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Abstract—Robotic mapping is the process of automatically the understanding of the data that is used to represent the
constructing an environment representation using mobile robots. environment, making easier the sharing of environmental
We address the problem of semantic mapping, which consists jtqrmation by robots, people and other machines. It also

of using mobile robots to create maps that represent not only I diff t i f th to b ted f
metric occupancy but also other properties of the environment. allows ditrerent properties of theé space 1o be represented for

Specifically, we develop techniques to build maps that represent ficher environmental models. Our approach is based on the

activity and navigability of the environment. use of supervised learning methods to automatically associate
Our approach to semantic mapping is to combine machine properties of space to the desired classification patterns.
learning techniques with standard mapping algorithms. Su- In this paper we present semantic mapping approaches for

pervised learning methods are used to automatically associatet bl ] tic t . . d ti tivit
properties of space to the desired classification patterns. We WO problems. semantic terrain mapping and semantic activity

present two methods, the first based on hidden Markov models Mapping. The terrain mapping problem consists of creating
and the second on support vector machines. Both approaches3D representations and classifying the terrain according to

have been tested and experimentally validated in two problem jts navigability. Applications for this approach range from
domains: terrain mapping and activity-based mapping. local avoidance of non-navigable areas to path planning.

Index Terms— Semantic Mapping, Supervised Learning The activity based mapping problem consists of creating two
dimensional maps that classifies the environment according
to the occupancy of the space by dynamic entities over time.
Examples of applications for these maps are path planning and

Creating an internal representation (map) of the physiaalban traffic modeling.
environment is one of the most basic and important capa-We propose two semantic mapping approaches, one based
bilities in mobile robotics. Most tasks to be performed bgn hidden Markov models another based on support vector
mobile robots requires some type of internal knowledge @fachines. Both approaches have been applied to both problem
the environment. Given the importance of map making in thfbmains. A map segmentation algorithm based on Markov
robotics field, scientists have been actively working on thisndom fields has been used to improve the semantic clas-
topic for about two decades, and several mapping techniqugfication. The two semantic mapping approaches have been
have been proposed in the literature over this time [28].  evaluated based on field experiments.

In general, the main focus of the research on mapping
has been on representing the geometry of the environment
with high accuracy. Although robot-built maps are successfully
used for tasks like path planning, navigation, and localization, Semantic mapping is a very young research topic in mobile
they are very limited in describing details of the environmemobotics. Few papers have been published on this subject and
other than distinguishing between occupied and empty areamst of them are very recent. The approach presented in [7]
Virtually any property of space can be represented in a magiggests an idea to infer high level information from regular
but the large majority of the maps built by mobile robotsobotic maps. The authors claim that the semantic information
consists of only metric representations of the occupancy @ftracted from the maps can be used for planning and decision
the space. During the mapping task, most mapping techniquesking.
neglect a considerable amount of information that describeln [22] the idea of semantic mapping is presented as part
other aspects of the environment like the navigability, or the&f a human-robot interface. Uniquely identifiable labels are
nature of the activity that occurs there. The semantic mappiagsigned to specific objects of the environment and instructions
problem consists of using mobile robots to create maps thmaking use of these labels are given to the robot. In [10] and
represent not only metric occupancy but also other properti@d] specific places of indoor environment are labeled based
of the environment. on the presence of key objects in the environment. Computer

Semantics consists of assigning meaning to data. Semaniiion techniques are used to extract the necessary information
data representation has become a popular research topic tttan images. Similar approach is presented in [16] except by
has been explored by scientists in different fields [15] [33he fact that only range data is used.

[17] [12] [26]. One of the main purpose to give meaning The work by [19] present a technique to identify certain

to information is to make easier the data interpretation. Tidjects in the environment based on range information anal-

use of semantics in robotic maps is a method to facilitaysis. The bootstrap learning algorithm is used for that. In [1]
similar work is presented based on the EM algorithm. In [24]
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of the environment in the map. The mapping approach based
on Adaboost, presented in [20] is able to semantically classify
different places on indoor environment like room, corridors
and doorways based on rage data.

Ill. THEORETICAL BACKGROUND
A. HMM

A hidden Markov model (HMM) consists of a discrete
time and discrete space Markovian process that contains some
hidden (unknown) parameters and emits observable outputs.
The challenge is estimating the hidden parameters based on
observable information. This statistical tool is largely used
for pattern recognition and is particularly popular for speedtg. 1. Robot performing terrain mapping and identifying navigable and
recognition. For a complete tutorial see [25]. non-navigable areas.

An HMM can be defined by five elements: a set of possible
states (parameters), a set of possible observation symbols,
the state transition probability table, the observation symbol IV. SEMANTIC TERRAIN MAPPING
probability distribution, and a initial state distribution. For
convenience\ will be used to characterize a HMM model,
which consists of the last three elements of the HMM.

