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Semantic Mapping Using Mobile Robots
Denis F. Wolf and Gaurav S. Sukhatme

Abstract— Robotic mapping is the process of automatically
constructing an environment representation using mobile robots.
We address the problem of semantic mapping, which consists
of using mobile robots to create maps that represent not only
metric occupancy but also other properties of the environment.
Specifically, we develop techniques to build maps that represent
activity and navigability of the environment.

Our approach to semantic mapping is to combine machine
learning techniques with standard mapping algorithms. Su-
pervised learning methods are used to automatically associate
properties of space to the desired classification patterns. We
present two methods, the first based on hidden Markov models
and the second on support vector machines. Both approaches
have been tested and experimentally validated in two problem
domains: terrain mapping and activity-based mapping.

Index Terms— Semantic Mapping, Supervised Learning

I. I NTRODUCTION

Creating an internal representation (map) of the physical
environment is one of the most basic and important capa-
bilities in mobile robotics. Most tasks to be performed by
mobile robots requires some type of internal knowledge of
the environment. Given the importance of map making in the
robotics field, scientists have been actively working on this
topic for about two decades, and several mapping techniques
have been proposed in the literature over this time [28].

In general, the main focus of the research on mapping
has been on representing the geometry of the environment
with high accuracy. Although robot-built maps are successfully
used for tasks like path planning, navigation, and localization,
they are very limited in describing details of the environment
other than distinguishing between occupied and empty areas.
Virtually any property of space can be represented in a map,
but the large majority of the maps built by mobile robots
consists of only metric representations of the occupancy of
the space. During the mapping task, most mapping techniques
neglect a considerable amount of information that describe
other aspects of the environment like the navigability, or the
nature of the activity that occurs there. The semantic mapping
problem consists of using mobile robots to create maps that
represent not only metric occupancy but also other properties
of the environment.

Semantics consists of assigning meaning to data. Semantic
data representation has become a popular research topic that
has been explored by scientists in different fields [15] [33]
[17] [12] [26]. One of the main purpose to give meaning
to information is to make easier the data interpretation. The
use of semantics in robotic maps is a method to facilitate
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the understanding of the data that is used to represent the
environment, making easier the sharing of environmental
information by robots, people and other machines. It also
allows different properties of the space to be represented for
richer environmental models. Our approach is based on the
use of supervised learning methods to automatically associate
properties of space to the desired classification patterns.

In this paper we present semantic mapping approaches for
two problems: semantic terrain mapping and semantic activity
mapping. The terrain mapping problem consists of creating
3D representations and classifying the terrain according to
its navigability. Applications for this approach range from
local avoidance of non-navigable areas to path planning.
The activity based mapping problem consists of creating two
dimensional maps that classifies the environment according
to the occupancy of the space by dynamic entities over time.
Examples of applications for these maps are path planning and
urban traffic modeling.

We propose two semantic mapping approaches, one based
on hidden Markov models another based on support vector
machines. Both approaches have been applied to both problem
domains. A map segmentation algorithm based on Markov
random fields has been used to improve the semantic clas-
sification. The two semantic mapping approaches have been
evaluated based on field experiments.

II. RELATED WORK

Semantic mapping is a very young research topic in mobile
robotics. Few papers have been published on this subject and
most of them are very recent. The approach presented in [7]
suggests an idea to infer high level information from regular
robotic maps. The authors claim that the semantic information
extracted from the maps can be used for planning and decision
making.

In [22] the idea of semantic mapping is presented as part
of a human-robot interface. Uniquely identifiable labels are
assigned to specific objects of the environment and instructions
making use of these labels are given to the robot. In [10] and
[27] specific places of indoor environment are labeled based
on the presence of key objects in the environment. Computer
vision techniques are used to extract the necessary information
from images. Similar approach is presented in [16] except by
the fact that only range data is used.

The work by [19] present a technique to identify certain
objects in the environment based on range information anal-
ysis. The bootstrap learning algorithm is used for that. In [1]
similar work is presented based on the EM algorithm. In [24]
it is presented an approach to extract semantic information
from indoor 3D laser maps. This technique is capable of
differentiate walls, floor, ceiling, doors, and other key parts
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of the environment in the map. The mapping approach based
on Adaboost, presented in [20] is able to semantically classify
different places on indoor environment like room, corridors
and doorways based on rage data.

III. T HEORETICAL BACKGROUND

A. HMM

A hidden Markov model (HMM) consists of a discrete
time and discrete space Markovian process that contains some
hidden (unknown) parameters and emits observable outputs.
The challenge is estimating the hidden parameters based on
observable information. This statistical tool is largely used
for pattern recognition and is particularly popular for speech
recognition. For a complete tutorial see [25].

An HMM can be defined by five elements: a set of possible
states (parameters), a set of possible observation symbols,
the state transition probability table, the observation symbol
probability distribution, and a initial state distribution. For
convenience,λ will be used to characterize a HMM model,
which consists of the last three elements of the HMM.

