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Abstract. We consider compact Riemannian manifolds (M,∂M, g)
with boundary ∂M and metric g on which a finite group Γ acts
freely. We determine the extent to which certain rigidity properties
of (M,∂M, g) descend to the quotient (M/Γ, ∂/Γ, g). In particu-
lar, we show by example that if (M,∂M, g) is boundary rigid then
(M/Γ, ∂/Γ, g) need not be. On the other hand, lens rigidity of
(M,∂M, g) does pass to the quotient.

1. Introduction

In this paper we consider compact Riemannian manifolds (M, ∂M, g)
with boundary ∂M and metric g. On such an (M, ∂M, g) the boundary
distance function, dg : ∂M × ∂M → R+, is the function which assigns
to each pair p, q of boundary points the ”chordal” distance between
them (i.e. the infimum of the lengths of curves in M between p and
q). The boundary rigidity question is to determine which (M, ∂M, g)
are determined by dg. (M, ∂M, g) is called boundary rigid if for any
(M1, ∂M, g1) (with the same boundary) such that dg1 = dg then there
is a diffeomorphism φ : M1 → M which is the identity on ∂M such
that g1 = φ∗g.

Not all (M, ∂M, g) are boundary rigid since if there is an x ∈ M such
that no minimizing geodesic between boundary points passes through
x (we will call such an x ”unaffected”) then we can change g arbitrarily
in a small neighborhood of x without changing dg (hence the metric
near x is unaffected by dg). Another easy example to consider is the
hemisphere where any metric which is pointwise larger than the original
metric (but the same at the boundary) fails to change dg. There are
also more interesting examples (e.g. [CK], [W]) see the survey [C1].

Thus it becomes important to consider special classes of (M, ∂M, g).
One such class is called SGM (strong geodesic minimizing) It is mod-
ified version (see [C2]) of a class introduced by Gromov ([G]). One of
the points of the definition is that it is in terms only of dg. However,
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here we only give a “loose difinition”. (M,∂M, g) is loosely SGM if
every nongrazing geodesic segment in M is the unique minimizing path
between its endpoints. Here by ”nongrazing” we mean that the only
possible intersection points with the boundary are the endpoints. The
reader is referred to [C2] for the actual definition however the above def-
inition will be sufficient for this paper. We note here that if (M, ∂M, g)
is SGM then it is “nontrapping” in the sense that every geodesic ray
eventually hits the boundary.

There are a number of examples of boundary rigid manifolds (see
[C1]) including all compact subdomains of Rn (see [G]), Hn (or any
negatively curved symmetric space - see [BCG1, BCG2]), and open
hemispheres (see [M]). In this paper we will only use the fact ([C3])
that SGM subdomains of a flat torus are boundary rigid.

We consider the case where a finite group Γ acts freely by isome-
tries on a boundary rigid (M,∂M, g), and ask whether the quotient
(M/Γ, ∂M/Γ, g) must also be boundary rigid. (Here and throughout
the paper we will use the same notation for a metric and the induced
metric on a quotient by isometries.)

First we give an easy example to give the idea of what can go wrong.
Consider is Zn (n somewhat large - say 20) acting in the usual way
by rotation on the unit disk D in the plane. Consider the annulus A
gotten by removing a small open disk around the origin. A is boundary
rigid (as a subset of the plane) but A/Γ is not SGM since there are
lots of geodesics that don’t minimize distances. (This of course does
not mean that it isn’t boundary rigid.)

Thus when (M, ∂M, g) is boundary rigid and SGM then (M/Γ, ∂M/Γ, g)
need not be SGM . So if we look at another metric g1 on M/Γ with
dg1 = dg on ∂M/Γ and lift it to M we will only know that the boundary
distances on M agree for some pairs of boundary points. In fact

Example 1.1. There is a compact 3 dimensional boundary rigid mani-
fold (M,∂M, g) which admits a free action by a finite group Γ of isome-
tries such that (M/Γ, ∂M/Γ, g) is not boundary rigid. In the example
∂M is connected and M/Γ is orientable.

