . . .) + η

(2)
2j (λ(2)

21 z
(2)
21i + λ

(2)
22 z

(2)
22i + . . .)

= βi + η
(2)
1j λ

(2)
1i + η

(2)
2j λ

(2)
2i .

The purpose of the dummy variables z
(2)
1pi and z

(2)
2pi is to pick out the correct factor loading for the

items. Typically, not all items load on all factors so that only some of the dummies are needed.
Certain restrictions need to be imposed on the factor loadings and/or the covariance matrix of
the factors for these higher dimensional factor models to be identified.

A two-level factor model (unidimensional at levels 1 and 2) can be defined as

νijk = β1x1ijk + β2x2ijk + . . . + η
(2)
1jk(λ

(2)
11 z

(2)
11i + λ

(2)
12 z

(2)
12i + . . .)

+η
(3)
(I+1)k(λ

(3)
11 z

(3)
11i + λ

(3)
12 z

(3)
12i + . . .) + η

(3)
1k z

(3)
11i + η

(3)
2k z

(3)
12i + . . .

= βi + η
(2)
1jkλ

(2)
1i + η

(3)
(I+1)kλ

(3)
1i + η

(3)
ik , (1.12)

where z
(2)
1pi = z

(3)
1pi are dummy variables for the items as in equation (1.11), η

(2)
1jk is the lower level

common factor, η
(3)
(I+1)k is the higher level common factor and η

(3)
1k , η

(3)
2k , etc. are specific factors

at the higher level. The level-3 latent variables are assumed to be mutually independent.
Although this method of defining factor models through the use of dummy variables is not

very elegant, a great advantage of the specification is that missing values on any of the variables
are allowed and pose no extra problem in the estimation. Since estimation is by maximum
likelihood, the parameter estimates are consistent if the data are missing at random (MAR), see
Little and Rubin (1987). In addition, unlike the usual model specification for structural equation
models, this setup allows unbalanced longitudinal data to be modeled where individuals are
measured at different sets of time points. In addition, hybrid models, containing both factors
and random coefficients at several levels can easily be defined using this setup.

Examples of factor models are given in Chapter 4. Rabe-Hesketh and Skrondal (2001) dis-
cuss the use of factor models (estimated in gllamm) for structuring the covariance matrix of
multivariate categorical responses. Rabe-Hesketh, Skrondal and Pickles (2004b) discuss multi-
level item response models. Other applications of measurement models using gllamm include
Campbell et al. (2001), Baker and Hann (2001) and Finkelstein (2002) in medicine and Hardouin
and Mesbah (2004) in education.
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12 CHAPTER 1. GENERALIZED LINEAR LATENT AND MIXED MODELS

1.2 Conditional distributions of the responses

The conditional distribution of the responses given the explanatory variables and random effects
is specified via a family and a link function (see McCullagh and Nelder, 1989). Currently
available are the following links and families:

Links
identity
reciprocal
logarithm
logit
probit
scaled probit
complimentary log-log

Families
Gaussian
gamma
Poisson
binomial

For ordered and unordered categorical responses, the following models are available:

Polytomous responses
ordinal logit
ordinal probit
ordinal compl. log-log
scaled ordinal probit
multinomial logit

Offsets can be included in the linear predictor and linear constraints applied to any of the
parameters.

For the Gaussian and gamma distributions as well as the scaled probit link, the variance
parameter can be allowed to differ between groups of observations or to depend on explanatory
variables, therefore allowing for level-1 heteroscedasticity. This is accomplished by specifying a
model for the log of the scale parameter

ln σijk = z(0)′
ijk α. (1.13)

The available links and families allow many different response processes to be modeled in-
cluding continuous responses, dichotomous or ordinal responses, counts, continuous or discrete
time (interval censored) to event (survival) data and first choice and ranking data.

Different links and families can be combined for different responses in order to model re-
sponses of mixed type. This allows many different types of problems to be modeled, for example
logistic regression with measurement errors in a continuous covariate. Mixing of the identity
link and Gaussian family with the probit link and binomial family allows censored normally
distributed responses to be modeled (as in tobit), e.g. when there are ceiling and/or floor
effects.

Examples of models using particular links and families can be found using the Index. The
analysis of continuous survival times is discussed in Chapter 7 and the analysis of nominal
responses and rankings is discussed in Chapter 9. Examples of models with mixed responses are
discussed in Chapter 6.
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1.3. STRUCTURAL EQUATIONS FOR THE LATENT VARIABLES 13

Leese et al. (2001) use gllamm to specify heteroscedasticity at levels 1 and 2. Rabe-Hesketh
and Pickles (1999) and Rabe-Hesketh, Pickles and Skrondal (2003a) mix the identity and logit
links to estimate logistic regression models with covariate measurement error. The wrapper
cme (Rabe-Hesketh, Skrondal and Pickles) (2003b) makes it easy to estimate some covariate
measurement error models in gllamm. Rabe-Hesketh et al. (2001c), Holmås (2002) and Aru-
lampalam (2004) analyze different types of discrete time survival models and Skrondal and
Rabe-Hesketh (2003b) consider nominal data such as polytomous responses or discrete choice
and rankings.

1.3 Structural equations for the latent variables

Books on structural equation models include Skrondal and Rabe-Hesketh (2004), Dunn, Everitt
and Pickles (1993) and Bollen (1989). The models discussed so far can be viewed as response
models specifying the relationship between observed responses (or indicators) and latent and
observed explanatory variables. In addition, we can specify regressions of latent continuous
or discrete variables on explanatory variables as well as relationships among latent continuous
variables.

1.3.1 Continuous latent variables

Relationships among latent continuous variables can be written as a matrix equation for the
vector of latent variables η whose M elements are the latent variables varying at levels 2 to L,

η = (η(2)
1 , η

(2)
2 , . . . , η

(2)
M2

, η
(3)
1 , η

(3)
2 , . . . , η

(3)
M3

. . . η
(L)
1 , η

(L)
2 , . . . , η

(L)
ML

). (1.14)

(Remember that the latent variables can be interpretable as variance components, factors or
random coefficients.) The ‘structural’ equation for the latent variables has the form

η = Bη + Γw + ζ (1.15)

where B is an M ×M upper diagonal regression matrix, w is a vector of q covariates, Γ is an
M × q regression matrix and ζ is a vector of M errors of disturbances where each element of ζ
varies at the same level as the corresponding element of η.

The regressions of latent variables on other latent variables must be such that the elements
of the η vector within a given level can be permuted in such a way to make the B matrix upper
diagonal. This implies that there are no simultaneous effects with latent variable 1 regressed on
latent variable 2 and vice versa. The expression for the Mth element of η can be substituted
into the expression for M−1th element which can be substituted into the expression for M−2nd
element, etc. (i.e., the relationship is recursive). When these expressions for the latent variables
are substituted into equation (1.2), we obtain an equation of the same form as equation (1.2)
with constraints among the parameters.

Since the lower level latent variables come before the higher level ones in the η vector, an
upper diagonal B matrix ensures that lower level latent variables can be regressed on higher but
not the reverse since it would not make sense to regress a higher level latent variable on a lower
level one.
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14 CHAPTER 1. GENERALIZED LINEAR LATENT AND MIXED MODELS

MIMIC models

MIMIC (Multiple Indicator Multiple Cause) models are factor models (where the responses
are measures or ‘indicators’ of the factor) combined with regressions of factors on explanatory
variables (the explanatory variables are the ‘causes’). Here, there are no relationships among
the latent variables and instead of equation (1.15), we only require

η = Γw + ζ. (1.16)

The covariate measurement error models described in Section 6.1 can be viewed as MIMIC
models with and without direct effects. Section 8.4 describes a MIMIC model with ordinal
indicators.

General multilevel structural equation models

Combining (1.15) with (1.2) and making use of the ability to model responses of mixed types
allows a very large range of latent variable models to be defined, see Rabe-Hesketh, Skrondal and
Pickles (2004a). For example, a level-2 random coefficient in a survival model may be regressed
on a level 3 factor whose (level 3) indicators are dichotomous.

1.3.2 Discrete latent variables

For discrete latent variables, the structural model is the model for the (prior) probabilities that
the units belong to the corresponding latent classes. For a level-2 unit j, let the probability of
belonging to class c be denoted as πjc,

πjc ≡ Pr(η(2)
j =ec).

This probability may depend on covariates vj through a multinomial logit model

πjc =
exp(v′j%c)∑
d exp(v′j%d)

, (1.17)

where %c are regression parameters with %1 =0 imposed for identification. Such a ‘concomitant
variable’ latent class model is used for instance by Dayton and MacReady (1988) and Formann
(1992). The multinomial logit parametrization is useful even if the class membership does not
depend on covariates since it forces latent class probabilities to sum to one.

1.4 Distribution of the latent variables

The structure of the latent variables is specified by the number of levels L (and the variables
defining these levels, e.g. pupil, school etc.) and the number of latent variables Ml at each
level. Latent variables at the same level are assumed to be correlated with each other, unless
the user specifies zero correlations. The latent variables at different levels are assumed to be
independent (except if a lower level latent variable is explicitly regressed on a higher level one).
The interpretation of the latent variable as a factor or random coefficient depends on the form
of the linear predictor in (1.2).
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1.4. DISTRIBUTION OF THE LATENT VARIABLES 15

If a latent variable is regressed on (another) latent or observed variable, we need to specify
the distribution of the disturbances ζ; otherwise we specify the distribution of η directly. The
latent variables at a level l may be assumed to have a

• multivariate normal distribution with zero mean and covariance matrix Σl at level l

• discrete distribution, having non-zero probability on a finite number of points (of dimen-
sionality equal to the number of latent variables, Ml, at level l)

The discrete distribution can be interpreted as representing a number of latent classes which
are homogeneous in the unobserved characteristic represented by the latent variable, e.g. in
their intercepts.

If the number of points, or masses, is chosen to achieve the largest possible likelihood, the
nonparametric maximum likelihood estimator (NPML) can be achieved (Lindsay et al., 1991).
The Gateaux derivative method can be used to determine the number of masses required for
the NPML solution (see Heckman and Singer (1984), Follmann and Lambert (1989) and Davies
and Pickles (1987)). Starting with a small number of masspoints, say two, the likelihood is
maximized. A further point is introduced if a location can be found at which introduction of a
very small new mass increases the likelihood when all other parameters are held constant at their
previous maximum likelihood values. If such a location can be found, a new point is introduced
and the likelihood maximized. The starting values are the parameters estimates of the previous
model with a new mass at the location yielding the greatest an increase in log-likelihood. This
procedure is repeated until no location can be found at which introduction of a small mass
increases the likelihood.

Most examples in the manual assume multivariate normally distributed latent variables ex-
cept for the examples in Chapter 5 and Section 9.4. Papers using gllamm with discrete random
effects include Maughan et al. (2000) on latent trajectory models, Rabe-Hesketh, Pickles and
Skrondal (2003a) and Holmås (2002) on nonparametric maximum likelihood estimation and
Rabe-Hesketh and Pickles (1999) on a latent transition model.
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Chapter 2

The gllamm program

The gllamm program runs within Stata 6, 7 and 8 (StataCorp 2003) using a similar syntax to
Stata’s own estimation commands. After estimating a model using gllamm, gllapred can be
used to obtain the posterior means and standard deviations of the latent variables and other
predictions. gllasim can be used to simulate from the model.

2.1 Implementation

gllamm uses Stata’s ml with method d0 to maximize the likelihood. (See the Stata reference
manuals under ml and maximize; for details of the modified Newton Raphson algorithm, see
also Gould, Pitblado and Sribney (2003)). For a two-level model, the likelihood is given by

∏

j

∫
{
∏

i

f(yij |xij ,ηj)}g(ηj) dηj (2.1)

where f(yij |xij ,ηj) is the conditional density of the response variable given the latent and
explanatory variables and g(ηj) is the prior density of the latent variables. When the latent
variables are discrete, the integral becomes a sum of the form

∏

j

∑
r

πr

∏

i

f(yij |xij , ηj =er) (2.2)

where the locations er and masses πr are freely estimated. For a single normally distributed
latent variable, the same expression is used to approximate the likelihood, where locations and
masses are given by Gaussian quadrature.

If there are M2 > 1 correlated (multivariate normal) latent variables at level 2, we express
them as a linear combination of uncorrelated random effects v, η = Lv where L is a lower
triangular matrix. The multiple integral is then approximated by evaluating M2 nested sums.
The elements of L are estimated by gllamm and the covariance matrix of the random effects is
given by L′L so that L is simply the Cholesky decomposition of the covariance matrix.

Ordinary Gaussian quadrature sometimes performs poorly because there are insufficient
locations under the peak of the integrand in (2.1). Adaptive quadrature (Naylor and Smith,
1982; Liu and Pierce, 1994) can be used to scale and shift the locations for each latent variable vm

according to the spread τm and location µm of the integrand with respect to vm. The integrand
is proportional to the joint posterior density of the latent variables. Therefore appropriate scale

17

Hosted by The Berkeley Electronic Press



18 CHAPTER 2. THE GLLAMM PROGRAM

and location parameters are the posterior standard deviations and means of v. Since these
quantities depend on the parameter estimates, gllamm iterates between updating the parameter
estimates for given τm and µm and updating the τm and µm for given parameter estimates. See
Rabe-Hesketh, Skrondal and Pickles (2002, 2005) for details.

In (2.1), the contribution to the likelihood from the jth level-2 unit is found by integrating
the product of the contributions from the level-1 units inside the level-2 unit over the level-2
random effects distribution. In a three level model, the contribution from a 3-level unit is found
by integrating the product of contributions from the level-2 units inside the level-3 unit over
the level-3 random effects distribution. The likelihood for a L-level model is therefore computed
using a recursive algorithm.

The parameters are transformed to ensure that they lie within their permitted ranges. For
the normal (or gamma) density, the log of the standard deviation (or coefficient of variation)
at level 1 is estimated to ensure a positive estimate on the natural scale. When quadrature is
used, the Cholesky decomposition of the covariance matrix of the random effects at each level is
estimated to ensure a positive semi-definite covariance matrix. When there are no correlations,
this corresponds to estimating the standard deviations directly where the sign of these estimates
is arbitrary. When R discrete mass-points are specified for the random effects at a level, R − 1
log odds are estimated to give the R probabilities and R− 1 locations are estimated directly for
each random effect. The last location is determined by constraining the mean of the discrete
distribution to zero. The variance of the random effects distribution is not estimated directly
but follows from the locations and masses. The variances are estimated as

Var(ηm) =
∑
r

π̂rê
2
rm (2.3)

and the covariances are estimated as

Cov(ηm, ηm′) =
∑
r

π̂rêrmêrm′ (2.4)

where π̂r and êm are the estimated probabilities and locations. Instead of centering the location
of the discrete distribution around the mean, we can also estimate R locations freely and remove
the corresponding fixed effects from the linear predictor. In the equations above, we must then
replace êrm by êrm −∑

r π̂rêrm.
Approximate standard errors for the back-transformed parameter estimates are obtained

using the delta-method (except for the variances and covariances of the discrete random effects
distributions). Note that the standard error of variance estimates should not be used to construct
Wald tests because the null value is on the border of the parameter space. Likelihood ratio test
should be used instead, keeping in mind that test statistics will no longer have conventional
chi-square distributions under the null.

Linear constraints can be specified for the transformed versions of the parameters that are
used during maximization. For example, two parameters can be set equal, a parameter can
be constrained to a particular value or one parameter can be specified to be twice as large as
another.

The posterior means and standard deviations of the latent variables can be estimated for
both discrete and continuous latent variables using gllapred. For a single continuous random
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2.2. INSTALLING GLLAMM 19

effect in a two-level model, the posterior mean is obtained using

η̃j =
∫

ηjg(ηj)
∏

i f(yij |xij , ηj) dηj∫
g(ηj)

∏
i f(yij |xij , ηj) dηj

. (2.5)

If there is instead a single discrete random effect, the posterior mean is obtained using

η̃j =
∑
r

êrŵr (2.6)

where ŵr is the estimated posterior probability that the latent variable equals êr given by

ŵr =
π̂r

∏
i f(yij |xij , ηj = êr)∑

r π̂r
∏

i f(yij |xij , ηj = êr)
(2.7)

2.2 Installing gllamm

The easiest way of installing the current version of the program is

ssc describe gllamm
ssc install gllamm, replace

to use the net commands from within Stata: Alternatively, net install from the GLLAMM
web page using:

net from http://www.gllamm.org
net describe gllamm
net install gllamm, replace
net get gllamm, replace

Where the last command is optional; it downloads the auxiliary files.
Another possibility is to store the files gllamm.ado, gllam ll.ado, remcor.ado, gllas yu.ado,

gllarob.ado, gllamm.hlp, gllapred.ado gllapred.hlp, gllasim.ado, gllasim.hlp (downloadable from
the above web-sites) in the directory where personal ado-files are stored (e.g. c:\ado\stbplus)
or to store them in any other directory and issue the following command before using gllamm:

adopath + dirname

Once gllamm has been installed, help is available as for all of Stata’s own commands.
An earlier verion (January 2000) of gllamm was published in the Stata Technical Bulletin

(STB 53, Sg 129) but this version is now out of date. A later version (June 2001) is described
in Rabe-Hesketh et al. (2001a).

2.3 Running gllamm

gllamm runs in Stata 6 to 8 (StataCorp, 2003). Anyone planning to use gllamm should know a
little bit about Stata to be familiar with features common to all estimation commands including
gllamm and to be able to prepare the data for analysis using gllamm, see the Appendix for a
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20 CHAPTER 2. THE GLLAMM PROGRAM

brief introduction to Stata. Sections 2.3.1 and 2.3.2 describe the syntax of gllamm, gllapred
and gllasim following the style of the Stata Reference Manuals.

For simple problems, gllamm is usually easy to use and does not take a very long time to run.
However, the program can be very slow when there are many latent variables in the model, many
quadrature or free mass-points, many parameters to be estimated and many observations. The
reason for this is that numerical integration is used to evaluate the marginal log-likelihood and
numerical derivatives are used to maximize it. Roughly, execution time is proportional to the
number of observations and the square of the number of parameters. For quadrature, the time
is approximately proportional to the product of the number of quadrature points for all latent
variables used. For example, if there are two random effects at level 2 (a random intercept and
slope) and 8 quadrature points are used for each random effect, the time will be approximately
proportional to 64. Therefore, using 4 quadrature points for each random effect will take only
about a quarter (64/16) as long as using 8. For (2-level) discrete latent variables, the time is
proportional to the number of points, but the increase in the number of parameters must be
taken into account.

An easy way to speed up the program is to collapse the data as much as possible and use
frequency weights (see for example Section 3.2.1). If there are several identical level 2 units,
level 2 weights can be used. It is also a good idea to start with fewer integration points to obtain
some initial estimates and then pass these estimates as starting values to gllamm, increasing the
number of quadrature points (see for example Section 7.2.2). This way, the accuracy of the
quadrature approximation can be assessed (see also Section 2.3.4). It is also recommended to
first estimate the simplest model of interest (e.g. using very few predictors) and then introduce
additional features, again passing the parameter estimates from the simpler model to gllamm as
starting values for the more complicated model.

The program does not check whether a model is identified. Using the trace option to
monitor convergence may help identify problems since warning messages that the log-likelihood
is nonconcave may appear shortly before apparent convergence (if such messages appear in the
beginning, this is no cause for concern). gllamm prints out the condition number, defined as the
square root of the ratio of the largest to smallest eigenvalues of the Hessian matrix. From our
experience so far, large condition numbers do not necessarily imply poor identification; however,
it is unlikely that a low condition number is obtained when the model is not identified.

2.3.1 Syntax for gllamm

The full syntax with all its options looks overwhelming because a single program can estimate
such a wide range of different models. For most models, the command would be no longer than
a single line and the syntax closely follows that of similar Stata commands. The reader may
find it easier to read Chapter 3 as an introduction to gllamm. This section on the syntax could
be used as a reference. To find examples in the manual of the use of particular options, also see
the Index.

The data need to be in ‘long’ form with all responses stacked into a single variable, see the
Appendix, Stata’s reshape command and the ‘data preparation’ sections in this manual. The
full syntax with all available options is

gllamm depvar [varlist ] [if exp] [in range] , i(varlist) [ noconstant offset(varname)
nrf(#,...,#) eqs(eqnames) frload(#,...,#) ip(string) nip(#,...,#)
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2.3. RUNNING GLLAMM 21

peqs(eqname) bmatrix(matrix) geqs(eqnames) nocorrel constraints(clist)
weight(varname) pweight(varname) family(familynames) fv(varname)
denom(varname) s(eqname) link(links) lv(varname) expanded(varname varname
string) basecategory(#) composite(varname varname...) thresh(eqnames)
ethresh(eqnames) from(matrix) copy skip long lf0(# #) gateaux(# # #)
search(#) noest eval init iterate(#) adoonly adapt robust cluster(varname)
level(#) eform allc trace nolog nodisplay dots ]

where the available families and links are:

families links
gaussian identity
poisson log
gamma reciprocal
binomial logit

probit
cll (complementary log-log)
ologit (o stands for ordinal)
oprobit
ocll
mlogit
sprobit (scaled probit)
soprobit (scaled ordinal probit)

Options

Structure of the model

i(varlist) gives the variables that define the hierarchical, nested clusters, from the lowest level
(finest clusters) to the highest level, e.g., i(pupil class school).

noconstant omits the constant term from the fixed effects equation.

offset(varname) specifies a variable to be added to the linear predictor with corresponding
regression coefficient fixed at 1 (e.g. log exposure time for Poisson regression).

nrf(#,. . . ,#) specifies the number of latent variables Ml at each level l, i.e. for each variable
in i(varlist). The default is nrf(1,...,1).

eqs(eqnames) specifies the equation names (defined before running gllamm) for the linear pre-
dictors z(l)′

m λ(l)
m multiplying the latent variables. The equations for the level 2 random

effects a listed first, followed by those for the level 3 random effects, etc., the number of
equations per level being specified in the nrf() option. If required, constants should be
explicitly included in the equation definitions using variables equal to 1. If the option is
not used, the latent variables are assumed to be random intercepts and only one random
effect is allowed per level. The first lambda coefficient is set to one unless the frload()
option is specified. The other coefficients are estimated together with the (co)variance(s)
of the random effect(s)
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22 CHAPTER 2. THE GLLAMM PROGRAM

frload(#,. . . ,#) lists the latent variables for which the first factor loading should be freely
estimated along with the other factor loadings. It is up to the user to define appropriate
constraints to identify the model. Here the latent variables are referred to as 1 2 3, etc.,
in the order in which they are defined by the eqs() option.

ip(string) if string is g, Gaussian quadrature points are used and if string is f, the mass-points
are freely estimated. The default is Gaussian quadrature. With the ip(f) option, only
nip-1 mass-point locations are estimated, the last being determined by setting the mean
of the mass-point distribution to 0. The ip(fn) option can be specified to estimate all
nip masses freely – the user must then make sure that the mean is not modeled in the
linear predictor, e.g. by specifying the nocons option.

nip(#,. . . ,#) specifies the number of integration points or masses to be used for each integral
or summation. When quadrature is used, a value may be given for each random effect.
When freely estimated masses are used, a value may be given for each level of the model.
If only one argument is given, the same number of integration points will be used for each
summation. The default value is 8.

peqs(eqname) can be used with the ip(f) or ip(fn) options to allow the (prior) latent class
probabilities to depend on covariates as shown in (1.17). The model for the latent class
probabilities is a multinomial logit model with the last latent class as reference category.
A constant is automatically included in addition to the covariates specified in the equation
command.

geqs(eqnames) specifies regressions of latent variables on explanatory variables. The second
character of the equation name indicates which latent variable is regressed on the variables
used in the equation definition, e.g. f1:a b means that the first latent variable is regressed
on a and b (without a constant).

bmatrix(matrix ) specifies a square matrix B of regression coefficients for the dependence of the
latent variables on other latent variables. The matrix must be upper diagonal and have
number of rows and columns equal to the total number of random effects. This option
only makes sense together with the nocorrel option.

nocorrel may be used to constrain all correlations to zero if there are several random effects
at any of the levels and if these are modeled as multivariate normal.

constraint(clist) specifies the constraint numbers of the linear constraints to be applied. Con-
straints are defined using the constraint command; see help constraint. To find out
the equation names needed to specify the constraints, run gllamm with the noest and
trace options.

weight(wt) specifies that variables wt1, wt2, etc., contain frequency weights. The suffixes in the
variable names determine at what level each weight applies. (If only some of the weight
variables exist, e.g. only level 2 weights, the other weights are assumed to be equal to
1.) For example, if the level 1 units are occasions (or panel waves) in longitudinal data
and the level 2 units are individuals, and the only variable used in the analysis is a binary
variable result, we can collapse dataset A into dataset B by defining level 1 weights as
follows:
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A B
ind occ result ind occpat result wt1
1 1 0 1 1 0 2
1 2 0 2 2 0 1
2 3 0 2 3 1 1
2 4 1 3 4 0 1
3 5 0 3 5 1 1
3 6 1

The two occasions for individual 1 in dataset A have the same result. The first row in B
therefore represents two occasions (occasions 1 and 2) as indicated by wt1. The variable
occpat labels the unique patterns of responses at level 1.

The two individuals 2 and 3 in dataset B have the same pattern of results over the measure-
ment occasions (both have two occasions with values 0 and 1). We can therefore collapse
the data into dataset C by using level 2 weights:

B C
ind occpat result wt1 indpat occpat result wt1 wt2
1 1 0 2 1 1 0 2 1
2 2 0 1 2 2 0 1 2
2 3 1 1 2 3 1 1 2
3 4 0 1
3 5 1 1

The variable indpat labels the unique patterns of responses at level 2 and wt2 indicates
that indpat 1 in dataset C represents one individual and indpat 2 represents two indi-
viduals, i.e., all the data for individual 2 are replicated once. Collapsing the data in this
way can make gllamm run considerably faster.

pweight(varname) specifies that variables varname1, varname2, etc. contain sampling weights
for levels 1, 2, etc. As far as the estimates and log-likelihood are concerned, the effect of
specifying these weights is the same as for frequency weights, but the standard errors will
be different. Robust standard errors will automatically be provided. This should be used
with caution if the sampling weights apply to units at a lower level than the highest level
in the multilevel model. The weights are not rescaled; scaling is the responsibility of the
user.

Densities, links, latent variable distribution and quadrature method

family(families) specifies the family (or families) to be used for the conditional densities. The
default is gaussian. Also available are binomial, poisson and gamma. Several families
may be given in which case the variable allocating families to observations must be given
using fv(varname).

fv(varname) is required if several families are specified in the family() option. The variable
indicates which family applies to which observation. A value of one refers to the first
family specified in family(), etc.
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denom(varname) gives the variable containing the binomial denominator for the responses whose
family was specified as binomial. The default denominator is 1.

s(eqname) specifies that the log of the standard deviation (or of the coefficient of variation) at
level 1 for normally (or gamma) distributed responses is modeled by the linear predictor
defined by eqname. This is necessary if the variance is heteroscedastic. For example, if
dummy variables for groups are used in the definition of eqname, different variances are
estimated for different groups.

link(links) specifies the links to be used for the conditional densities (identity, logit,
probit, log, reciprocal, cll, ologit, etc.). If a single family is specified, the de-
fault link is the canonical link. Several links may be given in which case the variable
allocating links to observations must be given using lv(varname). Feasible choices of link
depend upon the distributions of the covariates and the choice of conditional error and
random effects distributions.

lv(varname) is the variable whose values indicate which link applies to which observation.

expanded(varname varname string) is used together with the mlogit link and specifies that the
data have been expanded as illustrated below:

A B
choice response altern selected

1 1 1 1
2 1 2 0

1 3 0
2 1 0
2 2 1
2 3 0

where the variable choice is the multinomial response (possible values 1,2,3), the response
labels the original lines of data, altern gives the possible responses or ‘alternatives’ and
selected is an indicator for the response that was given. The syntax would be
expanded(response selected m) and altern would be used as the dependent variable.
This expanded form allows the user to have alternative specific covariates, apply different
random effects to different alternatives and have different alternative sets for different
individuals. The third argument is o if one set of coefficients should be estimated for the
explanatory variables and m if one set of coefficients is to be estimated for each category
of the response escept the reference category.

basecategory(#) When the mlogit link is used, this specifies the value of the response to be
used as the reference category. This option is ignored if the expanded() option is used
with the third argument equal to m.

composite(varname varname . . . ) specifies that a composite link is used. The first variable
is a cluster identifier (”cluster” below) so that linear predictors within the cluster can
be combined into a single composite link. The second variable (”ind” below) indicates
to which response the composite links defined by the susequent weight variables belong.
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Observations with ind=0 have a missing link. The remaining variables (”c1” and ”c2”
below) specify weights for the composite links. The composite link based on the first
weight variable will go to where ind=1, etc.

Example:

Data setup with form of inverse link Interpretation of
h_i determined by link() and lv(): composite(cluster ind c1 c2)

cluster ind c1 c2 inverse link cluster composite link
1 1 1 0 h_1 1 h_1 - h_2
1 2 -1 1 h_2 1 n_2 + h_3
1 0 0 1 h_3 ==> 1 missing
2 1 1 0 h_4 2 h_4 + h_5
2 2 1 1 h_5 2 h_5 + 2*h_6
2 0 0 2 h_6 2 missing

thresh(eqnames) specifies equation(s) for the thresholds for ordinal response(s). One equation
is specified for each ordinal response. The purpose of this option is to allow the effects of
some covariates to be different for different categories of the ordinal outcome rather than
assumming a constant effect - the proportional odds assumption if the ologit link is used.
Variables used in the model for the thresholds cannot appear in the fixed part of the linear
predictor.

ethresh(eqnames) is the same as thresh(eqnames) except that a different parameterization is
used for the threshold model. To ensure that ks−1 ≤ ks, the model is ks = ks−1 +exp(xb),
for response categories s = 2, . . . , S.