Let’s assume thatO is a observation sequence and each
observation symbol in the sequence is denoted byon wheren
means the position of that observation symbol in the sequence
(O = o1, o2, ..., ot for a sequence of sizet). Let’s also assume
that Q is a state sequence and each state is denoted byqn,
thereforeQ = q1, q2, ..., qt. There are three general problems
that can be solved with HMMs. The first one consists of given
the observation sequenceO, and the modelλ, how to compute
the optimal corresponding state sequenceQ (i.e., the state
sequence that best explains the observations)? In a nutshell
we are trying to maximize the expressionP (Q|O, λ). The
second problem is given the observation sequenceO, and
the modelλ, how to computeP (O|λ), the probability of
the observations given the model? The third problem consists
of how to estimate the modelλ to maximizeP (O|λ), the
probability of the observations given the model. In this paper
we use the first HMM problem framework to formulate our
semantic mapping approach. The solution for this problem can
be obtained using the Viterbi Algorithm [8], which is based
on dynamic programming techniques.

B. SVM

Support Vector Machines (SVM) is a general class of
supervised learning techniques based on statistical learning
theory and used for classification and regression problems
introduced by [29]. Basically, SVM performs classification by
estimating hyperplanes in multidimensional spaces, separating
data from different classes. A complete survey is presented in
[5]. In order to handle non linear classification problems, the
kernel trick proposed by [3] can be used. This idea consists
of using a non-linear function to map non linearly separable
data to a different Euclidean space where it can be linearly
separable.

Four standard kernel types have been used during our
experiments: linear, polynomial, radio basis function (RBF),
and sigmoid. The package SVM-Light [13] has been used for
the SVM learning and classification.

Fig. 1. Robot performing terrain mapping and identifying navigable and
non-navigable areas.

IV. SEMANTIC TERRAIN MAPPING

Autonomous navigation is an important capability for a
mobile robot. When traversing rough terrain, the robot must
have the ability to avoid not only obstacles but also parts
of the terrain that are considered not safe for navigation
[2]. This is an important problem when one is exploring an
unknown terrain. Applications for terrain mapping range from
path planning and local obstacle avoidance to detection of
changes in the terrain and object recognition [32]. Planetary
exploration is an interesting example of practical application
for this research topic [21]. In this context, we use a semantic
mapping approach based only on information provided by
range sensors and the position of the robot builds a 3D map of
the terrain and classifies the mapped regions in two semantic
categories: navigable and non-navigable.

Our experiments have been performed using ground robots
equipped with 2D laser range finders. The range sensors are
mounted pitched down on the robots. As the robot moves,
the range information generates a 3D point cloud, which
models the terrain. We consider flat parts of the terrain such
as walkways navigable areas. These areas are considered safe
for navigation. Grass and gravel are considered non-navigable
(or less desirable) areas. Depending on the application, dif-
ferent types of terrain may be considered navigable and non-
navigable. For example, in a planetary exploration context,
areas with large rocks that may damage the robot may be
considered non-navigable. Classified maps can be very useful
for path planning and safe navigation. Even though some times
the difference in the roughness of concrete walkways and
grass is very small, our approach is capable of semantically
classifying them successfully.

A. HMM

The semantic terrain mapping problem can be stated using
the HMM framework as follows. The points in our 3D map
are the states we are estimating and each scan provided by the
range sensor generates a single state sequence Each point can
assume one of two possible states: navigable (NA) and non-
navigable (NN ). The real state of each point is not directly
given by the range sensor. Navigable areas in our context
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will be characterized by flat terrains. On those terrains the
points generated by the range sensor are expected to be well
aligned, with a minimal variance in altitude. Conversely, the
non-navigable areas are characterized by rougher terrains. The
3D points that represent those areas are expected to be not
well aligned, with some variance in altitude [31]. Figure 1
shows a robot building a map and identifying navigable and
non-navigable parts of terrain at USC campus.

The information provided by the range sensor cannot be
used directly as observations in our algorithm, since it is only
a measurement of the distance between the sensor and the
nearest object in some specific direction. Therefore the data
provided by the range sensor are represented as a sequence of
points in 3D Cartesian space. Given that sequence of points,
the observation for a specific point will be based on the
difference in the altitude of that point compared to the altitude
of its neighbor points. It is important to notice that instead of
having a discrete set of observations for individual states, our
approach uses continuous values.

It is possible to use the HMM to learn the model parameters
λ (third HMM problem), but in our case, the learning can
be done fairly easily through the use of examples. Given a
set of range scans, it is possible to manually label the true
state for each point on each scan. Given the labeled data, the
calculation of the state transition probability distributionNA
is straightforward. As we have only two possible states (NA
andNN ), it consists of counting the number of times that a
point labeledNA is followed by a points labeledNA orNN .
The same rule applies for points labeledNN . The numbers
must be normalized so that the probability distribution sums
to 1. Calculating the initial state distributionπ is also easy
when labeled data are available. The number of states labeled
asNA andNN must be counted and the distribution also
needs to be normalized.