We do this by constructing an example where there is an unaffected x
in the quotient (M/Γ, ∂M/Γ, g). (There is a two dimensional analogue,
however the three dimensional case has the advantage that both M and
M/Γ are orientable and both ∂M and ∂M/Γ are connected.)

However, we now see (Corollary 1.3) that the fact that (M/Γ, ∂M/Γ, g)
need not be SGM is the only thing that can go wrong.

Let U+∂M represent the space of unit vectors V whose base point
is on the boundary and for which < V, N >≥ 0 where N is the inward
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pointing unit normal vector. For V ∈ U+∂M let cV : [0, L(V )] → M
(here L(V ) may take in values in [0,∞]) be the unit speed geodesic
segment with c′V (0) = V and L(V ) (if > 0) is the first number such
that cV (L(V )) ∈ ∂M . (If V is tangent to the boundary then L(V ) could
be 0 or not, while if cV never hits the boundary again then L(V ) = ∞).

The “scattering data” of (M, ∂M, g) is the map which assigns to each
V ∈ U+∂M both L(V ) and c′V (L(V )). That is, given the entry direc-
tion of a geodesic it gives the length and exit direction. If (M, ∂M, g)
and (M1, ∂M1, g1) are such that there is an isometry, f : ∂M1 → ∂M ,
between g1|∂M1 and g|∂M1 then there is a natural identification of
U+∂M1 with U+∂M (i.e. the normal projections to T∂M and T∂M1

are related by Df). If two such spaces have the same scattering data
then they behave the same as geodesic lenses. (M,∂M, g) is called
lens rigid if for any such (M1, ∂M1, g1) with the same scattering data
there is a diffeomorphism f : M1 → M extending our given f on the
boundary such that f ∗(g) = g1.

There are also a number of examples of (M,∂M, g) that are not lens
rigid (see for example [CK]), but all known examples have the property
that they are trapping (i.e. there is some geodesic ray in M that is
defined for all positive values of t). A natural assumption in considering
lens rigidity is that (M, ∂M, g) is nontrapping. By compactness of M
that is equivalent to saying that there is a uniform upper bound on the
length of geodesic segments.

Theorem 1.2. If (M,∂M, g) is nontrapping and lens rigid and further
admits a free action by a finite group Γ of isometries, then (M/Γ, ∂M/Γ, g)
is also nontrapping and lens rigid.

The idea of the proof when g1 is a different metric on the same space
M/Γ is, of course, to lift the two metrics from M/Γ back to M and
use the lens rigidity of M to get an isometry upstairs that we can
project back down. However, when there are more than one boundary
component some interesting things can happen.

Consider the flat annulus with Γ = Z20 acting on it as above (say the
inner radius is r0 - the outer was 1). Now consider a diffeomorphism f
of the annulus that rotates the circle of radius r by an amount R(r) in
such a way that R(r) = 0 for r near r0 and R(r) = 2π/20 for all r near
1. Now take g1 = f ∗g0. It is easy to see that g1 does not have the same
scattering data as g0. We note that by our choice of f it commutes
with rotations and hence with Γ = Z20. Thus we get a metric g1 on
M/Γ which is easily seen to have the same scattering data as g0.

Thus if g0 and g1 have the same scattering data on M/Γ they do not
need to have the same data when lifted to M . Of course, by pushing
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f down to M/Γ, g0 is still isometric to g1 via an isometry that leaves
the boundary fixed, however the isometry is just not the identity on
π1. The proof will show that this happens in general.

Now we return to our original question. If both (M, ∂M, g) and
(M/Γ, ∂M/Γ, g) are assumed to be SGM then any (M1/Γ, ∂M/Γ, g1)
with dg1 = dg will have the same scattering data as (M/Γ, ∂M/Γ, g)
(see [C2]) and hence, since SGM implies nontrapping, Theorem 1.2
yields:

Corollary 1.3. If a boundary rigid manifold (M,∂M, g) admits a free
action by a finite group Γ of isometries such that (M/Γ, ∂M/Γ, g) is
SGM then (M/Γ, ∂M/Γ, g) is also boundary rigid.