Let's assume thaO is a observation sequence and ea
observation symbol in the sequence is denoted,pwheren
means the position of that observation symbol in the seque
(O = 01,09, ..., 0, fOr a sequence of sizf. Let’'s also assume
that ) is a state sequence and each state is denoteg, by
therefore@ = ¢1, ¢o, ..., q;- There are three general problem
that can be solved with HMMs. The first one consists of give
the observation sequenc¢k and the model, how to compute
the optimal corresponding state sequerige(i.e., the state
sequence that best explains the observations)? In a nuts
we are trying to maximize the expressidnQ|O,\). The
second problem is given the observation sequeficeand
the model A, how to computeP(O|)), the probability of
the observations given the model? The third problem consi
of how to estimate the model to maximize P(O|)), the

Autonomous navigation is an important capability for a
mobile robot. When traversing rough terrain, the robot must
CPP‘ave the ability to avoid not only obstacles but also parts
of the terrain that are considered not safe for navigation
r{g This is an important problem when one is exploring an
unknown terrain. Applications for terrain mapping range from
path planning and local obstacle avoidance to detection of
ghanges in the terrain and object recognition [32]. Planetary

ploration is an interesting example of practical application
or this research topic [21]. In this context, we use a semantic
mapping approach based only on information provided by

jge sensors and the position of the robot builds a 3D map of
the terrain and classifies the mapped regions in two semantic
categories: navigable and non-navigable.

Our experiments have been performed using ground robots
§guipped with 2D laser range finders. The range sensors are
mounted pitched down on the robots. As the robot moves,

probability of the observations given the model. In this pange range information generates a 3D point cloud, which

we use the first HMM problem framework to formulate Oup1ode|s the terrain. We consider flat parts of the terrain such
;}ﬁ walkways navigable areas. These areas are considered safe

semantic mapping approach. The solution for this problem c S . .

be obtained using the Viterbi Algorithm [8], which is based®’ havigation. Grass and gravel are considered no_n-nfawgaple

on dynamic programming techniques. or less desirable) areas. Dependmg on the gpphcatlon, dif-

ferent types of terrain may be considered navigable and non-

navigable. For example, in a planetary exploration context,

B. SVM areas with large rocks that may damage the robot may be
Support Vector Machines (SVM) is a general class @onsidered non-navigable. Classified maps can be very useful

supervised learning techniques based on statistical learnfagpath planning and safe navigation. Even though some times

theory and used for classification and regression problemg difference in the roughness of concrete walkways and

introduced by [29]. Basically, SVM performs classification byrass is very small, our approach is capable of semantically

estimating hyperplanes in multidimensional spaces, separatgigssifying them successfully.

data from different classes. A complete survey is presented in

[5]. In order to handle non linear classification problems, the

kernel trick proposed by [3] can be used. This idea considts HMM

of using a non-linear function to map non linearly separable The semantic terrain mapping problem can be stated using

data to a different Euclidean space where it can be lineatlhe HMM framework as follows. The points in our 3D map

separable. are the states we are estimating and each scan provided by the
Four standard kernel types have been used during gange sensor generates a single state sequence Each point can

experiments: linear, polynomial, radio basis function (RBFassume one of two possible states: navigablel) and non-

and sigmoid. The package SVM-Light [13] has been used foavigable (VIN). The real state of each point is not directly

the SVM learning and classification. given by the range sensor. Navigable areas in our context



will be characterized by flat terrains. On those terrains the
points generated by the range sensor are expected to be well
aligned, with a minimal variance in altitude. Conversely, the
non-navigable areas are characterized by rougher terrains. The
3D points that represent those areas are expected to be not
well aligned, with some variance in altitude [31]. Figure 1
shows a robot building a map and identifying navigable and
non-navigable parts of terrain at USC campus.
The information provided by the range sensor cannot be
used directly as observations in our algorithm, since it is only
a measurement of the distance between the sensor and the ———r )
nearest object in some specific direction. Therefore the data Aliude diference {m]
provided by the range sensor are represented as a sequence of , _ _
. . - . . Fig. 2. Gaussian pdfs for th& A and NN points of the walkway terrain.
points in 3D Cartesian space. Given that sequence of Po”ﬁét terrain points have smaller variance in the altitude.
the observation for a specific point will be based on the
difference in the altitude of that point compared to the altitude

of its neighbor points. It is important to notice that instead of

having a discrete set of observations for individual states, dinually labeled points used for the HMM modelilearmng
approach uses continuous values, have also been used for the SVM learning. Depending on the