Based on the labeled data, it is also possible to calculate
the variance in the observation for the points classified asNA
and NN and use this information as a observation symbol
probability distribution. In this case, it is necessary to calculate
a mean for the altitude in the points that belong to a specific
state. After that it is necessary to calculate the amount of
variation in the altitude of those points in comparison to the
mean. Figure 2 shows the Gaussian pdfs for the pointsNA and
NN . We can notice that points classified asNA have smaller
variance in the relative altitude (observation) compared to the
points classified asNN

B. SVM

The terrain mapping problem can also be stated using the
SVM framework as follows. Two properties of the space have
been used as input of the SVM algorithm: (1) the altitude
difference between the 3D point and the robot and (2) the
maximum altitude difference of a specific 3D point to its
neighbor points (same used in the HMM terrain mapping).
As output, the SVM algorithm classifies each point in the 3D
terrain map asNA or NN .

As SVM is a supervised learning algorithm, data already
classified have to be provided in the learning phase. The same

Fig. 2. Gaussian pdfs for theNA andNN points of the walkway terrain.
Flat terrain points have smaller variance in the altitude.

manually labeled points used for the HMM model learning
have also been used for the SVM learning. Depending on the
kernel choice, some parameters have to be manually set during
the learning phase. The cross validation method has been used
to tune these parameters.

V. ACTIVITY-BASED SEMANTIC MAPPING

For the most part, mobile robotics mapping research has
been concentrated on static environments. Few mapping al-
gorithms are designed to build maps in presence of dynamic
obstacles and, in most cases, the dynamic entities are detected
and filtered out. Some mapping approaches, like the one
presented in [30], go even further, detecting and representing
moving obstacles in the map. There are also robotic algorithms
that focus on learning patterns of the activity in the environ-
ment [18]. Computer vision researchers have also been ad-
dressing the topic of activity modeling for many years [23] [4].
The use of video cameras provide richer information compared
to laser range sensors but they also demand considerably more
computation to process the data. Usually, cameras have to be
placed in high vantage positions to better cover the space to be
analyzed. Consequently, they are not suitable to be attached to
ground robots to this purpose. Another fact to take into account
when monitoring urban spaces is that the lasers preserve the
anonymity of the moving entities, which may be a issue for
video cameras depending on the situation in which they are
used.

We approach the problem of semantic mapping of the
environment based on the usage of the space by dynamic
entities. In urban environments there are many different types
of dynamic entities moving with different properties. For
example, some of them are bigger than others; some of
them are faster than others. We are particularly interested in
obtaining semantic information about environments based on
how these moving entities use the space over time.

Our experimental scenario consists of a regular urban en-
vironment composed by a street and sidewalks where people,
cars, and bicycles move regularly. Based on activity in the
environment we try to semantically classify the space in
either street (S) or sidewalk (W). The applications for the
activity based semantic maps range from path planning to
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Fig. 3. Robots mapping the environment according to the activity of the
dynamic entities.

traffic modeling. Figure 3 shows two robots collecting activity
information in a urban environment.

A. HMM

Our semantic classification for the environment can be
stated in the HMM framework as follows. We partition the
environment in a two dimensional grid of cells. At the end of
the semantic mapping process, each cell is classified in one of
the two categories (S or W ).

As all the cells are symmetric in the grid, it is possible to
organize and address them by columns and rows. Each row of
grid cells corresponds to a sequence of hidden states that we
are estimating using the HMM framework.

The observations are obtained from the properties of the
space sensed by the mobile robots over a determine amount
of discrete time. For example, one of the properties of the
space is the activity. Every time that a robot detects activity
in a portion of the environment, the activity counter on the
correspondent grid cell is increased by one. At the end of the
data collection period, the amount of activity that occurred in
the space represented by each cell is used as observation for
the HMM semantic classification.

Due to the fast motion of the dynamic entities and the
limited observability of the robots sensors, the robot does not
move during the data collection to avoid missing information.
The mapped area corresponds to the area covered by the sensor
of the robot. In order to decrease the effect of the occlusion and
increase the mapped area, two robots have been used during
the experiments. The location of the robots is known a priori
and it is important to mention that only range information is
provided by the sensors.

Four properties have been observed in the environment:
activity, occupancy, average size of the dynamic entities, and
maximum size of the dynamic entities. Activity is detected
every time a certain place in the environment is occupied (by
a dynamic entity) and becomes free or vice-versa. Occupancy
occurs when a certain location of the environment is occupied
by a dynamic entity. For example if a car stops in a determined
place, the correspondent grid cells will show high occupancy
and low activity. The third property of the environment is
the average size of the moving entities that occupied the

space during the data acquisition. The fourth property of the
environment is the maximum size of the dynamic entities that
occupied the space during the data acquisition.

The information about dynamic entities is extracted from
the data provided by the range sensors using the algorithm
presented in the [30]. The size of the dynamic entities is
estimated based on grouping adjacent occupied cells. As in
the semantic terrain mapping, HMM modelλ is learned based
on manually labeled examples.

B. SVM

The activity-based semantic mapping problem can be stated
using the SVM framework as follows. The same four prop-
erties used in the HMM classification have also been used as
input of the SVM algorithm. As output, the SVM algorithm
classifies each grid cell of the map into either street (S) or
sidewalk (W ). An important difference between the HMM and
SVM approaches for this problem is that the grid cells with
no activity during the experiments have not been considered
for classification with the SVM algorithm.

