Inter national Journal of Soft Computing and Engineering (1JSCE)

| SSN: 2231-2307, Volume-3, I ssue-5, November 2013

Run Time Evaluation by using Object Oriented
Debugging Tool

Ashvini A. Patil, Swapnil V. Suryawanshi

Abstract: In the process of Software Development and
evolution, Developer has to answer multiple questions about how
the code or software behaves at runtime and already many
options available for debugging.

Debugging is an essential part of programming language and
what sets great programmers apart from average ones. Beginners
are often pleased if a bug/virus that was seen earlier inexplicably
disappears. Inexperienced programmers have a tendency to shy
away from error messages or be frightened by observable errors,
whereas skilled programmers rely heavily on error messages and
he is aware about fixing of bugs by using different debugging
tool. And programmer can easly detect and remove it at run
time. The traditional or classical debugger while debugging gives
developer bunch of breakpointsin the source code.

Object based debugging offer, interruption when a given or a
particular object is accessed or modified. Programmers, who try
to find violations in such source code, need new tool that allows
them to explore objects in the system effectivdly. The
implementation of the proposed debugging described here offers
programmers an effective tool which will allows searching of
objects even for programs that have huge number of objects.
Therefore Successful debugging tool involve efficient exploratory
ability and a proper understanding of troubleshooting in
programming code.

I. INTRODUCTION

As stated from traditional tools that, the compgima of
object oriented system increases, as the numbeiffefent
objects in programs increases debugging becomaisvedy
difficult. Developer needs a dedicated user intefdor
object oriented programming.

Object based debugging tool able to detect andys@ahe
relationship in between the objects during the imat So
the key behind this is to focus on a particulareobjnstead
of the execution stack. Traditional debuggers aceised on

the execution stack which may create chance of b

availability as well as time consuming process hesea
programmer has to spot the different object partsode as

per their views and interest. We have to fix mudtip

breakpoints accordingly. The software then runsil uat
breakpoint is reached, and the developer can thgpect
and interact with the code and entities in the scopthe

breakpoint. Unfortunately developer may not be fi

breakpoints properly at run time. As a result, tdfgimg the
right place to set breakpoints in the source cadpiires a
deep understanding of what happens during the &xecu
Second, debugging operations are focused on theuése
stack, rather than on the objects. There existeefhie a
considerable conceptual gap between the interféfesed

by the debugger and the questions of interest ke tlw

developer [20] [21].

Manuscript received November, 2013.
Ashvini A. Patil\, ME computer Engg. VBCOE, Ahmednagkndia.
Swapnil V. Suryawanshi, BE IT. VBCOE, Ahmednagar, India.

36

Object based debugging offer, interruption wherivergor
a particular object is accessed or modified. Prognars,
who try to find violations in such source code, chegw
tool that allows them to explore objects in the teys
effectively. The implementation of the proposed wghng
actually offers programmers an effective tool whiefll
allows searching of objects even for programs tieate
huge number of objects.

Object based debugging tool looks forward to armlyse
relationship in between the objects during theimat This
allows functioning operations directly on objectther than
on the execution stack. Our tool can provide aerfate to
programmer which will make easy different operagion
which going to perform on a particular object. @jbased
operations directly act on objects by interceptaugess to
runtime state; thus monitoring how objects interacd
Support interactions.

There exists therefore conceptual gap betweenntieeface
offered by the debugger and the need of the deeelop
hence to overcome or fill the gap; there is a Heeabject
based debugging tool which is helpful to have presi
object states and object reference flow informaadrand
during debugging.

Our debugging tool is able to capture object sthtreintime.
It also monitors object specific interactions ahdtpport
live interaction that is at run time. For this week track the
relevant data that is it store object history infation
together with the regular objects in the applicatieemory.

II. RELATED WORKS [21]

For developing proposed work, we have gone through

different existing system to become better approfuh

object oriented debugging tool. Following literatus study
out existing systems working and critically ewadd on

some evaluation method to find shortcomings froemth

In Query Based debugging approach user defineggy gui

a higher-level language that is then applied to daga

Queries can test complex object interrelationshisl

sequences of related events.

Trace oriented Debugger: it is collected of a veeianized

fnstrumentation for incident making, a specificatstse for

scalable storage space, and support for partigesrao
reduce trace volume [2].