It is possible to use the HMM to learn the model parametel?gmeI ch.oice, some parameters h.ave. to be manually set during
A (third HMM problem), but in our case, the learning cartihe learning phase. The cross validation method has been used
be done fairly easily through the use of examples. Given'g tune these parameters.
set of range scans, it is possible to manually label the true
state for each point on each scan. Given the labeled data, the V- ACTIVITY-BASED SEMANTIC MAPPING
calculation of the state transition probability distributidhA For the most part, mobile robotics mapping research has
is straightforward. As we have only two possible stat®s4( been concentrated on static environments. Few mapping al-
and NN), it consists of counting the number of times that gorithms are designed to build maps in presence of dynamic
point labeledN A is followed by a points labeled/ A or NN. obstacles and, in most cases, the dynamic entities are detected
The same rule applies for points labelddV. The numbers and filtered out. Some mapping approaches, like the one
must be normalized so that the probability distribution sungesented in [30], go even further, detecting and representing
to 1. Calculating the initial state distribution is also easy moving obstacles in the map. There are also robotic algorithms
when labeled data are available. The number of states labefeat focus on learning patterns of the activity in the environ-
as NA and NN must be counted and the distribution alseent [18]. Computer vision researchers have also been ad-
needs to be normalized. dressing the topic of activity modeling for many years [23] [4].
Based on the labeled data, it is also possible to calculdibe use of video cameras provide richer information compared
the variance in the observation for the points classified/als to laser range sensors but they also demand considerably more
and NN and use this information as a observation symbebmputation to process the data. Usually, cameras have to be
probability distribution. In this case, it is necessary to calculapaced in high vantage positions to better cover the space to be
a mean for the altitude in the points that belong to a specifimalyzed. Consequently, they are not suitable to be attached to
state. After that it is necessary to calculate the amount gfound robots to this purpose. Another fact to take into account
variation in the altitude of those points in comparison to th&hen monitoring urban spaces is that the lasers preserve the
mean. Figure 2 shows the Gaussian pdfs for the pdiMsand anonymity of the moving entities, which may be a issue for
NN. We can notice that points classified &1 have smaller video cameras depending on the situation in which they are
variance in the relative altitude (observation) compared to thised.
points classified as&v N We approach the problem of semantic mapping of the
environment based on the usage of the space by dynamic
entities. In urban environments there are many different types
B. SVM of dynamic entities moving with different properties. For
The terrain mapping problem can also be stated using teample, some of them are bigger than others; some of
SVM framework as follows. Two properties of the space hatbem are faster than others. We are particularly interested in
been used as input of the SVM algorithm: (1) the altitudebtaining semantic information about environments based on
difference between the 3D point and the robot and (2) tihew these moving entities use the space over time.
maximum altitude difference of a specific 3D point to its Our experimental scenario consists of a regular urban en-
neighbor points (same used in the HMM terrain mappingyironment composed by a street and sidewalks where people,
As output, the SVM algorithm classifies each point in the 3Pars, and bicycles move regularly. Based on activity in the
terrain map asvVA or NN. environment we try to semantically classify the space in
As SVM is a supervised learning algorithm, data alreadither street (S) or sidewalk (W). The applications for the
classified have to be provided in the learning phase. The saawntivity based semantic maps range from path planning to
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space during the data acquisition. The fourth property of the
environment is the maximum size of the dynamic entities that
occupied the space during the data acquisition.

The information about dynamic entities is extracted from
the data provided by the range sensors using the algorithm
presented in the [30]. The size of the dynamic entities is
estimated based on grouping adjacent occupied cells. As in
the semantic terrain mapping, HMM modkls learned based
on manually labeled examples.

B. SVM

The activity-based semantic mapping problem can be stated
Fig. 3. Robots mapping the environment according to the activity of tH'éS'_ng the S_VM framework a; _foII(_)ws. The same four prop-
dynamic entities. erties used in the HMM classification have also been used as

input of the SVM algorithm. As output, the SVM algorithm

classifies each grid cell of the map into either stre€t ¢r
traffic modeling. Figure 3 shows two robots collecting activitgidewalk {¥). An important difference between the HMM and
information in a urban environment. SVM approaches for this problem is that the grid cells with
no activity during the experiments have not been considered
for classification with the SVM algorithm.

A. HMM

Our semantic classification for the environment can be VI. M AP SEGMENTATION
stated in the HMM framework as follows. We partition the It may happen that parts of the map are not correctly
environment in a two dimensional grid of cells. At the end Oél

h . . h cell is classified i ﬁssified due to sensor noise or other reasons. When those
the semantic mapping process, each cell IS classiied In 0N&y s oecur in small parts of the map (considered noise),
the two categoriesq or ).

. o . segmentation techniques can be used to fix them.
As gll the cells are symmetric in the grid, it is possible to ?egmentation techniques have been used for many years
organize and address them by columns and rows. Each rowgf,, - computer vision community [9]. Among several seg-

grid cells corresponds to a sequence of hidden states that Entation methods, Markov random fields (MRF) have been

are estimating qsing the HMM framework. . extensively used in image processing. For a complete overview
The observations are obtained from the properties of the \ 1o theory see [14]

space sensed by the mobile robots over a determine amouny, yhe terrain mapping context, it is unlikely that in an area

of discrete time. For example, one of the properties of the., o large majority of cellsVA there are few cellsVN.

space is the activity. Every time that a robot detects activiyig 4150 unlikely that among several scans that contain both
in a portion of the environment, the activity counter on thg ..« |abeledV A and NN there is a scan that only contains

correspondent grid cell is increased by one. At the end of the. .« |apeledNV A. The MRE technique make those points
data collection period, the amount of activity that occurred iy, .. with their neighbors As a resulA and NN regions
the space represented by each cell is used as observationa I'well defined and clustered ’

the HMM semantic classification. In order to use MRF as a segmentation tool, we approximate