VI. M AP SEGMENTATION

It may happen that parts of the map are not correctly
classified due to sensor noise or other reasons. When those
errors occur in small parts of the map (considered noise),
segmentation techniques can be used to fix them.

Segmentation techniques have been used for many years
by the computer vision community [9]. Among several seg-
mentation methods, Markov random fields (MRF) have been
extensively used in image processing. For a complete overview
of MRF theory see [14].

In the terrain mapping context, it is unlikely that in an area
with a large majority of cellsNA there are few cellsNN .
It is also unlikely that among several scans that contain both
points labeledNA andNN there is a scan that only contains
points labeledNA. The MRF technique make those points
agree with their neighbors As a result,NA andNN regions
are well defined and clustered.

In order to use MRF as a segmentation tool, we approximate
our 3D map to a 2D grid. Each point is projected on the grid
based on itsx and y coordinates. Each cell in the grid is
labeled asNA or NN according to the classification of the
points projected on that cell. It is important to notice that not
all the cells in the grid have a label, because the distribution
of points in thex, y plane is not uniform.

The basic idea of MRF is that the probability distribution
for each cell in the grid is specified conditionally on the prob-
ability distribution of its neighbor cells. After the application
of the filter, all points projected on each cell are labeled with
the same label of that grid cell.

Let Ci be a random variable taking the valuesNA or NN ,
and denote byn(k)

i (k = 1, 2, ..., n) the number ofk neighbors
of Ci that are labeled asNA. A simplified MRF model may
be specified as:

P (Ci = NA|grid)
P (Ci = NN |grid)

= exp
(
α+

n∑

k=1

(
βkn

(k)
i

))
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(a) Walkway (b) 3D map of the walkway (c) Doheny Library garden (d) 3D map of the garden

Fig. 4. Real environments and 3D models with the ground truth areas in red color.

(a) HMM semantic classifica-
tion

(b) HMM semantic classifica-
tion + MRF

Fig. 5. Semantic classification of the Section A of the garden terrain. Some
misclassified points are corrected based on the MRF segmentation technique.

whereα and β are respectively the prior about the number
of NA cells and the importance ratio based on the distance
to the cellCi. As β is increased the chance of each grid cell
value agree with the value of its neighbors increases.

The same segmentation idea can be trivially applied to the
activity-based mapping problem.

VII. E XPERIMENTAL RESULTS

A. Semantic Terrain Mapping

In order to validate our terrain mapping approach, extensive
experimental tests have been performed. Our experiments have
been done using both an ActiveMedia Pioneer and a Segway
RMP robots. Both robots were equipped with SICK laser range
finders and a Microstrain IMU. Player [11] has been used to
perform the low level control of the robots. On the Pioneer
platform, the laser sensor was mounted at 42cm height and
a pitch angle of40o. On the RMP the laser was mounted at
93cm height and a pitch angle of35o, which allowed the robot
to map the terrain approximately 1.3m ahead of the robot.

Our experiments have been performed in two different
scenarios; a walkway and a garden, both on the USC campus.
The walkway scenario is reasonably uniform, with a concrete
passage in the center and short grass in both sides. The
garden scenario is much more diverse, with grass, bushes,
garden seats, and a water fountain. The mapped walkway
is approximately 50m long and a complete loop around the
mapped of the garden is around 200m.

Hist 10 Hist 50 HMM HMM + MRF

Walkway section A 80.0 84.2 97.2% 97.4%
Walkway section B 65.6 77.8 96.2% 98.5%
Garden section A 64.7 72.5 93.1% 97.6%
Garden section B 66.5 67.5 97.8% 98.9%

TABLE I

RESULTS OF THEHMM TERRAIN SEMANTIC CLASSIFICATION.

In order to verify the accuracy of the HMM classification,
we manually labeled 13640 points in the walkway dataset
and 12987 points in the garden dataset and used them as
groundtruth. For each dataset the labeled points were extracted
from two different sections (A and B) of the map to avoid
biasing. Approximately 30% of the labeled points has been
used in the learning step and the other 70% for the testing.
Figure 4 shows pictures of the real environments and the 3D
maps before the HMM semantic classification.

During the experiments, most of the maps have been built
when the robots were manually driven with a joystick. But
some autonomous navigation experiments using the RMP
have also been performed. As our mapping and classification
algorithm can be executed in real time, the robot could online
use the information about the areas it should avoid and it kept
itself in the navigable areas while autonomously mapping the
environment. For a better evaluation of the classification re-
sults obtained with the HMM method, histogram classification
techniques have also been applied to the same data and serve
as a reference. Table I show the semantic classification results
obtained with histogram with 10 and 50 classes, HMM, and
HMM + MRF methods. The histogram classification technique
has been experimented with a different number of classes and
empirical tests show that the best results were obtained with
50 classes.

Figures 6(a), 6(b), 7(a), and 7(b) show the 3D maps with the
semantic classification using HMM on both scenarios. Parts of
the terrain colored in white represent the navigable parts of the
terrain, while green colored parts corresponds to non-navigable
terrain. We can notice that although the grass was very flat
in some parts of the terrain, our method could successfully
differentiate navigable from non-navigable terrain.