Starting values

from(matrix ) specifies the matrix (one row) to be used for the initial values. Note that the
column-names and equation-names have to be correct (see help matrix), unless the copy
option is used. The matrix may be obtained from a previous estimation command using
e(b). This is useful if another explanatory variable needs to be added or the number of
masses needs to be increased. (The skip option must be used of variables are dropped.)

copy see from(matrix )

skip see from(matrix )

long may be used with the from(matrix) option when parameter constraints are used to indi-
cate that the matrix of initial values corresponds to the unconstrained model, i.e. it has
more elements than will be estimated.

lf0(# #) gives the number of parameters and the log-likelihood for a likelihood ratio test to
compare the model to be estimated with a simpler model. A likelihood ratio chi-squared
test is only performed if the lf0() option is used.
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gateaux(# # #) may be used with method ip(f) or ip(fn) options to increase the number
of mass-points by one from a previous solution with parameter estimates specified using
from(matrix). The number of parameters and log-likelihood of the previous solution must
be specified using the lf0(# #) option. The program searches for the location of the new
mass-point by placing a very small mass at the location given by the first argument and
moving it to the second argument in the number of steps specified by the third argument.
(If there are several random effects, this search is done in each dimension resulting in a
regular grid of search points.) If the maximum increase in likelihood is greater than 0, the
location corresponding to this maximum is used as the initial value of the new location,
otherwise the program stops. When this happens, it can be shown that for certain models
the current solution represents the non-parametric maximum likelihood estimate.

search(#) causes the program to search for initial values for the random effects at level 2 (in
range 0 to 3). The argument specifies the number of random searches. This option may
only be used with ip(g) and when from(matrix ) is not used.

Estimation options and output

noest is used to prevent the program from carrying out the estimation. This may be used with
the trace option to check that the model is correct and get the information needed to
set up a matrix of initial values. Global macros are available that are normally deleted.
Particularly useful may be M initf and M initr, matrices for the parameters (fixed part
and random part, respectively).

eval causes the program to simply evaluate the log likelihood for values passed to gllamm using
the from(matrix) option.

init causes the program to compute initial estimates of fixed effects only

iterate(#) specifies the (maximum) number of iterations. With the adapt option, use of the
iterate(#) option will cause gllamm to skip the ”Newton Raphson” iterations usually
performed at the end without updating the quadrature locations. iterate(0) is like eval
except that standard errors are computed.

adoonly causes gllamm to use only ado-code. gllamm will be faster if if it uses internalized
versions of some of the functions available in Stata 7 (if updated on or after 26 October
2001) and Stata 8.

adapt causes adaptive quadrature to be used instead of ordinary quadrature. This option cannot
be used with the ip(f) or ip(f0) options.

robust specifies that the Huber/White/sandwich estimator of the covariance matrix of the
parameter estimates is to be used. If a model has been estimated without the robust
option, the robust standard errors can be obtained by simply typing gllamm, robust.

cluster(varname) specifies that the highest level units of the GLLAMM model are nested in
even higher level clusters where varname contains the cluster identifier. Robust standard
errors will be provided that take this clustering into account. If a model has been estimated
without this option, the robust standard errors for clustered data can be obtained using
the command gllamm, cluster(varname).
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level(#) specifies the confidence level in percent for confidence intervals of the fixed coefficients.

eform causes the exponentiated estimates and confidence intervals of the fixed coefficients to be
displayed.

allc causes all estimated parameters to be displayed in a regression table (including the raw
random effects parameters) in addition to the usual output.

trace displays details of the model being fitted as well as details of the maximum-likelihood
iterations.

nolog suppresses output for maximum likelihood iterations.

nodisplay suppresses output of the estimates but still shows iteration log unless nolog is used.

dots causes a dot to be printed (if used together with trace) every time the likelihood evaluation
program is called by ml. This helps to assess how long gllamm is likely to take to run and
reassures the user that it is making some progress when it is very slow.

2.3.2 Syntax for gllapred

After estimating the parameters of a model using gllamm, we can run the ‘post-estimation’ com-
mand gllapred to obtain predictions or estimates of the latent variables both in the continuous
and discrete case. Both posterior means and standard deviations of the latent variables are
provided. In multilevel regression models, the posterior means are also referred to as empirical
Bayes predictions, shrinkage estimates, or higher level residuals. In factor models, the posterior
means are regression factor scores. The posterior standard deviations can be interpreted as
standard errors of the posterior means although they do not take into account the fact that the
parameters are estimated.

gllapred varname [if exp] [in range] [ , u fac p xb ustd cooksd linpred mu
marginal us(varname) outcome(#) above(#,...,#) pearson deviance anscombe s
ll fsample nooffset adapt adoonly from(matrix) ]

where varname is the ‘prefix’ used for the variables that will contain the predictions and only
one of these options may be specified at a time: xb, u, fac, p, linpred, mu, pearson, deviance,
anscobe, s, ll.

Options

u causes posterior means and standard deviations of the latent variables to be returned in
varnamem1, varnamem2, etc. and varnames1, varnames2, etc., respectively, where the
order of the latent variables is the same as in the call to gllamm. In the case of continuous
latent variables, the integration method (ordinary versus adaptive quadrature) and the
number of quadrature points used is the same as in the previous call to gllamm. If the
gllamm model includes equations for the latent variables (geqs and/or bmatrix), the
posterior means and standard deviations of the disturbances ζ are returned.
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fac if the gllamm model includes equations for the latent variables (geqs() and/or bmatrix()),
fac causes predictions of the latent variables η (e.g. factors) to be returned in ”var-
name”m1, ”varname”m2, etc. instead of the disturbances ζ. In other words, predictions
of the latent variables on the left-hand side of the structural equations are returned.

p can only be used for two-level models estimated using the ip(f) or ip(fn) option. gllapred
returns the posterior probabilities in varname1, varname2, etc., giving the probabilities
of classes 1,2, etc., gllapred also displays the (prior) probability and location matrices to
help interpret the posterior probabilities.

xb The fixed effects part of the linear predictor is returned in varname including the offset (if
there is one) unless the nooffset option is used.

ustd The standardized posterior means of the disturbances are returned. The sampling stan-
dard deviation, namely the square root of the difference between the prior and posterior
variances, is only approximate for most models.

cooksd returns Cook’s distances for the top-level units.

linpred returns the linear predictor including the fixed and random effects part where posterior
means are substituted for the latent variables or random effects in the random part.

mu returns the expectation of the response, for example the predicted probability in the case
of dichotomous responses. By default, the expectation is with respect to the posterior
distribution of the latent variables, but see marginal and us() options. The offset is
included (if there is one in the gllamm model) unless the nooffset option is specified.

marginal together with the mu option gives the expectation of the response with respect to the
prior distribution of the latent variables. This is useful for looking at the ’marginal’ or
population averaged effects of covariates.

us(varname) can be used to specify values for the latent variables to calculate conditional
quantities, such as the conditional mean of the responses (mu option) given the values of
the latent variables. Here varname specifies the stub-name (prefex) for the variables and
gllapred will look for ”varname”1 ”varname”2, etc.

outcome(#) specifies the outcome for which the predicted probability should be returned (mu
option) if there is a nominal response. This option is not necessary if the expanded()
option was used in gllamm since in this case predicted probabilities are returned for all
outcomes.

above(#,...,#) specifies the events for which the predicted probabilities should be returned (mu
option) if there are ordinal responses. The probability of a value higher than that specified
is returned for each ordinal response. A single number can be given for all ordinal responses
(if there are several).

pearson returns Pearson residuals. By default, the posterior expectation with respect to the
latent variables is returned. The us() option can be used to obtain the conditional residual
when certain values are substituted for the latent variables.
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deviance returns deviance residuals. By default, the posterior expectation with respect to the
latent variables is returned. The us() option can be used to obtain the conditional residual
when certain values are substituted for the latent variables.

anscombe returns Anscombe residuals. By default, the posterior expectation with respect to
the latent variables is returned. The us() option can be used to obtain the conditional
residual when certain values are substituted for the latent variables.

s returns the scale. This is useful if the s() otion was used in gllamm to specify level 1
heteroscedasticity.

ll returns the log-likelihood contributions of the highest level (level L) units.

adapt if the gllamm command did not use the adapt option, gllapred will use ordinary quadra-
ture for computing the posterior means and standard deviations unless the adapt option
is used in the gllapred command.

fsample causes gllapred to return predictions for the full sample (except observations excluded
due to the if and in options), not just the estimation sample. The returned log-likelihood
may be missing since gllapred will not exclude observations with missing values on any
of the variables used in the likelihood calculation. It is up to the user to exclude these
observations using if or in.

nooffset can be used together with the xb, linpred or mu options to exclude the offset from
the prediction. It will only make a difference if the offset option was used in gllamm.

adoonly causes all gllamm to use only ado-code. This option is not necessary if gllamm was
run with the adoonly option.

from(matrix ) specifies a matrix of parameters for which the predictions should be made. The
column and equation names will be ignored. Without this option, the parameter estimates
from the last gllamm model will be used.

2.3.3 Syntax for gllasim

After estimating a model using gllamm, gllasim can be used to simulate responses from the
model.

gllasim varname [if exp] [in range] [ , y u fac linpred mu outcome(#)
above(#,...,#) nooffset adoonly from(matrix) us(varname) ]

y the simulated responses are returned in ”varname”. This option is only necessary if u, fac,
linpred or mu are also specified.

u the simulated latent variables or random effects are returned in ”varname”p1, ”varname”p2,
etc., where the order of the latent variables is the same as in the call to gllamm (in the
order of the equations in the eqs() option). If the gllamm model includes equations for
the latent variables (geqs and/or bmatrix), the simulated disturbances are returned.

Hosted by The Berkeley Electronic Press



30 CHAPTER 2. THE GLLAMM PROGRAM

fac if the gllamm model includes equations for the latent variables (geqs() and/or bmatrix()
options in gllamm), fac causes the simulated latent variables (e.g. factors) to be returned
in ”varname”p1, ”varname”p2, etc. instead of the disturbances, that is, the latent variables
on the left-hand side of the structural model.

linpred returns the linear predictor including the fixed and simulated random parts in ”var-
name”p. The offset is included (if there is one in the gllamm model) unless the nooffset
option is specified.

mu returns the expected value of the response conditional on the simulated values for the latent
variables, e.g. a probability if the responses are dichotmous.

outcome(#) specifies the outcome for which the predicted probability should be returned (mu op-
tion) if there is a nominal response and the expanded() option has not been used in gllamm
(with the expanded() option, predicted probabilities are returned for all outcomes).

above(#,...,#) specifies the events for which the predicted probabilities should be returned
(mu option) if there are ordinal responses. The probability of a value higher than that
specified is returned for each ordinal response. A single number can be given for all
ordinal responses.

nooffset can be used together with the linpred and mu options to exclude the offset from the
simulated value. It will only make a difference if the offset() option was used in gllamm.

fsample causes gllasim to simulate values for the full sample (except observations excluded
due to the if and in options), not just the estimation sample.

adoonly causes all gllamm to use only ado-code. This option is not necessary if gllamm was
run with the adoonly option.

from(matrix ) specifies a matrix of parameters for which the predictions should be made. The
column and equation names will be ignored. Without this option, the parameter estimates
from the last gllamm model will be used.

us(varname) specifies that, instead of simulating the latent variables, gllasim should use the
variables in ”varname”1, ”varname”2, etc.

2.3.4 Some comments on quadrature

Ordinary quadrature

Bock (1985) suggested that in most applications 10 quadrature are sufficient in one dimension, 5
per dimension in two and 3 per dimension in three or more dimensions. However, Bartholomew
(1987) points out investigations performed by Shea (1984) indicating that at least 20 points
may be necessary to achieve reasonable accuracy. Similarly, in logistic regression with covariate
measurement error problems, Crouch and Spiegelman (1990) suggest that 20 quadrature points
or more are often needed to adequately approximate the marginal log-likelihood. Skrondal
(1996) carried out a simulation for a two factor model with 3 ordinal items loading on each factor
finding substantial bias in the parameter estimates when only 5 quadrature points were used
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per dimension whereas 20 quadrature points performed adequately. In practice, the adequacy
of the number of quadrature points used in a particular application should be checked. A good
discussion of potential numerical problems with quadrature and suggestions for discovering these
problems can be found in the Stata Reference Manual (2003) under quadchk. There it is pointed
out that the method works better for small (level 2) cluster sizes or if the intraclass correlation is
not too great. Intuitively, for a simple two level random intercept model, this can be understood
by imagining the joint conditional distribution of the level 1 responses,

∏
j f(yij |xi, ui) of a

given cluster i given the value of the random intercept ui, plotted against the value of the
random intercept. If the ‘true’ realization of the random intercept for that cluster is large,
(i.e. the responses are all substantially ‘higher’ than the overall mean) the graph will have
a sharp peak in the tail of the prior distribution g(ui) of the random intercept. If we do
not use sufficient quadrature points, there may not be enough quadrature locations under the
peak of the integrand, g(ui)

∏
j f(yij |xi, ui). In fact, since increasing the number or quadrature

points increases mostly the range of locations rather than their density, it may not be possible to
adequately approximate the marginal likelihood using quadrature. Lesaffre and Spiessens (2001)
discuss this problem in relation to binary data with high intraclass correlation and Albert and
Follmann (2000) for Poisson responses. In the Poisson case, if the responses (usually counts)
are high, numerical problems with quadrature can occur also for smaller clusters because the
conditional distribution of a single level 1 unit can have a very sharp peak.

A number of programs for generalized linear mixed models, including MLwiN and HLM use
MQL/PQL (Breslow and Clayton, 1993). Taylor expansions are used to linearize the relationship
between response and linear predictor; both first and second order expansions are available in
MLwiN. The PQL/MQL methods work best if the level 2 clusters are very large; in the case of
smaller clusters, the variances of the random effects tend to be underestimated (Lin and Breslow,
1996, Breslow and Lin, 1995, Rodriguez and Goldman, 1995).

Since quadrature tends to work better for smaller cluster sizes, PQL may work well when
quadrature does not and vice versa. Rabe-Hesketh et al. (2001b), Dohoo et al. (2001) and
Stryhn et al. (2000) compare quadrature with PQL for particular examples using simulations.
In Section 9.3.3 of this manual, we compare MQL/PQL with quadrature in the case of nominal
(unordered categorical) responses.

Adaptive quadrature

A method that works better than ordinary quadrature is adaptive quadrature (e.g., Liu and
Pierce, 1994) implemented in SAS PROC NLMIXED. This method has been implemented in
gllamm, see Rabe-Hesketh, Skrondal and Pickles (2002; 2005). Rabe-Hesketh, Skrondal and
Pickles (2005) show that adaptive quadrature works very well for dichotomous responses with
a wide range of cluster sizes and intraclass correlations. Performance of adaptive quadrature is
much better than ordinary quadrature, particularly for large cluster sizes and large intraclass
correlations. Furthermore, adaptive quadrature usually requires fewer quadrature points than
ordinary quadrature to obtain the same precision. For normally distributed responses and counts
we would recommend always using adaptive quadrature.

Although adaptive quadrature is likely to give good estimates for continuous responses as
long as enough quadrature points are used, it is certainly more computationally efficient to use
software that does not use any approximations for this particular case (e.g. Mplus by Muthén
and Muthén (1998), S-Plus lme, MLwiN (Goldstein, 1998), etc.)
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2.3.5 Some comments on nonparametric maximum likelihood estimation

The following papers evaluate the performance of nonparametric maximum likelihood (NPML):
Davies (1987), Hu et al. (1998), Magder and Zeger (1996), Follmann and Lambert (1989), and
Rabe-Hesketh, Pickles and Skrondal (2003a).
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Chapter 3

Multilevel generalized linear models

3.1 Three-level random intercept logistic regression

Three groups of subjects, a group of patients with schizophrenia, their first degree relatives and
an independent control group, completed a neuropsychological test called the Tower of London.
In this computerized task, subjects are given a starting arrangement of 3 disks on 3 rods and
are asked to move the disks among the rods to achieve a ‘target’ arrangement, if possible, in
a specified minimum number of moves. The level of difficulty is increased by increasing the
minimum number of moves required. We will analyze the binary response, whether the task
was completed using the minimum number of moves, for three levels of difficulty. Taking into
account the nesting of subjects in families, this becomes a three level problem. (The data are
also analyzed in Rabe-Hesketh et al. (2001b).)

We will use indices i, j and k for measurement occasions, subjects and families, respectively.
The binary responses yijk may be modeled by a generalized linear mixed model with linear
predictor

ηijk = β0 + β1xRijk + β2xSijk + β3xLijk + η
(2)
jk + η

(3)
k (3.1)

where xRijk and xSijk are dummy variable for the relatives and patients with schizophrenia,
respectively, xLijk is the level of difficulty, η

(2)
jk the random intercept for subject j in family

k and η
(3)
k is the random intercept for family k. The random intercepts are assumed to be

independently normally distributed.

3.1.1 Data preparation

The dataset is called towerl.dta. The responses are stacked into a variable called dtlm (di-
chotomized tower of london moves). The variables id, famnum and group are the subject, family
and group identifiers respectively and level codes the levels of difficulty. A listing of these
variables for observations 19 to 27 is given below.
. sort id

. list id famnum group level dtlm in 19/27, clean

id famnum group level dtlm
19. 7 6 3 -1 1
20. 7 6 3 1 0
21. 7 6 3 0 0
22. 8 15 3 0 0
23. 8 15 3 1 0
24. 8 15 3 -1 1

33
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25. 9 10 3 0 0
26. 9 10 3 -1 0
27. 9 10 3 1 0

3.1.2 Model fitting

A two-level model with a random intercept for subjects could be fitted using Stata’s xtlogit
command with the following syntax:

xi: xtlogit dtlm i.group level, i(id) quad(20)

The syntax for the same model using gllamm is

xi: gllamm dtlm i.group level, i(id) family(binom) link(logit) nip(20)

The syntax is therefore very similar to that of xtlogit except that the logit link and binomial
family are specified as in Stata’s glm command and the nip() option specifies the number or
quadrature points (‘integration points’) to be used.

In general, we would however recommend using adaptive quadrature by specifying the adapt
option

xi: gllamm dtlm i.group level, i(id) family(binom) link(logit) adapt

Here we are using the default of 8 quadrature points because adaptive quadrature tends to
require fewer quadrature points. The following output is obtained:

. xi: gllamm dtlm i.group level, i(id) fam(binom) link(logit) adapt
i.group _Igroup_1-3 (naturally coded; _Igroup_1 omitted)

Running adaptive quadrature
Iteration 0: log likelihood = -310.89641
Iteration 1: log likelihood = -306.86359
Iteration 2: log likelihood = -305.96838
Iteration 3: log likelihood = -305.95923
Iteration 4: log likelihood = -305.95923

Adaptive quadrature has converged, running Newton-Raphson
Iteration 0: log likelihood = -305.95923
Iteration 1: log likelihood = -305.95923 (backed up)

number of level 1 units = 677
number of level 2 units = 226

Condition Number = 4.4746866

gllamm model

log likelihood = -305.95923

dtlm Coef. Std. Err. z P>|z| [95% Conf. Interval]

_Igroup_2 -.1691618 .3343253 -0.51 0.613 -.8244273 .4861037
_Igroup_3 -1.023004 .393953 -2.60 0.009 -1.795137 -.2508701

level -1.649218 .1934261 -8.53 0.000 -2.028326 -1.27011
_cons -1.48306 .2836532 -5.23 0.000 -2.03901 -.92711

Variances and covariances of random effects
------------------------------------------------------------------------------
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***level 2 (id)

var(1): 1.6768915 (.66262434)
------------------------------------------------------------------------------

The iteration log shows that adaptive quadrature took four iterations to converge. In the iter-
ations under the heading Adaptive quadrature has converged, running Newton-Raphson
(here just a single iteration), the quadrature locations and weights are held fixed while the
parameters are updated by Newton Raphson until Stata’s strict convergence criteria are met.

After the iteration log, the number of level 1 units (here measurement occasions) and the
number of level 2 units (here individuals) are listed first, followed by the condition number
and the log-likelihood. (The condition number will be large when the Hessian matrix is nearly
singular indicating that the model may not well identified.)

The fixed effects estimates β̂0 to β̂3 are given in the familiar format used in all of Stata’s
estimation commands. Group 3 (subjects with schizophrenia) performs considerably worse than
group 1 (healthy controls), and performance worsens as difficulty increases as expected. The
variance of the level 2 or subject level (id) random effect is estimated as 1.677 with a standard
error of 0.663.

We normally recommend that gllamm should be used with the trace option. This provides
more information on how the syntax has been interpreted and shows the iterations of the maxi-
mum likelihood procedure. Using this option makes it easier to assess how long the program will
take and to make sure that the model has been specified correctly. Using the above command
with the trace option, gives the following output:

. xi: gllamm dtlm i.group level, i(id) fam(binom) link(logit) adapt trace
i.group _Igroup_1-3 (naturally coded; _Igroup_1 omitted)

General model information
------------------------------------------------------------------------------

dependent variable: dtlm
family: binom
link: logit
denominator: 1
equation for fixed effects _Igroup_2 _Igroup_3 level _cons

Random effects information for 2 level model
------------------------------------------------------------------------------

***level 2 (id) equation(s):

standard deviation of random effect
id1: _cons

number of level 1 units = 677
number of level 2 units = 226

Initial values for fixed effects

Iteration 0: log likelihood = -373.67941
Iteration 1: log likelihood = -317.84501
Iteration 2: log likelihood = -313.96138
Iteration 3: log likelihood = -313.89083
Iteration 4: log likelihood = -313.89079

Logit estimates Number of obs = 677
LR chi2(3) = 119.58

Hosted by The Berkeley Electronic Press



36 CHAPTER 3. MULTILEVEL GENERALIZED LINEAR MODELS

Prob > chi2 = 0.0000
Log likelihood = -313.89079 Pseudo R2 = 0.1600

dtlm Coef. Std. Err. z P>|z| [95% Conf. Interval]

_Igroup_2 -.1396641 .2282452 -0.61 0.541 -.5870164 .3076882
_Igroup_3 -.8313329 .2742339 -3.03 0.002 -1.368821 -.2938444

level -1.313382 .1409487 -9.32 0.000 -1.589636 -1.037127
_cons -1.160498 .1824502 -6.36 0.000 -1.518094 -.8029024

------------------------------------------------------------------------------

start running on 10 Oct 2004 at 17:29:08

Running adaptive quadrature
------------------------------------------------------------------------------
Iteration 0 of adaptive quadrature:
Initial parameters:

dtlm: dtlm: dtlm: dtlm: id1:
_Igroup_2 _Igroup_3 level _cons _cons

y1 -.1396641 -.8313329 -1.313382 -1.160498 .5

Updated log likelihood:
-310.89641 -310.89641

log likelihood = -310.89641
------------------------------------------------------------------------------
Iteration 1 of adaptive quadrature:
Updated parameters:

dtlm: dtlm: dtlm: dtlm: id1:
_Igroup_2 _Igroup_3 level _cons _cons

y1 -.1511035 -.9209335 -1.478313 -1.310037 1.246417

Updated log likelihood:
-306.86086 -306.86086 -306.86359 -306.86359

log likelihood = -306.86359
------------------------------------------------------------------------------

>>>> More iterations and final output

The information that the equation for the fixed effects is Igroup 2 Igroup 3 level cons
means that these are the column names of the parameter vector printed out in the iteration log.
The initial output also tells us that the standard deviation for the random effect has equation
name id and column name cons in the parameter vector. (The absolute value of this parameter
should be interpreted as the standard deviation; it can also be negative.)

The initial values for the fixed effects are estimated using conventional logistic regression.
An arbitrary value of 0.5 is then used as the initial estimate of the standard deviation of the
random intercept. In the first iteration, this changes to 1.246. Between Newton-Raphson steps
to update the parameters, gllamm goes through a set of iterations to recalculate the adaptive
quadrature locations and weights for the new parameter values. This is indicated by the output
under Updated log likelihood since a change in the quadrature locations and weights results
in a small change in the log likelihood. Details of this implementation of adaptive quadrature are
given in Rabe-Hesketh, Skrondal and Pickles (2005). We can monitor the change in parameter
values and log-likelihood until convergence.

We now consider a model also including a random intercept for families which cannot be
estimated in xtlogit. This gives a three-level random intercept logistic regression model as in
equation (3.1). Here the level 3 identifier, famnum, is simply specified within the i() option:

. xi: gllamm dtlm i.group level, i(id famnum) fam(binom) link(logit) /*
> */ nip(5) adapt
i.group _Igroup_1-3 (naturally coded; _Igroup_1 omitted)
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Running adaptive quadrature
Iteration 0: log likelihood = -308.71113
Iteration 1: log likelihood = -305.36563
Iteration 2: log likelihood = -305.12406
Iteration 3: log likelihood = -305.1227
Iteration 4: log likelihood = -305.12269

Adaptive quadrature has converged, running Newton-Raphson
Iteration 0: log likelihood = -305.12269
Iteration 1: log likelihood = -305.12269

number of level 1 units = 677
number of level 2 units = 226
number of level 3 units = 118

Condition Number = 4.2118559

gllamm model

log likelihood = -305.12269

dtlm Coef. Std. Err. z P>|z| [95% Conf. Interval]

_Igroup_2 -.2492026 .3542753 -0.70 0.482 -.9435695 .4451643
_Igroup_3 -1.052524 .3998724 -2.63 0.008 -1.83626 -.2687888

level -1.648225 .1930166 -8.54 0.000 -2.02653 -1.269919
_cons -1.485191 .2845342 -5.22 0.000 -2.042868 -.9275142

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id)

var(1): 1.1326044 (.67645928)

***level 3 (famnum)

var(1): .57097887 (.51902956)
------------------------------------------------------------------------------

The variance at level 2 is estimated as 1.133 with a standard error of 0.676, and the variance
at level 3 is estimated as 0.571 with a standard error of 0.519. The output only shows the
final results of the estimation. Again, we would normally use the trace option to check that
the model was correctly specified and to obtain the full iteration log. To check if 5 points per
dimension were sufficient, we can use the commands

. matrix a=e(b)

. xi: gllamm dtlm i.group level, i(id famnum) fam(binom) link(logit) /*
> */ from(a) nip(8) adapt
i.group _Igroup_1-3 (naturally coded; _Igroup_1 omitted)

Running adaptive quadrature
Iteration 0: log likelihood = -305.12041
Iteration 1: log likelihood = -305.12038

Adaptive quadrature has converged, running Newton-Raphson
Iteration 0: log likelihood = -305.12038
Iteration 1: log likelihood = -305.12037

number of level 1 units = 677
number of level 2 units = 226
number of level 3 units = 118
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Condition Number = 4.2143725

gllamm model

log likelihood = -305.12037

dtlm Coef. Std. Err. z P>|z| [95% Conf. Interval]

_Igroup_2 -.2491993 .3543901 -0.70 0.482 -.9437911 .4453925
_Igroup_3 -1.052788 .3999799 -2.63 0.008 -1.836735 -.2688421

level -1.648209 .193194 -8.53 0.000 -2.026863 -1.269556
_cons -1.485365 .2847921 -5.22 0.000 -2.043548 -.9271829

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id)

var(1): 1.137668 (.68586617)

***level 3 (famnum)

var(1): .56902514 (.52160721)
------------------------------------------------------------------------------

Here, the vector of parameter estimates was first stored in the matrix a and then passed to
gllamm as starting values using the from() option. We see that using 8 quadrature points
(which takes longer since evaluation of the marginal likelihood requires summing 8× 8 terms),
the parameter estimates do not change considerably giving us some confidence that the estimates
are adequate. We would of course report the estimates based on 8 points.

Using the eform option when estimating the model or issuing the command gllamm, eform
after estimating the model gives the same output as above but with exponentiated estimates
and confidence intervals in the fixed-effects table.

See Section 8.3 for an example of three-level ordinal logistic regression.

3.2 Two-level random coefficient model

Here we illustrate the use of random coefficient models for normally distributed responses.
Note, however, that we would normally not recommend using gllamm for normally distributed
responses since plenty of software exists for fitting such models without using approximations
such as quadrature. However, if gllamm is used, adaptive quadrature is likely to give better
parameter estimates than ordinary quadrature. With both methods, the user must ensure that
sufficient quadrature points are used.

The data for this section are the Junior School Project data from the MLn manual (Wood-
house, 1995). Maths results are available on pupils from different schools in the third and fifth
years. We will fit a linear regression model of the year 5 results, math5, on the (mean centered)
year 3 results, math3, with a random intercept and a random coefficient of math3 for schools.
The model can be written as

νij = β0 + β1xij + η0j + η1jxij (3.2)

http://www.bepress.com/ucbbiostat/paper160



3.2. TWO-LEVEL RANDOM COEFFICIENT MODEL 39

where i indexes the pupils and j the schools, xij is the year 3 result and η1j is the corresponding
random coefficient. The two random effects are assumed to have a bivariate normal distribution.

3.2.1 Data preparation

A listing of the variables in the file jsp.dta is shown below for observations 87 to 95.

. list school pupil math5 math3 wt1 in 87/95, clean

school pupil math5 math3 wt1
87. 5 21 28 3.6 1
88. 5 22 30 -3.4 1
89. 5 23 25 -3.4 1
90. 5 24 37 6.6 2
91. 5 25 36 1.6 1
92. 6 1 28 -5.4 1
93. 6 2 26 4.6 1
94. 6 3 30 -6.4 1
95. 6 4 37 5.6 1

The variable wt1 contains level 1 weights and is equal to 1 for most pupils because there were
only a few instances of two pupils in the same school having the same result for math3 and
math5. Note that the variable pupil identifies particular types of pupils with identical covariate
values and not individual pupils.

3.2.2 Model fitting

When any of the random effects are not intercepts, we must specify the sets of variables z(l)
m whose

linear combination z(l)′
m λ(l)

m multiplies the random effects. This is done by defining equations prior
to running gllamm using the eq command (still available in Stata 8 but undocumented; see help
eq g). The syntax is

eq name: var1 var2 var3 · · ·
The equation can now be referred to by its name and the variables on the right hand side will

be combined to form a linear combination λ′z as in equation (1.2). In the gllamm command, we
must first specify that there are two random effects at level 2 using the nrf() option. We then
use the eqs() option to specify that one of the random effects in (3.2), the random intercept η0j ,
multiplies a variable, cons with all elements equal to 1, and the random coefficient η1j multiplies
math3.

We will allow the random slope and intercept to be correlated (the default). We could use
the nocor option to specify zero correlation. However, the random effects should generally be
allowed to be correlated because the model would otherwise not be invariant to translation of
xij (adding a constant to xij).

The weight() option is used to inform gllamm that the data are in collapsed form and that
wt1 represents frequency weights for the level 1 units. (gllamm will also look for a wt2 variable,
but if this is not found, as here, the level 2 weights will be assumed to be equal to 1.)