The question addressed in this paper was posed by M. Porrati and
R. Rabadan in [PR] where they discuss some possible applications in
theoretical physics. The author would like to thank Gunther Uhlmann
for passing the question on to him.

2. boundary rigidity

In this section we construct Example 1.1.
Our space M will be an SGM subset of the flat cylinder D2 × S1

where D2 is a flat disc of radius 1 and S1 has length 2n where n will
be determined later. Since M is SGM and can be thought of as a
subset of a flat 3-torus the result in [C2] shows that it is boundary
rigid. Γ = Z2n is the action on D2 × S1 generated by inversion on D2

and translation by one unit in the S1 direction.
Fix a small ε and let P be a finite subset of the interior of D2 that is

ε-dense in D2 and such that P ∩ −P = ∅. Let d = min{d(x, y)|x ∈ P
and y ∈ −P or y ∈ ∂D} (of course d < ε). Let K2 be a subset of D2

gotten by removing the discs of radius d/5 centered at points of P .
D2 × S1 is not SGM because there are geodesics in it that are not

length minimizing we will constuct M by removing a d/100 tubular
neighborhood, N(d/100), of the sets K2 × {2i} and −K2 × {2i + 1}
for i = 1..n. Note that Γ acts on M . Further note that there is an
L (independent of n) such that any geodesic on M has length less
than L. This is true because we were careful to make sure that the
holes on succesive copies of the removed K2 and −K2 do not line up.
And hence there is a positive lower bound on the angle that any long
geodesic must make with the vertical geodesics {x} × S1. We now
choose n > L. Thus all geodesics in M minimize and so it is SGM
and hence boundary rigid.



QUOTIENTS 5

M/Γ is a subset of D2 × [0, 1]/ ∼ where (x, 0) ∼ (−x, 1). There is
one copy of N(d/100) left in M/Γ and it is centered about t = 0 (or
t = 1). We note that if (x, t) and (−x, 1 − t) lie on ∂N(d/100) then
there is a path along ∂N(d/100) (going through one of the holes) of
length less than 2ε + d/50 which by a choice of small ε we can assume
is less than 1

2
.

Now consider the point x0 in M/Γ which corresponds to the point
(0, 0) × 1

2
∈ D2 × S1. We claim that for every geodesic c in M/Γ

between boundary points p and q if c passes through x0 then c is not
the minimizing path between p and q. Because of the symmetry about
the point x0, if p can be represented as (x, t) (for some x ∈ D2 and
t ∈ [0, 1]) then y can be represented as (−x, 1− t). There are two cases
to consider. If x ∈ ∂D2 then the length of c is at least 2 (since the
radius of D2 is 1). But then c is not minimizing because there is a
path along ∂M/Γ from p = (x, t) to q = (−x, 1− t) of length less than
1/2 + 2ε + d/50 < 1. To see this start with the ”vertical” ∂D2 × S1/Γ
from p to q which can be chosen to have length less than 1/2. This path
of course leaves ∂M/Γ but can be modified with a path (going through
a hole) as in the previous paragraph which has length less than 1

2
. If p

(and hence q) lie on ∂N(d/100) then the previous paragraph says that
the distance in M/Γ between p and q is less than 1

2
. On the other hand

any geodesic passing through x0 has length at least 1. Thus again c
cannot be minimizing. ¤
Remark 2.1. One can construct a similar two dimensional example
by starting with a flat cylinder [−1, 1]× [0, 2n]/ ∼ with (s, 0) ∼ (s, 2n).
We then make a similar construction using [−1, 1] in place of D2. Our
group Γ will be generated by the map that moves things vertically by
one unit and flips across the central vertical line. So Γ is cyclic of order
2n. This example works fine. It has the disadvantage that M/Γ is not
orientable and ∂M has many components.