As it can be seen in Figures 6(a) and 7(a), some portions of
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(a) HMM (b) HMM + MRF (c) SVM Linear Kernel

(d) SVM Linear Kernel + MRF (e) SVM RBF Kernel (f) SVM RBF Kernel + MRF

Fig. 6. Semantic classification results for the walkway terrain. The walkway in the center (white color) is correctly identified.

(a) HMM (b) HMM + MRF (c) SVM Linear Kernel

(d) SVM Linear Kernel + MRF (e) SVM RBF Kernel (f) SVM RBF Kernel + MRF

Fig. 7. Semantic classification results for the garden terrain. The walkway in the center (white color) is correctly identified.
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(a) Ground truth -NN (b) Ground truth -NA (c) Linear kernel classifica-
tion

(d) Polynomial kernel classi-
fication

(e) RBF Kernel classification (f) Sigmoid Kernel classifica-
tion

Fig. 8. Data points in the property space (NA in green andNN in red).

Kernel Walkway section A Walkway section B
SVM SVM+MRF SVM SVM+MRF

Linear 90.91% 90.51% 92.53% 93.18%
Polynomial 97.00% 97.06% 96.82% 97.35%
RBF 97.59% 97.76% 97.82% 98.15%
Sigmoid 90.18% 89.47% 91.85% 92.32%

TABLE II

RESULTS OF THESVM SEMANTIC CLASSIFICATION FOR THE WALKWAY

ENVIRONMENT.

the terrain have been misclassified. This happens mostly due
to the presence of small obstacles like leaves in the flat parts
of the terrain or aligned regions in the rough terrain. Some
of those errors were corrected after with MRF segmentation
(Figures 6(b) and 7(b)). This improvement in he semantic
classification can also be noticed in the results presented in
the Table I. Figure 5 shows a closer view of the section A
of the garden terrain where the correcting effects of the MRF
segmentation can be noticed.

Table II shows the terrain classification results for the
Sections A and B of the walkway dataset using the SVM
classification approach. As it can be seen, the best semantic
classification results have been obtained with the RBF kernel.
In almost all cases the MRF segmentation method has con-
tributed with a small improvement in the results. Figures 6
(c) and (e) show the 3D semantic terrain map of the walkway
environment using the linear and RBF kernels. It is possible
to notice that the MRF segmentation algorithm corrected large
part of the misclassified points in the RBF case (Figures 6(d)
and (f)). The same did not happen to the linear case due to a

Kernel Garden section A Garden section B
SVM SVM+MRF SVM SVM+MRF

Linear 87.75% 87.84% 73.69% 73.78%
Polynomial 92.47% 93.87% 84.14% 85.58%
RBF 94.40% 95.34% 85.48% 91.21%
Sigmoid 47.52% 47.63% 47.20% 43.41%

TABLE III

RESULTS OF THESVM SEMANTIC CLASSIFICATION FOR THE GARDEN

ENVIRONMENT.

larger number of misclassified points.
Table III shows the results of the semantic classification

for the garden dataset. The RBF kernel again presents the
best classification results. The results obtained in the section
A are noticeably better than those obtained in the section B.
Differently from the walkway dataset, sections A and B in
the garden dataset are very different. The terrain data of the
section A contains tall bushes, which are easier to classify
than the short grass mapped in the section B. Figure 7 shows
the semantic classification results obtained with the linear and
RBF kernels, with and without RMF segmentation.

The poor classification obtained by the linear kernel com-
pared to the RBF and polynomial is explained by the fact
that the data are not linearly separable. Figure 8 shows the
groundtruth and the classification of the walkway data in the
property space, where green color represents theNA points
and white color theNN points. As it can be noticed in the
Figures 8(a) and 8(b) there are some overlapping between the
two classes, which prevents to obtain 100% correct classifica-
tion results.
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(a) Real Environment (b) Screenshot of the 2D map. (c) Ground truth map.

Fig. 9. Environment used for the activity based semantic mapping and the space representation created by mobile robots. The orange frame corresponds to
the mapped area, the blue lines divide the street from the sidewalks, and the red squares are the position of the robots.

Property Hist 10 Hist 50 HMM HMM + MRF

Activity 53.09% 51.77% 65.00% 69.87%
Occupancy 52.64% 47.32% 69.78% 76.73%

Average size 55.97% 54.11% 78.20% 83.01%
Maximum size 46.93% 31.70% 78.26% 82.72%

TABLE IV

RESULTS OF THEHMM ACTIVITY BASED SEMANTIC CLASSIFICATION.

B. Activity-Based Semantic Mapping

The activity-based semantic mapping approach presented in
this section has been tested with experimental data collected
on the USC campus. Two Pioneer robots equipped with SICK
laser range finders have been positioned in opposite sides of a
street to monitor the activity in the region. The area considered
for mapping is approximately 16m x 18m with grid cells of
20cm. The ground truth was obtained measuring the width of
the street and the sidewalk and each data collection period
lasted approximately 15mins with a sampling frequency of
10Hz. One out of 80 rows of grid cells have been manually
labeled and used in the learning step of the HMM algorithm.
It corresponds to 1.25% of the total grid cells. Figure 9 shows
a picture of the environment using for the experiments and a
screenshot of the map generated by the robots at a determined
instant.