_ Due to the fast motion of the dynamic entities and thg,. 3p map to a 2D grid. Each point is projected on the grid
limited observability of the robots sensors, the robot does Nsed on itse and y coordinates. Each cell in the grid is

move during the data collection to avoid missing information,,ajeq asv A4 or NN according to the classification of the

The mapped area corresponds to the area covered by the se 5ftts projected on that cell. It is important to notice that not

of the robot. In order to decrease the effect of the occlusion angl e celis in the grid have a label, because the distribution
increase the mapped area, two robots have been used duHPEoints in thez, y plane is not uniform
! , .

the experiments. The location of the robots is known a priori tha pasic idea of MRF is that the probability distribution

and it is important to mention that only range information ig, each cell in the grid is specified conditionally on the prob-
provided by the sensors. ability distribution of its neighbor cells. After the application

Four properties have been observed in the environmegf.ye fiiter, all points projected on each cell are labeled with
activity, occupancy, average size of the dynamic entities, same label of that grid cell,

maximum size of the dynamic entities. Activity is detected | ot ' be a random variable taking the valuss or NN
every time a certain place in the environment is occupied (l&\‘]d der:ote byL(k) (k= 1,2, ..., n) the number ok neighbor’s

a dynamic entity) and becomes free or vice-versa. Occuparbc;yci that are labeled a&A. A simplified MRF model may
occurs when a certain location of the environment is occupig specified as:

by a dynamic entity. For example if a car stops in a determine
place, the correspondent grid cells will show high occupancy ) n
and low activity. The third property of the environment is P(Ci = NA|grid) _ exp(aJr Z (ﬂkn(k)))
the average size of the moving entities that occupied the  P(Ci = NN|grid) ; '

=1
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(a) Walkway (b) 3D map of the walkway (c) Doheny Library garden (d) 3D map of the garden

Fig. 4. Real environments and 3D models with the ground truth areas in red color.

Hist 10 Hist50 HMM  HMM + MRF

Walkway section A 80.0 84.2 97.2% 97.4%

Walkway section B 65.6 77.8 96.2% 98.5%

Garden section A 64.7 72.5 93.1% 97.6%

Garden section B 66.5 67.5 97.8% 98.9%
TABLE |

RESULTS OF THEHMM TERRAIN SEMANTIC CLASSIFICATION.

(a) HMM semantic classifica- (b) HMM semantic classifica-
tion tion + MRF In order to verify the accuracy of the HMM classification,
we manually labeled 13640 points in the walkway dataset
Fig. 5. Semantic classification of the Section A of the garden terrain. Soraﬁd 12987 points in the garden dataset and used them as
misclassified points are corrected based on the MRF segmentation technigue: P 9 )
roundtruth. For each dataset the labeled points were extracted
from two different sections (A and B) of the map to avoid

biasing. Approximately 30% of the labeled points has been

where o and § are respectively the prior about the nuMbefiseq in the learning step and the other 70% for the testing.
of NA cells and the importance ratio based on the distanggy,re 4 shows pictures of the real environments and the 3D
to the cellC;. As 3 is increased the chance of each grid ce]Jnaps before the HMM semantic classification.

value agree with the va!ue .Of its nelghbor_s_lncrease_s;. During the experiments, most of the maps have been built

Th_e same segmeptauon idea can be trivially applied to tWﬁen the robots were manually driven with a joystick. But
activity-based mapping problem. some autonomous navigation experiments using the RMP
have also been performed. As our mapping and classification
algorithm can be executed in real time, the robot could online
A. Semantic Terrain Mapping use the information about the areas it should avoid and it kept

In order to validate our terrain mapping approach, extensiiigelf in the navigable areas while autonomously mapping the
experimental tests have been performed. Our experiments h@ogironment. For a better evaluation of the classification re-
been done using both an ActiveMedia Pioneer and a Segwajts obtained with the HMM method, histogram classification
RMP robots. Both robots were equipped with SICK laser rand@chniques have also been applied to the same data and serve
finders and a Microstrain IMU. Player [11] has been used &s a reference. Table | show the semantic classification results
perform the low level control of the robots. On the Pioneébtained with histogram with 10 and 50 classes, HMM, and
platform, the laser sensor was mounted at 42cm height ari¥iM + MRF methods. The histogram classification technique
a pitch angle of10°. On the RMP the laser was mounted afias been experimented with a different number of classes and
93cm height and a pitch angle 85°, which allowed the robot empirical tests show that the best results were obtained with
to map the terrain approximately 1.3m ahead of the robot. 50 classes.

Our experiments have been performed in two different Figures 6(a), 6(b), 7(a), and 7(b) show the 3D maps with the
scenarios; a walkway and a garden, both on the USC campggmantic classification using HMM on both scenarios. Parts of
The walkway scenario is reasonably uniform, with a concretiee terrain colored in white represent the navigable parts of the
passage in the center and short grass in both sides. Tésain, while green colored parts corresponds to non-navigable
garden scenario is much more diverse, with grass, bushiesrain. We can notice that although the grass was very flat
garden seats, and a water fountain. The mapped walkwaysome parts of the terrain, our method could successfully
is approximately 50m long and a complete loop around tleifferentiate navigable from non-navigable terrain.
mapped of the garden is around 200m. As it can be seen in Figures 6(a) and 7(a), some portions of

VIl. EXPERIMENTAL RESULTS



(a) HMM (b) HMM + MRF (c) SVM Linear Kernel

(d) SVM Linear Kernel + MRF (e) SVM RBF Kernel (f) SVM RBF Kernel + MRF

Fig. 6. Semantic classification results for the walkway terrain. The walkway in the center (white color) is correctly identified.