While this method has the advantage that nowheta ida
lost, its drawback is that it requires large handwvpower,
which is not available for many developers toddy [6

The why line debugging interface approach.

hy line tool which facilitate developer to ask, By did”
and “Why did not” questions regarding their progimm
output Why line tries to facilitate developer bypapng
static as well as dynamic analyses and after thatver
Some of the developer questions [7].

In Back-in-time debuggers approach; these are reiye
useful tools for identifying the causes of bugsnfpare to

Run Time Evaluation by using Object Oriented Debugging T ool

the “omniscient” approaches that try to remembdr atause, made tremendous advancements in the past yea
previous states are impractical because they comdom However, some of the reported progress may be due t

much space or they are too slow. So many approachesunrealistic assumptions

limit these penalties, but they ultimately end uping out
too much relevant information. In this paper a pcat
approach that attempts to keep track of only tHeveat
data. In contrast to other approaches, it keepscolijstory

that with the evaluation of
automated debugging tools.

These unrealistic assumptions concern the workgsof
developers and their ability to detect wrong codthaout
explanatory context, or the size and arrangemerfixes.

information together with the regular objects ine th Instead of trying to locate the fault, this propose help the

application memory. This method has the effect tladia not
reachable from current application objects thattsywot
useful further.

This approach, present idea which explains that ongm
utilization stays in practical limits. Furthermorghe
performance penalty is significantly less than witther
approaches [1].

Back-in-Time Debugging:

Back-in-Time Debuggers are useful tool for ideritify the
cause of errors, not the omniscient debugger walalays
remembers all previous states.

To overcome this drawback of omniscient debuggek lra

developer understand it, thus enabling her to @euitlich

fix they deems most appropriate.

This came to know the need to employ a completely
different evaluation scheme that bases on feedfiack
actual users of the tools in realistic usage sien®].

“A Review of reverse debugging”

Reverse debugging is defined as of a debuggeoadter

a failure in a program has been observed and gk in&z

the history of the execution to find reason for fliture.
Reverse execution has become a practical technique
available in a number of free and commercial todlsis
article review the history and techniques of regers

time debugger is developed. Omniscient Debuggingp a debugging, as researched, implemented, and uset unt

known as back-in-time debugging or reversible dgmgy
These debuggers store the total history and exetitace
of a debugged program. Developers can explore iierh
by simulating step-by-step execution both forwanid a
backward [1] [6].

today [11].

There is a need to find or steer in area whererpromers
actually face problems during debugging scenar®}.[1
This strategy works well, trying to understand tieneral
performance for objects. When addressing polymsmior

In Auto Flow an automatic debugging approach; Aspecdelegation the performance of objects of same dharges

oriented programming (AOP) is gaining popularitythwi
adoption of languages such as AspectJ.

During AspectJ software evolution, when tests fiaimay
be lengthy or difficult for programmers to find otlie
failure minimising changes by manually inspectifigcade
editing.

To beat the costly attempt spent on debugging deeel

on their composition. In these scenarios need gactb
specified analysis and simple breakpoint stratesggat the
best option. In application development when progreers
require interrupting the execution of the applicativhen a
particular code is evaluated, requires breakpairgtegy.

The programmer wants to locate the particular dbjecis
concerned. The programmer specifies a suitableitondo

AutoFlow, an automatic debugging approach for Atpecrecognize the particular object previously foundtheout

system. AutoFlow meets the potential of delta dgmugy

algorithm with the benefit of change impact anaytsi slow
down the search for imperfect changes. It primasgsu
change collision analysis to identify a subsetesfponsible
changes for a failed test, after this ranks thesanges
according to proposed heuristic (indicating theelitkood

that they may have contributed to the failure)aliin this

improved delta debugging algorithm to determineiinmal

set of faulty changes.

The important advantage of AutoFlow is that it can

automatically reduce a big portion of irrelevanacbe in an

early stage, eventually then locate not fixed cleang

effectively [8].
NUDA a Non-Uniform Debugging approach.

