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Abstract. Global Integral Invariant Features have shown to be useful
for robot localization in indoor environments. In this paper, we present a
method that uses integral invariants for outdoor environments. To make
the integral invariant features more distinctive for outdoor images, we
split the image into a grid of subimages and calculate integral invariants
for each grid cell individually. We then concatenate the results to get
the feature vector for the image. Additionally, we combine this method
with a particle filter to improve the localization results. We compare our
approach to a Scale Invariant Feature Transform (SIFT)-based approach
on images of two outdoor areas under different illumination conditions.
The results show that the SIFT approach is more exact, but the integral
invariant approach is faster and allows localization in significantly less
than one second.
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1 Introduction

Outdoor localization of mobile robots is a difficult task for many reasons. Some
range sensors like laser range finders, which play an important role in indoor
localization, are not suitable for outdoor localization because of the cluttered
environment. GPS can give valuable position information, but often the GPS
satellites are occluded by buildings or trees.

Because of these problems, vision has become the most widely used sensor
in outdoor localization. A serious problem for vision are illumination changes,
because illumination in outdoor environments is highly dependent on the weather
(sunny, cloudy, ...) and on the time of day. Another problem is that visual features
may not be distinguishable enough; in a forest, every tree looks about the same.

An algorithm which can deal with changing illumination to a certain extent
is the Scale Invariant Feature Transform (SIFT) developed by Lowe [1]. SIFT is
a feature-based method which computes descriptors for local interest points. The
local features are more dependent on structure than on illumination and are very

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           Proceedings of the 5th International Conference on Computer Vision Systems (ICVS 2007) 
          Published in 2007 by Applied Computer Science Group, Bielefeld University, Germany, ISBN 978-3-00-020933-8 
          This document and other contributions archived and available at: http://biecoll.ub.uni-bielefeld.de



2 Christian Weiss, Andreas Masselli, Hashem Tamimi, Andreas Zell

distinctive. However, as the number of features per image is large (about 420 for
our 320×240 images on the average), matching images is very time-consuming.
Approaches that use SIFT for indoor localization are for example [2, 3]. Out-
door localization using SIFT was presented, for example, in [4]. There also exist
methods that replace the gradient histogram features of the SIFT approach, for
example by Local Integral Invariants [5]. Bradley et al. use a technique inspired
by SIFT for outdoor localization, the so-called Weighted Gradient Orientation

Histograms (WGOH) [6]. They subdivide the image into a grid of subimages.
For each subimage, they compute an 8-bin histogram of image gradients. The
subdivision makes the method robust to partial changes in the image.

Another group of vision-based localization methods are the appearance-based
methods, which compute global features for images. Well-known methods for in-
door localization are based on PCA [7,8] or on Integral Invariant Features [9,10].
These methods are more sensitive to illumination changes than the local meth-
ods, but there exist some approaches which try to make PCA-based methods
illumination invariant [11]. The main advantage of these methods over local
techniques is their higher speed.

Artač et al. combine a global technique using data tensors describing the
image and a local SIFT technique for outdoor localization [12]. They first use
the global technique to fastly get a set of training images which are similar to the
query image. Only these database images are then used for SIFT. An overview
of global and local features for mobile robot localization can be found in [13].

The outdoor localization method presented in this paper is based on inte-
gral invariants. We modified the global integral invariant approach, because the
global integral invariants are not distinctive enough for our outdoor datasets.
Similar to Bradley et al. [6], we split each image into a grid of subimages. We
calculate an 8×8 histogram of integral invariants on each subimage using two
relational kernels. Then we concatenate these histograms to get a global feature
for each image, which we call Weighted Grid Integral Invariant Feature (WGII).
To improve the localization, we combine the weighted grid integral invariants
with a particle filter. Each image-to-image comparison is very fast, so localiza-
tion is possible more than once per second. In experiments on outdoor images,
we compare our approach to an accelerated SIFT approach.

The rest of the paper is organized as follows. In Section 2, we describe the
global integral invariants and our modification to weighted grid integral invari-
ants. We also shortly describe the SIFT approach we compare our method to.
Section 3 explains the the particle filter and Section 4 presents results on outdoor
datasets. Finally, Section 5 concludes the paper and suggests future work.

2 Image Feature Extraction

This section first describes how global integral invariant features are calculated
for an image and how we modified the feature extraction procedure. Additionally,
we shortly describe the SIFT approach that we use for comparison.
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2.1 Global Integral Invariant Features

Global integral invariant features are features which are invariant to euclidean
motion, i.e. rotation and translation, and to some extent robust to illumination
changes. The key idea is to apply all possible translations and rotations to the
image and to calculate the features by averaging over all the transformed ver-
sions of the image. The approach compares images using their global features,
i.e. features representing the whole image. These features can be a single num-
ber, or a histogram of local features evaluated at each pixel. By an appropriate
choice of the kernel function, integral invariants can also be made robust to local
transformations, motion of individual objects and object deformation [9].