(a) HMM (b) HMM + MRF (c) SVM Linear Kernel

(d) SVM Linear Kernel + MRF (e) SVM RBF Kernel (f) SVM RBF Kernel + MRF

Fig. 7. Semantic classification results for the garden terrain. The walkway in the center (white color) is correctly identified.



(a) Ground truth -N N (b) Ground truth -N A (c) Linear kernel classifica-
tion

(d) Polynomial kernel classi- (e) RBF Kernel classification (f) Sigmoid Kernel classifica-
fication tion

Fig. 8. Data points in the property spad¥ 4 in green andV N in red).

Kernel Walkway section A Walkway section B Kernel Garden section A Garden section B
SVM SVM+MRF SVM SVM+MRF SVM SVM+MRF SVM SVM+MRF
Linear 90.91% 90.51% 92.53% 93.18% Linear 87.75% 87.84% 73.69% 73.78%
Polynomial  97.00% 97.06% 96.82% 97.35% Polynomial  92.47% 93.87% 84.14% 85.58%
RBF 97.59% 97.76% 97.82% 98.15% RBF 94.40% 95.34% 85.48% 91.21%
Sigmoid 90.18% 89.47% 91.85% 92.32% Sigmoid 47.52% 47.63% 47.20% 43.41%
TABLE Il TABLE Il
RESULTS OF THESVM SEMANTIC CLASSIFICATION FOR THE WALKWAY RESULTS OF THESVM SEMANTIC CLASSIFICATION FOR THE GARDEN
ENVIRONMENT. ENVIRONMENT.

the terrain have been misclassified. This happens mostly dagger number of misclassified points.
to the presence of small obstacles like leaves in the flat partsTable 1l shows the results of the semantic classification
of the terrain or aligned regions in the rough terrain. Sonfer the garden dataset. The RBF kernel again presents the
of those errors were corrected after with MRF segmentatitiest classification results. The results obtained in the section
(Figures 6(b) and 7(b)). This improvement in he semant® are noticeably better than those obtained in the section B.
classification can also be noticed in the results presentedDifferently from the walkway dataset, sections A and B in
the Table I. Figure 5 shows a closer view of the section the garden dataset are very different. The terrain data of the
of the garden terrain where the correcting effects of the MRfection A contains tall bushes, which are easier to classify
segmentation can be noticed. than the short grass mapped in the section B. Figure 7 shows
Table 1l shows the terrain classification results for ththe semantic classification results obtained with the linear and
Sections A and B of the walkway dataset using the SVRRBF kernels, with and without RMF segmentation.
classification approach. As it can be seen, the best semanti@he poor classification obtained by the linear kernel com-
classification results have been obtained with the RBF kernpared to the RBF and polynomial is explained by the fact
In almost all cases the MRF segmentation method has cdhat the data are not linearly separable. Figure 8 shows the
tributed with a small improvement in the results. Figures @roundtruth and the classification of the walkway data in the
(c) and (e) show the 3D semantic terrain map of the walkwayoperty space, where green color representsiNhbe points
environment using the linear and RBF kernels. It is possibénd white color theV N points. As it can be noticed in the
to notice that the MRF segmentation algorithm corrected larégures 8(a) and 8(b) there are some overlapping between the
part of the misclassified points in the RBF case (Figures 6(tfjo classes, which prevents to obtain 100% correct classifica-
and (f)). The same did not happen to the linear case due ttian results.



(a) Real Environment (b) Screenshot of the 2D map. (c) Ground truth map.

Fig. 9. Environment used for the activity based semantic mapping and the space representation created by mobile robots. The orange frame corresponds tc

the mapped area, the blue lines divide the street from the sidewalks, and the red squares are the position of the robots.

P Hist 10 Hi HMM  HMM + MRF -
roperty ist 10 Ist 50 - map colored in light green corresponds to thé areas, red
Activity 53.09% 51.77% 65.00% 69.87% lored ds to 1 The two blue i
Occupancy  52.64%  47.32%  69.78% 76 73% colored areas corresponds to theareas. The two blue lines
Average size  55.97% 54.11%  78.20% 83.01% are the ground truth and the space between them corresponds
Maximum size  46.93% 31.70% 78.26% 82.72% to the street, while the side spaces correspond to the sidewalks.
TABLE IV As it can be noticed from the Figure 10, the properties

RESULTS OF THEHMM ACTIVITY BASED SEMANTIC CLASSIFICATION. activity and occupancy cannot correctly differentiate the street
from the sidewalks. The two wide red lines in the center of the
blue lines in the Figures 10 (a) and (c) do correspond to the
used parts of the streets, but when the semantic classification