. gen cons = 1

. eq sch_c: cons

. eq sch_m3: math3

. gllamm math5 math3, i(school) nrf(2) eqs(sch_c sch_m3) w(wt) /*
> */ adapt
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Running adaptive quadrature
Iteration 0: log likelihood = -2796.836
Iteration 1: log likelihood = -2762.7913
Iteration 2: log likelihood = -2757.6183
Iteration 3: log likelihood = -2757.1326
Iteration 4: log likelihood = -2757.1326

Adaptive quadrature has converged, running Newton-Raphson
Iteration 0: log likelihood = -2757.1326
Iteration 1: log likelihood = -2757.1326 (backed up)
Iteration 2: log likelihood = -2757.0942
Iteration 3: log likelihood = -2757.0803
Iteration 4: log likelihood = -2757.0803

number of level 1 units = 887
number of level 2 units = 48

Condition Number = 14.990189

gllamm model

log likelihood = -2757.0803

math5 Coef. Std. Err. z P>|z| [95% Conf. Interval]

math3 .6123977 .0428952 14.28 0.000 .5283246 .6964707
_cons 30.59295 .3655914 83.68 0.000 29.8764 31.30949

Variance at level 1
------------------------------------------------------------------------------

26.964597 (1.346087)

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (school)

var(1): 4.5788487 (1.3101525)
cov(2,1): -.36058883 (.12255962) cor(2,1): -.90985323

var(2): .03430248 (.0176073)
------------------------------------------------------------------------------

The within-school or level 1 residual variance is estimated as 26.96 with a standard error of
1.35

In order to interpret the level 2 variances, we need to consider that, in the eqs() option,
equation sch c was specified first, followed by equation sch m3. Therefore, the first random
effect is the random intercept (it multiplies cons) and the second random effect is the random
slope of math3. The random intercept variance, var(1), is therefore estimated as 4.58 with
a standard error of 1.31 and the random slope variance, var(2), is estimated as 0.034 with a
standard error of 0.018. The covariance between the random intercept and slope is estimated as
-0.36 with a standard error of 0.12. This corresponds to a correlation of −0.91.

These estimates are close to those obtained using MLwiN, namely fixed effects (standard er-
ror): 0.6124 (0.04283) and 30.59 (0.3657), level 1 residual variance: 26.96 (1.343) and covariance
matrix of the random effects:

[
4.585 (1.291) −0.3606 (0.1189)

−0.3606 (0.1189) 0.03423 (0.01704)

]
.
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Comparing the estimated variance of the random coefficient with its standard error (using a
Wald test) gives the impression that it is not significant at the 5% level. However, the variance
estimate is unlikely to have a normal sampling distribution and the Wald test is known to be
invalid when the null value is on or near the boundary of the parameter space. A likelihood
ratio test should therefore be used, taking the nonstandard situation into account. The program
estimates the Cholesky decomposition of the covariance matrix of the random effects.

In order to carry out the likelihood ratio test, will first save the estimates of the current
model using

estimates store mod2

We can now fit the model without a random coefficient for math3. It will be quicker to use
as starting values the previous estimates, obtained using e(b), and passed to gllamm using the
from() and skip options. Since the parameter vector has equation name scho1 and column
name cons for the intercept standard deviation estimate (see above), we will use the option
eqs(sch c) although this would normally not be necessary for a random intercept model:

. matrix a=e(b)

. gllamm math5 math3, i(school) eqs(sch_c) w(wt) adapt from(a) skip

Running adaptive quadrature
Iteration 0: log likelihood = -2768.3507
Iteration 1: log likelihood = -2767.9009
Iteration 2: log likelihood = -2767.9009

Adaptive quadrature has converged, running Newton-Raphson
Iteration 0: log likelihood = -2767.9009
Iteration 1: log likelihood = -2767.9009 (backed up)
Iteration 2: log likelihood = -2767.8923
Iteration 3: log likelihood = -2767.8923

number of level 1 units = 887
number of level 2 units = 48

Condition Number = 14.334774

gllamm model

log likelihood = -2767.8923

math5 Coef. Std. Err. z P>|z| [95% Conf. Interval]

math3 .6088066 .0326428 18.65 0.000 .5448278 .6727854
_cons 30.60847 .3489154 87.72 0.000 29.92461 31.29233

Variance at level 1
------------------------------------------------------------------------------

28.127214 (1.3728903)

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (school)

var(1): 4.0268447 (1.189892)
------------------------------------------------------------------------------

The likelihood ratio test is obtained using Stata’s lrtest command
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. lrtest mod2 .
(log-likelihoods of null models cannot be compared)

likelihood-ratio test LR chi2(2) = 21.62
(Assumption: . nested in mod2) Prob > chi2 = 0.0000

showing that the effect of math3 varies significantly between schools. Note that this test is
not valid here because the null is on the border of the parameter space. The correct reference
distribution is not the ‘naive’ chi-square with two degrees of freedom χ2

2 (one degree for the
extra variance and one for the covariance) but rather the mixture 1

2χ2
0 + 1

2χ2
2. A correct p-value

is obtained by halving the p-value from the χ2
2 distribution.

To make predictions for the previous random coefficient model, we must first ‘restore’ the
estimates (which is faster than re-estimating the model!):

estimates restore mod2

We can then use gllapred with the u option to obtain the posterior means (empirical Bayes
predictions) of the random effects.

. gllapred eb, u
(means and standard deviations will be stored in ebm1 ebs1 ebm2 ebs2)
Non-adaptive log-likelihood: -2757.1446
-2757.5262 -2757.0856 -2757.0803 -2757.0803
log-likelihood:-2757.0803

This creates four variables, ebm1 and ebm2 containing the posterior means of the random in-
tercept and coefficient, respectively, and ebs1 and ebs2 containing the corresponding posterior
standard deviations. (The final log-likelihood value returned by gllapred should be the same
as that returned by gllamm, otherwise there is a problem!)

Values of the posterior means are created for each observation in each school. This can be
seen by listing the same observations as before,

. list school pupil ebm1 ebm2 ebs1 ebs2 in 87/95, clean

school pupil ebm1 ebm2 ebs1 ebs2
87. 5 21 -.03652739 -.00149369 1.0443018 .11192404
88. 5 22 -.03652739 -.00149369 1.0443018 .11192404
89. 5 23 -.03652739 -.00149369 1.0443018 .11192404
90. 5 24 -.03652739 -.00149369 1.0443018 .11192404
91. 5 25 -.03652739 -.00149369 1.0443018 .11192404
92. 6 1 .85082355 -.07551752 1.1132722 .10827583
93. 6 2 .85082355 -.07551752 1.1132722 .10827583
94. 6 3 .85082355 -.07551752 1.1132722 .10827583
95. 6 4 .85082355 -.07551752 1.1132722 .10827583

We can summarize the values of ebm1 and ebm2 for the 48 schools by first creating a dummy
variable, f, that is equal to one for only one observation in each school:

. sort school pupil

. qui by school: gen f=_n==1

. summ ebm1 ebm2 if f==1

Variable Obs Mean Std. Dev. Min Max

ebm1 48 2.59e-07 1.853219 -3.834247 3.270769
ebm2 48 -2.08e-08 .1517099 -.2679346 .336618
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. corr ebm1 ebm2 if f==1, cov
(obs=48)

ebm1 ebm2

ebm1 3.43442
ebm2 -.277808 .023016

The variances of the posterior means are smaller than the estimated variances of the (prior)
distribution of the random effects. This is because the posterior means are ‘shrunken’ towards
the mean of the prior distribution, in this case 0. They are therefore sometimes referred to as
shrinkage estimators.

We can use gllapred with the linpred option to get predicted values for each individual
child based on

ŷij = ν̂ij

= β̂0 + β̂1xij + η̃0j + η̃1jxij , (3.3)

where β̂0 and β̂1 are the fixed parameter estimates and η̃0j and η̃1j are the posterior means of
the random intercept and slope, respectively.

. gllapred lp, linpred
(linear predictor will be stored in lp)
Non-adaptive log-likelihood: -2757.1446
-2757.5262 -2757.0856 -2757.0803 -2757.0803
log-likelihood:-2757.0803

We can plot the predictions against math3 for each school by first sorting the data by math3
within school and then using the connect(ascending) option which connects only groups of
points for which math3 increases:

. sort school math3

. twoway (line lp math3, connect(ascending)), ytitle(Predicted math5 score) ///
> xtitle(Math3 score)

The resulting graph is shown in Figure 3.1.
Level 1 residuals could be computed by subtracting lp from math5. The empirical Bayes

estimates are sometimes considered as level 2 residuals. Outlying schools could be detected
by dividing the level 2 residuals by the sampling standard deviation (the diagnostic standard
error). For linear mixed models the squared diagnostic standard error is the random effect
(prior) variance minus the posterior variance.

For more examples of estimating linear mixed models using gllamm, see the textbook exam-
ples for Hox (2002), Kreft and de Leeuw (1998) and Singer and Willett (2003) at
http://www.gllamm.org/examples.html Section 5.2 discusses a discrete random effects version
of the model considered in this section.

Rabe-Hesketh and Everitt (2004) describe how a random coefficient model for dichotomous
responses can be estimated using gllamm. For an application of a random coefficient model to
meta-analysis, see the worked example for Setion 9.5 of Skrondal and Rabe-Hesketh (2004) at
http://www.gllamm.org/books/examples.html#genlat
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Figure 3.1: Predictions from random coefficients model for JSP data.
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Chapter 4

Multilevel factor and item response
models

4.1 One parameter and two parameter item-response models

Binary data on five items from section 6 of the Law School Admission Test (LSAT)(Bock and
Lieberman, 1970), will be used to illustrate how factor models may be fitted using gllamm.

Item response models may be used to model the responses of subjects to a number of exam
questions, or items. We will here consider the one and two-parameter logistic item response
models. In the one-parameter logistic model the log odds of subject j giving a correct answer
to item i is

νij = βi + ηj (4.1)

where −βi represents the difficulty of question or item i and the ‘factor’ ηj represents the ability
of subject j. This is a simple two-level model and may be fitted using xtlogit. Note that the
model is known as the Rasch model if the ηj are construed as parameters instead of random
variables.

If we introduce a further parameter λi, we obtain a two-parameter logistic item response
model

νij = βi + ηjλi (4.2)

where λi represents the extent to which item i discriminates between subjects of different abili-
ties. Here we are modeling a multivariate dataset by representing the variables as level 1 units
indexed i. If the data are in long form with the responses to all the questions stacked into a
single response vector, we can use dummy variables

xpij =

{
1 if p=i
0 otherwise

(4.3)

to write the model in the form of equation (1.2), giving

νij = x′ijβ + ηjx′ijλ. (4.4)

(See Section 1.1.2 for more details on defining factor models.)

45
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4.1.1 Data preparation

The data are in lsat.dta. The responses are stacked into the variable resp and the variables i1
to i5 are dummies for the 5 items. Here we list some of these variables for observations 1 to 10.

. list id resp wt2 i1 i2 i3 in 1/10, clean

id resp wt2 i1 i2 i3
1. 1 0 3 1 0 0
2. 1 0 3 0 1 0
3. 1 0 3 0 0 1
4. 1 0 3 0 0 0
5. 1 0 3 0 0 0
6. 2 0 6 1 0 0
7. 2 0 6 0 1 0
8. 2 0 6 0 0 1
9. 2 0 6 0 0 0
10. 2 1 6 0 0 0

The values in the variable wt2 are level 2 weights and give the number of subjects with the same
response pattern across the 5 items.

4.1.2 Model fitting

A simple one parameter logistic model (see equation (4.1)) may be estimated using

. gllamm resp i1 i2 i3 i4 i5, nocons link(logit) fam(bin) i(id) w(wt)/*
> */ adapt

Running adaptive quadrature
Iteration 0: log likelihood = -2474.5358
Iteration 1: log likelihood = -2467.6509
Iteration 2: log likelihood = -2466.9386
Iteration 3: log likelihood = -2466.9381

Adaptive quadrature has converged, running Newton-Raphson
Iteration 0: log likelihood = -2466.9381
Iteration 1: log likelihood = -2466.9378
Iteration 2: log likelihood = -2466.9376

number of level 1 units = 5000
number of level 2 units = 1000

Condition Number = 2.363268

gllamm model

log likelihood = -2466.9376

resp Coef. Std. Err. z P>|z| [95% Conf. Interval]

i1 2.730012 .1304412 20.93 0.000 2.474352 2.985672
i2 .9986047 .0791771 12.61 0.000 .8434204 1.153789
i3 .2398532 .0717746 3.34 0.001 .0991776 .3805287
i4 1.30645 .0846379 15.44 0.000 1.140563 1.472337
i5 2.099403 .1054449 19.91 0.000 1.892734 2.306071

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id)
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var(1): .57022544 (.10486337)
------------------------------------------------------------------------------

The factor variance is estimated as 0.570 with a standard error of 0.105. (Note that the same
model may be fitted using xtlogit resp i1-i5, nocons i(id) if the data is not in ‘collapsed’
form. However, xtlogit uses ordinary quadrature, not adaptive quadrature.)

In order to fit the two-parameter item response model in equation (4.4), we first need to
define an equation using the eq command and then use the eqs() option to specify the variables
i1 to i5 in the linear combination of variables that multiplies the latent variable in (4.4).

. local ll = e(ll)

. eq id: i1 i2 i3 i4 i5

. gllamm resp i1 i2 i3 i4 i5, nocons link(logit) fam(bin) i(id)/*
> */ eqs(id) w(wt) lf0(6 ‘ll’) adapt

Running adaptive quadrature
Iteration 0: log likelihood = -2473.0647
Iteration 1: log likelihood = -2468.8954
Iteration 2: log likelihood = -2466.8525
Iteration 3: log likelihood = -2466.6613
Iteration 4: log likelihood = -2466.6613

Adaptive quadrature has converged, running Newton-Raphson
Iteration 0: log likelihood = -2466.6613
Iteration 1: log likelihood = -2466.6613 (backed up)
Iteration 2: log likelihood = -2466.6534
Iteration 3: log likelihood = -2466.6533

number of level 1 units = 5000
number of level 2 units = 1000

Condition Number = 11.498716

gllamm model Number of obs = 5000
LR chi2(4) = 0.57

Log likelihood = -2466.6533 Prob > chi2 = 0.9665

resp Coef. Std. Err. z P>|z| [95% Conf. Interval]

i1 2.773246 .2057431 13.48 0.000 2.369997 3.176495
i2 .9901996 .0900181 11.00 0.000 .8137673 1.166632
i3 .24915 .0762745 3.27 0.001 .0996548 .3986452
i4 1.284755 .0990362 12.97 0.000 1.090647 1.478862
i5 2.053265 .1353571 15.17 0.000 1.78797 2.31856

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id)

var(1): .68174302 (.42622871)

loadings for random effect 1
i1: 1 (fixed)
i2: .87532845 (.36270233)
i3: 1.0790061 (.43516089)
i4: .83369313 (.36726473)
i5: .79552018 (.38060867)

------------------------------------------------------------------------------
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Using the lf0() option caused the likelihood ratio test (LR chi2(4) = 0.57) to be shown which
indicates that the factor loadings do not differ significantly from 1, i.e. the one parameter item
response model was adequate.

We can obtain empirical Bayes predictions of the latent trait (ability) using

. gllapred score, u
(means and standard deviations will be stored in scorem1 scores1)
Non-adaptive log-likelihood: -2466.6532
-2466.6533 -2466.6533
log-likelihood:-2466.6533

The variable scorem1 contains the posterior mean (the empirical Bayes prediction) and scores1
the corresponding posterior standard deviation.

In the above model, the factor loading of item 1 was constrained to 1 and the variance
of the latent variable was estimated freely. To obtain the parameters of the model where
the standard deviation is constrained to 1 instead, we can interpret the standard deviation
sqrt(.68174302)=.82567731 as the first loading and multiply all other loadings by this value.

We can also estimate the model using this alternative parameterization way by using the
frload() option to free the first factor loading and the contraints option to set the variance
of the latent variable to 1. In order to use constraints, we have to know the equation and
column name for the parameter of interest. One way to find this is to simply display the matrix
of parameter estimates:

. matrix list e(b)

e(b)[1,10]
resp: resp: resp: resp: resp: id1_1l: id1_1l: id1_1l: id1_1l:

i1 i2 i3 i4 i5 i2 i3 i4 i5
y1 2.7732456 .99019959 .24914998 1.2847549 2.0532647 .87532845 1.0790061 .83369313 .79552018

id1_1:
i1

y1 .82567731

The last parameter is the standard deviation of the latent variable. We can constrain this to 1
by defining the constraint

constraint def 1 [id1_1]i1 = 1

and passing it to the gllamm command as follows:

. gllamm resp i1 i2 i3 i4 i5, nocons link(logit) fam(bin) i(id) eqs(id) w(wt) /*
> constr(1) frload(1) adapt

Running adaptive quadrature
Iteration 0: log likelihood = -2492.9919
Iteration 1: log likelihood = -2473.2543
Iteration 2: log likelihood = -2467.2626
Iteration 3: log likelihood = -2466.6723
Iteration 4: log likelihood = -2466.6547
Iteration 5: log likelihood = -2466.6547

Adaptive quadrature has converged, running Newton-Raphson
Iteration 0: log likelihood = -2466.6547
Iteration 1: log likelihood = -2466.6547 (backed up)
Iteration 2: log likelihood = -2466.6533
Iteration 3: log likelihood = -2466.6533
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number of level 1 units = 5000
number of level 2 units = 1000

Condition Number = 4.6103103

gllamm model with constraints:
( 1) [id1_1]i1 = 1

log likelihood = -2466.653343760208

Coef. Std. Err. z P>|z| [95% Conf. Interval]

i1 2.773234 .205743 13.48 0.000 2.369985 3.176483
i2 .9901996 .0900182 11.00 0.000 .8137672 1.166632
i3 .24915 .0762746 3.27 0.001 .0996546 .3986454
i4 1.284755 .0990363 12.97 0.000 1.090647 1.478862
i5 2.053265 .1353574 15.17 0.000 1.78797 2.318561

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id)

var(1): 1 (0)

loadings for random effect 1
i1: .82565942 (.25811315)
i2: .72273928 (.18667773)
i3: .890914 (.2328178)
i4: .68836241 (.18513868)
i5: .65684452 (.20990788)

------------------------------------------------------------------------------

If we obtain empirical Bayes predictions from this model, they will be perfectly correlated (but
scaled differently):

. gllapred nscore, u
(means and standard deviations will be stored in nscorem1 nscores1)
Non-adaptive log-likelihood: -2466.6532
-2466.6533 -2466.6533
log-likelihood:-2466.6533

. corr scorem1 nscorem1
(obs=160)

scorem1 nscorem1

scorem1 1.0000
nscorem1 1.0000 1.0000

Section 8.2 shows how item-response models for ordinal data can be estimated in gllamm.
See also the worked example for Section 9.4 of Skrondal and Rabe-Hesketh (2004) at
http://www.gllamm.org/examples.html#genlat

Hosted by The Berkeley Electronic Press



50 CHAPTER 4. MULTILEVEL FACTOR AND ITEM RESPONSE MODELS

http://www.bepress.com/ucbbiostat/paper160



Chapter 5

Discrete random effects

5.1 A simple finite mixture model

In the Handbook of Statistical Analyses using Stata, Rabe-Hesketh and Everitt (2004) describe
finite mixture modeling using Stata’s ml functions. Here we will use gllamm to fit a simple finite
mixture model the age of onset of schizophrenia data used in the book.

According to the subtype model of schizophrenia, there are two types of schizophrenia. One
is characterized by early onset, typical symptoms and poor premorbid competence and the
other by late onset, atypical symptoms and good premorbid competence. We will investigate
this question by fitting a mixture of two normal distributions to the ages. (If we had variables
on symptoms and premorbid competence, we could fit a more general latent class model.) The
finite mixture model can be written as

f(yi; π1, µ1, µ2, σ1, σ2) = π1g(yi;µ1, σ1) + (1− π1)g(yi; µ2, σ2) (5.1)

where g(y; µ, σ) is the Gaussian density with mean µ and standard deviation σ,

g(yi; µ, σ) =
1

σ
√

2π
exp

{
−1

2

(
yi − µ

σ

)2
}

(5.2)

and π1 and π2 are the mixing probabilities.
To write this model as a GLLAMM, we constrain σ1 = σ2 = σ. Conditional on ηi, yi has a

normal distribution with variance σ2 and expectation

E[yi|ηi] = νi (5.3)

where
νi = µ + ηi (5.4)

and ηi is a discrete latent variable with two values, e1 = µ1 − µ and e2 = µ2 − µ where µ is the
overall mean.

5.1.1 Data preparation

First we read the data

infile ages using onset.dat, clear
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We need to specify the ‘level 2 units’ in gllamm, i.e. the units i over which ηi varies, in this
case the subjects:

gen id=_n

The first ten ages are:

. list id ages in 1/10, clean

id ages
1. 1 20
2. 2 30
3. 3 21
4. 4 23
5. 5 30
6. 6 25
7. 7 13
8. 8 19
9. 9 16
10. 10 25

5.1.2 Parameter estimation

Since sensible starting values are crucial for finite mixture models, we will first estimate the
one class solution and then use the Gateaux derivative method to introduce a second class.
Having both solutions will also enable us to assess the change in log-likelihood although the
log-likelihood ratio test is strictly not valid for mixtures.

We can estimate the one class solution using the ip(f) option and by specifying one inte-
gration point using the nip() option:

gllamm ages, i(id) ip(f) nip(1)

In order to force gllamm to estimate the parameters by maximum likelihood rather than ordinary
regression (for comparison with the two class solution), we must make the problem look like a
nonstandard regression problem. One possibility is to use the s() option which allows the
residual variance to vary with covariates - here we will use a ‘covariate’ equal to 1.

. gen cons=1

. eq het: cons

. gllamm ages, i(id) ip(f) nip(1) s(het)

number of level 1 units = 99

Condition Number = 16.449916

gllamm model

log likelihood = -383.39585

ages Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons 30.47475 1.169045 26.07 0.000 28.18346 32.76603

Variance at level 1
------------------------------------------------------------------------------

135.29986 (19.230685)

http://www.bepress.com/ucbbiostat/paper160



5.1. A SIMPLE FINITE MIXTURE MODEL 53

The mean is estimated as 30.47, the variance as 135.30 and the log-likelihood is −383.40.
We can now use the gateaux() option, gateaux(min max num), to introduce another mass.

Setting all the parameters equal to the estimates of the one class solution (obtained using e(b)),
a very small new mass will be moved from min to max in num steps. If the log-likelihood increases
at any of these locations, a new mass is introduced at the location with the largest increase in
log-likelihood and all parameters are updated to maximize the log-likelihood for the two class
solution. We need to pass the current log-likelihood to gllamm using the lf0() option. The
syntax is lf0(k ll) where k is the number of parameters of the current solution and ll is the
log-likelihood of the current solution:

. matrix a=e(b)

. local ll=e(ll)

. local k=e(k)

.

. gllamm ages, i(id) ip(f) nip(2) s(het) lf0(‘k’ ‘ll’) /*
> */ gateaux(-20 20 100) from(a)
...............................................................................
> .....................
maximum gateaux derivative is .04365856

Iteration 0: log likelihood = -382.93311 (not concave)
Iteration 1: log likelihood = -382.74883 (not concave)
Iteration 2: log likelihood = -380.90691
Iteration 3: log likelihood = -375.43929
Iteration 4: log likelihood = -375.27624
Iteration 5: log likelihood = -373.71499
Iteration 6: log likelihood = -373.6975
Iteration 7: log likelihood = -373.69749

number of level 1 units = 99
number of level 2 units = 99

Condition Number = 23.174022

gllamm model Number of obs = 99
LR chi2(2) = 19.40

Log likelihood = -373.69749 Prob > chi2 = 0.0001

ages Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons 30.47475 1.169045 26.07 0.000 28.18346 32.76603

Variance at level 1
------------------------------------------------------------------------------

44.646396 (7.853091)

Probabilities and locations of random effects
------------------------------------------------------------------------------

***level 2 (id)

loc1: 16.426, -5.5187
var(1): 90.653482

prob: 0.2515, 0.7485
------------------------------------------------------------------------------

We therefore have a mixture component (or latent class) with a small mixing probability
(or prior probability) estimated as 0.25 whose mean age of onset is 16.43 years greater than
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the overall average age of onset of 30.47 and a larger class (estimated prior probability of 0.75)
whose age of onset is -5.52 years lower than the overall average. In gllamm the variance must
be assumed to be equal in both classes and is estimated as 44.65. (Allowing different variances
in the classes as in Rabe-Hesketh and Everitt (2004), hardly increases the log-likelihood, so for
these data the assumption of equal variances is appropriate.)

To see how the model is parameterized and obtain standard errors for all parameters, use
the allc option:

. gllamm, allc

>>> same output as without allc option (omitted)

gllamm model Number of obs = 99
LR chi2(2) = 19.40

Log likelihood = -373.69749 Prob > chi2 = 0.0001

ages Coef. Std. Err. z P>|z| [95% Conf. Interval]

ages
_cons 30.47475 1.169045 26.07 0.000 28.18346 32.76603

lns1
cons 1.899387 .0879476 21.60 0.000 1.727013 2.071761

z2_1_1
_cons 16.42646 1.852971 8.86 0.000 12.7947 20.05822

p2_1
_cons -1.090743 .2742902 -3.98 0.000 -1.628342 -.5531437

Here, p2 1 is the log odds for class 1 so that the estimated probability is

π̂1 =
exp(p2 1)

1 + exp(p2 1)
(5.5)

and z2 1 1 is the location for class 1

ê1 = µ1 − µ = z2 1 1. (5.6)

The location for class 2 is estimated as

ê2 = µ2 − µ = ê1π̂1/(1− π̂1) (5.7)

so that the mean of the discrete probability distribution of the latent variable is zero

ê1π̂1 + ê2(1− π̂1) = 0 (5.8)

We can obtain estimates of the posterior probabilities using the gllapred command:
. gllapred prob, p
(probabilities will be stored in prob1 prob2)
prior probabilities

prob: 0.2515, 0.7485

locations for random effect 1
loc: 16.43, -5.519

log-likelihood:-373.69749
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Figure 5.1: Boxplots of ages of onset by assigned latent class

The output reminds us what the prior probabilities were and gives us the log-likelihood which
should be identical to that given in the gllamm output. The posterior probabilities are stored
in the variables prob1 and prob2.

We can assign individuals to the class with the greatest or modal posterior probability and
produce boxplots of the ages within each class:

gen class = prob2>prob1
sort class
graph box ages, medtype(line) by(class) ///
marker(1, mlabel(id)) marker(1, mlabel(id))

giving the graph in Figure 5.1.
We could also use the ip(fn) option to estimate the means of the two latent classes directly

rather than their deviation from a common mean. This is an example of a model with no fixed
effects. For the one class solution, use:

. gllamm ages, nocons i(id) ip(fn) nip(1) s(het)

Iteration 0: log likelihood = -411821.02 (not concave)
Iteration 1: log likelihood = -400.19611
Iteration 2: log likelihood = -389.57669
Iteration 3: log likelihood = -383.41147
Iteration 4: log likelihood = -383.39585
Iteration 5: log likelihood = -383.39585

number of level 1 units = 99
number of level 2 units = 99

Condition Number = 16.449916

gllamm model

log likelihood = -383.39585
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No fixed effects

Variance at level 1
------------------------------------------------------------------------------

135.29988 (19.230687)

Probabilities and locations of random effects
------------------------------------------------------------------------------

***level 2 (id)

loc1: 30.475
var(1): 0

prob: 1
------------------------------------------------------------------------------

Then introduce another point using the gateaux option:

. matrix a=e(b)

. local ll=e(ll)

. local k=e(k)

. gllamm ages, nocons i(id) ip(fn) nip(2) s(het) lf0(‘k’ ‘ll’) /*
> */ gateaux(20 60 100) from(a)
...............................................................................
> .....................
maximum gateaux derivative is .04286811

Iteration 0: log likelihood = -383.27324
Iteration 1: log likelihood = -382.49403 (not concave)
Iteration 2: log likelihood = -379.58411
Iteration 3: log likelihood = -375.05356
Iteration 4: log likelihood = -373.70929
Iteration 5: log likelihood = -373.6975
Iteration 6: log likelihood = -373.69749

number of level 1 units = 99
number of level 2 units = 99

Condition Number = 20.454284

gllamm model

log likelihood = -373.69749

No fixed effects

Variance at level 1
------------------------------------------------------------------------------

44.646404 (7.8530935)

Probabilities and locations of random effects
------------------------------------------------------------------------------

***level 2 (id)

loc1: 46.901, 24.956
var(1): 90.653454

prob: 0.2515, 0.7485
------------------------------------------------------------------------------

http://www.bepress.com/ucbbiostat/paper160



5.2. LINEAR MIXED MODEL WITH DISCRETE RANDOM EFFECTS 57

5.2 Linear mixed model with discrete random effects

In this section we will return to the Junior School Project data analyzed in Section 3.2. Maths
results are available on pupils from different schools in the third and fifth years. We will fit
a linear regression model regressing the year 5 results, math5, on the (mean centered) year 3
results, math3, with a random intercept and a random coefficient of math3 for schools. The
model can be written as

νij = β0 + β1xij + η0j + η1jxij (5.9)

where i indexes the pupils and j the schools, xij is the year 3 result and η1j is the corresponding
random coefficient. Instead of assuming a bivariate normal distribution of the random effects
as in Section 3.2, we now assume a bivariate discrete distribution, i.e., we assume that the
random effects (η0j , η1j) take on a number of discrete values (e0r, e1r), with probabilities πr,
r = 1, . . . , R. This corresponds to assuming that the population falls into a finite number of
latent classes or types or can be approximated in this way. The model is also known as a
mixture regression model. When the maximum number of classes is used (so that the likelihood
cannot be increased by adding more classes), the estimates may be interpreted as non-parametric
maximum likelihood estimates.

5.2.1 Model fitting

The data are in jsp.dta. The gllamm command is identical to that used in the continuous case
except that the ip(f) option is specified. Initially we fit a model with just two points:

. use jsp, clear

. gen cons = 1

. eq sch_c: cons

. eq sch_m3: math3

. gllamm math5 math3, i(school) nrf(2) eqs(sch_c sch_m3) nip(2) weight(wt) /*
> */ ip(f)

Iteration 0: log likelihood = -2972.4441 (not concave)
Iteration 1: log likelihood = -2844.1229 (not concave)
Iteration 2: log likelihood = -2800.2744 (not concave)
Iteration 3: log likelihood = -2767.3842
Iteration 4: log likelihood = -2766.6151 (not concave)
Iteration 5: log likelihood = -2761.2258
Iteration 6: log likelihood = -2760.7652
Iteration 7: log likelihood = -2760.7036
Iteration 8: log likelihood = -2760.7033

number of level 1 units = 887
number of level 2 units = 48

Condition Number = 25.665755

gllamm model

log likelihood = -2760.7033

math5 Coef. Std. Err. z P>|z| [95% Conf. Interval]

math3 .5921935 .0397523 14.90 0.000 .5142805 .6701065
_cons 30.71605 .3245171 94.65 0.000 30.08001 31.35209
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Variance at level 1
------------------------------------------------------------------------------

28.171487 (1.3495007)

Probabilities and locations of random effects
------------------------------------------------------------------------------

***level 2 (school)

loc1: -1.2586, 2.5874
var(1): 3.2566258

loc2: .11034, -.22684
cov(2,1): -.2855053

var(2): .02502998
prob: 0.6727, 0.3273

------------------------------------------------------------------------------

The coordinates of the two points are (intercept, slope) = (-1.2586,0.11034) and (2.5874,-0.22684)
with probabilities of 0.6727 and 0.3273 respectively. The output also gives the variances and
covariance of the discrete random effects based on the bivariate discrete probability distribution.