Based on the raw sensor data, the robots are capable to
extract the properties of the environment and semantically
classify each grid cell in eitherS orW . Each of the four prop-
erties has been individually tested. The results of the HMM
classification can be seen in Table IV, which also includes
classification results obtained with histogram techniques.

Figure 10 shows the semantic classification results with and
without the use of MRF segmentation algorithm. Parts of the

map colored in light green corresponds to theW areas, red
colored areas corresponds to theS areas. The two blue lines
are the ground truth and the space between them corresponds
to the street, while the side spaces correspond to the sidewalks.

As it can be noticed from the Figure 10, the properties
activity and occupancy cannot correctly differentiate the street
from the sidewalks. The two wide red lines in the center of the
blue lines in the Figures 10 (a) and (c) do correspond to the
used parts of the streets, but when the semantic classification
algorithm tries to generalize the learned information, it also
classifies the most active parts of the sidewalks asS. After the
MRF segmentation, the right sidewalk is entirely classified
as part of the street, which is wrong. In fact, based on the
data collected during our experiments, it is not possible to
determine whether a grid cell belongs to the street or sidewalks
just observing its amount of activity or occupancy as it is very
similar in both semantic areas.

The semantic classification based on the properties average
size and maximum size shows better results, as it can be seen
in the Figure 10. We can notice in the Figures 10 (e) and (g)
that most area colored in red is between the two blue lines,
which matches the ground truth information. Some parts of
the space between the two blue lines are misclassified asW .
It happens because this area that is close to the sidewalks or
in the center of the street is not used by cars. In the right
side of the Figure 10 (g) it is possible to see a red area in
the place that corresponds to the sidewalk. The explanation
for this misclassification is that during the experiments, in a
specific moment, a crowd of people stopped in front of the
robot, which was placed in the location. As most of the space
around the robot was occupied by moving entities, the range
sensors detected a large sized obstacle on that location. When
the average size of the moving entities that occupied that space
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(a) Classification based on
activity.

(b) Classification based on
activity +MRF.

(c) Classification based on
occupancy.

(d) Classification based on
occupancy + MRF.

(e) Classification based on
average size.

(f) Classification based on av-
erage size + MRF.

(g) Classification based on
maximum size.

(h) Classification based on
maximum size + MRF.

Fig. 10. Activity-based semantic classification based on different properties of the space.

Kernel SVM SVM+MRF
Linear 79.96% 80.12%

Polynomial 78.88% 79.19%
RBF 66.69% 65.12%

Sigmoid 65.12% 65.12%

TABLE V

RESULTS OF THESVM ACTIVITY -BASED SEMANTIC CLASSIFICATION

USING THE FOUR PROPERTIES OF THE SPACE.

is used for the semantic classification, the effect of the crowd
of people is attenuated, as it can be seen in the Figure 10 (e).
Figure 10 (f) and (h) shows the classification results after the
MRF segmentation.

An important difference between the HMM and SVM
approaches for this problem is that the grid cells with no
activity during the experiments have not been considered for
classification with the SVM algorithm. However, they have
been classified in the MRF segmentation step. Table V shows
the semantic classification results using the four standard
kernels and all the four properties of the space. Differently
from the terrain classification results, we can notice that the
linear kernel obtained the best classification results. Figure 11
shows the classification results for the linear, polynomial, and
RBF kernels.

It is interesting to notice that although the Sigmoid kernel
classified every grid cell asS (which is obviously wrong),
it still got 65.12% correct classification results. It happens
because the ground truth data indicates that a larger part of
the map is indeed supposed to be classified asS. In this case,

Kernel Learning dataset Testing dataset
Linear 92.25% 79.78%

Polynomial 92.25% 77.57%
RBF 97.06% 69.27%

TABLE VI

RESULTS OF THESVM SEMANTIC CLASSIFICATION FOR THE LEARNING

AND TESTING DATASETS USING THE PROPERTIES(1) ACTIVITY AND (4)

AVERAGE SIZE.

the visual results have to be taken to account when one is
evaluating the performance of the classifiers.

Differently from the results obtained in the terrain mapping
classification, where the RBF kernel obtained the best results,
Table V shows that the best classification performance for the
activity-based mapping were obtained with the linear kernel.
The reason for the poor classification with the RBF kernel can
be explained with an analysis of the data presented in the Table
VI, which shows the classification results for the learning and
complete datasets using the properties only two properties (1)
and (4). The reasons that only these two properties of the space
have been chosen for the analysis are that the classification
results are very similar to the ones obtained with the four
properties, and it is possible to visualize the classification
results in a 2D graph (Figure 12). As it can be noticed in
the Table VI, the classification results for the learning dataset
using the RBF kernel are better than the ones obtained with
the linear kernel. But the same performance is not obtained
with the complete dataset. This suggests an overfitting of the
learning dataset and results in a poor classification to the
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(a) SVM Linear Kernel (b) SVM Linear Kernel +
MRF