B. Activity-Based Semantic Mapping algorithm tries to generalize the learned information, it also

The activity-based semantic mapping approach presemed:lmssifies the most active parts of the sidewalks a&fter the
this section has been tested with experimental data collectdiRF segmentation, the right sidewalk is entirely classified
on the USC campus. Two Pioneer robots equipped with SIc8& Part of the street, which is wrong. In fact, based on the
laser range finders have been positioned in opposite sides @ collected during our experiments, it is not possible to
street to monitor the activity in the region. The area considerfg§termine whether a grid cell belongs to the street or sidewalks
for mapping is approximately 16m x 18m with grid cells ofust observing its amount of activity or occupancy as it is very
20cm. The ground truth was obtained measuring the width gfnilar in both semantic areas.
the street and the sidewalk and each data collection periodrhe semantic classification based on the properties average
lasted approximately 15mins with a sampling frequency sfze and maximum size shows better results, as it can be seen
10Hz. One out of 80 rows of grid cells have been manually the Figure 10. We can notice in the Figures 10 (e) and ()
labeled and used in the learning step of the HMM algorithrthat most area colored in red is between the two blue lines,
It corresponds to 1.25% of the total grid cells. Figure 9 showshich matches the ground truth information. Some parts of
a picture of the environment using for the experiments anditze space between the two blue lines are misclassifidd’ as
screenshot of the map generated by the robots at a determilidthppens because this area that is close to the sidewalks or
instant. in the center of the street is not used by cars. In the right

Based on the raw sensor data, the robots are capablesitte of the Figure 10 (g) it is possible to see a red area in
extract the properties of the environment and semanticatlye place that corresponds to the sidewalk. The explanation
classify each grid cell in eithe$ or W. Each of the four prop- for this misclassification is that during the experiments, in a
erties has been individually tested. The results of the HMBpecific moment, a crowd of people stopped in front of the
classification can be seen in Table IV, which also includeebot, which was placed in the location. As most of the space
classification results obtained with histogram techniques. around the robot was occupied by moving entities, the range

Figure 10 shows the semantic classification results with asdnsors detected a large sized obstacle on that location. When
without the use of MRF segmentation algorithm. Parts of thhe average size of the moving entities that occupied that space
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(a) Classification based on (b) Classification based on (c) Classification based on (d) Classification based on
activity. activity +MRF. occupancy. occupancy + MRF.

(e) Classification based on () Classification based on av- (g) Classification based on (h) Classification based on
average size. erage size + MRF. maximum size. maximum size + MRF.

Fig. 10. Activity-based semantic classification based on different properties of the space.

Kernel SVM SVM+MRF Kernel Learning dataset Testing dataset
Linear 79.96% 80.12% Linear 92.25% 79.78%
Polynomial  78.88% 79.19% Polynomial 92.25% 77.57%
RBF 66.69% 65.12% RBF 97.06% 69.27%
[ f 0, 0,
Sigmoid 65.12% 65.12% TABLE VI
TABLE V RESULTS OF THESVM SEMANTIC CLASSIFICATION FOR THE LEARNING
RESULTS OF THESVM ACTIVITY -BASED SEMANTIC CLASSIFICATION AND TESTING DATASETS USING THE PROPERTIEL) ACTIVITY AND (4)

USING THE FOUR PROPERTIES OF THE SPACE AVERAGE SIZE.

is used for the semantic classification, the effect of the crowde visual results have to be taken to account when one is
of people is attenuated, as it can be seen in the Figure 10 @jaluating the performance of the classifiers.
Figure 10 (f) and (h) shows the classification results after thepifferently from the results obtained in the terrain mapping
MRF segmentation. classification, where the RBF kernel obtained the best results,
An important difference between the HMM and SVMTable V shows that the best classification performance for the
approaches for this problem is that the grid cells with nactivity-based mapping were obtained with the linear kernel.
activity during the experiments have not been considered fphe reason for the poor classification with the RBF kernel can
classification with the SVM algorithm. However, they havée explained with an analysis of the data presented in the Table
been classified in the MRF segmentation step. Table V showk which shows the classification results for the learning and
the semantic classification results using the four standag@mplete datasets using the properties only two properties (1)
kernels and all the four properties of the space. Differentihd (4). The reasons that only these two properties of the space
from the terrain classification results, we can notice that tigwve been chosen for the analysis are that the classification
linear kernel obtained the best classification results. Figure dkults are very similar to the ones obtained with the four
shows the classification results for the linear, polynomial, aptloperties, and it is possible to visualize the classification
RBF kernels. results in a 2D graph (Figure 12). As it can be noticed in
It is interesting to notice that although the Sigmoid kernghe Table VI, the classification results for the learning dataset
classified every grid cell a§' (which is obviously wrong), using the RBF kernel are better than the ones obtained with
it still got 65.12% correct classification results. It happertbe linear kernel. But the same performance is not obtained
because the ground truth data indicates that a larger partwith the complete dataset. This suggests an overfitting of the
the map is indeed supposed to be classified.ds this case, learning dataset and results in a poor classification to the
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(b) SVM Linear Kernel + (c) SVM Polynomial Kernel
MRF

(d) SVM Polynomial Kernel (e) SVM RBF Kernel (f) SVM RBF Kernel + MRF
+ MRF

Fig. 11. Results of the SVM semantic classificatid# (n green andS in red). Different from the RBF kernel, the linear kernel correctly distinguish the
street from the sidewalks.