This paper is proposed a novel non-uniform debugpgin
hardware-assisted
many-core

architecture (NUDA). This makes
debugging both feasible and scalable for
processing scenarios. Here, theme is to distribuhte
debugging support structures across a set of biaca
clusters while avoiding address overlap. It allotwe
address space to be monitored using non-uniforropots

and propose approach to lockset-based race detectio
supported by the NUDA. Here, page-based monitoring

cache in every NUDA node to keep track of footmirfthe
union of all the caches know how to take in accaamta
race detection probe without violating executionlesing.
[10].

How helpful are automated debugging tools :

interacting with it. This approach may be practleald exist
few objects to analyze in given code [13].

2.1 Related work shortcoming

Studding and analysing different literature surf@iowing

are the outcomes.

e Back in time debugging debugger have to remember
history of all previous states.

* There is pretty need of a useful and dedicated user

interface for debugging scenario.

» Developer comfortable with using object oriented
dedicated user interface for debug situations.

e Trace oriented debugger requires more hardware powe

which is practically not possible. Omniscient defpeig

depend on more memory because, to store history of

last stages. Reverse debugging is to stop aftailad

in a program has been observed and go back into the

history of the execution to uncover the reasontifier

failure.

» AutoFlow can automatically reduce a large portidn

irrelevant change in an early phase, eventuallyr the

locate faulty changes effectively.

After going through literature survey came to know

that developer faced some kind of problems whiliaglio

debugging. Major problem is that developer cannot

answers about objects. And after taking view on

problems faced by developer they do not get ansover

their question regarding object.

The Area of automated debugging, which is with the

automation of identifying and correcting a failgre'oot

37

Inter national Journal of Soft Computing and Engineering (1JSCE)

When complex object oriented system taken in accthen
traditional debuggers fails to act on object relatperations
and relationship between different objects. To iglate

based approach and useful dedicated user inteféac#
[20].

. MOTIVATION SCENARIOS:

The motivation for doing this project was primarign
interest in undertaking a challenging project inrgeresting
area of debugging. This gives opportunity to leabout
new area of software engineering. This area isiplysan

area that | might study at postgraduate level. As t

debugging area taken into account developer camEssac
different problems, which are faced by developehe T
traditional debugging technique used by programiser
concentrated on stack orientation so developer
problems regarding objects in the code given.

The debuggers not designed to answer many of the

guestions that developer typically uses to ask aftalysing
different papers related to approaches of debugdmgd
that one can develop a debugging tool which is dase
objects, and possesses following some points terstehd
runtime behaviour of the system. It will be helpfid

continue interacting with the runtime, applying og@ns
directly to objects without working with static regentation
of the system. This is useful in to monitor comneations
with entity objects without taking stepwise breaikp® [20]

[21].

So it is required to develop object based debugtngthat
facilitated with user interface which fulfil needsf

developer such as, different interruption relatedtjects or
keep watch on object interactions and do operatielaed
to objects using user interface telling suggestions

3.1 System Description

Looking on problems faced by user or developer theyot

face

| SSN: 2231-2307, Volume-3, I ssue-5, November 2013

» User can easily trace out how data is passed to the

different object at different break point.

 User can easily trace out the relationship between
these problems new tool should be developed oncbbje

objects.

BASIC DEBUGGING
TOOL

4

NO VIOLATION IN
FUNCTIONS OF
DT

e —

CONCENTRATING
ON OBIECTS

I T

OPERATIONS ON
OBIECTS

===

OBJEC OTHER
T

W

MODULE 3 ‘-—-‘ USER INTERFACE ‘

l

OBIECT
DEPENDENT
INTERFACE
Figure: 1 system description of automatic objecisola

debugging

3.1.1 System Overview

The source code when debug using object based gieloug
tool, particular object required by developer iarsbed and
made available to developer. Developer furtherngctn
object do the specified operation by using useerfate
concentrated on objects. The code file taken imtpgsed
tool, then code parsing done for all particularects. After
going through execution and isolates the pointdleeery
developer needs.