(c) SVM Polynomial Kernel

(d) SVM Polynomial Kernel
+ MRF

(e) SVM RBF Kernel (f) SVM RBF Kernel + MRF

Fig. 11. Results of the SVM semantic classification (W in green andS in red). Different from the RBF kernel, the linear kernel correctly distinguish the
street from the sidewalks.

complete dataset. This fact can be confirmed in the Figure
12, which shows the classification in the property space. For
the learning dataset, the RBF kernel (Figure 12(e)) obtain
very accurate classification compared to the linear kernel
(Figure 12(c)). But when the classification is generalized to
the complete dataset, the linear kernel (Figure 12(d)) is much
more efficient than the RBF kernel (Figure 12(f)). The results
obtained with the polynomial kernel were similar to the ones
obtained with the linear kernel for the learning dataset, but not
as good for the complete dataset.

Besides the experiments with all the four properties of
the environment, different combinations of properties have
also been tested. The results are shown in the Table VII,
where the environment properties have been numbered as
follows: (1) activity, (2) occupancy, (3) maximum size, and (4)
average size. We grouped all the classification results in three
categories such that the difference between results in the same
category is very minor. Analyzing property combinations that
belong to each group it is possible to notice how each property
contributes to the classification results. Figure 13 show the
classification results for the three categories. The results are
based only on the linear kernel as it obtained better results
than the other kernels for most cases.

CategoryA presents the most accurate results. Notice that
after the MRF segmentation, all the space corresponding to the
sidewalk have been correctly classified (Figure 13(b)). There
are some classification errors in the space that corresponds to
the street, mainly in the region close to the blue line. This can
be explained with the fact that almost no activity happens in
that region. In most cases, cars (which characterize the streets)

Properties SVM SVM+MRF Category
1 65.12% 65.12% C
2 65.12% 65.12% C
3 78.53% 78.88% B
4 79.64% 79.77% A

1,2 65.12% 65.12% C
1,3 79.20% 78.88% B
1,4 79.78% 79.88% A
2,3 79.40% 79.19% B
2,4 79.85% 79.90% A
3,4 79.48% 79.41% A

1,2,3 79.14% 79.01% B
1,2,4 79.87% 79.90% A
1,3,4 79.87% 79.90% A
2,3,4 79.81% 79.96% A

TABLE VII

RESULTS OF THESVM SEMANTIC CLASSIFICATION USING

COMBINATIONS OF THE PROPERTIES OF THE SPACE.

occupy the center of the map. In the Figure 13(a) it is even
possible to notice the space that divides the two lanes of the
street, which is also not used by most of the cars. All the
property combinations that belongs to theA category (and
only these) present the average size (4) as a property. Similar
to the results obtained with the HMM classification approach,
this property lead to the most accurate results.

CategoryB presents good classification results with con-
siderable similarities to CategoryA, except for a classification
error in a small area in the right side of the map. Category
B includes all and only property combinations that include
maximum size (3) , except for those combinations which
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(a) Learning dataset ground
truth

(b) Complete dataset ground
truth

(c) Learning dataset classified
using linear kernel

(d) Complete dataset classi-
fied using linear kernel

(e) Learning dataset classified
using RBF kernel

(f) Complete dataset classi-
fied using RBF kernel

Fig. 12. Results of the SVM semantic classification for the learning and complete datasets using the properties (1) activity and (4) average size.

(a) Category A: SVM (b) Category A: SVM + MRF (c) Category B: SVM

(d) Category B: SVM + MRF (e) Category C: SVM (f) Category C: SVM + MRF

Fig. 13. Results of the SVM semantic classification for the three categories. Results of the categories A and B have correctly distinguished the street and
the sidewalks.
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(a) SVM Linear Kernel (b) SVM Linear Kernel +
MRF

(c) SVM RBF Kernel (d) SVM RBF Kernel + MRF

Fig. 14. Results of the SVM semantic classification (W in green,S in red, and non used space in white).

Kernel SVM SVM+MRF
Linear 86.14% 85.96%

Polynomial 79.93% 80.04%
RBF 76.09% 67.53%

Sigmoid 75.40% 67.47%

TABLE VIII

RESULTS OF THESVM SEMANTIC CLASSIFICATION EXCLUDING THE NON

USED SPACE.

includes the property 4 (which are classified asA). This results
are also similar the ones obtained with the HMM approach
using maximum size as a property. This can be explained due
to the fact that at a specific moment, a crowd of people stopped
in front of the robot, which was placed in that location. As
most of the space around the robot was occupied by moving
entities, the range sensors detected a large sized obstacle on
that location, which matches with the large obstacles that run
in the streets (cars).

CategoryC, which includes only properties activity (1) and
occupancy (2), presented a the worst results. They could not
correctly distinguish between street and sidewalks and wrongly
classified the entire space as street.

The results presented in the Table VII suggests how each
property of the space contributes to the classification. The
properties average size and maximum size lead to reasonable
results while occupancy and activity do not provide enough
information to correctly differentiate the environment into
street and sidewalk. The data collected during our experiments
shows that the activity and occupancy of the moving entities
that occupy the street and the sidewalk is very similar. That
is a typical case where there is no association between the
input property and desired classification pattern. Both HMM
and SVM methods failed when only these to properties were
available.