We can use the Gateaux derivative method to check if introduction of a further mass-point
yields a larger maximized likelihood. Keeping all other parameters at their current values, we
need to move a small mass through a fine 2-D grid of values of the random effects and check
whether this increases the likelihood anywhere. We can do this using the gateaux() option
to specify the limits and number of steps for the search in each dimension. In addition, we
have to pass the number of parameters and log-likelihood of the current model to gllamm using
the lf0() option. After finding the maximum Gateaux derivative point, the estimation of the
extended model automatically starts if the Gateaux derivative is positive.

. matrix a=e(b)

. local ll=e(ll)

. local k=e(k)

. gllamm math5 math3, i(school) nrf(2) eqs(sch_c sch_m3) nip(3) weight(wt) /*
> */ ip(f) from(a) gateaux(-10 10 30) lf0(‘k’ ‘ll’)
...............................................................................
> .............................................................................
> .............................................................................
> .............................................................................
> .............................................................................
> .............................................................................
> .............................................................................
> .............................................................................
> .............................................................................
> .............................................................................
> .............................................................................
> ...................................................
maximum gateaux derivative is .85177794

Iteration 0: log likelihood = -2758.317 (not concave)
Iteration 1: log likelihood = -2758.2569
Iteration 2: log likelihood = -2757.502
Iteration 3: log likelihood = -2757.4439
Iteration 4: log likelihood = -2757.4437

number of level 1 units = 887
number of level 2 units = 48

Condition Number = 60.948278
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gllamm model Number of obs = 887
LR chi2(3) = 6.52

Log likelihood = -2757.4437 Prob > chi2 = 0.0889

math5 Coef. Std. Err. z P>|z| [95% Conf. Interval]

math3 .6015936 .0452026 13.31 0.000 .5129981 .6901891
_cons 30.70774 .3272301 93.84 0.000 30.06638 31.3491

Variance at level 1
------------------------------------------------------------------------------

27.690161 (1.3291571)

Probabilities and locations of random effects
------------------------------------------------------------------------------

***level 2 (school)

loc1: -1.1642, -2.6896, 2.6625
var(1): 3.33719

loc2: .07502, .91947, -.24032
cov(2,1): -.33125196

var(2): .04652579
prob: 0.6551, 0.0291, 0.3158

------------------------------------------------------------------------------

The likelihood ratio test produced at the top of the output is not strictly valid for comparing
solutions with different numbers of masses but is printed whenever the lf0() option is used. A
very small mass of 0.0291 has been placed at (-2.6896,0.91947) without affecting the other masses
substantially. Note that the condition number is quite large. This seems to happen frequently
when a larger number of free masses are estimated. We now use the Gateaux derivative again
to see if a fourth point can be introduced:

. matrix a=e(b)

. local ll=e(ll)

. local k=e(k)

. gllamm math5 math3, i(school) nrf(2) eqs(sch_c sch_m3) nip(4) w(wt) ip(f) /*
> */ from(a) gateaux(-10 10 30) lf0(‘k’ ‘ll’)
...............................................................................
> .............................................................................
> .............................................................................
> .............................................................................
> .............................................................................
> .............................................................................
> .............................................................................
> .............................................................................
> .............................................................................
> .............................................................................
> .............................................................................
> ...................................................
maximum gateaux derivative is .11892368

Iteration 0: log likelihood = -2756.919 (not concave)
Iteration 1: log likelihood = -2756.8514 (not concave)
Iteration 2: log likelihood = -2753.7822
Iteration 3: log likelihood = -2752.2336
Iteration 4: log likelihood = -2751.4414
Iteration 5: log likelihood = -2751.1913
Iteration 6: log likelihood = -2751.1612
Iteration 7: log likelihood = -2751.1611
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number of level 1 units = 887
number of level 2 units = 48

Condition Number = 55.416924

gllamm model Number of obs = 887
LR chi2(3) = 12.57

Log likelihood = -2751.1611 Prob > chi2 = 0.0057

math5 Coef. Std. Err. z P>|z| [95% Conf. Interval]

math3 .6169153 .0457245 13.49 0.000 .5272968 .7065337
_cons 30.65181 .3611107 84.88 0.000 29.94405 31.35958

Variance at level 1
------------------------------------------------------------------------------

26.644568 (1.2922175)

Probabilities and locations of random effects
------------------------------------------------------------------------------

***level 2 (school)

loc1: -.34235, -2.6291, -3.3806, 2.9257
var(1): 4.4624483

loc2: .06313, .88986, .08057, -.27122
cov(2,1): -.34745305

var(2): .04844958
prob: 0.5334, 0.0316, 0.1597, 0.2753

------------------------------------------------------------------------------

The variances and covariance of the discrete random effects are now quite close to the estimates
of the model assuming continuous random effects in Section 3.2. Note that a point with a
substantial probability of 0.1597 has now been included. The previous three point solution may
represent a local maximum of the log-likelihood since it seems likely that a better three point
solution can be achieved by using as starting values the above estimates excluding the second
point with the very low probability of 0.0316. Before doing this, we save the current estimates
using

estimates store mod1

We can now re-estimate the three point model as follows:

. matrix a=e(b)

. matrix list a

a[1,12]
math5: math5: lns1: z2_1_1: z2_2_1: p2_1: z2_1_2:
math3 _cons _cons cons math3 _cons cons

y1 .61691526 30.651812 1.6412926 -.3423471 .0631317 .66136261 -2.6290895

z2_2_2: p2_2: z2_1_3: z2_2_3: p2_3:
math3 _cons cons math3 _cons

y1 .88986167 -2.1642929 -3.3805714 .08057202 -.54481331

. matrix b = a[1,1..6],a[1,10..12]

. gllamm math5 math3, i(school) nrf(2) eqs(sch_c sch_m3) nip(3) from(b) copy /*
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> */ weight(wt) ip(f)

Iteration 0: log likelihood = -2755.6625 (not concave)
Iteration 1: log likelihood = -2753.5
Iteration 2: log likelihood = -2753.4706
Iteration 3: log likelihood = -2753.4705

number of level 1 units = 887
number of level 2 units = 48

Condition Number = 37.366097

gllamm model

log likelihood = -2753.4705

math5 Coef. Std. Err. z P>|z| [95% Conf. Interval]

math3 .6071674 .040136 15.13 0.000 .5285023 .6858326
_cons 30.6246 .3660524 83.66 0.000 29.90715 31.34205

Variance at level 1
------------------------------------------------------------------------------

27.002646 (1.3044171)

Probabilities and locations of random effects
------------------------------------------------------------------------------

***level 2 (school)

loc1: -.32603, -3.4409, 2.9461
var(1): 4.6435916

loc2: .07632, .16678, -.26104
cov(2,1): -.33181452

var(2): .02708821
prob: 0.539, 0.1851, 0.2759

------------------------------------------------------------------------------

giving a higher maximized likelihood than previously. Here we used the copy option to make
gllamm ignore the equation and column names of the matrix b.

We now restore the estimates of the four class model using

estimates restore mod1

We can use gllapred to estimate the posterior means and probabilities of the random effects.
First we estimate the posterior probabilities using the p option:

. gllapred z, p
(probabilities will be stored in z1 z2 z3 z4)
prior probabilities

prob: 0.5334, 0.0316, 0.1597, 0.2753

locations for random effect 1
loc: -.3423, -2.629, -3.381, 2.926

locations for random effect 2
loc: .0631, .8899, .0806, -.2712

log-likelihood:-2751.1611

the output reminds us what the prior probabilities of class membership are and gives us the
log-likelihood of the model which should be identical to that obtained previously using gllamm.
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The p option causes gllapred to compute the four posterior probabilities for each observation
and store them in z1 to z4.

First, we calculate the greatest posterior probability using

. egen double maxp = rmax(z1 z2 z3 z4)

. summ maxp

Variable Obs Mean Std. Dev. Min Max

maxp 848 .8940588 .1446455 .5110531 .9998172

We can now classify the schools into four latent groups (or classes) by allocating them to the
group with the largest posterior probability. For each school, there is a latent group to which
the school belongs with a posterior probability of at least 51% (the minimum of maxp).

gen class = 1 if z1>=maxp
replace class = 2 if z2>=maxp
replace class = 3 if z3>=maxp
replace class = 4 if z4>=maxp

The posterior means are obtained in the same way as for continuous random effects:

. gllapred z, u

(means and standard deviations will be stored in zm1 zs1 zm2 zs2)

giving posterior means stored in zm1 and zm2 and posterior standard deviations in zs1 and zs2:

. list school pupil zm1 zm2 zs1 zs2 in 87/95, clean

school pupil zm1 zm2 zs1 zs2
87. 5 21 -.28264137 .05583627 .52128051 .04961075
88. 5 22 -.28264137 .05583627 .52128051 .04961075
89. 5 23 -.28264137 .05583627 .52128051 .04961075
90. 5 24 -.28264137 .05583627 .52128051 .04961075
91. 5 25 -.28264137 .05583627 .52128051 .04961075
92. 6 1 .59826102 -.03395675 1.4983686 .15183621
93. 6 2 .59826102 -.03395675 1.4983686 .15183621
94. 6 3 .59826102 -.03395675 1.4983686 .15183621
95. 6 4 .59826102 -.03395675 1.4983686 .15183621

We can estimate the same model assuming normally distributed random effects (Section 3.2)
and obtain the corresponding posterior means:

gllamm math5 math3, i(school) nrf(2) eqs(sch_c sch_m3) nip(8) weight(wt) adapt
gllapred u, u

giving posterior means um1 and um2. We can tabulate the mean posterior means from the
continuous model for each latent group of the discrete model:
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. sort school pupil

. qui by school: gen f=_n==1

. table class if f==1, contents(mean um1 mean um2 freq)

class mean(um1) mean(um2) Freq.

1 -.2103802 .02200343 28
2 -3.6379418 .33661802 1
3 -2.707364 .20038459 7
4 2.3733456 -.19628394 12

The covariance matrices of the two sets of posterior means are

. corr zm1 zm2 if f==1, cov
(obs=48)

zm1 zm2

zm1 3.56472
zm2 -.280941 .037932

. corr um1 um2 if f==1, cov
(obs=48)

um1 um2

um1 3.43442
um2 -.277808 .023016

These are remarkably similar as are the model estimates of the covariance matrices of the random
effects. Figure 5.2 and 5.3 show scatterplots of the two estimates of the random intercepts and
of the two estimates of the random slopes, respectively. These figures were created using the
commands

twoway (scatter um1 zm1 if f==1), ytitle(Quadrature) xtitle(Free masses)

twoway (scatter um2 zm2 if f==1), ytitle(Quadrature) xtitle(Free masses)

An example of an exploratory latent class model for rankings is given in Section 9.4. Further
examples of latent class models using gllamm are available at
http://fmwww.bc.edu/repec/nasug2003/lclass.pdf.
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Figure 5.2: Posterior means of random intercept: quadrature solution versus discrete solution
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Figure 5.3: Posterior means of random slope: quadrature solution versus discrete solution
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Chapter 6

Mixed response models

The models we have discussed so far have had responses of a single type, dichotomous or con-
tinuous. A single link and family were specified. In this chapter we discuss models where
the responses are of mixed types, for example dichotomous and continuous. For such models,
different links and families are specified for different responses.

6.1 Logistic regression with covariate measurement error

An epidemiological dataset with variables on diet and coronary heart disease (CHD) (Morris et al.,
1977) will be used to illustrate how the program may be used for logistic regression with errors
in covariates. The aim is to estimate the relationship between fiber intake (exposure) and risk
of CHD (disease) where fiber is subject to measurement error and has been measured twice on
a subset of subjects.

We therefore have several responses yij per subject j, one or two of the fallible measure of
exposure y1j , y2j and disease status y3j . If we wish to model the relationship between exposure
and disease status whilst correcting for measurement error in exposure, we need to specify a
measurement model for exposure. We assume that that the exposure measurements y1j and y2j

are independently normally distributed conditional on true exposure with means µij given by

νij = µij = βi + ηjλi, i = 1, 2
= β1 + ηj (6.1)

where the mean exposure on both occasions is assumed to be the same (β1 = β2), ηj is a latent
variable representing the difference between subject jth’s exposure and the mean exposure,
and we assume that the scale of both measurements is the same by setting λ1 = λ2 = 1. By
constraining the factor loadings to 1, we ensure that the scale of ηj is the same as that of the
exposure measurements.

We now specify a disease model by assuming that y3j is binomial with the logit of the
probability π3j given by

ν3j = logit(π3j) = β3 + ηjλ3. (6.2)

λ3 is the log odds ratio of interest – the estimated log of the ratio of the odds of having the
disease when the true exposure increases by one unit.

65
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66 CHAPTER 6. MIXED RESPONSE MODELS

These models can be written as a GLLAMM model by using appropriate dummy variables,

νij = β1z1i + β3z3i + ηj(z1i + λ3z3i)
= βi + ηjλi (6.3)

where z1i = 1 if i = 1 or i = 2 and 0 otherwise and z3i = 1 if i = 3 and 0 otherwise. Note that
we are constraining the factor loadings of responses 1 and 2 to be equal by simply using a single
dummy variable z1i equal to the sum of the individual dummy variables for responses 1 and 2.

There may be other covariates not assumed to be subject to measurement error. We can
add another covariate, xj , to the disease model

ν3j = logit(π3j) = β3 + β4xj + ηjλ3 (6.4)

thus assuming a direct effect of the covariate on the risk of disease. This model is shown as a
path diagram below:
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(In the diagram, circles represent latent variables and rectangles observed variables. Arrows
between variables represent linear relations and the little arrows pointing to the rectangles
represent residual errors, or in the case of y3, the binomial variability.)

However, it may be that the covariate has an indirect effect on disease by affecting the
exposure:

ηj = γxj + ζj , (6.5)

where ζj is a residual error term or disturbance. The measurement model now is

νij = βi + γxj + ζj , (6.6)

and the disease model is
ν3j = β3 + γλ3xj + ζjλ3. (6.7)

The coefficient of xj (representing the indirect effect of xj on the risk of disease), γλ3, in the
disease model is the product of the coefficient of xj in the measurement model and the log odds
ratio λ3 - this represents a nonlinear constraint for the parameters. In gllamm, this model can
therefore only be estimated by specifying the regression of ηj on xj in (6.5) directly. The model
is shown as a path diagram below:
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If there are both direct and indirect effects of x on the risk, the disease model becomes

ν3j = β3 + (β4 + γλ3)xj + ζjλ3. (6.8)

In this model, we can estimate the coefficient of x freely, giving an estimate of β4 + γλ3 with
its standard error. Alternatively, we can explicitly specify the regression in (6.5), to obtain
estimates of all the individual parameters and their standard errors. This model is shown as a
path diagram below:
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6.1.1 Data preparation

The data are in diet.dta. The variable r contains the logarithm of the dietary fiber measurements
and chd is the binary disease indicator. Those subjects who had two fiber measurements have
two lines of data; the variable t indicates whether r corresponds to the first measurement of
fiber (t=1) or the second measurement (t=2). The men had two types of occupation; occ=1:
bus staff (drivers and conductors) and occ=0: bank staff.

. use diet, clear

. sort id t

. list id t r chd occ in 210/220, clean

id t r chd occ
210. 214 1 2.85 0 0
211. 215 1 2.76 0 0
212. 216 1 2.59 0 0
213. 217 1 3.06 0 0
214. 218 1 3.14 0 0
215. 219 1 2.75 0 0
216. 219 2 2.7 0 0
217. 220 1 2.6 0 0
218. 220 2 2.69 0 0
219. 221 1 2.77 0 0
220. 221 2 2.85 0 0
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Note that, for instance, subject 214 had only one measurement of fiber whereas subject 219 had
two. We need to stack the variables r and chd into a single response variable, resp and create
two dummy variables, diet for the fiber measurements and chd for disease status (CHD). We
will use the reshape command but first we must replace one value of chd by a missing value
for those subjects who have two lines of data:

replace chd=. if t==2
rename r resp1
rename chd resp2
gen n=_n
reshape long resp, i(n) j(var)
drop if resp==.
drop n
sort id t var
tab var, gen(i)
rename i1 diet
rename i2 chd

The variable resp now contains the responses for CHD and log fiber and the variables diet
and chd indicate whether the observation in resp is log fiber or whether it is CHD status,
respectively. The variable var is 1 for diet measurements and 2 for CHD measurements.

We will include occupation as a covariate in the model in the three ways outlined in the
previous subsection. To do this, we must create interactions between occ and the dummy
variables diet and chd:

gen occd=occ*diet
gen occc=occ*chd

The data now look like this:

. sort id var t

. list id resp diet var occc occd in 419/431, nolab clean

id resp diet var occc occd
419. 214 2.85 1 1 0 0
420. 214 0 0 2 0 0
421. 215 2.76 1 1 0 0
422. 215 0 0 2 0 0
423. 216 2.59 1 1 0 0
424. 216 0 0 2 0 0
425. 217 3.06 1 1 0 0
426. 217 0 0 2 0 0
427. 218 3.14 1 1 0 0
428. 218 0 0 2 0 0
429. 219 2.75 1 1 0 0
430. 219 2.7 1 1 0 0
431. 219 0 0 2 0 0

Note that unit 219 has two responses for diet. We have a single dummy variable for diet, the sum
of dummy variables for the first and second measurements of diet, instead of separate dummy
variables for the measurements of diet. Using the single variable for diet in specifying model
implies that the two diet measurements are treated as interchangeable. Using such sums of
dummy variables is a convenient way to impose equality constraints.
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6.1.2 Parameter estimation

We now specify a factor model where ηj is the factor with mixed responses, continuous fiber
intake and dichotomous CHD status. We must specify an equation to define the variables
whose linear combination (z′λ in equation (1.2)) multiplies the latent variable, here the dummy
variables diet and chd. By specifying diet first, we ensure that the loading for diet (in the
measurement model) is set to 1.

eq id: diet chd

Direct and indirect effects of occupation on CHD

We can estimate the model with direct and indirect effects of occupation on CHD by including
occupation in the measurement and disease models. We will specify an identity link for the
responses that are fiber measurements (var=1) and a logit link for the heart disease responses
(var=2). This is done by simply listing both links in the link() option and specifying the ‘key’
to which link applies to which observation, i.e. var, in the lv() option. Similarly, we specify
two families in the family() option and specify var as the key to which family applies to which
observation in the fv() option.

. gllamm resp diet chd occc occd, /*
> */ nocons i(id) eqs(id) link(ident logit) /*
> */ family(gauss binom) lv(var) fv(var) /*
> */ adapt

Running adaptive quadrature
Iteration 0: log likelihood = -318.10383
Iteration 1: log likelihood = -207.50866
Iteration 2: log likelihood = -196.60196
Iteration 3: log likelihood = -194.15238
Iteration 4: log likelihood = -187.15595
Iteration 5: log likelihood = -186.93098
Iteration 6: log likelihood = -186.93042
Iteration 7: log likelihood = -186.93042

Adaptive quadrature has converged, running Newton-Raphson
Iteration 0: log likelihood = -186.93042
Iteration 1: log likelihood = -186.93042

number of level 1 units = 742
number of level 2 units = 333

Condition Number = 56.157964

gllamm model

log likelihood = -186.93042

resp Coef. Std. Err. z P>|z| [95% Conf. Interval]

diet 2.863709 .0238868 119.89 0.000 2.816892 2.910526
chd -1.977035 .2571137 -7.69 0.000 -2.480968 -1.473101
occc .0471733 .3328395 0.14 0.887 -.6051802 .6995268
occd -.1208468 .0327979 -3.68 0.000 -.1851296 -.0565641

Variance at level 1
------------------------------------------------------------------------------

.02173263 (.00352693)
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Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id)

var(1): .07019984 (.00758013)

loadings for random effect 1
diet: 1 (fixed)
chd: -1.9570825 (.72619423)

------------------------------------------------------------------------------

The measurement error variance of log-fiber is 0.02 and the residual variance of latent exposure
is 0.07. The odds ratio of CHD for unit increase in true fiber intake is given by

. disp exp(-1.9570825)

.14126998

The effect of occupation on diet is estimated as −0.12 with bus staff eating less fiber than bank
staff. While this implies that bank staff should be less at risk of CHD than bus staff, the estimate
of the total (direct and indirect) effect of occupation on heart disease, β4 + γλ3, is positive but
not significant (estimate=0.05, se=0.33).

The model has the structure of a unidimensional factor model with covariates and is the-
oretically identified. However, the condition number is 57.3. The standard errors do not look
very large but we could check if there are large correlations between the parameter estimates:

. matrix v=e(V)

. matrix c=corr(v)

. matrix list c

symmetric c[7,7]
resp: resp: resp: resp: lns1: id1_1l:
diet chd occc occd _cons chd

resp:diet 1
resp:chd -.1481915 1
resp:occc .1147171 -.71970615 1
resp:occd -.72830275 .10791228 -.15269819 1

lns1:_cons -.02022821 -.01695725 .0023973 .0147321 1
id1_1l:chd .00302364 .26864422 -.01220304 -.00226067 -.11648136 1
id1_1:diet .01722283 .00907847 -.0029056 -.01253225 -.40845601 .09658715

id1_1:
diet

id1_1:diet 1

The coefficients of occc and chd are quite highly negatively correlated as are the coefficients
of occd and diet. After a bit of experimentation, we found that the condition number decreases
to 15.6 if the fiber measurements are multiplied by 2. The parameter estimates change as ex-
pected (e.g. the log odds and its standard error halve), confirming that the parameter estimates
can be trusted.

We can fit the same model but estimate the parameter β4 directly by specifying the regression
of ηj on occupation using the geqs() option. We first define an equation for this regression:

eq f1: occ
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The second character of the equation name must be a number to indicate which latent variable
is to be regressed on the covariates on the right hand side of the equation. Here there is only
one latent variable and the second character must be a ‘1’. We must omit occupation from the
measurement model:

. gllamm resp diet chd occc, /*
> */ nocons i(id) eqs(id) link(ident logit) /*
> */ family(gauss binom) lv(var) fv(var) /*
> */ adapt geqs(f1)

Running adaptive quadrature
Iteration 0: log likelihood = -321.69211
Iteration 1: log likelihood = -208.17433
Iteration 2: log likelihood = -193.47061
Iteration 3: log likelihood = -187.63514
Iteration 4: log likelihood = -186.93259
Iteration 5: log likelihood = -186.93042
Iteration 6: log likelihood = -186.93042

Adaptive quadrature has converged, running Newton-Raphson
Iteration 0: log likelihood = -186.93042
Iteration 1: log likelihood = -186.93042 (backed up)

number of level 1 units = 742
number of level 2 units = 333

Condition Number = 56.526515

gllamm model

log likelihood = -186.93042

resp Coef. Std. Err. z P>|z| [95% Conf. Interval]

diet 2.863724 .0238865 119.89 0.000 2.816907 2.910541
chd -1.977149 .2571253 -7.69 0.000 -2.481105 -1.473193
occc -.1893826 .3396352 -0.56 0.577 -.8550554 .4762901

Variance at level 1
------------------------------------------------------------------------------

.02173221 (.00352686)

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id)

var(1): .07019764 (.00757977)

loadings for random effect 1
diet: 1 (fixed)
chd: -1.9568884 (.72622195)

Regressions of latent variables on covariates
------------------------------------------------------------------------------

random effect 1 has 1 covariates:
occ: -.1208696 (.03279744)

------------------------------------------------------------------------------

The estimate of the direct effect of occupation on diet β̂4 is negative though not significant.
For the same fiber intake, bus staff are at reduced risk of heart disease; combined with the
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increased risk due to lower fiber intake, the total effect of occupation on diet (β4 + γλ3) is
negligible as we saw using the previous parametrization.

Direct effect of diet on heart disease

By omitting the geqs() option, we can estimate the model with no effect of occupation on fiber
intake. Starting from the previous parameter estimates, we can use the skip option to drop this
term.

. matrix a=e(b)

. gllamm resp diet chd occc, /*
> */ nocons i(id) eqs(id) link(ident logit) /*
> */ family(gauss binom) lv(var) fv(var) /*
> */ adapt from(a) skip

Running adaptive quadrature
Iteration 0: log likelihood = -201.424
Iteration 1: log likelihood = -193.77342
Iteration 2: log likelihood = -193.59706
Iteration 3: log likelihood = -193.59671
Iteration 4: log likelihood = -193.5967

Adaptive quadrature has converged, running Newton-Raphson
Iteration 0: log likelihood = -193.5967
Iteration 1: log likelihood = -193.5967

number of level 1 units = 742
number of level 2 units = 333

Condition Number = 54.790434

gllamm model

log likelihood = -193.5967

resp Coef. Std. Err. z P>|z| [95% Conf. Interval]

diet 2.799603 .016685 167.79 0.000 2.766901 2.832305
chd -1.874168 .2480817 -7.55 0.000 -2.360399 -1.387937
occc -.1408247 .3353358 -0.42 0.675 -.7980707 .5164213

Variance at level 1
------------------------------------------------------------------------------

.02188091 (.00357804)

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id)

var(1): .07356131 (.00787928)

loadings for random effect 1
diet: 1 (fixed)
chd: -1.9413481 (.72028026)

------------------------------------------------------------------------------

As before, there is no significant direct effect of occupation on CHD.

http://www.bepress.com/ucbbiostat/paper160



6.1. LOGISTIC REGRESSION WITH COVARIATE MEASUREMENT ERROR 73

Indirect effect of diet on heart disease

We now omit the direct effect of occupation of heart disease and retain the effect of occupation
on fiber intake.

. gllamm resp diet chd, /*
> */ nocons i(id) eqs(id) link(ident logit) /*
> */ family(gauss binom) lv(var) fv(var) /*
> */ adapt from(a) geqs(f1) skip

Running adaptive quadrature
Iteration 0: log likelihood = -187.31544
Iteration 1: log likelihood = -187.0855
Iteration 2: log likelihood = -187.08527
Iteration 3: log likelihood = -187.08525

Adaptive quadrature has converged, running Newton-Raphson
Iteration 0: log likelihood = -187.08525
Iteration 1: log likelihood = -187.08524
Iteration 2: log likelihood = -187.08523

number of level 1 units = 742
number of level 2 units = 333

Condition Number = 54.728084

gllamm model

log likelihood = -187.08523

resp Coef. Std. Err. z P>|z| [95% Conf. Interval]

diet 2.8634 .0238872 119.87 0.000 2.816582 2.910218
chd -2.068703 .2015013 -10.27 0.000 -2.463638 -1.673768

Variance at level 1
------------------------------------------------------------------------------

.02168813 (.00351046)

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id)

var(1): .07026323 (.00757039)

loadings for random effect 1
diet: 1 (fixed)
chd: -1.8619302 (.70226499)

Regressions of latent variables on covariates
------------------------------------------------------------------------------

random effect 1 has 1 covariates:
occ: -.12017981 (.03278624)

------------------------------------------------------------------------------

Rabe-Hesketh, Pickles and Skrondal (2003a) estimated a semi-parametric mixture model
for this dataset using gllamm. The approach is also often referred to as nonparametric max-
imum likelihood estimation. Rabe-Hesketh, Skrondal and Pickles (2003b) discuss estimation
of these models using gllamm and introduce a gllamm wrapper called cme. The wrapper for
generalized linear models with covariate measurement error accepts a simple syntax, performs
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all the required data manipulation, calls gllamm and then produces user-friendly output; see
http://www.gllamm.org/wrappers.html. The wrapper can also be used to print out all the
commands required for the data manipulation and for estimating the model in gllamm.

Worked examples for several other mixed response models from Chapter 14 of Skrondal and
Rabe-Hesketh (2004) are available at http://www.gllamm.org/examples.html#genlat
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Chapter 7

Continuous time to event or survival
data

7.1 Proportional hazards models for multiple event data

We assume that, conditional on the random effects, the hazards of any two units are proportional
and can be modeled as

hij(t) = h0(t) exp(νij) (7.1)

where t is time, h0(t) is the ‘baseline’ hazard and νij is the linear predictor of GLLAMMs. Here
we have used two subscripts, j for level 2 units (e.g. subjects) and i for level one units (e.g.
occasions), but higher level models can be defined in the same way. For two-level models, the
linear predictor will typically have the form

νij = x′ijβ + z(2)′
ij η

(2)
j , (7.2)

although factor models can be useful for structuring the covariance matrix in multivariate sur-
vival problems.

We will now consider the likelihood conditional on the random effects, i.e. we will ignore
that there are random effects in the linear predictor. If a level 1 unit ij was observed from time
t0 and failed or was censored at time t, where δij is 1 if the unit failed and 0 otherwise, the
unit’s contribution to the likelihood is

lij = hij(t)δij exp(−
∫ t

t0
hij(T )dT ) (7.3)

A piecewise exponential model assumes that the (conditional) baseline hazard function is
piecewise constant, with h0(T ) = hs for ts−1 ≤ T < ts, s = 1, 2, . . . S and interval lengths
ys = ts − ts−1. Let θij = exp(νij). Clayton (1988) shows that for a unit that was censored or
failed in the kth interval, the unit’s contribution to the likelihood (we are again ignoring the
random effects) becomes

lij = (hkθij)δij exp(−
k∑

s=1

hsθijys) (7.4)

and this can be rewritten as

lij =
k∏

i=1

(hsθij)dijs exp(−hsθijys) (7.5)
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where dijs = 0 for s < k and dijk = δij . This is proportional to the contribution to the
likelihood of k (conditionally) independent Poisson processes with means hsθijys. Therefore, by
representing each unit by a number of observations (or ‘risk sets’) equal to the number of time
intervals preceding that unit’s failure (or censoring) time, the model may be fitted by Poisson
regression using dijs as the response variable, log(ys) as an offset and dummies for the time
intervals as explanatory variables.