Properties SVM SVM+MRF  Category

complete dataset. This fact can be confirmed in the Figure 1 651206 65.12% c
12, which shows the classification in the property space. For 2 65.12% 65.12% C
the learning dataset, the RBF kernel (Figure 12(e)) obtain 3 78.53% 78.88% B
PO ; 4 79.64% 79.77% A

very accurate classification compgred_to Fhe Ilnear. kernel T2 T30 SET500 =
(Figure 12(c)). But when t_he cIaSS|f|cat|qn is general]zed to 13 7920%  78.88% B
the complete dataset, the linear kernel (Figure 12(d)) is much 14 79.78% 79.88% A
more efficient than the RBF kernel (Figure 12(f)). The results 2,3 79-402/0 79-192/0 B
obtained with the polynomial kernel were similar to the ones g'i ;g'igoﬁ ;g'igoﬁz 2
obtained with the linear kernel for the learning dataset, but not 123  79.14%  79.01% B
as good for the complete dataset. 124 79.87% 79.90% A
; ; ; ; 134 79.87% 79.90% A
Besides the experiments with all the four properties of >34 =5 BT 59697 A

the environment, different combinations of properties have
also been tested. The results are shown in the Table VII,
where the environment properties have been numbered as
follows: (1) activity, (2) occupancy, (3) maximum size, and (4)
average size. We grouped all the classification results in three
categories such that the difference between results in the same
category is very minor. Analyzing property combinations that
belong to each group it is possible to notice how each propedygcupy the center of the map. In the Figure 13(a) it is even
contributes to the classification results. Figure 13 show tipessible to notice the space that divides the two lanes of the
classification results for the three categories. The results ateeet, which is also not used by most of the cars. All the
based only on the linear kernel as it obtained better resuftoperty combinations that belongs to the category (and
than the other kernels for most cases. only these) present the average size (4) as a property. Similar
CategoryA presents the most accurate results. Notice thiat the results obtained with the HMM classification approach,
after the MRF segmentation, all the space corresponding to thés property lead to the most accurate results.
sidewalk have been correctly classified (Figure 13(b)). ThereCategory B presents good classification results with con-
are some classification errors in the space that correspondsitierable similarities to Category, except for a classification
the street, mainly in the region close to the blue line. This camror in a small area in the right side of the map. Category
be explained with the fact that almost no activity happens B includes all and only property combinations that include
that region. In most cases, cars (which characterize the streetakximum size (3) , except for those combinations which

TABLE VI
RESULTS OF THESVM SEMANTIC CLASSIFICATION USING
COMBINATIONS OF THE PROPERTIES OF THE SPACE
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(d) Complete dataset classi- (e) Learning dataset classified  (f) Complete dataset classi-
fied using linear kernel using RBF kernel fied using RBF kernel

Fig. 12. Results of the SVM semantic classification for the learning and complete datasets using the properties (1) activity and (4) average size.

(d) Category B: SVM + MRF (e) Category C: SVM (f) Category C: SVM + MRF

Fig. 13. Results of the SVM semantic classification for the three categories. Results of the categories A and B have correctly distinguished the street and
the sidewalks.
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(a) SVM Linear Kernel (b) SVM Linear Kernel + (c) SVM RBF Kernel (d) SVM RBF Kernel + MRF
MRF

Fig. 14. Results of the SVM semantic classificatié#i (n green,S in red, and non used space in white).

Kernel SVM SVM+MRF Kernel Properties SVM SVM+MRF
Linear 86.14% 85.96% Linear 1,2,3,4 85.37% 84.34%
Polynomial  79.93% 80.04% Linear 1,2,3 85.20% 86.13%
RBF 76.09% 67.53% Linear 1,2,4 85.13% 88.93%
Sigmoid 75.40% 67.47% Polynomial 1,2,3,4 86.15% 85.62%

Polynomial 12,3 87.71% 89.29%

TABLE VIII Polynomial 124  89.17%  95.67%
RESULTS OF THESVM SEMANTIC CLASSIFICATION EXCLUDING THE NON
TABLE IX
USED SPACE

RESULTS OF THESVM MULTI CLASS SEMANTIC CLASSIFICATION.