During the experiments there were several of the space
which did not register any activity. In the classification results
presented above, these areas were also classified as street (S)
or sidewalk (W ) and as they were present in bothS and
W areas, they make the learning task harder. If we consider
those particular regions as a third class (e.g. non used space),
better classification results can be obtained. The classification

Kernel Properties SVM SVM+MRF
Linear 1,2,3,4 85.37% 84.34%
Linear 1,2,3 85.20% 86.13%
Linear 1,2,4 85.13% 88.93%

Polynomial 1,2,3,4 86.15% 85.62%
Polynomial 1,2,3 87.71% 89.29%
Polynomial 1,2,4 89.17% 95.67%

TABLE IX

RESULTS OF THESVM MULTI CLASS SEMANTIC CLASSIFICATION.

results are presented in the Table VIII and in the Figure 14,
where the MRF segmentation technique is used to estimate
the classification of the non used space after the initial SVM
classification.

C. Multi-class SVM classification

For all the semantic classification problems presented in this
paper, the environment has been divided in two categories:
Navigable and non-navigable in the terrain mapping context,
and street and sidewalk for the activity based mapping.
A natural extension of approaches presented in this paper
would be the multi-class semantic classification. In fact the
SVM classification algorithm has originally been developed
for binary classification, but it has been later extended to
cases in which more than two classes [6]. This approach has
been tested with the activity-based semantic mapping context.
Differently from the experiments previously described where
only the information obtained from the dynamic entities has
been taken to account, in the multi-class case, the state entities
are also considered. The environment has been divided into
three classes: street (S), sidewalk (W ), and static entities
(E). Building structures, trees, and all the other parts of the
environment that do not change over time are considered
part of E. The main characteristic of the elements in this
class are high occupancy and very low activity. The ground
truth map can be seen in the Figure 16 where the blue color
corresponds the classE. Grid cells with no activities have
not been considered for classification. Table IX show the
classification results. Only combinations of properties that
include the properties 1 and 2 have been presented. All the
other property combinations could not classify elements in
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(a) Properties 123 (b) Properties 123 with MRF (c) Properties 124

(d) Properties 124 with MRF (e) Properties 1234 (f) Properties 1234 with MRF

Fig. 15. Results of the SVM multi class semantic classification using the polynomial kernel. Most part of the static entities in the environment have been
identified

Fig. 16. Multi class classification ground truth (S in red,w in green, and
E in blue).

theE class correctly. Only the linear and polynomial kernel
obtained reasonable classification results. Figure15 show the
classification results with and without MRF segmentation.
The best classification results were obtained after the MRF
segmentation with the combination of properties 1, 2, and 4.
This can be clearly noticed in Figure 15(c).

VIII. C ONCLUSIONS ANDFUTURE WORK

This paper approached the problem of semantic mapping,
which consists of creating robotic maps that go beyond rep-
resenting the metric structure of the environment. Semantic
maps can represent other properties of the environment of the
environment, allowing a more complex and complete descrip-
tion of the space. The semantics present in the maps also allow
robots to more easily share information and ultimately perform
more complex tasks.

Two scenarios have used as a test bed for our semantic
mapping approaches: terrain mapping and the activity-based

mapping. The terrain mapping problem consists of creating
3D representations and classifying terrain into either navigable
or non-navigable areas. The activity-based mapping problem
consists of creating two dimensional maps that classify the
environment according to the usage of the space by dynamic
entities.

Two different approaches for the semantic mapping problem
have been presented. The first one is based on hidden Markov
models and the second on support vector machines. A fun-
damental difference between the HMM and SVM semantic
classification methods is that in the HMM approach each data
sequence is considered at once, while in the SVM algorithm
each point is individually classified. In the terrain mapping
domain, the data sequences correspond to the 3D points in the
range scans. In the activity-based mapping context, the rows
in the grid of cells correspond to the data sequences. In order
to classify each point in the data sequence, the classification
previously made is taken into account. This characteristic
does not necessarily lead to better classification results; it all
depends on the nature of the data to be classified. In most
cases, when the data are divided into well defined clusters,
the HMM method tend to be more efficient. The SVM ap-
proach is theoretically considered better for non-clustered data,
exploring the effect of locality. Another important difference
between these two learning methods is the fact that the SVM
can handle several input properties while only one can be
used in our particular implementation of HMM. For most
experiments performed in this paper, the classification results
of the two methods are very similar and noticeably better than
the standard histogram-based classification algorithm, which
can be observed in the semantic classification results obtained
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from field experiments. Another important conclusion obtained
from the data analyzed is that not all properties of space lead
to the desired classification. In the activity-based mapping
problem, both HMM and SVM failed when only the activity
and occupancy properties were available.

As semantic mapping is still a very young research topic,
there many open problems and interesting directions for new
research in the field. Differentiate entities (e.g. people) on
a urban environment, understand and possibly predict the
behavior of dynamic entities, and improve the complexity of
the map representation fusing information provided by other
types of sensors (e.g. cameras) are part of the future work to
be addressed on this research topic.
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