Therefore, one approach to multilevel survival modeling is to divide the follow-up period
into intervals over which the hazard can be assumed to be constant and use Poisson regression
with random effects. Another approach is to define as many intervals as there are unique failure
times. With unique failure times sorted in ascending order, each interval starts at (just after) a
unique failure time and ends at (just after) the next unique failure time. The units contributing
to the likelihood for given intervals then correspond to the ‘risk sets’ of Cox’s proportional
hazards model and no assumption of piecewise constant hazards is made. The Poisson model
with a separate constant for each intervals or risk sets yields identical estimates to the Cox’s
proportional hazards model. However, we will model the baseline hazard function as a smooth
function of time. The data manipulation for these methods is very easy using Stata’s stsplit
command (available from Stata 7).

7.2 Proportional hazards model with random coefficients

We will analyze the dataset published in Danahy et al. (1976) and previously analyzed by Pickles
and Crouchley (1994; 1995) and Skrondal and Rabe-Hesketh (2004). Here 21 subjects with
coronary heart disease participated in a randomized crossover trial comparing Isorbide dinitrate
(ISDN) with placebo. Before receiving the drug (or placebo), subjects were asked to exercise
on exercise bikes to the onset of angina pectoris or, if angina did not occur, to exhaustion. The
exercise time and outcome (angina or exhaustion) were recorded. The drug (or placebo) was
then taken orally and the exercise test was repeated one hour, three and five hours after drug
(or placebo) administration. We therefore have repeated “survival” times per subject pre and
post administration of both an active drug and a placebo.

Each subject repeated the experiment 4 times with a placebo and 4 times with ISDN. There
are therefore times to angina or exhaustion, ticj for occasions i, condition c (drug versus placebo)
within subjects j. The variable dicj is 1 if angina occurred and 0 otherwise. (We do not know
the order in which placebo and ISDN were given since this was not reported in the original
paper).

Since the subjects started each of the eight experiments at rest, so that the same processes
leading to angina or exhaustion can be assumed to begin at the start of each experiment, we
will assume that the hazard functions for the experiments are proportional. We will therefore
define the time scale as starting at 0 at the beginning of each experiment. This proportion-
ality assumption allows us express the treatment effect as a hazard ratio. This is achieved by
introducing a covariate xT equal to 1 after administration of the drug and equal to 0 otherwise,
i.e.

xT =

{
1 if i = 2, 3, 4
0 otherwise

(7.6)
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In addition, we will allow for a linear decline in the drug effect using another covariate xD

xD =

{
i− 3 if i = 2, 3, 4
0 otherwise

(7.7)

The form of the data is illustrated in the Table below:

Condition c = 1 Condition c = 2
occasion i Placebo ti1j ISDN ti2j xT xD

1 t11j t12j 0 0
2 t21j t22j 1 -1
3 t31j t32j 1 0
4 t41j t42j 1 1

Each subject repeated the four experiments in the placebo condition where there was no
censoring. We can include the time to Angina in the placebo condition ti0j as a covariate in the
model for the log hazard in the treatment condition at time ti1j . Including a random intercept
as well as random treatment effects, the model is

hij(t) = h0(t) exp(νij) (7.8)

ln(h0(t)) = α0 + α1ti1j + α2t
2
i1j + · · · (7.9)

νij = η0j + β1ti0j + (β2 + η1j)xTi1j + β3xDi1j , (7.10)

where (η0j , η1j) are assumed to have a bivariate normal distribution. Note that adjusting for
the baseline survival times is likely to reduce the random intercept variance.

The linear predictor in gllamm will include all the terms for the log baseline hazard in
equation (7.9) as well as the terms in equation (7.10).

7.2.1 Data preparation

First we read the data and list the first twelve observations:

. list subj occ secondp secondi unceni in 1/12, clean

subj occ secondp secondi unceni
1. 1 1 150 136 1
2. 1 2 172 445 0
3. 1 3 118 393 0
4. 1 4 143 226 1
5. 2 1 205 250 1
6. 2 2 287 306 1
7. 2 3 211 206 1
8. 2 4 207 224 1
9. 3 1 221 215 1
10. 3 2 244 232 1
11. 3 3 147 258 1
12. 3 4 250 268 1

The data are already in long form with each subject’s four time measurements (in seconds)
under the two conditions stored in secondp for the placebo condition and in secondi for the
ISDN condition. The variable unceni is 1 when the secondi refers to the time to angina and 0
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when secondi refers to the time to censoring. The subject and occasion indices are subj and
occ.

We will now construct the necessary covariates after keeping only those variables we need in
the data:

. keep subj occ secondp secondi unceni

. gen id=_n

. gen after=occ>1

. gen decl=cond(occ>1,occ-3,0)

. sort subj occ

. list id subj occ after decl in 1/12, clean

id subj occ after decl
1. 1 1 1 0 0
2. 2 1 2 1 -1
3. 3 1 3 1 0
4. 4 1 4 1 1
5. 5 2 1 0 0
6. 6 2 2 1 -1
7. 7 2 3 1 0
8. 8 2 4 1 1
9. 9 3 1 0 0
10. 10 3 2 1 -1
11. 11 3 3 1 0
12. 12 3 4 1 1

The coefficient of after will represent the treatment effect overall (post-treatment minus base-
line) and that of decl will represent the linear change in treatment effect over the three post-
treatment conditions. The variable id labels all combinations of subjects and occasions.

We will also standardize secondp which will be used as a covariate:

egen timep = std(secondp)
replace secondp=timep
drop timep

First we analyze the data using Stata’s Cox regression procedure so that we can check the
correctness of the expansion of the data to risk sets later on.

. stset secondi, failure(unceni) id(id)

id: id
failure event: unceni != 0 & unceni < .

obs. time interval: (secondi[_n-1], secondi]
exit on or before: failure

84 total obs.
0 exclusions

84 obs. remaining, representing
84 subjects
71 failures in single failure-per-subject data

27066 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0

last observed exit t = 743

. stcox secondp after decl

failure _d: unceni
analysis time _t: secondi

id: id

Iteration 0: log likelihood = -261.50926
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Iteration 1: log likelihood = -232.34921
Iteration 2: log likelihood = -229.30664
Iteration 3: log likelihood = -229.23612
Iteration 4: log likelihood = -229.23608
Refining estimates:
Iteration 0: log likelihood = -229.23608

Cox regression -- Breslow method for ties

No. of subjects = 84 Number of obs = 84
No. of failures = 71
Time at risk = 27066

LR chi2(3) = 64.55
Log likelihood = -229.23608 Prob > chi2 = 0.0000

_t Haz. Ratio Std. Err. z P>|z| [95% Conf. Interval]

secondp .3100321 .0604764 -6.00 0.000 .2115277 .4544082
after .3480569 .1000469 -3.67 0.000 .1981424 .6113968
decl 1.873714 .367028 3.21 0.001 1.276344 2.750672

We now expand the dataset to risk sets. For each unique failure time (or risk set), there
will be a record for each id with a failure time or censoring time greater than that failure time.
Having used stset above to specify the survival time structure of the data, we can use Stata’s
stsplit command to achieve this:

. stsplit, at(failures) riskset(RS)
(63 failure times)
(2847 observations (episodes) created)

. sort RS id

. list RS id secondi unceni in 2901/2911, clean

RS id secondi unceni
2901. 60 22 580 1
2902. 60 23 580 .
2903. 60 58 580 .
2904. 60 62 580 .
2905. 60 74 580 .
2906. 60 75 580 .
2907. 61 23 613 1
2908. 61 58 613 .
2909. 61 62 613 .
2910. 61 74 613 .
2911. 61 75 613 .

There are 63 risk-sets. The risk-sets are labeled in increasing order of the associated survival
times and therefore in decreasing order of risk set size (as fewer individuals ‘survive’ beyond
the times). The censoring indicator has been changed to missing for censored observations. We
will change these missing values to 0 since this will be our dependent variable in the Poisson
regression.

replace unceni = 0 if unceni == .

We can verify that the data are correct by rerunning the Cox regression (using the same command
as before) which yields identical results.

Now we need to compute the lengths of the intervals between unique failure times so that
we can use the log interval lengths as an offset in the Poisson regression:
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. sort id secondi

. by id: gen y=cond(_n>1,secondi-secondi[_n-1],secondi)

. gen lny = ln(y)

. list RS id secondi y lny in 2901/2911, clean

RS id secondi y lny
2901. 28 84 231 1 0
2902. 29 84 232 1 0
2903. 30 84 235 3 1.098612
2904. 31 84 248 13 2.564949
2905. 32 84 250 2 .6931472
2906. 33 84 258 8 2.079442
2907. 34 84 264 6 1.791759
2908. 35 84 265 1 0
2909. 36 84 268 3 1.098612
2910. 37 84 280 12 2.484907
2911. 38 84 290 10 2.302585

We can check that this is correct by comparing the result of fitting an exponential regression
model using

stset secondi, failure(unceni) id(id)
streg secondp after decl, dist(exp)

with that of running a simple Poisson regression using

poisson unceni secondp after decl, offset(lny) irr

(both models assume constant hazards over the entire period which is unrealistic, but here we
just want to check our data manipulation). Both approaches give the same result confirming
that our data has been set up correctly.

7.2.2 Parameter estimation

Assuming a constant baseline hazard would correspond to the exponential model. Allowing
the baseline hazard to vary freely between risk sets corresponds to Cox’s regression model (We
would get identical results as Cox’s regression by using fixed effects Poisson, i.e.
xtpois unceni secondp after decl, i(RS) fe offset(lny) irr
or
xi: poisson unceni secondp after decl i.RS, offset(lny) irr).

We will model the log baseline hazard as a smooth function of time by using polynomial
terms. One way of assessing that the model for the baseline hazard is sufficiently flexible, is to
compare the estimates of the effects of interest with those of Cox’s regression model.

Orthogonal polynomials can be created using orthpoly:

orthpoly secondi, gen(t1-t4) degree(4)

and included in the Poisson regression:

. poisson unceni t1-t4 secondp after decl, offset(lny) irr

Iteration 0: log likelihood = -336.54949
Iteration 1: log likelihood = -328.60226
Iteration 2: log likelihood = -328.32219
Iteration 3: log likelihood = -328.31449
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Iteration 4: log likelihood = -328.31446

Poisson regression Number of obs = 2931
LR chi2(7) = 96.93
Prob > chi2 = 0.0000

Log likelihood = -328.31446 Pseudo R2 = 0.1286

unceni IRR Std. Err. z P>|z| [95% Conf. Interval]

t1 2.073082 .2668426 5.66 0.000 1.610838 2.667973
t2 .6969082 .0744861 -3.38 0.001 .5651953 .8593154
t3 1.488465 .1337025 4.43 0.000 1.248184 1.775
t4 .7781663 .0564711 -3.46 0.001 .6749961 .8971057

secondp .34998 .0642334 -5.72 0.000 .2442409 .5014967
after .3731128 .1043298 -3.53 0.000 .2156886 .6454358
decl 1.746769 .3315779 2.94 0.003 1.204086 2.534041
lny (offset)

Estimates of the fixed effects parameters are fairly close to those of the Cox model. We could
also model the log baseline hazard using fractional polynomials or splines (see help for fracpoly
and mkspline).

We can now fit a simple random intercept model in gllamm by using the offset() option,
specifying the Poisson family (the log link is the default link for Poisson) and including a random
intercept in the linear predictor:

. gen cons=1

. eq cons: cons

. gllamm unceni t1-t4 secondp after decl, i(subj) nip(8) /*
> */ eqs(cons) f(poiss) offset(lny) adapt eform

Running adaptive quadrature
Iteration 0: log likelihood = -322.78228
Iteration 1: log likelihood = -315.21257
Iteration 2: log likelihood = -315.01199
Iteration 3: log likelihood = -315.00874
Iteration 4: log likelihood = -315.00874

Adaptive quadrature has converged, running Newton-Raphson
Iteration 0: log likelihood = -315.00874
Iteration 1: log likelihood = -315.00874 (backed up)
Iteration 2: log likelihood = -315.00822
Iteration 3: log likelihood = -315.00822

number of level 1 units = 2931
number of level 2 units = 21

Condition Number = 9.3795391

gllamm model

log likelihood = -315.00822

unceni exp(b) Std. Err. z P>|z| [95% Conf. Interval]

t1 4.471778 1.068238 6.27 0.000 2.799893 7.141986
t2 .5237084 .0801868 -4.22 0.000 .3879352 .7070009
t3 1.575047 .1737051 4.12 0.000 1.268873 1.955099
t4 .7716135 .0610165 -3.28 0.001 .66083 .900969

secondp .2328122 .0718344 -4.72 0.000 .1271647 .4262307
after .4108259 .1260568 -2.90 0.004 .2251527 .7496152
decl 2.195706 .4598916 3.76 0.000 1.45643 3.310234
lny (offset)
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Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (subj)

var(1): 1.6299871 (.79045789)
------------------------------------------------------------------------------

Before interpreting the results, we will check whether they can be relied on by increasing the
number of quadrature points. Estimating the model again with 12 quadrature points gives quite
similar estimates:

. matrix a=e(b)

. gllamm unceni t1-t4 secondp after decl, i(subj) nip(12) /*
> */ eqs(cons) f(poiss) from(a) offset(lny) adapt eform

Running adaptive quadrature
Iteration 0: log likelihood = -315.00735
Iteration 1: log likelihood = -315.00732

Adaptive quadrature has converged, running Newton-Raphson
Iteration 0: log likelihood = -315.00732
Iteration 1: log likelihood = -315.00732 (backed up)
Iteration 2: log likelihood = -315.00729
Iteration 3: log likelihood = -315.00729

number of level 1 units = 2931
number of level 2 units = 21

Condition Number = 9.3879638

gllamm model

log likelihood = -315.00729

unceni exp(b) Std. Err. z P>|z| [95% Conf. Interval]

t1 4.477254 1.076552 6.23 0.000 2.794737 7.172698
t2 .5234166 .0804139 -4.21 0.000 .3873246 .7073265
t3 1.575231 .1737783 4.12 0.000 1.268938 1.955457
t4 .7716079 .0610164 -3.28 0.001 .6608246 .9009634

secondp .2328443 .0717695 -4.73 0.000 .1272624 .4260211
after .4108386 .1260547 -2.90 0.004 .2251661 .749617
decl 2.196476 .4603639 3.75 0.000 1.456537 3.312314
lny (offset)

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (subj)

var(1): 1.6372166 (.80952743)
------------------------------------------------------------------------------

For presenting final results, it might be worth estimating the model with a few more quadrature
points per dimension.

The regression coefficients have been exponentiated in the output as indicated by exp(b)
because we used the eform option. The parameters can therefore be interpreted as conditional
hazard ratios (conditional on the random effects). The estimates suggest that ISDN reduces
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the hazards compared with baseline and that there is a decline in this treatment effect. The
coefficient of after compares occasions 3 and 1 since decl=0 for both occasions. To compare
occasions 1 and 2, we could use lincom:

lincom after + decl, eform

There is a large random intercept variance. Note that the exponential of the random intercept
is usually referred to as a frailty, so our variance estimate is not the frailty variance. Comparing
the log-likelihood with that of the ordinary Poisson model (see previous section), indicates that
the intercept varies significantly between subjects:

. disp chiprob(1, 2*(328.31446 -315.00729))
2.484e-07

Note that these models could also be estimated using the xtpois command (using ordinary
quadrature):

xtpois unceni t1-t4 secondp after decl, i(subj) quad(30) offset(lny) normal irr

With the xtpois command, we can also assume a gamma distribution of the frailty by omitting
the normal and quad() options above. This gives very similar fixed effects estimates which is
reassuring.

We now allow the treatment effect to vary randomly between subjects by introducing a
random coefficient for after (this cannot be done in xtpois). We encountered some conver-
gence problems using adaptive quadrature and will therefore get initial estimates using ordinary
quadrature and then use these as starting values for adaptive quadrature:

. eq after: after

. gllamm unceni t1-t4 secondp after decl, i(subj) nrf(2) eqs(cons after) /*
> */ family(poiss) offset(lny) eform

Iteration 0: log likelihood = -320.41886 (not concave)
Iteration 1: log likelihood = -308.4702 (not concave)
Iteration 2: log likelihood = -307.74832
Iteration 3: log likelihood = -307.71894
Iteration 4: log likelihood = -307.71848
Iteration 5: log likelihood = -307.71846

number of level 1 units = 2931
number of level 2 units = 21

Condition Number = 34.59201

gllamm model

log likelihood = -307.71846

unceni exp(b) Std. Err. z P>|z| [95% Conf. Interval]

t1 6.201686 1.901195 5.95 0.000 3.400671 11.3098
t2 .4693898 .0892829 -3.98 0.000 .3233151 .6814613
t3 1.664057 .2156613 3.93 0.000 1.290782 2.145279
t4 .7491887 .0649483 -3.33 0.001 .6321196 .8879391

secondp .1844601 .0850213 -3.67 0.000 .0747423 .4552377
after .2884553 .1260457 -2.85 0.004 .1224986 .6792445
decl 2.27134 .4994648 3.73 0.000 1.47606 3.495105
lny (offset)
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Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (subj)

var(1): .481472 (.51776169)
cov(2,1): .74484812 (.82565677) cor(2,1): .74365126

var(2): 2.0836548 (1.4233089)
------------------------------------------------------------------------------

. matrix a=e(b)

. gllamm unceni t1-t4 secondp after decl, i(subj) nrf(2) eqs(cons after) /*
> */ family(poiss) offset(lny) nip(12) adapt eform from(a)

Running adaptive quadrature
Iteration 0: log likelihood = -307.87765
Iteration 1: log likelihood = -307.83794
Iteration 2: log likelihood = -307.76703
Iteration 3: log likelihood = -307.76186
Iteration 4: log likelihood = -307.75964
Iteration 5: log likelihood = -307.75964

Adaptive quadrature has converged, running Newton-Raphson
Iteration 0: log likelihood = -307.75964
Iteration 1: log likelihood = -307.75964 (backed up)
Iteration 2: log likelihood = -307.75942
Iteration 3: log likelihood = -307.75942

number of level 1 units = 2931
number of level 2 units = 21

Condition Number = 45.516143

gllamm model

log likelihood = -307.75942

unceni exp(b) Std. Err. z P>|z| [95% Conf. Interval]

t1 5.794447 1.578055 6.45 0.000 3.397789 9.881607
t2 .4764362 .0847481 -4.17 0.000 .3361968 .6751742
t3 1.661396 .2033098 4.15 0.000 1.307101 2.111724
t4 .7511578 .0644907 -3.33 0.001 .6348208 .8888146

secondp .19056 .063285 -4.99 0.000 .0993911 .3653558
after .3151838 .1305154 -2.79 0.005 .1399869 .709644
decl 2.235158 .4842105 3.71 0.000 1.461872 3.417489
lny (offset)

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (subj)

var(1): .37108179 (.41492511)
cov(2,1): .78380774 (.44013794) cor(2,1): .99999935

var(2): 1.6555794 (1.0422347)
------------------------------------------------------------------------------

The estimates of the covariance matrix are quite different but the fixed effects estimates have not
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changed substantially. We can check how much the log-likelihood for these parameter estimates
changes when 30 quadrature points are used per dimension using the eval option:

gllamm unceni t1-t4 secondp after decl, i(subj) nrf(2) eqs(cons after) /*
*/ family(poiss) offset(lny) nip(30) adapt eform from(a) eval

giving a log-likelihood of −307.75976, very similar to the log-likelihood for 12 points per dimen-
sion.

Using a likelihood ratio test, there is significant variability in the treatment effect (twice the
difference in log-likelihoods=14.42). This illustrates how misleading the standard errors of the
variance estimates can be. Note, however, that the correlation between the random intercept
and slope is virtually 1 and hence on the boundary of the parameter space.

Skrondal and Rabe-Hesketh (2004) analyze these data also using survival models with com-
mon factors, latent classes and non-parametric maximum likelihood.
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Chapter 8

Ordinal responses

8.1 Generalizing models for ordinal responses

The ordinal models available in gllamm can be written as latent response models with

y∗i = νi + εi (8.1)

where the S observed response categories as, s = 1, . . . , S are generated by applying thresholds
κs, s = 1, . . . , S − 1 to y∗ as follows:

yi =





a1 if y∗i ≤ κ1

a2 if κ1 < y∗i ≤ κ2
...

...
aS if κS−1 < y∗i

(8.2)

where the thresholds κs do not vary between subjects.
If the cumulative density function of εi is F , the cumulative probability τs that the response

takes on any value up to and including as (conditional on the latent and observed explanatory
variables) is

P(yi ≤ as) = F (κs − νi), s = 0, . . . , S (8.3)

where κ0 = −∞ and κS = ∞. The probability of the sth response category is then simply

P(yi = as) = P(κs−1 < y∗i ≤ κs)
= F (κs − νi)− F (κs−1 − νi). (8.4)

We can equivalently write the model as a cumulative model

g(P(yi < as)) = κs − νi,

where g = F−1 is the link function.
In gllamm F can be the logistic distribution (ordinal logit link, ologit), standard normal

distribution (ordinal probit link, opropbit) or type I extreme value distribution (ordinal com-
plimentary log-log link, ocll). If the error term εi of the latent response y∗i is assumed to have
a logistic distribution,

Pr(yi ≤ as) = Pr(y∗i ≤ κs)

=
exp(κs − νi)

1 + exp(κs − νi)
(8.5)
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and we have a proportional odds model since the log odds that yi ≤ as (conditional on the latent
and observed explanatory variables) are

log
(

Pr(yi ≤ as)
1− Pr(yi ≤ as)

)
= κs − νi (8.6)

so that the odds that the response category is less than or equal to as for an individual i is a
constant multiple of the odds for another individual i′ with odds ratio equal to exp(νi − νi′) for
all s. This parametrization is identical to that used in Stata’s ologit command.

If the error term εi of the latent response has a standard normal distribution, we have the
probit model with

Pr(yi ≤ as) = Φ(κs − νi) (8.7)

where Φ is the cumulative standard normal distribution function. This parametrization is iden-
tical to that used in Stata’s oprobit command.

If the error term εi has an extreme value distribution, this corresponds to an ordinal com-
plimentary log-log link

ln(−ln(1− Pr(yi ≤ as))) = κs − νi (8.8)

or, equivalently,
Pr(yi ≤ as) = 1− exp(− exp(κs − νi)) (8.9)

Normally the effects of covariates are assumed to be constant across categories s. If F is the
logistic distribution, this assumption corresponds to the proportional odds assumption. Using
the thresh() option, the thresholds can be allowed to depend on covariates xi1 to xip as

κsi = αs0 + αs1xi1 + · · ·+ αspxip.

Note that the model is not identified if any of the covariates used in the threshold model also
appear in the linear predictor νi.

If there are several ordinal responses differing in the thresholds and possibly in the number
of response categories, we use the same method as for mixed response models. Simply specify
the ordinal link, e.g., ologit several times in the link() option and use lv() to specify the
variable identifying the responses.

8.2 Ordinal item response models

Item response models for dichotomous items were introduced in Section 4.1. Here we will discuss
similar models for ordinal responses. When an ordinal probit link is used, the models are known
as graded response models. Partial credit models can be estimated using the mlogit link; see
Chapter 9.

The simplest item response model for ordinal items assumes that the latent response has
different means for the different items but the same residual variance Var(ε). Further, the effect
of the latent variable ηj is the same for all items and the thresholds κs are constant across items
i:

g(P(yij ≤ as)) = κs − (βi + ηj), β1 = 0 (8.10)
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For identification, one of the means (here β1) must be set to a constant since the thresholds are
estimated freely. We can now allow the effect of ηj to differ between items by including factor
loadings λi in the model

g(P(yij ≤ as)) = κs − (βi + ηjλi), β1 = 0, λ1 = 1 (8.11)

Next, we can allow the residual variance to differ between items by using the scaled ordinal
probit link, soprobit.

P(yij ≤ as) = Φ((κs − βi − ηjλi)/σi), β1 = 0, λ1 = 1, σ1 = 1 (8.12)

where σi is the scale, corresponding to the standard deviation of ε in the latent response for-
mulation. Such a model was suggested and fitted by Skrondal (1996). Since the thresholds are
estimated freely, the scale of one item has to be set to a constant for the model to be identified.
The model can be rewritten as

g(P(yij ≤ as)) = (κs − βi)/σi − ηjλi/σi

= κ∗si − ηjλ
∗
i

where
κ∗si = (κs − βi)/σi.

The model therefore effectively allows a different linear transformation of the thresholds for each
item, i.e. the thresholds can be shifted and rescaled for each item.

A more general model allows the thresholds to differ completely between items:

g(P(yij ≤ as)) = κsi − ηjλi, β1 = 0 (8.13)

Finally, covariates can be incorporated in different ways: (1) the covariate affects the latent
response indirectly by affecting the latent variable ηj (2) the covariate has a direct effect on the
latent response, possibly in addition to an indirect effect via the latent variable (3) the covariate
affects the thresholds. In the last two situations, the effect of the covariate can either be the
same for all items or differ between items.

8.3 Three level ordinal logistic regression

A two-level analysis of a subset of the Television School and Family Smoking Prevention and
Cessation Project (TVSFP) (Flay et al., 1989) is presented in Hedeker and Gibbons’ MIXOR
manual (Hedeker and Gibbons, 1996) and also analyzed in Hedeker and Gibbons (1994). Schools
were randomized to one of four conditions given by different combinations of two factors

TV: a media (television) intervention (1=present, 0=absent)

CC: a social-resistance classroom curriculum (1=present, 0=absent).

One outcome measure is the tobacco and health knowledge scale (THKS) score defined as the
number of correct answers to seven items on tobacco and health knowledge. This variable has
been collapsed into four ordinal categories.
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In addition to the clustering of students in classes, the classes are clustered in schools. First,
we will repeat Hedeker and Gibbons’ two-level analysis ignoring schools. Then we will fit a three
level model incorporating the effect of schools. (The three level model cannot be estimated in
the present version of MIXOR but Gibbons and Hedeker (1997) fitted a three level model to the
dichotomized THKS score.)

The two-level model can be written as

ηijk = β0 + β1xPijk + β2xCk + β3xTk + β4xCkxTk + ηj , (8.14)

where i, j and k denote pupils, classes and schools, respectively, xPijk is the pre-intervention
THKS score, xCk is a dummy variable for the CC intervention and xTk is a dummy variable for
the TV intervention.

The three level model is

ηijk = β0 + β1xPijk + β2xCk + β3xTk + β4xCkxTk + η
(2)
jk + η

(3)
k , (8.15)

where the response variable is modeled using a proportional odds model.

8.3.1 Data preparation

The data are available from Hedeker’s home page as an ASCII file called tvsfpors.dat that is
already in the long form. We read the data using infile and drop all observations with missing
values.

infile school class thk a2 const prethk cc tv cctv using tvsfpors.dat, clear
keep school class thk prethk cc tv cctv
drop if thk==.
drop if prethk==.
drop if cc==.
drop if tv==.
drop if cctv==.

Here thk and prethk are the ordinal THKS score post and pre intervention, respectively and
cc, tv and cctv are the dummy variables for the main effects and interaction of the CC and
TV interventions.

To speed up estimation, we can now collapse the data and define frequency weights. Since it is
unlikely that two classes will have exactly the same number of students and pattern of outcomes
and covariates, we will not attempt to form level 2 weights. To form level 1 weights, we need to
aggregate data over all groups of children in the same class that have the same outcome. We do
not need to worry about the schools and the combination of treatments because these variables
are constant within classes. However, we can include these variables in the by() option so that
they are not dropped from the dataset. The data are therefore collapsed as follows:

gen cons=1
collapse (sum) wt1=cons, by(thk prethk cc tv cctv school class)

The variables school, class, thk, cc, tv and wt1 are listed below for ten observations:
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. list school class thk cc tv wt1 in 80/90, clean

school class thk cc tv wt1
80. 199 199106 1 0 1 1
81. 405 405101 1 0 1 1
82. 405 405102 1 0 1 6
83. 405 405103 1 0 1 1
84. 407 407101 1 0 1 1
85. 407 407102 1 0 1 2
86. 407 407103 1 0 1 2
87. 506 506103 1 0 1 2
88. 506 506105 1 0 1 2
89. 506 506107 1 0 1 1
90. 506 506110 1 0 1 2

8.3.2 Model Fitting

The syntax is identical to that used for an ordinary logistic regression model except that the
ologit link is specified.

. gllamm thk prethk cc tv cctv, i(class) link(ologit) f(binom) /*
> */ weight(wt) adapt

Running adaptive quadrature
Iteration 0: log likelihood = -2117.2895
Iteration 1: log likelihood = -2115.4014
Iteration 2: log likelihood = -2115.3876
Iteration 3: log likelihood = -2115.3836
Iteration 4: log likelihood = -2115.3835

Adaptive quadrature has converged, running Newton-Raphson
Iteration 0: log likelihood = -2115.3835
Iteration 1: log likelihood = -2115.3835 (backed up)
Iteration 2: log likelihood = -2115.3831
Iteration 3: log likelihood = -2115.3831

number of level 1 units = 1600
number of level 2 units = 135

Condition Number = 15.444475

gllamm model

log likelihood = -2115.3831

thk Coef. Std. Err. z P>|z| [95% Conf. Interval]

thk
prethk .414802 .0393628 10.54 0.000 .3376523 .4919518

cc .861341 .1735825 4.96 0.000 .5211255 1.201556
tv .2058666 .1705965 1.21 0.228 -.1284965 .5402296

cctv -.3011398 .2451323 -1.23 0.219 -.7815902 .1793106

_cut11
_cons -.0757384 .1466273 -0.52 0.605 -.3631227 .2116458

_cut12
_cons 1.197664 .1485246 8.06 0.000 .9065614 1.488767

_cut13
_cons 2.403179 .1579048 15.22 0.000 2.093691 2.712667

Variances and covariances of random effects
------------------------------------------------------------------------------
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***level 2 (class)

var(1): .18862146 (.06372493)
------------------------------------------------------------------------------

The output agrees with the results obtained using MIXOR with 10 quadrature points (see
MIXOR manual, Hedeker and Gibbons, 1996). As would be expected, the level of knowledge
before the intervention is a predictor of the the level of knowledge after the intervention. The
social-resistance classroom curriculum has had an effect but the TV intervention has not. The
between-class variance is estimated as 0.189. The estimates of the three cut-points κ1, κ2 and
κ3 appear at the bottom of the fixed effects table.

We could easily remove the nonsignificant terms from the model by passing the parameter
estimates of the full model to gllamm as initial parameter estimates using the from() and the
skip options:

matrix a=e(b)
gllamm thk prethk cc, i(class) trace link(ologit) family(binom) /*

*/ weight(wt) adapt from(a) skip

To fit the probit or complementary log-log model, simply use the oprobit link or ocll link,
respectively, instead of the ologit link.