includes the property 4 (which are classifiedBsThis results results are presented in the Table VIII and in the Figure 14,

are also similar the ones obtained with the HMM approaWhere the MRF segmentation technique is used to estimate

using maximum size as a property. This can be explained dy@ ¢|assification of the non used space after the initial SVM
to the fact that at a specific moment, a crowd of people Stonagssification

in front of the robot, which was placed in that location. As
most of the space around the robot was occupied by moving
entities, the range sensors detected a large sized obstacléCoMulti-class SVM classification
that location, which matches with the large obstacles that rungq 5| the semantic classification problems presented in this
in the streets (cars). paper, the environment has been divided in two categories:
CategoryC', which includes only properties activity (1) andNavigable and non-navigable in the terrain mapping context,
occupancy (2), presented a the worst results. They could R@ld street and sidewalk for the activity based mapping.
correctly distinguish between street and sidewalks and wrongly natural extension of approaches presented in this paper
classified the entire space as street. would be the multi-class semantic classification. In fact the
The results presented in the Table VII suggests how eaglyM classification algorithm has originally been developed
property of the space contributes to the classification. Ther binary classification, but it has been later extended to
properties average size and maximum size lead to reasonaji€es in which more than two classes [6]. This approach has
results while occupancy and activity do not provide enougdieen tested with the activity-based semantic mapping context.
information to correctly differentiate the environment int®ifferently from the experiments previously described where
street and sidewalk. The data collected during our experimesigly the information obtained from the dynamic entities has
shows that the activity and occupancy of the moving entiti¢een taken to account, in the multi-class case, the state entities
that occupy the street and the sidewalk is very similar. Thate also considered. The environment has been divided into
is a typical case where there is no association between theee classes: streefS), sidewalk {¥), and static entities
input property and desired classification pattern. Both HMI). Building structures, trees, and all the other parts of the
and SVM methods failed when only these to properties weggvironment that do not change over time are considered
available. part of E. The main characteristic of the elements in this
During the experiments there were several of the spackss are high occupancy and very low activity. The ground
which did not register any activity. In the classification resultsuth map can be seen in the Figure 16 where the blue color
presented above, these areas were also classified as sfreetdrresponds the clask. Grid cells with no activities have
or sidewalk {#) and as they were present in bothand not been considered for classification. Table IX show the
W areas, they make the learning task harder. If we consid#assification results. Only combinations of properties that
those particular regions as a third class (e.g. non used spat®)lude the properties 1 and 2 have been presented. All the
better classification results can be obtained. The classificatmther property combinations could not classify elements in
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(a) Properties 123 (b) Properties 123 with MRF (c) Properties 124

(d) Properties 124 with MRF (e) Properties 1234 (f) Properties 1234 with MRF

Fig. 15. Results of the SVM multi class semantic classification using the polynomial kernel. Most part of the static entities in the environment have been
identified

mapping. The terrain mapping problem consists of creating
3D representations and classifying terrain into either navigable
or non-navigable areas. The activity-based mapping problem
consists of creating two dimensional maps that classify the
environment according to the usage of the space by dynamic
entities.

Two different approaches for the semantic mapping problem
have been presented. The first one is based on hidden Markov
Fig. 16. Multi class classification ground trutl {n red, w in green, and models and the second on support vector machines. A fun-
E in blue). damental difference between the HMM and SVM semantic
classification methods is that in the HMM approach each data
seguence is considered at once, while in the SVM algorithm
the £ class correctly. Only the linear and polynomial kerne¢ach point is individually classified. In the terrain mapping
obtained reasonable classification results. Figurel5 show @femain, the data sequences correspond to the 3D points in the
classification results with and without MRF segmentatiofiange scans. In the activity-based mapping context, the rows
The best classification results were obtained after the MRFthe grid of cells correspond to the data sequences. In order
segmentation with the combination of properties 1, 2, and . classify each point in the data sequence, the classification
This can be clearly noticed in Figure 15(c). previously made is taken into account. This characteristic
does not necessarily lead to better classification results; it all
depends on the nature of the data to be classified. In most
cases, when the data are divided into well defined clusters,
This paper approached the problem of semantic mappinge HMM method tend to be more efficient. The SVM ap-
which consists of creating robotic maps that go beyond reproach is theoretically considered better for non-clustered data,
resenting the metric structure of the environment. Semanégploring the effect of locality. Another important difference
maps can represent other properties of the environment of ieween these two learning methods is the fact that the SVM
environment, allowing a more complex and complete descripan handle several input properties while only one can be
tion of the space. The semantics present in the maps also allesed in our particular implementation of HMM. For most
robots to more easily share information and ultimately perforexperiments performed in this paper, the classification results
more complex tasks. of the two methods are very similar and noticeably better than
Two scenarios have used as a test bed for our semartie standard histogram-based classification algorithm, which
mapping approaches: terrain mapping and the activity-basmh be observed in the semantic classification results obtained

VIII. CONCLUSIONS ANDFUTURE WORK
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from field experiments. Another important conclusion obtainga?] Y Liu, N. Lazar, and W. Rothfus. Semantic-based biomedical image
from the data analyzed is that not all properties of space lead

to the desired classification. In the activity-based mappirﬂgg

problem, both HMM and SVM failed when only the activity
and occupancy properties were available.

As semantic mapping is still a very young research topigg;
there many open problems and interesting directions for new

research in the field. Differentiate entities (e.g. people)
a urban environment, understand and possibly predict

ke

behavior of dynamic entities, and improve the complexity of
the map representation fusing information provided by oth&?!
types of sensors (e.g. cameras) are part of the future work[gg
be addressed on this research topic.
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