MODULE 1

MODULE 2

get answer to their question regarding object. Whephe parser extracted all objects from provided dildghen
complex object oriented system taken in account theypplied or given to execution module. This paratso

traditional debuggers fails to act on object ralaiperations
and relationship between different objects. To coere this
object based debugging tool is very helpful in ggsnario.
In this tool Brifost reflection framework is beinged. The
tool of object based debugging is built on toptaf Bifrost
reflection framework. Bifrost offers fine
unanticipated dynamic structural and reflectionotigh
meta-objects. Instead of providing different refilee
capabilities as an external mechanism integratalediply
into the environment. Explicit meta objects promglia
range of features, thereby evolving both applicatimodels
and the host language. Meta-objects provide a shasts
for different coexisting meta-level architectureg diving
traditional object-oriented techniques to the metel. Our
proposed system answers to different users regaimtm
like;

e If user wants to find out when method is calledimiyr

the execution of code.

e |If user wants to find out where the instances @ th

class created at runtime they can easily track it.
* In code, user defines different variables and waats

trace these variable flows in program and wants to

know at different break point where these varialles
accessed.

e User can trace at different stages or at diffeteeik
point what is the values of the argument at runtime

38

converted it into intermediate forms which givepasse to
object related errors or bugs. In code generatirglute
there is code which gives object related errorifigd [20].

Finally execution step it operates on the codequhtaking
objects in consideration using a dedicated usefidrfiace

grained for it. The stepwise execution is stated in systesrkflow.

OEJECT COLLECTING
MODULE

DEBUGING
INFORMATION WV

}

OBJECTS VARIAELES
‘ PARSING

—

‘ DEBUGGER TOOL

' }

INTERMEDIARY FORM OPTIMIZED FORM
AND GEMERATED —]
CODE ‘
CODE GENERATING
‘ OPEFRATINS ‘ ‘ OBJECT ‘ ¥

TOOL EXECUTION

!

USER DISPLAY

Figure: 2 overview for object based debugging syste

Run Time Evaluation by using Object Oriented Debugging T ool

3.2 System Workflow:

System workflow of object based debugging havenfaiihg
steps in the system workflow.

Stepl: Input source code into object based debgdgui.

Step2: It finds out appropriate required objeonfrgiven
input code.

Step3: It finds relationship like dependency, nita@ce

between different objects.

Developer now acts on object.

Using user interface user do different ajj@n on
object.

Trace out how data is passed to the differkject
at different break point.

Trace at different break point what is\hkies of
the variables and different argument at runtime
Apply this procedure repetitively on wh&eurce
Code document for desired objects.
Step9: Object related operations performed.
Step10: Make changes in objects.

Step4:
Step5:

Step6:
Step7:

Step8:

Stepll: Prevent problems and so improve performang]

[21].

IV. EXPECTED RESULT:

Understanding and debugging software systems figuif
Most used debuggers offer only a limited low-levigw of

the program state. For the exploration of largeadat

structures, provided a system that allows prograrane
ask the program state, helping to check objectiogiships
in large object-oriented programs. This debuggenlioes
several original features.

A new approach to debugging is instead of exploring

single object at a time, an object based debudmrsathe
programmer to quickly get a set of interesting otgdérom a
potentially very large number of objects, or to adhea
certain property cause for errors from a large nemdsf
objects.

A flexible tool conceptually, evaluates expression all

members of the complex objects. This is simple to

understand and to learn, yet it allows a large eaond

complexity of objects to be formulated concisely.[10]
Debugging easier for programmers and facilitatimge t

development of more robust object-oriented syst2$.

e It performs object based debugging and it checkHer

errors in code also.
e It finds relation between objects.
« Itinteracts with objects.
» It performs different operations related to objects

V. CONCLUSION

In this paper we have presented new better approach

towards debugging, which is based particularly bjects.
Traditional debuggers focused on instances of ctass
general code file. Developer
interrogating with object oriented arising quessioin this

paper Object based debugging tool have dedicated uS€l

interface which having object specific dependergrapions,
this are helpful in dealing with object relatedoes: In this

paper modified traditional debugging tool have ktac[19]

oriented state but there previous function are violiated,
and dedicated user interface is very helpful irtiémg with
the objects. Stack based debugging tool work oineectde
by pointed line by line, while object based debuaggtool

39

face problems during

works on desired objects doing operations direatiythem.
When source code having huge number of objectase of
problems related to objects this approach is uséfhls
approach is helpful improving the performance ofeob
oriented software’s.