We now include a random effect for schools by adding school to the i() option.

. matrix a=e(b)

. gllamm thk prethk cc tv cctv, i(class school) link(ologit) /*
> */ f(binom) weight(wt) from(a) adapt

Running adaptive quadrature
Iteration 0: log likelihood = -2115.3831
Iteration 1: log likelihood = -2115.3831

Adaptive quadrature has converged, running Newton-Raphson
Iteration 0: log likelihood = -2115.3831 (not concave)
Iteration 1: log likelihood = -2115.3831 (not concave)
Iteration 2: log likelihood = -2115.3831 (not concave)
Iteration 3: log likelihood = -2114.8169
Iteration 4: log likelihood = -2114.5882
Iteration 5: log likelihood = -2114.5881

number of level 1 units = 1600
number of level 2 units = 135
number of level 3 units = 28

Condition Number = 16.631187

gllamm model

log likelihood = -2114.5881

thk Coef. Std. Err. z P>|z| [95% Conf. Interval]

thk
prethk .4085277 .0396155 10.31 0.000 .3308826 .4861727

cc .8841594 .2097996 4.21 0.000 .4729596 1.295359
tv .2362118 .204815 1.15 0.249 -.1652182 .6376418

cctv -.3715189 .2956721 -1.26 0.209 -.9510257 .2079878

_cut11
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_cons -.0961882 .1690349 -0.57 0.569 -.4274904 .2351141

_cut12
_cons 1.177237 .1706267 6.90 0.000 .8428148 1.511659

_cut13
_cons 2.383431 .1787935 13.33 0.000 2.033002 2.73386

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (class)

var(1): .14821764 (.0637401)

***level 3 (school)

var(1): .04487641 (.04253446)
------------------------------------------------------------------------------

The variance component for schools does not appear to be significant at the 5% level since the
log-likelihood changed by less than 1.

We could estimate the model with more quadrature points to make sure that we are evalu-
ating the likelihood sufficiently precisely. Since this is time-consuming, we can simply evaluate
the log-likelihood for the current parameter estimates using larger numbers of quadrature points
by using the eval option:

. gllamm thk prethk cc tv cctv, i(class school) link(ologit) /*
> */ f(binom) weight(wt) nip(30) eval from(a) adapt

The log-likelihood values do not change at all when more quadrature points are used and the
8-point approximation therefore appears to be adequate.

8.4 Item response models with an explanatory variable

We will analyze six ordinal items relating to delinquency from Udry (1998). The following items
were rated as 0: not true, 1: sometimes true and 2: often true:

1. Hangs around kids who get in trouble

2. Cheats or tells lies

3. Bullies or is cruel/mean to others

4. Does not feel sorry after misbehaving

5. Breaks things on purpose

6. Is disobedient at school
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8.4.1 Data preparation

The data are read using

infile sex y1 y2 y3 y4 y5 y6 using delinq.txt, clear

Since many of the response patterns for the 6 items are likely to occur a number of times for
each sex, we can collapse the data and construct level 2 weights to make gllamm run faster:

gen cons=1
collapse (sum) wt2=cons, by(sex y1-y6)
gen id=_n
reshape long y, i(id) j(item)

8.4.2 Model fitting

Thresholds constant across items

The model in (8.10) is a simple random intercept model with an oprobit link and with non-zero
intercepts for items 2 to 6 (β1 = 0). The syntax is therefore similar to the xt commands. Here
we also need to use the weight() option since we have level 2 weights in the variable wt2.

. qui tab item, gen(d)

. gllamm y d2-d6, i(id) weight(wt) l(oprob) f(binom) adapt

Running adaptive quadrature
Iteration 0: log likelihood = -10742.499
Iteration 1: log likelihood = -10235.427
Iteration 2: log likelihood = -10225.11
Iteration 3: log likelihood = -10225.108

Adaptive quadrature has converged, running Newton-Raphson
Iteration 0: log likelihood = -10225.108
Iteration 1: log likelihood = -10225.108 (backed up)
Iteration 2: log likelihood = -10225.093
Iteration 3: log likelihood = -10225.093

number of level 1 units = 38652
number of level 2 units = 6442

Condition Number = 8.3491714

gllamm model

log likelihood = -10225.093

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

y
d2 .1333404 .0370122 3.60 0.000 .0607979 .205883
d3 -.3568232 .0423794 -8.42 0.000 -.4398853 -.2737611
d4 -.3840764 .0427277 -8.99 0.000 -.4678211 -.3003316
d5 -.5170362 .0447789 -11.55 0.000 -.6048012 -.4292712
d6 -.0324827 .0387613 -0.84 0.402 -.1084535 .0434881

_cut11
_cons 1.997424 .0388143 51.46 0.000 1.921349 2.073499

_cut12
_cons 2.783248 .0445798 62.43 0.000 2.695874 2.870623
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_cut13
_cons 3.13726 .0484972 64.69 0.000 3.042207 3.232312

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id)

var(1): 1.0424215 (.05556149)
------------------------------------------------------------------------------

The estimated constants suggest that the scores for item 2 tend to be higher than those for item
1 whereas the scores for items 3 to 6 tend to be lower than those for item 1. Before estimating
other models, we will save the estimates using

estimates store mod1

We can introduce factor loadings using the eqs() option (the first loading will automatically be
set to one):

. eq load: d1-d6

. gllamm y d2-d6, i(id) weight(wt) l(oprob) f(binom) eqs(load) adapt

Running adaptive quadrature
Iteration 0: log likelihood = -10728.067
Iteration 1: log likelihood = -10246.429
Iteration 2: log likelihood = -10167.963
Iteration 3: log likelihood = -10155.445
Iteration 4: log likelihood = -10154.595
Iteration 5: log likelihood = -10154.59

Adaptive quadrature has converged, running Newton-Raphson
Iteration 0: log likelihood = -10154.59
Iteration 1: log likelihood = -10154.422
Iteration 2: log likelihood = -10154.4
Iteration 3: log likelihood = -10154.4

number of level 1 units = 38652
number of level 2 units = 6442

Condition Number = 28.859952

gllamm model

log likelihood = -10154.4

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

y
d2 .0426769 .0589893 0.72 0.469 -.0729399 .1582938
d3 -1.170732 .1329432 -8.81 0.000 -1.431296 -.9101682
d4 -1.01723 .1186416 -8.57 0.000 -1.249763 -.7846963
d5 -.8761092 .104336 -8.40 0.000 -1.080604 -.6716145
d6 -.7456524 .1109123 -6.72 0.000 -.9630365 -.5282683

_cut11
_cons 1.701352 .0426219 39.92 0.000 1.617815 1.78489

_cut12
_cons 2.497098 .0469756 53.16 0.000 2.405027 2.589169

_cut13
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_cons 2.863077 .0503314 56.88 0.000 2.764429 2.961725

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id)

var(1): .49473593 (.05947006)

loadings for random effect 1
d1: 1 (fixed)
d2: 1.1341268 (.08848816)
d3: 2.0171066 (.16925857)
d4: 1.8242372 (.15393464)
d5: 1.5214631 (.13277401)
d6: 1.9696146 (.16213068)

------------------------------------------------------------------------------

A likelihood ratio test shows that this model fits considerably better than the previous:

. estimates store mod2

. lrtest mod1 mod2
(log-likelihoods of null models cannot be compared)

likelihood-ratio test LR chi2(5) = 141.39
(Assumption: mod1 nested in mod2) Prob > chi2 = 0.0000

Finally the soprobit (scaled ordinal probit) link can be used together with the s() option
to allow the scale of the error term in the latent response formulation to vary between items as
in (8.13). The s() option allows an equation to be specified to introduce level 1 heteroscedasticity
when any of the links or densities specified have a scale or standard deviation parameter,

ln σij = z(0)′
ij α. (8.16)

(Another application of this option would be to estimate a linear model with a heteroscedastic
error term.) The equation definition for the s() option should specify the dummy variables for
the items since a separate scale parameter is required for each item:

eq het: d1-d6

However, we need to constrain the first scale to 1. One way to do this is to simply use

eq het: d2-d6

because omission of d1 is equivalent to setting the corresponding coefficient lnσ1j equal to 0.
For illustration we also use a more convoluted approach to demonstrate how to use constraints
in gllamm. First, we have to find out the equation name and column name for the parameter
being constrained as well as the transformation used in gllamm to estimate the parameter. We
can do this by running gllamm with the noest and trace options to obtain some information
on the model without estimating any parameters:

. gllamm y d2-d6, i(id) weight(wt) l(soprob) f(binom) eqs(load) s(het) /*
> */ trace noest

General model information
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------------------------------------------------------------------------------

dependent variable: y
ordinal responses: soprobit
denominator: 1
equations for fixed effects

y: d2 d3 d4 d5 d6
_cut11: _cons
_cut12: _cons
_cut13: _cons

Random effects information for 2 level model
------------------------------------------------------------------------------

***level 1 equation:

log standard deviation
lns1: d1 d2 d3 d4 d5 d6

***level 2 (id) equation(s):
(1 random effect(s))

lambdas for random effect 1
id1_1l: d2 d3 d4 d5 d6
standard deviation for random effect 1
id1_1 : d1

Under ‘level 1 equation’, we are informed that the log standard deviation parameters have
equation name lns1 and column names d1, d2, etc. Constraining the standard deviation to 1
corresponds to setting the log standard deviation to 0. We can now define this contraint (see
[R] contraint) and pass it to gllamm using the contraints() option:

. cons def 1 [lns1]d1=1

. gllamm y d2-d6, i(id) weight(wt) l(soprob) f(binom) eqs(load) s(het) /*
> */ constr(1) adapt

Running adaptive quadrature
Iteration 0: log likelihood = -13709.163
Iteration 1: log likelihood = -13596.025
Iteration 2: log likelihood = -11325.335
Iteration 3: log likelihood = -10985.475
Iteration 4: log likelihood = -10590.418
Iteration 5: log likelihood = -10454.609
Iteration 6: log likelihood = -10371.479
Iteration 7: log likelihood = -10234.759
Iteration 8: log likelihood = -10173.309
Iteration 9: log likelihood = -10154.377
Iteration 10: log likelihood = -10120.13
Iteration 11: log likelihood = -10111.119
Iteration 12: log likelihood = -10109.773
Iteration 13: log likelihood = -10109.715
Iteration 14: log likelihood = -10109.627
Iteration 15: log likelihood = -10109.627

Adaptive quadrature has converged, running Newton-Raphson
Iteration 0: log likelihood = -10109.627
Iteration 1: log likelihood = -10109.627 (backed up)
Iteration 2: log likelihood = -10109.596
Iteration 3: log likelihood = -10109.596

number of level 1 units = 38652
number of level 2 units = 6442

Condition Number = 55.843988

Hosted by The Berkeley Electronic Press



98 CHAPTER 8. ORDINAL RESPONSES

gllamm model with constraints:
( 1) [lns1]d1 = 1

log likelihood = -10109.59597676592

Coef. Std. Err. z P>|z| [95% Conf. Interval]

y
d2 -.0107539 .3054669 -0.04 0.972 -.609458 .5879501
d3 -3.489128 .6168898 -5.66 0.000 -4.69821 -2.280046
d4 -2.887489 .5721521 -5.05 0.000 -4.008886 -1.766091
d5 -2.420719 .56635 -4.27 0.000 -3.530745 -1.310694
d6 -5.475978 .7422003 -7.38 0.000 -6.930663 -4.021292

_cut11
_cons 4.673623 .1225696 38.13 0.000 4.433391 4.913855

_cut12
_cons 7.049441 .174879 40.31 0.000 6.706684 7.392197

_cut13
_cons 8.183033 .2148669 38.08 0.000 7.761902 8.604165

Variance at level 1
------------------------------------------------------------------------------

equation for log standard deviation:

d1: 1 (0)
d2: 1.0254298 (.06087759)
d3: .94857302 (.0862344)
d4: .94999093 (.08079316)
d5: 1.0089726 (.08000006)
d6: 1.5691117 (.072496)

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id)

var(1): 4.0522808 (.50534715)

loadings for random effect 1
d1: 1 (fixed)
d2: 1.158027 (.09592887)
d3: 2.10297 (.18929612)
d4: 1.8620151 (.16899761)
d5: 1.4831383 (.14407552)
d6: 2.456456 (.22062851)

------------------------------------------------------------------------------

The (0) next to the log-standard deviation in the output under “Variance at level 1” reminds
us that this parameter was constrained. Item 6 has a much larger estimated scale parameter
than the other items and this model fits better than the previous model:

. disp chiprob(5,2*(10154.42-10109.60))
7.997e-18
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Item-specific thresholds

First we fit the model in equation (8.13) without factor loadings, or equivalently, with λi = 1.
We allow a different sets of thresholds to be estimated for each item by treating the problem as
a mixed response problem. Each response uses the oprobit link, but different thresholds will
be estimated. We use the lv() option to assign each link to a different item:

. gllamm y, i(id) weight(wt) l(oprob oprob oprob oprob oprob oprob) lv(item) /*
> */ f(binom) adapt

Running adaptive quadrature
Iteration 0: log likelihood = -10672.359
Iteration 1: log likelihood = -10166.217
Iteration 2: log likelihood = -10154.907
Iteration 3: log likelihood = -10154.882
Iteration 4: log likelihood = -10154.878

Adaptive quadrature has converged, running Newton-Raphson
Iteration 0: log likelihood = -10154.878
Iteration 1: log likelihood = -10154.839
Iteration 2: log likelihood = -10154.804
Iteration 3: log likelihood = -10154.804

number of level 1 units = 38652
number of level 2 units = 6442

Condition Number = 9.8401115

gllamm model

log likelihood = -10154.804

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cut11
_cons 1.965004 .0389448 50.46 0.000 1.888673 2.041334

_cut12
_cons 2.959698 .0581748 50.88 0.000 2.845678 3.073719

_cut13
_cons 3.381418 .0739307 45.74 0.000 3.236516 3.526319

_cut21
_cons 1.836902 .037195 49.39 0.000 1.764001 1.909803

_cut22
_cons 2.76768 .0529078 52.31 0.000 2.663983 2.871378

_cut23
_cons 3.191754 .0656071 48.65 0.000 3.063167 3.320342

_cut31
_cons 2.367054 .0456407 51.86 0.000 2.2776 2.456508

_cut32
_cons 3.087231 .0619507 49.83 0.000 2.96581 3.208652

_cut33
_cons 3.445663 .0749175 45.99 0.000 3.298827 3.592498

_cut41
_cons 2.383722 .0459178 51.91 0.000 2.293725 2.473719

_cut42
_cons 3.155176 .0641031 49.22 0.000 3.029536 3.280816
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_cut43
_cons 3.543821 .0800002 44.30 0.000 3.387023 3.700618

_cut51
_cons 2.50479 .0482017 51.96 0.000 2.410317 2.599264

_cut52
_cons 3.343634 .0718635 46.53 0.000 3.202785 3.484484

_cut53
_cons 3.792863 .0955917 39.68 0.000 3.605507 3.98022

_cut61
_cons 2.104489 .0411193 51.18 0.000 2.023897 2.185082

_cut62
_cons 2.59496 .0491502 52.80 0.000 2.498627 2.691293

_cut63
_cons 2.842882 .0545924 52.07 0.000 2.735883 2.949881

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id)

var(1): 1.0469495 (.05588611)
------------------------------------------------------------------------------

The first three parameters represent the thresholds for the first item, the next three those for
the second item, etc. The thresholds for the last item are closer together than the other sets of
threshold which is consistent with the large scale parameter estimate σ̂6 for the last item in the
previous model.

Another way of specifying the same model would be using the thresh() option. We omit
one of the items from the equation for thresh() since a constant will automatically be included:

eq thr: d2-d6

We will first fit the model without the thresh() option to obtain parameter estimates that can
be used as starting values. (We would generally recommend this approach with the thresh()
option.)

. quietly gllamm y, i(id) weight(wt) l(oprob) f(binom) adapt

. eq thr: d2-d6

. matrix a=e(b)

. gllamm y, i(id) weight(wt) l(oprob) f(binom) from(a) thresh(thr) adapt

Running adaptive quadrature
Iteration 0: log likelihood = -10413.275
Iteration 1: log likelihood = -10171.745
Iteration 2: log likelihood = -10169.376
Iteration 3: log likelihood = -10155.876
Iteration 4: log likelihood = -10154.886
Iteration 5: log likelihood = -10154.858
Iteration 6: log likelihood = -10154.858

Adaptive quadrature has converged, running Newton-Raphson
Iteration 0: log likelihood = -10154.858 (not concave)
Iteration 1: log likelihood = -10154.858
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Iteration 2: log likelihood = -10154.8
Iteration 3: log likelihood = -10154.8

number of level 1 units = 38652
number of level 2 units = 6442

Condition Number = 20.748861

gllamm model

log likelihood = -10154.8

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cut11
d2 -.128102 .0379933 -3.37 0.001 -.2025675 -.0536366
d3 .4020526 .0436782 9.20 0.000 .3164449 .4876604
d4 .4187204 .0438804 9.54 0.000 .3327164 .5047243
d5 .5397898 .0457374 11.80 0.000 .4501462 .6294333
d6 .1394867 .0403424 3.46 0.001 .060417 .2185564

_cons 1.965016 .0389465 50.45 0.000 1.888683 2.04135

_cut12
d2 -.1920172 .0637919 -3.01 0.003 -.3170469 -.0669874
d3 .1275351 .0700423 1.82 0.069 -.0097452 .2648154
d4 .1954801 .071906 2.72 0.007 .0545469 .3364133
d5 .3839402 .0784624 4.89 0.000 .2301568 .5377236
d6 -.3647384 .0610158 -5.98 0.000 -.4843271 -.2451497

_cons 2.959716 .0581813 50.87 0.000 2.845683 3.073749

_cut13
d2 -.1896587 .0857015 -2.21 0.027 -.3576305 -.0216869
d3 .0642512 .0919546 0.70 0.485 -.1159765 .244479
d4 .1624088 .0961209 1.69 0.091 -.0259847 .3508024
d5 .4114549 .1089196 3.78 0.000 .1979765 .6249334
d6 -.5385325 .0783914 -6.87 0.000 -.6921769 -.3848881

_cons 3.381434 .0739413 45.73 0.000 3.236512 3.526357

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id)

var(1): 1.0470079 (.05589428)
------------------------------------------------------------------------------
. estimates store mod3

We now include factor loadings in the model. We can use the estimates from the previous
model as starting values. However, new parameters will in this case be set to 0 and this is not
a good starting point for factor loadings. We therefore construct a matrix of starting values as
follows:

matrix a=e(b)
matrix b=a[1,1..18],1,1,1,1,1,a[1,19]

The factor loadings occur just before the random effect standard deviation. We could have found
this out by first running the command below with the noest option.

. gllamm y, i(id) weight(wt) l(oprob) f(binom) thresh(thr) eqs(load) adapt /*
> */ from(b) copy
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Running adaptive quadrature
Iteration 0: log likelihood = -10154.807
Iteration 1: log likelihood = -10129.123
Iteration 2: log likelihood = -10121.847
Iteration 3: log likelihood = -10121.08
Iteration 4: log likelihood = -10118.434
Iteration 5: log likelihood = -10116.115
Iteration 6: log likelihood = -10114.192
Iteration 7: log likelihood = -10113.5
Iteration 8: log likelihood = -10111.694
Iteration 9: log likelihood = -10111.064
Iteration 10: log likelihood = -10109.396
Iteration 11: log likelihood = -10109.225
Iteration 12: log likelihood = -10109.225

Adaptive quadrature has converged, running Newton-Raphson
Iteration 0: log likelihood = -10109.225 (not concave)
Iteration 1: log likelihood = -10109.225
Iteration 2: log likelihood = -10108.732
Iteration 3: log likelihood = -10108.728
Iteration 4: log likelihood = -10108.728

number of level 1 units = 38652
number of level 2 units = 6442

Condition Number = 53.339512

gllamm model

log likelihood = -10108.728

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cut11
d2 -.0391491 .0629311 -0.62 0.534 -.1624918 .0841936
d3 1.443175 .2027458 7.12 0.000 1.045801 1.84055
d4 1.206354 .1581193 7.63 0.000 .8964455 1.516262
d5 .8680135 .1116367 7.78 0.000 .6492096 1.086817
d6 .3944866 .0831255 4.75 0.000 .2315637 .5574095

_cons 1.71894 .0451064 38.11 0.000 1.630533 1.807347

_cut12
d2 -.0706805 .0929776 -0.76 0.447 -.2529132 .1115523
d3 1.465181 .2555381 5.73 0.000 .9643357 1.966027
d4 1.22437 .2032371 6.02 0.000 .8260328 1.622708
d5 .8267152 .1498579 5.52 0.000 .5329991 1.120431
d6 -.0087204 .1070746 -0.08 0.935 -.2185828 .201142

_cons 2.60969 .0668285 39.05 0.000 2.478709 2.740672

_cut13
d2 -.056854 .1126775 -0.50 0.614 -.2776978 .1639897
d3 1.540863 .2843446 5.42 0.000 .9835578 2.098168
d4 1.306609 .2305669 5.67 0.000 .8547058 1.758511
d5 .9010973 .1776548 5.07 0.000 .5529003 1.249294
d6 -.1394464 .1223704 -1.14 0.254 -.3792881 .1003952

_cons 2.987063 .081527 36.64 0.000 2.827274 3.146853

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id)

var(1): .54879138 (.06846412)

loadings for random effect 1
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d1: 1 (fixed)
d2: 1.1287193 (.09368312)
d3: 2.2137771 (.23415021)
d4: 1.9576643 (.19284791)
d5: 1.4694014 (.13819925)
d6: 1.3896627 (.11975133)

------------------------------------------------------------------------------

The likelihood ratio test indicates that factor loadings are required:

. estimates store mod4

. lrtest mod3 mod4
(log-likelihoods of null models cannot be compared)

likelihood-ratio test LR chi2(5) = 92.15
(Assumption: mod3 nested in mod4) Prob > chi2 = 0.0000

The scaled probit model in (8.13) is nested in this model since the thresholds are freely estimated
here whereas the scaled probit model imposes the constraints

κsi = (κs1 − βi)/σi, i = 2, . . . , 6

for some βi and positive σi. The unconstrained model has one extra degree of freedom for each
set of thresholds and therefore five extra parameters are estimated. However, the likelihood is
very close to that of the scaled probit model (-10113.979 compared with -10114.840) so that the
former model should be retained.

We will nevertheless develop the current model further to include effects of sex. It is quite
possible that the sexes differ in their mean latent delinquency, i.e.

ηj = γxj + ζj ,

where xj is a dummy variable for girls. Note that there is no intercept in this equation since we
are already estimating the three thresholds for each item. The regression of a latent variable on
an explanatory variable can be incorporated using the geqs() option:

. matrix a=e(b)

. eq f1: sex

. gllamm y, i(id) weight(wt) l(oprob) f(binom) thresh(thr) eqs(load) geqs(f1) f
> rom(a) adapt

Running adaptive quadrature
Iteration 0: log likelihood = -10108.74
Iteration 1: log likelihood = -10084.6
Iteration 2: log likelihood = -10080.763
Iteration 3: log likelihood = -10076.382
Iteration 4: log likelihood = -10073.956
Iteration 5: log likelihood = -10073.064
Iteration 6: log likelihood = -10073.063

Adaptive quadrature has converged, running Newton-Raphson
Iteration 0: log likelihood = -10073.063 (not concave)
Iteration 1: log likelihood = -10072.721
Iteration 2: log likelihood = -10072.016
Iteration 3: log likelihood = -10072.007
Iteration 4: log likelihood = -10072.007

number of level 1 units = 38652
number of level 2 units = 6442
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Condition Number = 56.253762

gllamm model

log likelihood = -10072.007

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cut11
d2 -.0807287 .0399511 -2.02 0.043 -.1590314 -.002426
d3 .9657559 .1358567 7.11 0.000 .6994817 1.23203
d4 .8510978 .1095756 7.77 0.000 .6363336 1.065862
d5 .7096138 .0762709 9.30 0.000 .5601255 .8591021
d6 .2738164 .055881 4.90 0.000 .1642917 .3833411

_cons 1.330609 .0518214 25.68 0.000 1.229041 1.432177

_cut12
d2 -.1018712 .069341 -1.47 0.142 -.2377771 .0340347
d3 .9903191 .1831365 5.41 0.000 .6313781 1.34926
d4 .8811183 .1520571 5.79 0.000 .5830919 1.179145
d5 .6867659 .1151216 5.97 0.000 .4611318 .9124
d6 -.1095639 .078896 -1.39 0.165 -.2641973 .0450695

_cons 2.209185 .0673109 32.82 0.000 2.077258 2.341112

_cut13
d2 -.083249 .0905504 -0.92 0.358 -.2607246 .0942266
d3 1.066115 .2109018 5.06 0.000 .6527547 1.479474
d4 .967104 .179841 5.38 0.000 .6146221 1.319586
d5 .7696019 .1452699 5.30 0.000 .4848781 1.054326
d6 -.231419 .0952459 -2.43 0.015 -.4180976 -.0447404

_cons 2.581637 .0802369 32.18 0.000 2.424375 2.738898

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id)

var(1): .4865584 (.06229725)

loadings for random effect 1
d1: 1 (fixed)
d2: 1.169714 (.09761997)
d3: 2.2703088 (.23290422)
d4: 2.041305 (.19962495)
d5: 1.5527931 (.14671162)
d6: 1.495958 (.12983416)

Regressions of latent variables on covariates
------------------------------------------------------------------------------

random effect 1 has 1 covariates:
sex: -.23750052 (.02980019)

------------------------------------------------------------------------------

Girls are on average less delinquent, an effect that is significant according to the likelihood
ratio test:

. estimates store mod5

. lrtest mod4 mod5
(log-likelihoods of null models cannot be compared)

likelihood-ratio test LR chi2(1) = 73.44
(Assumption: mod4 nested in mod5) Prob > chi2 = 0.0000
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The model assumes that being a girl affects the responses to the individual items only by
affecting overall latent delinquency ηj , i.e., the effect of being a girl on the ith item is to reduce
the latent response by −0.24λi. However, it is quite possible that, even for the same overall
delinquency level, girls are more less likely to exhibit certain behaviors than boys. For example,
there may be a direct effect of being a girl on the first item (hangs around kids who get in
trouble) in addition to the indirect effect via the latent variable. The existence of such a direct
effect in an item response model is known as item bias or differential item functioning. The
direct effect is simply interaction between sex and the dummy variable for the first item:

. matrix a=e(b)

. gen sex_d1 = sex*d1

. gllamm y sex_d1, i(id) weight(wt) l(oprob) f(binom) thresh(thr) eqs(load) /*
> */ geqs(f1) from(a) adapt

Running adaptive quadrature
Iteration 0: log likelihood = -10071.986
Iteration 1: log likelihood = -10070.654
Iteration 2: log likelihood = -10056.956
Iteration 3: log likelihood = -10054.989
Iteration 4: log likelihood = -10050.528
Iteration 5: log likelihood = -10044.35
Iteration 6: log likelihood = -10044.234
Iteration 7: log likelihood = -10043.717
Iteration 8: log likelihood = -10043.444
Iteration 9: log likelihood = -10043.438

Adaptive quadrature has converged, running Newton-Raphson
Iteration 0: log likelihood = -10043.438 (not concave)
Iteration 1: log likelihood = -10043.438
Iteration 2: log likelihood = -10040.524
Iteration 3: log likelihood = -10040.408
Iteration 4: log likelihood = -10040.408

number of level 1 units = 38652
number of level 2 units = 6442

Condition Number = 71.04524

gllamm model

log likelihood = -10040.408

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

y
sex_d1 .456135 .0604211 7.55 0.000 .3377119 .5745581

_cut11
d2 -.7985993 .1032255 -7.74 0.000 -1.000918 -.596281
d3 .1153217 .1585415 0.73 0.467 -.1954138 .4260573
d4 .0352298 .1428646 0.25 0.805 -.2447796 .3152393
d5 -.0412977 .1211773 -0.34 0.733 -.2788009 .1962056
d6 -.4670337 .1112572 -4.20 0.000 -.6850938 -.2489737

_cons 1.945897 .1009058 19.28 0.000 1.748126 2.143669

_cut12
d2 -.8595046 .1231405 -6.98 0.000 -1.100856 -.6181536
d3 .083517 .1991245 0.42 0.675 -.3067599 .4737938
d4 .0145374 .1793513 0.08 0.935 -.3369847 .3660596
d5 -.1014433 .1523444 -0.67 0.505 -.4000329 .1971462
d6 -.8857908 .1294407 -6.84 0.000 -1.13949 -.6320917

_cons 2.862317 .1148872 24.91 0.000 2.637143 3.087492
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_cut13
d2 -.8588851 .1388124 -6.19 0.000 -1.130952 -.5868178
d3 .1325459 .2240823 0.59 0.554 -.3066474 .5717392
d4 .0758812 .2041725 0.37 0.710 -.3242896 .4760521
d5 -.0349791 .1778958 -0.20 0.844 -.3836484 .3136902
d6 -1.023863 .142505 -7.18 0.000 -1.303168 -.7445587

_cons 3.252445 .1256126 25.89 0.000 3.006248 3.498641

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id)

var(1): .6394474 (.07958483)

loadings for random effect 1
d1: 1 (fixed)
d2: 1.0029064 (.08345634)
d3: 1.9015024 (.19163644)
d4: 1.7249596 (.16721599)
d5: 1.3407662 (.12516631)
d6: 1.3045971 (.11110781)

Regressions of latent variables on covariates
------------------------------------------------------------------------------

random effect 1 has 1 covariates:
sex: -.33957305 (.03931287)

------------------------------------------------------------------------------

For the same delinquency level, girls tend to have higher scores on the first item. This effect
is again significant:

. estimates store mod6

. lrtest mod5 mod6
(log-likelihoods of null models cannot be compared)

likelihood-ratio test LR chi2(1) = 63.20
(Assumption: mod5 nested in mod6) Prob > chi2 = 0.0000

The difference in mean latent response for item 1 between an average girl and an average
boy is

−0.340× 1 + 0.456

Finally, it could be that the effect of being a girl is not the same for each threshold of item
1. For example, after taking into account overall delinquency, girls may be more likely than
boys to be in category 2 but not to be in category 3. This can be modeled by allowing for a
different thresholds equations for each item by specifying the oprob link six times as we did
at the beginning of this section. We can then specify one equation for each response in the
thresh() option. For the first item, we want the thresholds to depend on sex, but for the other
items, we do not want the thresholds to depend on covariates. Therefore, we must specify two
equations as follows:

. eq sex: sex

. eq n:

. gllamm y, i(id) weight(wt) link(oprob oprob oprob oprob oprob oprob) /*
> */ lv(item) eqs(load) f(binom) geqs(f1) thresh(sex n n n n n) adapt
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Running adaptive quadrature
Iteration 0: log likelihood = -10654.19
Iteration 1: log likelihood = -10076.486
Iteration 2: log likelihood = -10054.758
Iteration 3: log likelihood = -10042.575
Iteration 4: log likelihood = -10040.64
Iteration 5: log likelihood = -10039.825
Iteration 6: log likelihood = -10039.62
Iteration 7: log likelihood = -10039.568
Iteration 8: log likelihood = -10039.576

Adaptive quadrature has converged, running Newton-Raphson
Iteration 0: log likelihood = -10039.576
Iteration 1: log likelihood = -10039.576
Iteration 2: log likelihood = -10039.529
Iteration 3: log likelihood = -10039.529

number of level 1 units = 38652
number of level 2 units = 6442

Condition Number = 46.057309

gllamm model

log likelihood = -10039.529

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cut11
sex -.446692 .0614692 -7.27 0.000 -.5671694 -.3262145

_cons 1.932426 .1021686 18.91 0.000 1.732179 2.132673

_cut12
sex -.4811805 .0962855 -5.00 0.000 -.6698966 -.2924644

_cons 2.902696 .1655612 17.53 0.000 2.578202 3.22719

_cut13
sex -.5925504 .1298775 -4.56 0.000 -.8471056 -.3379952

_cons 3.470699 .2264967 15.32 0.000 3.026774 3.914624

_cut21
_cons 1.148319 .0572613 20.05 0.000 1.036089 1.260549

_cut22
_cons 2.003886 .0688781 29.09 0.000 1.868888 2.138885

_cut23
_cons 2.394682 .0791718 30.25 0.000 2.239509 2.549856

_cut31
_cons 2.063837 .1407128 14.67 0.000 1.788045 2.339629

_cut32
_cons 2.948944 .1744749 16.90 0.000 2.60698 3.290909

_cut33
_cons 3.388434 .1946716 17.41 0.000 3.006884 3.769983

_cut41
_cons 1.982716 .1204901 16.46 0.000 1.74656 2.218872

_cut42
_cons 2.878501 .149498 19.25 0.000 2.58549 3.171511

_cut43
_cons 3.33006 .1694246 19.66 0.000 2.997994 3.662126
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_cut51
_cons 1.906022 .0901169 21.15 0.000 1.729396 2.082648

_cut52
_cons 2.762481 .1154861 23.92 0.000 2.536132 2.988829

_cut53
_cons 3.219286 .138095 23.31 0.000 2.948624 3.489947

_cut61
_cons 1.480127 .0760863 19.45 0.000 1.331001 1.629253

_cut62
_cons 1.977795 .0836873 23.63 0.000 1.813771 2.141819

_cut63
_cons 2.229876 .0888658 25.09 0.000 2.055702 2.404049

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id)

var(1): .63998381 (.07960631)

loadings for random effect 1
d1: 1 (fixed)
d2: 1.002752 (.08340337)
d3: 1.9024153 (.19194501)
d4: 1.7244397 (.16725692)
d5: 1.3406436 (.12513133)
d6: 1.3042602 (.11105886)

Regressions of latent variables on covariates
------------------------------------------------------------------------------

random effect 1 has 1 covariates:
sex: -.33899689 (.03926522)

------------------------------------------------------------------------------

There is little evidence for a differential effect of sex on the three thresholds with a small
change in log-likelihood and coefficients of sex that are similar across thresholds. A likelihood
ratio test gives:

. lrtest mod6 .
(log-likelihoods of null models cannot be compared)

likelihood-ratio test LR chi2(2) = 1.76
(Assumption: mod6 nested in .) Prob > chi2 = 0.4153
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Chapter 9

Nominal responses: Polytomous
response, discrete choice and
rankings

9.1 Multinomial logit model for polytomous or discrete choice
data

Let a index the A possible categories of the polytomous response variable; it is convenient to
think of these categories as alternatives and the response as a choice among alternatives even
if the response does not strictly represent a choice. We will define multinomial logit models by
specifying the ‘linear predictor’ V a

i , a = 1, . . . , A so that the multinomial probability of response
category f (the probability that f is chosen) for person i is

Pr(fi) =
exp(V f

i )∑A
a=1 exp(V a

i )
(9.1)

This probability model can also be derived by assuming that associated with each alterna-
tive is an unobserved ‘utility’ Ua

i (latent response) and that the alternative with the highest
utility is selected. Depending on the situation, utility could mean attractiveness, usefulness
(voting/purchasing), or cost-effectiveness (clinical treatments) of the alternative. The utility is
modeled as

Ua
i = V a

i + εa
i . (9.2)

Alternative f is selected if
Uf

i > Ug
i for all g 6= f (9.3)

or, equivalently,
Uf

i − Ug
i = V f

i − V g
i + (εf

i − εg
i ) > 0. (9.4)

If the error term εa
i has an extreme value distribution of type I (Gumbel), then the differences

(εf
i − εg

i ) have a logistic distribution and equation (9.1) follows (McFadden, 1973).
For person-specific covariates, a different coefficient vector ga is estimated for each alternative

except a reference alternative:
V a

i = ga′xi (9.5)

109
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Although the multinomial logit or polytomous logistic regression model usually only includes
person-specific covariates, we can also include alternative-specific covariates in gllamm. This
is done by expanding the data so that for each person there is one record for each alternative
available to that person (different alternative sets for different persons are possible) and creating
a dummy variable for the variable actually selected. Alternative (and person)-specific variables
or random effects can then easily be specified. When running gllamm, the expanded() option
must be used to specify the clusters of observations (persons) representing a single alternative
set so that gllamm computes a single likelihood contribution for each alternative set equal to
the multinomial probability in equation (9.1).

Consider the example where the outcome is the choice of mode of transport used for com-
muting. Person 1 can choose between a train, bus or car, and person 2 can only choose between
a bus or a car because there is no train available to him. The alternative sets therefore have
different sizes. We know the people’s ages and the cost of their journey from home to work for
each mode of transport (an alternative and subject specific covariate). The data would have to
be set up as follows:

person age mode cost choice
1 23 train 2 1
1 23 bus 1.6 0
1 23 car 2 0
2 30 bus 0.8 0
2 30 car 1.2 1

where ‘choice’ indicates the mode of transport chosen.

9.2 Multinomial logit model for rankings

Rankings are orderings of alternatives (parties, clinical treatments, brands) according to prefer-
ence or some other characteristic. (A nominal response represents an incomplete ranking where
only the first choice is specified.) As in the previous section, we assume that associated with
each alternative a there is a utility Ua

Ua
i = V a

i + εa
i (9.6)

and again assume that εa has an extreme value distribution of type I (Gumbel). Let rs be the
alternative with rank s. Then the ranking Ri = (r1, r2, . . . , rA) is obtained if

U r1

i > U r2

i > . . . > U rA

i (9.7)

and the probability of a ranking Ri is (Luce, 1959)

Pr(Ri) =
exp(V r1

i )∑A
s=1 exp(V rs

i )
× exp(V r2

i )∑A
s=2 exp(V rs

i )
× . . .× exp(V rA

i )∑A
s=A−1 exp(V rs

i )
. (9.8)

This probability can be interpreted as arising from a sequential choice process where the
subject initially makes a discrete choice among all alternatives. In the second ‘stage’, a discrete
choice is made among all alternatives except the first since this is no longer available. At each
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subsequent stage, a discrete choice is made among the alternatives still remaining at that stage.
The likelihood looks like the partial likelihood of Cox’s regression model where the ranks are
the survival times and the alternative sets remaining at each stage represent the ‘risk sets’.
We can expand the data to alternative sets and then estimate the model in the same way as
for discrete choice. The likelihood contribution of each alternative set is the same as that of
a person in the discrete choice case (with different alternative sets for different ‘persons’). If
these alternative sets are specified in gllamm using the expanded() option, their product is
automatically evaluated yielding the expression in equation (9.8).

Consider the commuting example given in the previous section, but this time the respondents
could rank the modes of transport in order of preference. Person 1 ranks the modes in the order
train, bus, car and person 2 ranks the two modes available to him in the order bus, car. The
data would have to be expanded or “exploded” as follows:

person age stage alternative set mode cost choice
1 23 1 1 train 2 1
1 23 1 1 bus 1.6 0
1 23 1 1 car 2 0
1 23 2 2 bus 1.6 1
1 23 2 2 car 2 0
2 30 1 3 bus 0.8 0
2 30 1 3 car 1.2 1

Here, person 1 has two ‘decision stages’ - in the first, all three alternatives are available and in
the second, a choice is made between bus and car. Person 2 only has one ‘decision stage’ because
only one alternative is left after making the first choice. It is clear how incomplete rankings can
be handled, where individuals only rank the top few alternatives.

Multilevel models for first choice and ranking data are discussed in detail in Skrondal and
Rabe-Hesketh (2003b). See also Skrondal and Rabe-Hesketh (2003a) for a less technical account.

9.3 Polytomous response: Multinomial logit with random in-
tercepts

In this section we use the Junior School Project data used to illustrate the multilevel multinomial
logit model in the MLwiN Advanced Macros Manual (Yang et al., 1999).

The teachers’ rating of pupils’ behavior is available on 3939 students (i) in 48 schools (j).
Although the rating is ordinal with scores 1,2,3 representing the top 25%, the middle 50%, and
the bottom 25%, respectively, we will repeat the analysis of the Advanced Macros Manual so
that we can compare the estimates using quadrature with the MQL/PQL estimates used in
MLwiN.

The linear predictor, or utility, includes a subject-specific covariate, the sex of student i in
school j, xij as well as random intercepts for school, γa

j :

V a
ij = ga

0 + ga
1xij + γa

j (9.9)

where all effects are set to 0 for a = 1, i.e. g1
0 = g1

1 = 0 and γ1
j = 0, making the first alternative

the ‘reference category’. There are therefore two random effects, γ2
j and γ3

j for alternative 2 and
3 and these random effects will be assumed to be correlated.
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9.3.1 Data preparation

The data are available as an ASCII file jspmix.dat. We read the data using infile:

infile scy3 id sex stag ravi fry3 tby using jspmix.dat, clear

Here scy3 is the school identifier, tby is the response variable and sex will be used as an
explanatory variable. (The other variables will not be used). Since many pupils in the same
school are likely to have the same response and sex, we can collapse the data and form level 1
weights to speed up the estimation:

gen cons=1
collapse (count) wt1=cons, by(scy3 sex tby)

The level 1 weight variable is wt1 and we will have to specify wt in the weight() option when
running gllamm. The first 12 observations now are (use sort scy3 sex tby if the observations
are in a different order):

. list scy3 sex tby wt1 in 1/12, clean

scy3 sex tby wt1
1. 1 0 1 8
2. 1 0 2 2
3. 1 0 3 2
4. 1 1 1 3
5. 1 1 2 8
6. 1 1 3 4
7. 2 0 1 3
8. 2 0 2 2
9. 2 0 3 4
10. 2 1 2 4
11. 2 1 3 4
12. 3 0 1 3

For example, 8 individuals in the first school had sex = 0 and tby = 1.
We can run the model without random effects using Stata’s mlogit command with frequency

weights and using the response tby=1 as the baseline category:

. mlogit tby sex [fweight=wt1], base(1)

Iteration 0: log likelihood = -1349.1298
Iteration 1: log likelihood = -1332.0463
Iteration 2: log likelihood = -1331.9206
Iteration 3: log likelihood = -1331.9206

Multinomial logistic regression Number of obs = 1313
LR chi2(2) = 34.42
Prob > chi2 = 0.0000

Log likelihood = -1331.9206 Pseudo R2 = 0.0128

tby Coef. Std. Err. z P>|z| [95% Conf. Interval]

2
sex .4227768 .1368457 3.09 0.002 .1545643 .6909894

_cons .5381711 .0885475 6.08 0.000 .3646211 .7117211

3
sex .9436537 .1632866 5.78 0.000 .6236178 1.26369

_cons -.5460938 .1161788 -4.70 0.000 -.7737999 -.3183876

(Outcome tby==1 is the comparison group)
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The gllamm command can be used to obtain the same estimates using the mlogit link and the
binomial family:

gllamm tby sex, i(scy3) init base(1) link(mlogit) family(binom) weight(wt) trace

Here we used the init option to obtain the ‘initial estimates’ where all random components
are set to 0. (Here the option i(scy3) serves no purpose but is used because the i() option is
required.)

Since different random intercepts apply to alternatives 2 and 3, we will expand the data
so that there is one record for each alternative for each observation in the current dataset. A
dummy variable, chosen will indicate which of the alternatives was selected. Note that this
type of expansion also allows alternative specific covariates to be included in the linear predictor
as well as allowing different alternative sets (sets of possible response categories) for different
individuals.

We create an identifier, patt, for the records in the current dataset which represent unique
combinations (or patterns) of scy3, sex and tby.

sort school sex tby
gen patt=_n

We now need to expand the data. This is easy because all individuals choose from the same
full set of three alternatives. First we replace each record with three replicates of itself and
define a new variable alt which takes on the possible values of tby for each value of patt. The
variable chosen indicates which of the values in alt equals the response actually given.

expand 3
sort patt
qui by patt: gen alt=_n
gen chosen=alt==tby

The data now look like this:
. sort patt alt

. list scy3 patt sex alt chosen tby in 1/21, clean

scy3 patt sex alt chosen tby
1. 1 1 0 1 1 1
2. 1 1 0 2 0 1
3. 1 1 0 3 0 1
4. 1 2 0 1 0 2
5. 1 2 0 2 1 2
6. 1 2 0 3 0 2
7. 1 3 0 1 0 3
8. 1 3 0 2 0 3
9. 1 3 0 3 1 3
10. 1 4 1 1 1 1
11. 1 4 1 2 0 1
12. 1 4 1 3 0 1
13. 1 5 1 1 0 2
14. 1 5 1 2 1 2
15. 1 5 1 3 0 2
16. 1 6 1 1 0 3
17. 1 6 1 2 0 3
18. 1 6 1 3 1 3
19. 2 7 0 1 1 1
20. 2 7 0 2 0 1
21. 2 7 0 3 0 1
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9.3.2 Parameter estimation

We now use alt as the response variable and must use the expanded() option to indicate that
the data are in expanded form. The arguments for this option are the identifier of the records in
the original, unexpanded dataset, here patt, the indicator variable for the alternative that was
selected and either o or m. The o option (stands for “one”) indicates that one fixed coefficient is to
be estimated for each explanatory variable and requires dummy variables to be used to estimate
separate parameters for alternatives 2 and 3. The m option (stands for “many”) indicates that
A− 1 parameters are to be estimated for each explanatory variable.

In either case, we must specify equations for the random intercepts γ2
j and γ3

j using appro-
priate dummy variables:

tab alt, gen(a)
eq a2: a2
eq a3: a3

The shorter way of running gllamm is to use m in the expand() option:

gllamm alt sex, expand(patt chosen m) i(scy3) lin(mlogit) family(binom)/*
*/ nrf(2) eqs(a2 a3) nip(4) weight(wt) trace

but we will define the appropriate dummy variables and use o in the expand() option:

gen a2sex = a2*sex
gen a3sex = a3*sex
gllamm alt a2 a3 a2sex a3sex, nocons expand(patt chosen o) i(scy3) /*

*/ lin(mlogit) family(binom) nrf(2) eqs(a2 a3) nip(4) weight(wt) /*
*/ adapt

Here the nocons option is used since we do not want to include an overall constant in V a (the
constant would cancel out in equation (9.1) and is therefore not identified.) After estimating
the model with 4 quadrature points, (log-likelihood =-1299.6632) we use the commands

matrix a=e(b)
gllamm alt a2 a3 a2sex a3sex, nocons expand(patt chosen o) i(scy3) /*

*/ lin(mlogit) family(binom) nrf(2) eqs(a2 a3) nip(8) weight(wt) /*
*/ from(a) adapt

to estimate the model with 8 quadrature points (log-likelihood = -1299.6642) and finally, we
estimate the model with 12 quadrature points:

. matrix a=e(b)

. gllamm alt a2 a3 a2sex a3sex, nocons expand(patt chosen o) i(scy3) /*
> */ lin(mlogit) family(binom) nrf(2) eqs(a2 a3) nip(12) weight(wt) /*
> */ from(a) adapt

Running adaptive quadrature
Iteration 0: log likelihood = -1299.6642
Iteration 1: log likelihood = -1299.6642

Adaptive quadrature has converged, running Newton-Raphson
Iteration 0: log likelihood = -1299.6642
Iteration 1: log likelihood = -1299.6642 (backed up)
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number of level 1 units = 3939
number of level 2 units = 48

Condition Number = 4.9555184

gllamm model

log likelihood = -1299.6642

alt Coef. Std. Err. z P>|z| [95% Conf. Interval]

a2 .5961298 .1406765 4.24 0.000 .3204089 .8718508
a3 -.5658695 .1800264 -3.14 0.002 -.9187147 -.2130243

a2sex .5463168 .1455602 3.75 0.000 .261024 .8316097
a3sex 1.101733 .1747511 6.30 0.000 .7592275 1.444239

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (scy3)

var(1): .48315158 (.16789726)
cov(2,1): .54072149 (.1787848) cor(2,1): .90769189

var(2): .73449179 (.23634624)
------------------------------------------------------------------------------

There are several reasons for gradually increasing the number of quadrature points: (1) es-
timation with 12 quadrature points per dimension is very slow and it is good to have some
preliminary results quickly to make sure the model was specified correctly (2) the 12 quadrature
point estimation will require fewer iterations if the starting values are good (from a previous
run with fewer quadrature points) and (3) we need values of the maximized log-likelihood and
parameter estimates for different numbers of quadrature points to assess the adequacy of the
approximations (see quadchk in Stata Reference manual).

The effect of sex is to increase the odds of alternatives 2 and 3 compared with alternative
1. To obtain the odds ratios, use the eform option when estimating the parameters or issue the
command

gllamm, eform

after parameter estimation.
There is strong evidence for between school variation with a change in log-likelihood of 32

when the two random effects were introduced (3 parameters). The two random effects are highly
correlated.

9.3.3 Comparison with MLwiN

Table 9.1 shows the parameter estimates obtained in MLwiN, using second order MQL (PQL
did not converge) next to those obtained in gllamm. There are large differences in the school
level variance estimates between gllamm and MLwiN.

For binary responses, MQL and PQL are known to underestimate the variances of the random
effects. The bias is greater for MQL than for PQL. We therefore carried out the following
simulation to find out whether gllamm overestimated the variances or MLwin underestimated the
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variances. We replicated each school 10 times, each with the same number of pupils and number
of boys as in the data. We then simulated the behavior rating using the MLwiN estimates as
the ‘true parameters’ and estimated models using both gllamm and MLwiN. Using the gllamm
estimates as ‘true parameters’, we then resimulated the responses and again estimated the
parameters using both gllamm and MLwiN (note that the gllamm estimates were obtained using
ordinary quadrature because adaptive quadrature had not been implemented at the time). The
results are shown in Table 9.2. For both simulations, the gllamm parameter estimates are closer
to the true values than the MQL values (PQL did not converge).

9.4 A latent class model for rankings

Croon (1989) describe a latent class analysis of rankings. In 1974/1975, over 2000 German
respondents rated four political goals according to their desirability:

1. Maintain order in the nation

2. Give people more say in decisions of the government

3. Fight rising prices

4. Protect freedom of speech

The purpose of this ranking task was to investigate value orientations which may be classifiable
as materialistic or post-materialistic; materialists would be expected to give preference to goals
1 and 3 whereas post materialists would be expected to prefer goals 2 and 4. The heterogeneity
in value orientations can be modeled by assuming that subjects’ ‘utilities’ for the political goals
vary randomly from the overall mean, i.e.,

The model is a latent class model with

V a
j = ga + γa

j a = 1, 2, 3 (9.10)

and
V 4 = 0. (9.11)

Table 9.1: MLwin and gllamm estimates for Junior School Project data

MLwiN estimates gllamm estimates
(2nd order MQL) (12pts)
Estimate SE Estimate SE

Cat. 2 Cons 0.468 0.094 0.596 0.141
Boy 0.445 0.112 0.546 0.146

Cat. 3 Cons -0.631 0.123 -0.566 0.180
Boy 0.973 0.137 1.102 0.175
Var(γ2

j ) 0.115 0.054 0.483 0.168
Var(γ3

j ) 0.189 0.082 0.734 0.236
Cov(γ3

j , γ2
j ) 0.019 0.048 0.541 0.179

http://www.bepress.com/ucbbiostat/paper160



9.4. A LATENT CLASS MODEL FOR RANKINGS 117

Table 9.2: Simulations of multinomial responses with estimated parameters using gllamm and
MLwiN.

gllamm estimates MLwiN estimates
(12pts) (2nd order MQL)

MLwiN param. True value estimate SE estimate SE
cat. 2 cons 0.468 0.456 0.033 0.468 0.029

boy 0.445 0.408 0.043 0.461 0.035
cat. 3 cons -0.631 -0.597 0.043 -0.588 0.038

boy 0.973 0.948 0.052 0.971 0.043
Var(γ2

j ) 0.115 0.117 0.022 0.105 0.016
Var(γ3

j ) 0.189 0.169 0.032 0.161 0.024
Cov(γ3

j , γ2
j ) 0.019 0.021 0.020 -0.114 0.017

gllamm param.
cat. 2 cons 0.593 0.587 0.056 0.481 0.030

boy 0.546 0.496 0.046 0.505 0.035
cat. 3 cons -0.569 -0.560 0.057 -0.656 0.038

boy 1.101 1.102 0.055 1.119 0.043
Var(γ2

j ) 0.494 0.519 0.053 0.119 0.017
Var(γ3

j ) 0.741 0.740 0.075 0.153 0.023
Cov(γ3

j , γ2
j ) 0.549 0.573 0.058 0.025 0.015
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If subjects fall into latent groups or types (e.g. materialistic and post-materialistic), then this can
be modeled by assuming that the random effects (γ1

j ,γ2
j ,γ3

j ) take on discrete values (e1r,e2r,e3r),
r = 1, . . . , R with probabilities πr.

If gllamm is used with the ip(f) option, the ga represent the mean locations and the γa
j

represent deviations from the mean. If we use the ip(fn) option instead, the γa
j are not centered

around their means and the constants ga become redundant.

9.4.1 Data preparation

The rankings in the data are represented by four variables, item1 to item4, where item1 specifies
the most preferred alternative (goal in this case), item2 specifies the second preference, etc. The
data contain each of the 24 (4× 3× 2) rankings and the number of times they occurred.

We read the data and stack the alternatives into a single variable, item, defining the variable
rank which contains the ranking of the alternatives:

infile item1 item2 item3 item4 wt2 using materia.dat, clear
gen patt=_n
reshape long item, i(patt) j(rank)

The data now look like this:

. sort patt rank

. list patt rank item wt2 in 1/8, clean

patt rank item wt2
1. 1 1 1 137
2. 1 2 2 137
3. 1 3 3 137
4. 1 4 4 137
5. 2 1 1 29
6. 2 2 2 29
7. 2 3 4 29
8. 2 4 3 29

137 individuals gave the rank order 1,2,3,4 and 29 individuals the order 1,2,4,3. We now
need to expand the data further. Regarding the ranks as sequential decisions, where in each
stage the best remaining alternative is selected, we need to expand the data to ‘alternative sets’.
Analogously to risk sets in survival analysis representing all those who are still available (and
can still fail) at a given time, the alternative sets represent all alternatives that are still available
at a given stage (and can still be chosen). Using this analogy, we can simply use Stata’s stsplit
command (available from Stata 7) for expanding survival data to risk set data (see Chapter 7).
Here the ‘survival times’ are the rankings in the variable rank and we need to stratify by patt.
The ‘failure’ indicator, which we will call chosen, is always 1 because a choice was made at each
stage. The individual records in the current dataset correspond to ‘individuals’ in the survival
setting. We first need to define the data as survival data using stset. We can then expand the
data using stsplit:

gen id=_n
gen chosen = 1
stset rank, fail(chosen) id(id)
stsplit, at(failures) strata(patt) riskset(set)
recode chosen .=0
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The data now look like this:

. sort patt set item

. list patt set rank item chosen wt2 in 1/20, clean

patt set rank item chosen wt2
1. 1 1 1 1 1 137
2. 1 1 1 2 0 137
3. 1 1 1 3 0 137
4. 1 1 1 4 0 137
5. 1 2 2 2 1 137
6. 1 2 2 3 0 137
7. 1 2 2 4 0 137
8. 1 3 3 3 1 137
9. 1 3 3 4 0 137
10. 1 4 4 4 1 137
11. 2 5 1 1 1 29
12. 2 5 1 2 0 29
13. 2 5 1 3 0 29
14. 2 5 1 4 0 29
15. 2 6 2 2 1 29
16. 2 6 2 3 0 29
17. 2 6 2 4 0 29
18. 2 7 3 3 0 29
19. 2 7 3 4 1 29
20. 2 8 4 3 1 29

At set (alternative set) 1 for patt 1, all four items were available and the fist was chosen as
indicated by the variable chosen. At set 2, the first item was no longer available, so only items
2, 3 and 4 are represented and the second is chosen. At set 4, only one alternative is left and
this observation is redundant (the multinomial probability for that ‘alternative set’ would be 1).
We therefore drop all observations with rank equal to 4:

drop if rank==4

We need to define dummy variables for the alternatives so that we can specify the model in
terms of alternative specific parameters:

tab item, gen(alt)

9.4.2 Parameter estimation

In equation (9.10), we need a constant ga
0 and a random intercept γa

j for each alternative except
the last. The constants can be included by listing the dummy variables for the first three
alternatives as explanatory variables and using the nocons option. The random effects are
included by defining three equations, one for each alternative, specifying that there are three
random effects at level 2 using the nrf() option and listing the three equations in the eqs()
option. The ip(f) option is used to specify discrete random effects and initially, we will estimate
the model with two latent classes, i.e. using the nip(2) option:

. eq alt1: alt1

. eq alt2: alt2

. eq alt3: alt3

.

. gllamm item alt1 alt2 alt3, expand(set chosen o) i(patt) link(mlogit) /*
> */ family(binom) nrf(3) eqs(alt1 alt2 alt3) nocons weight(wt) nip(2) /*
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> */ ip(f)

Iteration 0: log likelihood = -6460.8177 (not concave)
Iteration 1: log likelihood = -6347.5802
Iteration 2: log likelihood = -6341.896 (not concave)
Iteration 3: log likelihood = -6312.7116
Iteration 4: log likelihood = -6311.6967
Iteration 5: log likelihood = -6311.6859
Iteration 6: log likelihood = -6311.6859

number of level 1 units = 20358
number of level 2 units = 2262

Condition Number = 10.249546

gllamm model

log likelihood = -6311.6859

item Coef. Std. Err. z P>|z| [95% Conf. Interval]

alt1 1.362889 .0584633 23.31 0.000 1.248303 1.477475
alt2 .2561528 .0408197 6.28 0.000 .1761477 .3361579
alt3 1.439707 .0548395 26.25 0.000 1.332224 1.547191

Probabilities and locations of random effects
------------------------------------------------------------------------------

***level 2 (patt)

loc1: -2.2346, .57995
var(1): 1.2959723

loc2: .18121, -.04703
cov(2,1): -.10509491

var(2): .00852251

loc3: -1.6514, .42859
cov(3,1): .957736
cov(3,2): -.07766615

var(3): .70777613
prob: 0.2061, 0.7939

------------------------------------------------------------------------------

On average, the materialistic goals were preferred (the coefficients of alt1 and alt3 are larger
than that of alt2 and 0 (the implied coefficient of alt4)). About 21% of the population fall
into the post-materialistic category with negative effects for goals 1 and 3 (latent class 1) and
about 79% of the population fall into the materialistic category (latent class 2).

Croon (1989) assesses the adequacy of different numbers of latent classes using the deviance.
The deviance is twice the difference in log-likelihoods between a given model and the full or
saturated model. The latter can be obtained from the original data by estimating the probability
of each of the 24 possible rankings:

. save junk, replace
(note: file junk.dta not found)
file junk.dta saved

. infile item1 item2 item3 item4 wt2 using materia.dat, clear
(24 observations read)

. qui summ wt2

. disp r(sum)
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2262

. gen l=wt2*ln(wt2/2262)

. qui summ l

. disp r(sum)
-6269.5248

. use junk, clear

In the initial gllamm output for the two class solution, the ‘fixed effects estimates’ are given.
These are the estimates when the random effects are set to 0 and therefore correspond to the
one class solution. Therefore, the deviances for the one class and two class solutions are

. disp 2*(6427.0497 - 6269.5248)
315.0498

. disp 2*(6311.6859 - 6269.5248)
84.3222

which agrees with the values given in Croon.
The locations in the output represent the deviations of the individual latent classes from the

means. To stop gllamm from centering the locations around their means, we can use the ip(fn)
option (and specify no fixed effects):

. gllamm item, expand(set chosen o) i(patt) link(mlogit) family(binom)/*
> */ nrf(3) eqs(alt1 alt2 alt3) nocons weight(wt) nip(2) ip(fn)

Iteration 0: log likelihood = -7119.4687 (not concave)
Iteration 1: log likelihood = -6329.073
Iteration 2: log likelihood = -6317.0349
Iteration 3: log likelihood = -6313.9794
Iteration 4: log likelihood = -6311.7965
Iteration 5: log likelihood = -6311.6862
Iteration 6: log likelihood = -6311.6859

number of level 1 units = 20358
number of level 2 units = 2262

Condition Number = 9.3329556

gllamm model

log likelihood = -6311.6859

No fixed effects

Probabilities and locations of random effects
------------------------------------------------------------------------------

***level 2 (patt)

loc1: -.87172, 1.9428
var(1): 1.295966

loc2: .43736, .20912
cov(2,1): -.10509343

var(2): .00852231

loc3: -.2117, 1.8683
cov(3,1): .9577329
cov(3,2): -.07766519

var(3): .70777501
prob: 0.2061, 0.7939

------------------------------------------------------------------------------
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The log-likelihood is as before but the locations are not centered anymore making them
easier to interpret.