3. lens rigidity

Before proving the theorem we need to establish some facts about
nontrapping spaces with the same scattering data.

We first show that the fact that (M, ∂M, g) is nontrapping implies
that (M1, ∂M1, g1) is also nontrapping. The set of trapped vectors W
(i.e the geodesic ray cW (t) starting in the direction of W is defined for
all t > 0) in M1 is always closed since limiting rays will also be defined
for all t. In our case, the compactness of M says there is an L such
that all geodesic segments of M have length less than L, and, since the
scattering data is the same, this is also true for all geodesic segments
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in M1 if any point lies on the boundary. This makes it easy to see that
the set of nontrapped vectors is closed, since any limit ray will still hit
the boundary and so be defined at most on an interval of length less
than L. The connectedness of UM1 along with the fact that there are
some nontrapped vectors give the result.

We can now define a C0 homeomorphism F : UM1 → UM as follows:
For W ∈ UM1 by the nontrapping property there is a unique V ∈
U+∂M1 and a unique t ≥ 0 such that W = c′V (t). As in the case
of SGM manifolds (see [C2]), we define F (W ) = c′f(V )(t). It is not

hard to see that F is continuous (it is in fact C∞ except possibly
at W ’s such that the geodesic segment tangent to W is tangent to
the boundary at both endpoints), invertible, F (−W ) = −F (W ), and
F ◦ gt

1(W ) = gt ◦ F (W ) for all t in which either side (and hence both
sides) is defined. (by gt we mean the geodesic flow in the metric g.) It
is also clear that if W has base point x ∈ ∂M1 then the F (W ) has base
point f(x) where f is the isometry identifying our two boundaries.

As a homeomorphism, F induces an isomorphism F∗ : π1(UM1) →
π1(UM). The projections p : UM → M and p1 : UM1 → M1 induce
isomorphisms on π1 if the dimension is greater than 2 so that we get
an induced map F∗ : π1(M1) → π1(M). In two dimensions this is still
the case since F will take the circle over a point on ∂M1 to the circle
over f(x) ∈ ∂M so takes the kernel of p1∗ to the kernel of p∗.

Proof of Theorem 1.2
Let g be a lens rigid nontrapping metric on M and Γ act freely

by isometries. Let (X1, ∂X1, g1) be such that g and g1 have the same

scattering data with respect to an isometry f̃ : ∂X1 → ∂M/Γ. Thus the
above discussion gives us a C0 time preserving conjugacy F : UX1 →
UM/Γ. This conjugacy will induce an isomorphism on π1 and hence,
since Γ is a normal subgroup of π1(M/Γ) and hence of π1(X1), we
have a finite cover M1 of X1 associated to Γ (so X1 = M1/Γ). We
can lift F to a C0 conjugacy (again called F ) from UM1 to UM that
commutes with the action of Γ (i.e. γF = Fγ). Note that F induces
an isometry, F∂, from ∂M1 to ∂M (which again commutes with Γ).
(We note that as in the example in the introduction, even if we start
with X1 = M/Γ then F∂ need not be the identity.) Thus identifying
the boundaries using F∂ the conjugacy F tells us that the scattering
data of (M1, ∂M1, g1) and (M, ∂M, g) agree and hence, since g is lens
rigid, there is a diffeomorphism f : M1 → M agreeing with F∂ on the
boundaries, such that f ∗g = g1.

We are left to show that f descends to an isometry from X1 = M1/Γ
to M0/Γ, i.e. to see that it takes orbits to orbits. We already know that
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it induces the appropriate map on the boundary (i.e. the identification
we started with) because it agrees with F∂ on the boundary. In fact
we see that f commutes with Γ, since for any γ ∈ Γ the isometry
f−1γ−1fγ restricted to the boundary is F−1

∂ γ−1F∂γ =Identity. But
any isometry that is the identity on the boundary is the identity on
the whole space. ¤
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