VI. ACKNOWLEDGMENTS

I am very thankful to the people those who havevipgexd

me continuous encouragement and support to alstdnges
and ideas visualize. | am very much thankful todbmplete
VBCOE, Ahmednagar for open handed me all facilited
work environment which enable me to complete m¥.ths
express my sincere thanks to HOD and PG Coordinator
VBCOE, Ahmednagar who gave me their valuable &id r
guidance and help in presentation of this resepagier.

REFERENCES

[1] Adrian lienhard, tudor Girba and Oscar Nieasr "Practical Object
Oriented Back-In-Time Debugging”LNCS 5142, pp 59456
Raimondas Lencevicius, Urs Holzle And Ambuj 8ingh, “Query-
based Debugging of Object-Oriented Programs” OOPSRA
Atlanta, USA.

[3] Mark Minas “Cyclic Debugging For pSather, a &bkl Object-
Oriented Programming Language” Jan 31 2002

[4] Tanja Mayerhofer,"Testing and Debugging UML Misl Based On
Fuml” ICSE 2012.

[5] G. Pothier, E. Tanter, and J. Piquer, “Scalaldmniscient

Debugging, “Proceedings of the 22nd Annual SCM 3I&R

Conference on Object-Oriented Programming Systémsguages

And Applications (OOPSLA’07), vol. 42, no. 10, PpB5-552,

2007.

[6] C. Hofer,M. Denker, and S. Ducasse, “Design anglementation
of a backward-in-time debugger,” in Proceeding&NGDE'06, ser.
Lecture Notes in Informatics, vol. P-88 (Gl), 06, pp. 17-32.

[7] J. KO and B. A. Myers, “Designing the whylina: debugging
interface for asking questions about program beheayi in
Proceedings of the 2004 conference on Human fattarsmputing
systems. ACM Press, 2004, pp. 151-158.

[8] Sai Zhang; Zhongxian Gu; Yu Lin; Jianjun ZhaAutoFlow: An
automatic debugging tool for AspectJ software” IC2BD8. |IEEE
International Conference on 2008, pp. 470 — 471.

[9] Rossler, J. “How helpful are automated debugginols?” User

Evaluation for Software Engineering ResearchersER)S 2012

IEEE Conference Publications, pp. 13 — 16.

Chi-Neng Wen;shu-hsuan Chou;chih Chen ;tiegkan. "NUDA: A

Non-Uniform Debugging Architecture and Nonintrusiveace

Detection For Many core system” |EEE transactionl,64, 2012,

pages.199-212.

[11] Engblom, J. "A Review of Reverse debugging’s@&yn, Software,
SC and Silicon Debug Conference (S4D), 2012, pp61

[12] Chris parnin and alessandro orso, “Are autethatiebugging
techniques actually helping programmers” ISSTAyR011

[13] Jorge ressia, Alexandre Bergel and Oscar M&ss “object centric
debugging” ICSE 2012

[14] Renee McCauley, Sue Fitzgerald, Gary Lewan#gwsaurie
Murphy, Beth Simon, Lynda Thomas and Carol Zander
“Debugging: a review of the literature from an eafimnal
perspective” June 2008

[15] K. Glerum, K. Kinshumann, S. Greenberg, G. ,Adl Orgovan, G.

Nichols, D. Grant, G. Loihle, and G. Hunt, “Debimggin the large:
ten years of implementation and experience,” P3@SP, 2009, pp.
103-116.

17] Noor Fazlida Mohd Sani, Noor Afiza Mohd Arifiand Rodziah
Atan “Design of object-oriented debugger model gsimified
modeling language” JCSSP 2013, pp 15-18.

Potanin, A., Noble, J., Biddle, R.: Snapshoery-based debugging.
In: Proceedings of the 2004 Australian Software iE®@ering
Conference (ASWEC'04), Washington, DC, USA, IEEEn(uiter
Society (2004) 251

P. lyenghar, C. Westerkamp, J. WuebbelmanrBWvermueller, A
Model Based Approach for Debugging Embedded SystarfReal-
time, in 10th

[20] Jorge Ressia, Alexandre Bergel, Oscar Nigsgt “Object-Centric
Debugging” ICSE 2012, IEEE, Zurich, Switzerland.
[21] D.M.Thakore, Tanveer S Beg “An Automatic Deing Tool

Extension for Object Oriented Software” IJSCE.