We now obtain the three latent class solution using the Gateaux derivative method. Here,
the log-likelihood is evaluated at the parameter estimates of the two point solution while a
third point with a very low probability is added and moved through a fine 3-dimensional grid of
locations (searching the range -5 to 5 in 20 steps in each dimension):

. matrix a=e(b)

. local k=e(k)

. local ll=e(ll)

. noi cap noi gllamm item, expand(set chosen o) i(patt) link(mlogit) /*
> */ family(binom) nrf(3) eqs(alt1 alt2 alt3) nocons weight(wt) from(a) /*
> */ nip(3) ip(fn) gateaux(-5 5 20) lf0(‘k’ ‘ll’)
...............................................................................
> .............................................................................
> .............................................................................
> .............................................................................
> .............................................................................
> .............................................................................
> .............................................................................
>>>> Some dots omitted
maximum gateaux derivative is 3.6234362

Iteration 0: log likelihood = -6312.8415 (not concave)
Iteration 1: log likelihood = -6301.0572 (not concave)
Iteration 2: log likelihood = -6295.2365 (not concave)
Iteration 3: log likelihood = -6294.8282 (not concave)
Iteration 4: log likelihood = -6292.5033 (not concave)
Iteration 5: log likelihood = -6287.7128 (not concave)
Iteration 6: log likelihood = -6286.4001 (not concave)
Iteration 7: log likelihood = -6283.9777
Iteration 8: log likelihood = -6283.6958
Iteration 9: log likelihood = -6281.4594
Iteration 10: log likelihood = -6281.3648
Iteration 11: log likelihood = -6281.3611
Iteration 12: log likelihood = -6281.3611

number of level 1 units = 20358
number of level 2 units = 2262

Condition Number = 11.369394

gllamm model

log likelihood = -6281.3611

No fixed effects

Probabilities and locations of random effects
------------------------------------------------------------------------------

***level 2 (patt)

loc1: -.76144, 3.1448, 1.8385
var(1): 2.0418196

loc2: .55538, .21004, .17141
cov(2,1): -.19209478

var(2): .02389374

loc3: -.08916, 1.1827, 2.9561
cov(3,1): .83004279
cov(3,2): -.16114665
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var(3): 1.5224162
prob: 0.225, 0.3211, 0.4538

------------------------------------------------------------------------------

The deviance now is

. disp 2*(6281.3611 - 6269.5248)
23.6726

Croon’s three class estimates are given in his Table 3 where he uses yet another parametriza-
tion. Instead of fixing γ4

j = 0, he uses the constraint
∑

a γa
j = 0. For the largest class with

probability 0.45, this gives the following four locations:

. disp 1.8385-(1.8385+.17141+2.9561)/4

.5969975

. disp .17141-(1.8385+.17141+2.9561)/4
-1.0700925

. disp 2.9561-(1.8385+.17141+2.9561)/4
1.7145975

. disp -(1.8385+.17141+2.9561)/4
-1.2415025

which (almost) agrees with Croon’s result of 0.59, −1.07, 1.73, −1.25.
Skrondal and Rabe-Hesketh (2004) describe a random coefficient multinomial logit model for

a conjoint experiment in marketing research and Skrondal and Rabe-Hesketh (2003ab) describe
multilevel models for discrete choices and rankings of political parties. Data and do-files for
both examples are available at http://www.gllamm.org/examples.html
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Appendix A

A quick introduction to Stata

This section briefly discusses the most important Stata commands used in this manual, mostly
for preparing the data for gllamm. See Rabe-Hesketh and Everitt (2004) for a more complete
introduction to Stata.

The most important basic commands are use or infile for reading data and save for saving
data, list for listing data, generate, replace, egen and recode for transforming variables and
drop and keep for dropping observations. Basic data summary commands are tabulate, table
and summarize and basic estimation commands are regress, logit, glm, etc. If you are not
already familiar with these commands, look these up using Stata’s help or in the reference
manual. Also look in the Stata User’s Guide under Estimation and Post-estimation commands.

Many Stata commands use variable lists (abbreviated varlist in syntax descriptions). These
are just lists of variables separated by spaces. For example, to regress y on x1, x2, x3, sp, st
and houses, use

regress y x1 x2 x3 sp st houses

Variables can be abbreviated as long as this is unambiguous (i.e. only one variable in the data
has the same abbreviation). Variable lists can also be abbreviated. If there are no other variables
in the dataset, the following commands are all equivalent:

regress y x1 x2 x3 sp st houses
regress y x1 x2 x3 sp st hous
regress y x1-x3 sp st hous
regress y x1-x3 s* hous

Numeric expressions (e.g. used in generate) look like they do in most packages, e.g.,

gen x = y + z
replace x = (y - z)*5
replace x = 10/x
replace x = x^2
replace x = sqrt(x/2)

where + - * / and ^ are the plus, minus, times, divide and power operators, respectively, and
sqrt() is the square root. See help for functions to find out about more functions.

Almost all Stata commands can be used with if followed by a logical expression in order
to apply the command to a subset of observations. The logical operators == and ~= stand for
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“equal to” and “not equal to”, < and <= for “less than” and “less than or equal to” and > and >=
for “greater than” and “greater than or equal to”. The characters ~, & and | represent “not”,
“and”, and “ or”, respectively. An example of the use of if is

gen x = y + z if t==1

which sets x equal to y + z for all observations where t equals 1 and to missing otherwise.
Logical expressions evaluate to 1 (true) or 0 (false) and can be used to create dummy vari-

ables:

gen x = y == 2

One important thing to keep in mind when using logical expressions is that missing values
(represented by a dot) are interpreted as very large numbers. The command

gen x = y >= 2

would result in x being equal to 1 when y is greater or equal to 2 or missing!
A very convenient way of creating dummy variables is to use the tabulate command:

tab item, gen(d)

This creates variables d1, d2, etc. which are dummy variables for the first, second, etc. largest
values of item, respectively. Within an estimation command, we can generate dummy variables
using the xi: syntax.

xi: regress y i.item

Here the dummy variables Iitem 2, Iitem 3, etc. are generated because, in the regression
command, the explanatory variable, item, is preceded by i.. These dummy variables are used
as explanatory variables in the regression. The suffix of a given dummy variable corresponds to
the value of item for which it is an indicator. No dummy variable is created for the lowest value
of item. (In Stata 6, the dummy variables are called Iitem 2, Iitem 3, etc.)

Stata stores the results of most commands. For example, after summarize, we can access
the mean using the expression r(mean), e.g.

summ x
display r(mean)

After estimation commands, we can also access many stored results. For example, we can use
e(b) to get the vector (actually a matrix with one row) of parameter estimates and e(V) to get
the covariance matrix of the parameter estimates. Run a regression followed by the commands

matrix a=e(b)
matrix list a
matrix v=e(V)
matrix list v

The correlation matrix of the estimated parameters can be obtained from the covariance matrix
using
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matrix c=corr(v)

Look up the relevant estimation command in the Reference manual to find out how to access
different results.

Very useful post-estimation commands include testparm, test, lincom and nlcom. Assume
that group is a categorical variable with values 1,2 or 3 and y is some continuous variable. We
can use the following commands

xi: regress y i.group
testparm _Igroup*
test _Igroup_2=_Igroup_3
lincom _Igroup_2-_Igroup_3

to, respectively, run the regression, test the null hypothesis that the coefficients of both dummy
variables are 0 (i.e. there are no group difference in mean ), test that the coefficients of the
dummy variables for groups 2 and 3 are the same (no difference in means between groups 2
and 3) and form a 95% confidence interval for the difference between the coefficients of dummy
variables 2 and 3 (for the difference in means between groups 2 and 3). nlcom can be used to
obtain confidence intervals for nonlinear functions of coefficients.

In order to use gllamm, all responses need to be stacked into a single response vector. For
example, if we have measurement occasions j for subjects i, this may be viewed as a multivariate
dataset in which each occasion j is represented by a variable resultj and the subject identifier
is in the variable ind. However, for gllamm, we need one single, long, response vector containing
the responses for all occasions for all subjects, as well as two variables ind and t to represent
the indices i and j, respectively. The two “data shapes” are called wide and long, respectively.
We start from the wide shape with variables ind, result1 and result2:

. list, clean

ind result1 result2
1. 1 0 0
2. 2 0 1
3. 3 0 1

and convert this to the long shape with variables result, t, and ind using reshape:
. reshape long result, i(ind) j(t)
(note: j = 1 2)

Data wide -> long

Number of obs. 3 -> 6
Number of variables 3 -> 3
j variable (2 values) -> t
xij variables:

result1 result2 -> result

Giving:

. list, clean

ind t result
1. 1 1 0
2. 1 2 0
3. 2 1 0
4. 2 2 1
5. 3 1 0
6. 3 2 1
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(We could convert the data back to wide shape using

reshape wide result, i(ind) j(t)

but we will not)
This dataset becomes like the one used in the explanation of the weight() option in the

syntax for gllamm if we define occ, an identifier for the rows in the dataset. Here we can use
generate, abbreviated gen, together with Stata’s running observation index n:

. gen occ=_n

. list ind occ result, clean

ind occ result
1. 1 1 0
2. 1 2 0
3. 2 3 0
4. 2 4 1
5. 3 5 0
6. 3 6 1

If we did not already have t, an index for occasions within individuals (equal to 1,2 for each
individual), we could create one using by varlist: as follows:

. sort ind t

. by ind: gen j=_n

. list ind occ result j, clean

ind occ result j
1. 1 1 0 1
2. 1 2 0 2
3. 2 3 0 1
4. 2 4 1 2
5. 3 5 0 1
6. 3 6 1 2

Here, the data are first sorted in ascending order of ind and within groups having the
same value of ind, in ascending order of t. by varlist: is then used to repeat the same
command for each combination of values of varlist, i.e. for each value of ind in this case.
(The data must be sorted by ind for this to work.) A very useful feature of by varlist: is
that it causes the observation index n to count from 1 within each of the groups defined by the
unique combinations of the values of varlist. The macro N represents the total number of
observations, but when used with by varlist:, it represents the number of observations within
the groups. For example,

sort ind result
by ind: list result if _n==_N

lists the largest value of result for each value of ind.
We now collapse the data using the collapse command to form level 1 weights and list the

data:
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. gen cons=1

. collapse (sum) wt1=cons, by(ind result)

. gen occpat = _n

. list ind result occpat wt1, clean

ind result occpat wt1
1. 1 0 1 2
2. 2 0 2 1
3. 2 1 3 1
4. 3 0 4 1
5. 3 1 5 1

In the collapse command, the list of variables specified in the by() option determines what
groups of observations will be represented by a single line of data in the collapsed dataset. Here,
a row of data has been created for each unique combination of values of ind and result within
ind. The aggregated variable here is be called wt1 and is equal to the sum (specified in brackets)
of cons. (The syntax for forming the mean of occ would be (mean) mnocc=occ.)

Here we could also form level 2 weights. However, in practice it is safest to create level 2
weights (when the data are in wide form) followed by level 1 weights when the data are in long
form. We suggest the following exercise to the reader: Enter the data

ind result1 result2

1. 1 0 0

2. 2 0 1

3. 3 0 1

into Stata. Form level 2 weights, then reshape to long and form level 1 weights. You should end
up with dataset C in the weight() entry of the gllamm syntax.

Another command we will make use of is expand. The command

expand 3

replaces each line of data with three replicates of itself.
If the multilevel data are stored in separate files, file1.dta for the level 1 variables, file2.dta

for the level 2 variables, etc., Stata’s merge command can be used to merge the data as required
by the gllamm command. Assume subj is the level 1 identifier, class is the level 2 identifier
and school is the level 3 identifier. First sort the files :

use file2, clear
sort school class
save file2, replace
use file3, clear
sort school
save file3, replace

Then read the level 1 file and merge in the others:

use file1, clear
sort school class
merge school class using file2
drop _merge
sort school
merge school using file3

The merge command automatically expands the class level data before adding it to the
individual level data, etc.

Hosted by The Berkeley Electronic Press



130 APPENDIX A. A QUICK INTRODUCTION TO STATA

http://www.bepress.com/ucbbiostat/paper160



References

Albert, P. S., & Follmann, D. A. 2000. Modeling repeated count data subject to informative
dropout. Biometrics, 56, 667–677.

Arulampalam, W., Naylor, A. R., & Smith, J. P. 2004. A Hazard Model of the Probability of
Medical School Dropout in the UK. Journal of the Royal Statistical Society, Series A, 167,
157–178.

Baker, D., & Hann, M. 2001. General practitioner services in primary care groups in England: Is
there inequity between service availability and population need? Health & Place, 7, 67–74.

Bartholomew, D. J., & Knott, M. 1999. Latent Variable Models and Factor Analysis. London:
Arnold.

Bock, R. D., & Lieberman, M. 1970. Fitting a response model for n dichotomously scored items.
Psychometrika, 33, 179–197.

Bollen, K. A. 1989. Structural Equations with Latent Variables. New York: Wiley.

Boylan, R. T. 2004. Do the Sentencing Guidelines Influence the Retirement Decisions of Federal
Judges? The Journal of Legal Studies, 33, 231–253.

Breslow, N. E., & Clayton, D. G. 1993. Approximate inference in generalized linear mixed
models. Journal of the American Statistical Association, 88, 9–25.

Breslow, N. E., & Lin, X. 1995. Bias correction in generalised linear mixed models with a single
component of dispersion. Biometrika, 82, 81–91.

Campbell, S. M., Hann, M., Hacker, J., Burns, C., Oliver, D., Thapar, A., Mead, N., Safran,
D. Gelb, & Roland, M. O. 2001. Identifying predictors of high quality care in English
general practice: observational study. British Medical Journal, 323, 784–787.

Clayton, D. G. 1988. The analysis of event history data: A review of progress and outstanding
problems. Statistics in Medicine, 7, 819–841.

Croon, M. A. 1989. Latent class models for the analysis of rankings. Pages 99–121 of: De Soete,
G., Feger, H., & Klauer, K. C. (eds), New Developments in Psychological Choice Modeling.
Amsterdam: Elsevier.

Crouch, E. A. C., & Spiegelman, D. 1990. The evaluation of integrals of the form∫
f(t)exp(−t2)dt: Application to logistic-normal models. Journal of the American Sta-

tistical Association, 85, 464–469.

131

Hosted by The Berkeley Electronic Press



132 REFERENCES

Danahy, D. T., Burwell, D. T., Aranov, W. S., & Prakash, R. 1976. Sustained hemodynamic
and antianginal effect of high dose oral isosorbide dinitrate. Circulation, 55, 381–387.

Daucourt, V., Saillour-Glenisson, F., Michel, P., Jutand, M. A., & Abouelfath, A. 2003. A
multicenter cluster randomized controlled trial of strategies to improve thyroid function
testing. Medical Care, 41, 432–441.

Davies, R. B. 1987. Mass point methods for dealing with nuisance parameters in longitudinal
studies. Pages 88–109 of: Crouchley, R. (ed), Longitudinal Data Analysis. Aldershot:
Averbury.

Davies, R. B., & Pickles, A. 1987. A joint trip timing store-type choice model for grocery shop-
ping, including inventory effects and nonparametric control for omitted variables. Trans-
portation Research A, 21, 345–361.

Dayton, C. M., & MacReady, G. B. 1988. Concomitant variable latent class models. Journal of
the American Statistical Association, 83, 173–178.

Dohoo, I. R., Tillard, E., Stryhn, H., & Faye, B. 2001. The use of multilevel models to evaluate
sources of variation in reproductive performance in dairy cattle. Preventive Veterinary
Medicine, 50, 127–144.

Dunn, G., Everitt, B. S., & Pickles, A. 1993. Modelling Covariances and Latent Variables using
EQS. London: Chapman & Hall.

Ebel, B. E., Koepsell, T. D., Bennett, E. E., & Rivara, F. P. 2003. Use of child booster seats
in motor vehicles following a community campaign - A controlled trial. Journal of the
American Medical Association, 289, 879–884.

Finkelstein, M. A. 2002. A latent variable model for the analysis of variability in the classification
of radiographs of pneumoconioses. Annals of Occupational Hygiene, 46, 247–250.

Flay, B. R., & Johnson et al., C. A. 1989. The television, school and family smoking cessation
and prevention project: I theoretical basis and program development. Preventive Medicine,
17, 585–607.

Follmann, D. A., & Lambert, D. 1989. Generalizing logistic regression by nonparametric mixing.
Journal of the American Statistical Association, 84, 295–300.

Formann, A. K. 1992. Linear logistic latent class analysis for polytomous data. Journal of the
American Statistical Association, 87, 476–486.

Gibbons, R. D., & Hedeker, D. 1997. Random effects probit and logistic regression models for
three-level data. Biometrics, 53, 1527–1537.

Glance, L. G., Dick, A. W., Osler, T. M., & Mukamel, D. 2003. Using hierarchical modeling to
measure ICU quality. Intensive Care Medicine, 29, 2223–2229.

Goldstein, H. 2003. Multilevel Statistical Models (Third Edition). London: Arnold.

http://www.bepress.com/ucbbiostat/paper160



REFERENCES 133

Goldstein, H., Rasbash, J., Plewis, I., Draper, D., Browne, W. J., Yang, M., Woodhouse, G., &
Healy, M. 1998. A User’s Guide to MLwiN. London: Multilevel Models Project, Institute
of Education, University of London.

Gould, W., Pitblado, J., & Sribney, W. 2003. Maximum Likelihood Estimation with Stata.
College Station, TX: Stata Press.

Grilli, L., & Rampichini, C. 2003. Alternative specifications of bivariate multilevel probit ordinal
response models. Journal of Educational and Behavioral Statistics, 28, 31–44.

Hardouin, J.-N, & Mesbah, M. 2004. Clustering binary variables in subscales using an extended
Rasch model and Akaike Information Criterion. Communication in Statistics Theory and
methods, 33, 1277–1294.

Heckman, J. J., & Singer, B. 1984. A method of minimizing the impact of distributional as-
sumptions in econometric models for duration data. Econometrica, 52, 271–320.

Hedeker, D., & Gibbons, R. D. 1996. MIXOR: A computer program for mixed-effects ordinal
probit and logistic regression analysis. Computer Methods and Programs in Biomedicine,
49, 157–76.

Hedeker, D., Gibbons, R. D., & Flay, B. R. 1994. Random-effects regression models for clus-
tered data: With an example from smoking research. Journal of Consulting and Clinical
Psychology, 62, 757–765.

Holm̊as, T. H. 2002. Keeping nurses at work: A duration analysis. Health Economics, 11,
493–503.

Hu, P., Tsiatis, A. A., & Davidian, M. 1998. Estimating the parameters in the Cox model when
the covariate variables are measured with error. Biometrics, 54, 1407–1419.

Kaufman, J. S., Dole, N., Savitz, D. A., & Herring, A. H. 2003. Modeling community-level
influences on preterm birth among African-American and white women in central North
Carolina. Annals of Epidemiology, 13, 377–384.

Leese, M. N., White, I. R., Schene, A. H., Koeter, M. W. J., Ruggeri, M., Gaite, L., & the
EPSILON Study Group. 2001. Reliability in multi-site psychiatric studies. International
Journal of Methods in Psychiatric Research, 10, 29–42.

Lesaffre, E., & Spiessens, B. 2001. On the effect of the number of quadrature points in a logistic
random-effects model: An example. Journal of the Royal Statistical Society, Series C, 50,
325–335.

Lin, X., & Breslow, N. E. 1996. Bias correction in generalized linear mixed models with multiple
components of dispersion. Journal of the American Statistical Association, 91, 1007–1016.

Lindsay, B. G., Clogg, C. C., & Grego, J. 1991. Semiparametric estimation in the Rasch model
and related exponential response models, including a simple latent class model for item
analysis. Journal of the American Statistical Association, 86, 96–107.

Hosted by The Berkeley Electronic Press



134 REFERENCES

Little, R. J. A., & Rubin, D. B. 1987. Statistical Analysis with Missing Data. New York: Wiley.

Liu, Q., & Pierce, D. A. 1994. A note on Gauss-Hermite quadrature. Biometrika, 81, 624–629.

Longford, N. T. 1993. Random Coefficient Models. Oxford: Oxford University Press.

Luce, R. D. 1959. Individual Choice Behavior. New York: Wiley.

Magder, S. M., & Zeger, S. L. 1996. A smooth nonparametric estimate of a mixing distribution
using mixtures of Gaussians. Journal of the American Statistical Association, 11, 86–94.

Marshall, M., Lockwood, A., Green, G., Zajac-Roles, G., Roberts, C., & Harrison, G. 2004. Sys-
tematic assessments of need and care planning in severe mental illness: Cluster randomised
controlled trial. British Journal of Psychiatry, 185, 163–168.

Maughan, B., Pickles, A., Rowe, A., Costello, R., & Angold, A. 2000. Developmental trajectories
of aggressive and non-aggressive conduct problems. Journal of Quantitative Criminology,
16, 199–221.

McCullagh, P., & Nelder, J. A. 1989. Generalized Linear Models (Second Edition). London:
Chapman & Hall.

McCulloch, C. E., & Searle, S. R. 2001. Generalized, Linear and Mixed Models. New York:
Wiley.

McFadden, D. L. 1973. Conditional logit analysis of qualitative choice behavior. Pages 105–142
of: Zarembka, P. (ed), Frontiers in Econometrics. New York: Academic Press.

Morris, J. N., Marr, J. W., & Clayton, D. G. 1977. Diet and heart: Postscript. British Medical
Journal, 2, 1307–1314.

Muthén, L. K., & Muthén, B. O. 1998. Mplus User’s Guide. Los Angeles, CA: Muthén &
Muthén.

Naylor, J. C., & Smith, A. F. M. 1982. Applications of a method for the efficient computation
of posterior distributions. Journal of the Royal Statistical Society, Series C, 31, 214–225.

Pagani, L., & Seghieri, C. 2002. A statistical analysis of teaching effectiveness from students’
point of view. Pages 197–208 of: Developments in Statistics. Metodoloski Zvezki, vol. 17.

Panageas, K. S., Schrag, D., Riedel, E., Bach, P. B., & Begg, C. B. 2003. The effect of clustering
of outcomes on the association of procedure volume and surgical outcomes. Annals of
Internal Medicine, 139, 658–665.

Pickles, A., & Crouchley, R. 1994. Generalizations and applications of frailty models for survival
and event data. Statistical Methods in Medical Research, 3, 263–278.

Pickles, A., & Crouchley, R. 1995. A comparison of frailty models for multivariate survival data.
Statistics in Medicine, 14, 1447–1461.

Rabe-Hesketh, S., & Everitt, B. S. 2004. Handbook of Statistical Analyses using Stata (Third
Edition). Boca Raton, FL: Chapman & Hall/CRC.

http://www.bepress.com/ucbbiostat/paper160



REFERENCES 135

Rabe-Hesketh, S., & Pickles, A. 1999. Generalised linear latent and mixed models. Pages 332–
339 of: Friedl, H., Berghold, A., & Kauermann, G. (eds), 14th International Workshop on
Statistical Modeling.

Rabe-Hesketh, S., & Skrondal, A. 2001. Parameterization of multivariate random effects models
for categorical data. Biometrics, 57, 1256–1264.

Rabe-Hesketh, S., Pickles, A., & Taylor, C. 2000. sg129: Generalized linear latent and mixed
models. Stata Technical Bulletin, 53, 47–57.

Rabe-Hesketh, S., Pickles, A., & Skrondal, A. 2001a. GLLAMM: A general class of multilevel
models and a Stata program. Multilevel Modelling Newsletter, 13, 17–23.

Rabe-Hesketh, S., Touloupulou, T., & Murray, R. M. 2001b. Multilevel modeling of cognitive
function in schizophrenics and their first degree relatives. Multivariate Behavioral Research,
36, 279–298.

Rabe-Hesketh, S., Yang, S., & Pickles, A. 2001c. Multilevel models for censored and latent
responses. Statistical Methods in Medical Research, 10, 409–427.

Rabe-Hesketh, S., Skrondal, A., & Pickles, A. 2002. Reliable estimation of generalized linear
mixed models using adaptive quadrature. The Stata Journal, 2, 1–21.

Rabe-Hesketh, S., Pickles, A., & Skrondal, A. 2003a. Correcting for covariate measurement
error in logistic regression using nonparametric maximum likelihood estimation. Statistical
Modelling, 3, 215–232.

Rabe-Hesketh, S., Skrondal, A., & Pickles, A. 2003b. Maximum likelihood estimation of gener-
alized linear models with covariate measurement error. The Stata Journal, 3, 386–411.

Rabe-Hesketh, S., Skrondal, A., & Pickles, A. 2004a. Generalized multilevel structural equation
modeling. Psychometrika, 69, 167–190.

Rabe-Hesketh, S., Pickles, A., & Skrondal, A. 2004b. Multilevel and Structural Equation Mod-
eling of Continuous, Categorical and Event Data. College Station, TX: Stata Press.

Rabe-Hesketh, S., Skrondal, A., & Pickles, A. 2005. Maximum likelihood estimation of limited
and discrete dependent variable models with nested random effects. Journal of Economet-
rics, in press.

Raudenbush, S. W., & Bryk, A. S. 2002. Hierarchical Linear Models. Thousand Oaks, CA:
Sage.

Rodriguez, G., & Goldman, N. 1995. An assessment of estimation procedures for multilevel
models with binary responses. Journal of the Royal Statistical Society, Series A, 158,
73–89.

Skrondal, A. 1996. Latent Trait, Multilevel and Repeated Measurement Modelling with Incomplete
Data of Mixed Measurement Levels. Oslo: Section of Medical Statistics, University of Oslo.

Hosted by The Berkeley Electronic Press



136 REFERENCES

Skrondal, A., & Rabe-Hesketh, S. 2003a. Generalized linear mixed models for nominal data.
American Statistical Association, Proceedings of the Biometrics Section, 3931–3936.

Skrondal, A., & Rabe-Hesketh, S. 2003b. Multilevel logistic regression for polytomous data and
rankings. Psychometrika, 68, 267–287.

Skrondal, A., & Rabe-Hesketh, S. 2003c. Some applications of generalized linear latent and mixed
models in epidemiology: Repeated measures, measurement error and multilevel modelling.
Norwegian Journal of Epidemiology, 13, 265–278.

Skrondal, A., & Rabe-Hesketh, S. 2004. Generalized Latent Variable Modeling: Multilevel,
Longitudinal, and Structural Equation Models. Boca Raton, FL: Chapman & Hall/CRC.

Snijders, T. A. B., & Bosker, R. J. 1999. Multilevel Analysis. London: Sage.

Stata Base Reference Manuals. 2003. Stata Base Reference Manuals. College Station, TX.

StataCorp. 2003. Stata Statistical Software: Release 8.0. College Station, TX.

Stryhn, H., Dohoo, I. R., Tillard, E., & Hagedorn-Olsen, T. 2000. Simulation as a tool of
validation in hierarchical generalized linear models. Pages 1136–1138 of: International
Symposium on Veterinary Epidemiology and Economics.

Udry, J. R. 1998. National Longitudinal Study of Adolescent Health, Waves I & II, 1994-1996.
Chapel Hill, NC: Carolina Population Center.

Vincent, J.-L., Wilkes, M. M., & Navickis, R. J. 2003. Safety of human albumin–serious averse
events reported worldwide in 1998-2000. British Journal of Anaesthesia, 91, 625–630.

Woodhouse, G., Rasbash, J., Goldstein, H., & Yang, M. 1995. Some covariance models for
longitudinal count data with overdispersion. Pages 9–57 of: Woodhouse, G. (ed), A Guide
to MLn for New Users. London: Institute of Education.

Yang, M., Rasbash, J., Goldstein, H., & Barbosa, M. 1999. MLwiN Macros for Advanced
Multilevel Modelling. University of Education, London: Multilevel Models Project.

http://www.bepress.com/ucbbiostat/paper160



Index

adapt option, 34
adaptive quadrature, 31, 35, 36
allc option, 54

binomial family, 34, 91, 113

Cholesky decomposition, 17, 18, 41
collapse, 90, 112
collapse command, 128
column name, 41, 96
concomitant variable, 14
condition number, 20, 35, 59
constraints, 96
contraints option, 48
contraints() option, 97
copy option, 61

deviance, 120
diagnostic standard error, 43
differential item functioning, 105
discrete random effect, 51

eform option, 38, 82, 115
empirical Bayes, see posterior mean
empirical Bayes predictions, 27
eq command, 39, 47
eqs() option, 39, 40, 47, 95, 119
equation name, 41, 96
eval option, 85, 93
expanded() option, 110, 111, 114

factor loading, 48
factor model, 45
factor scores, 27
family() option, 69
finite mixture model, 51
fixed effects estimates, 121
fracpoly command, 81
frailty, 83

frload() option, 48
from() option, 38, 41, 92
fv() option, 69

Gateaux derivative, 15, 52, 58, 122
gateaux() option, 53, 58
generalized linear mixed model, see multilevel

regression model
geqs() option, 70, 103
GLLAMM, 7
gllapred command, 42, 54, 61

linpred option, 43
p option, 61

graded response models, 88
graph command

connect(ascending) option, 43

heteroscedasticity, 10, 12, 96

i() option, 36
init option, 113
initial values, 36
ip(f) option, 52, 57, 119
ip(fn) option, 55, 118, 121
item bias, 105
item response model, 45, 88

latent classes, 57, 116
level 1 residual variance, 40
level 1 residuals, 43
level 1 weights, 39, 90, 112
level 2 residuals, 43
level 2 weights, 46, 94
lf0() option, 48, 53, 58, 59
likelihood ratio test, 41, 48, 85
link() option, 69, 88
log link, 81
logit link, 34
lv() option, 69, 88, 99
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measurement error, 65
mixed response model, 65
mixture regression model, 57
mkspline command, 81
mlogit link, 113
multilevel regression model, 33
multinomial logit, see mlogit link

nip() option, 34, 52
nocons option, 114, 119
nocor option, 39
noest option, 96, 101
nominal responses, see mlogit link
nonparametric maximum likelihood, 15
NPML, see nonparametric maximum likelihood
nrf() option, 21, 39, 119

ocll link, 92
offset() option, 81
ologit link, 91
oprobit link, 94, 99
oprobit link, 92
ordinal responses, see ologit, oprobit, ocll

or soprobit link
orthpoly command, 80

partial credit model, 88
piecewise exponential model, 75
Poisson family, 81
polytomous responses, see mlogit link
posterior mean, 19, 42, 61
posterior probability, 19, 61
posterior standard deviation, 19, 42
proportional hazards, 75
proportional odds, see ologit link

random coefficient model, 38
random slope, 40
rankings, 110
Rasch model, 45
reshape command, 68, 127

s() option, 52, 96
semi-parametric mixture, 73
shrinkage estimators, 43
skip option, 41, 72, 92
soprobit link, 89, 96

stsplit command, 79
survival model, 75

three level model, 90
three-level model, 36
thresh() option, 88, 100, 106
trace option, 20, 35, 37, 96

weight() option, 39, 94, 112

xtlogit command, 34
xtpois command, 83
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