Let I = {I(x0, x1), 0 ≤ x0 < N0, 0 ≤ x1 < N1} be a grayscale image of size
N0×N1. I(i, j) represents the intensity at the pixel coordinate (i, j). This image
is transformed by elements g of a transformation group G, where G is the group
of euclidean motions. Thus an image I is transformed according to

(gI) (i, j) = I (k, l) , (1)

where
(

k

l

)

=
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φ specifies the rotation angle, t0 and t1 specify the translation.
To obtain features F (I) which are invariant to euclidean motion of the images,

one must integrate over the transformation group G, given a kernel function f(I):
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Eq. 3 calculates a single number as feature for an image. A more distictive
feature for an image is a histogram of local features. The rotations are performed
at each pixel of the image individually and the histogram is formed using the
values for each pixel.

There are different possible choices for the kernel function f . Well known
functions are the monomial and relational kernel. Both involve a local neighbor-
hood of the pixel in the calculation of the feature. For our purposes, we found
the relational kernel to work better, because it seems to be more robust to illu-
mination changes. For two pixel coordinates p1 = (x1, y1) and p2 = (x2, y2), the
relational kernel is calculated by

f(I) = rel (I(x1, y1) − I(x2, y2)) (4)

with the ramp function

rel(γ) =







1 if γ < −ε,
ε−γ

2ε
if − ε ≤ γ ≤ ε,

0 if ε < γ.

(5)
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Example choices for p1 and p2 are p1 = (2, 0) and p2 = (0, 4). This means
that values lying on two circles with radius 2 and 4 around a pixel and a phase
shift of 90◦ are used for the calculation of the kernel. It is also possible to use
more than one kernel and to form a multidimensional histogram as feature for
an image.

To calculate the similarity between a query image Q and a database image
D, we compare their feature histograms q and d using normalized histogram
intersection

⋂

norm

(q,d) =

∑

k∈{0,1,...,m−1} min(qk, dk)
∑

k∈{0,1,...,m−1} qk

, (6)

where m is the number of histogram bins.

2.2 Weighted Grid Integral Invariant Features

In our experiments, we found that ordinary global integral invariant features are
not distictive enough for outdoor localization, even when using multidimensional
histograms formed using three kernels. Thus, we adopted the idea of Bradley
et al. [6], who split the image into a grid of subimages and calculate gradient
histograms for each subimage. Additionally, they use a weighting such that pixels
near the center of a subimage get a higher weight than pixels near the borders
of subimages, because the pixels near the borders are more likely to fall into
another subimage under image translations or rotations.

In our case, we first compute the integral invariants for each pixel of the
image using two kernels. We then split the image into a 4×4 grid of subimages.
On each subimage, we calculate a weighted two-dimensional histogram of integral
invariant features. We weight the integral invariants by a 2D Gaussian with mean
at the center of the subimage and standard deviations of 0.25 times the width
and the height of the subimage, respectively. After that, we concatenate the
resulting histograms to get the final feature vector for the image.

To calculate the histograms, we use two relational kernels. The first kernel
uses the pixel coordinates p1 = (6, 0) and p2 = (0, 9), the second kernel uses
p1 = (10, 0) and p2 = (0, 20). The parameter ε is 0.098 for both kernels, and the
number of rotations is 10. For each subimage, we compute an 8×8 histogram.
As an image has 16 subimages, the final feature vector for each image is of size
1024×1. We chose these values of the parameters because experimentally, they
lead to the best results.

2.3 SIFT

For comparison to our method, we use a localization approach based on the
Scale Invariant Feature Transform (SIFT) [1]. In this approach, the most similar
training image to a test image is the one which contains the highest number of
features that can be matched to the features of the test image.
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To speed up the SIFT-based localization, we reduce the number of features of
each image. The idea is to delete “noisy” SIFT-features, which are likely not to
appear in more than one image. To reduce the number of features of the training
images, we match each training image to the two neighboring training images.
We only keep the features that can be matched to a feature of at least one of
the two neighboring images. In the localization phase, the only neighbor of the
current test image is the test image that was taken directly before the current
image. Thus for each test image, we only keep the features that can be matched
to a feature of the previous image.

Depending on the dataset, this technique reduces the number of features per
image to about 20% to 50% of the original number of features. The reduction is
more significant for images showing vegetation like grass, bushes and trees than
for images mainly showing artificial objects like buildings, cars and roads. Due
to the smaller number of features, matching images is accelerated by a mean
factor of about 5 without loss of accuracy.

3 Combination with the Particle Filter

For localization, we combine the weighted grid integral invariants with a particle
filter [14]. To get a good comparison to the SIFT approach, we also use a par-
ticle filter for the SIFT localization. Thus, if not stated differently, all following
explanations hold for both the WGIIs and SIFT.

Particle filters represent the belief Bel(x) of the robot about its position by
a set of m particles. Each particle consists of a pose (x, y) together with a non-
negative importance factor, which determines the weight of each particle. The
estimated pose of the robot is given by the weighted mean of the particles. For
global robot localization, the inital belief is approximated by particles which are
randomly distributed over the robot’s universe. All importance factors are set
to 1

m
. The particles are updated for each test image using 3 steps:

1. Draw m random particles x
(i)
t−1 from Bel(xt−1) according to the importance

factors pt−1 at time t − 1.

2. Update the sample x
(i)
t−1 to sample x

(j)
t according to an action ut−1. As we

do not use a motion model, for example from odometry, we randomly update
the particle according to a gaussian distribution with a standard deviation
of 4 m. Additionally, we move each sample in the direction to the nearest
training image. The distance we move the particle is 0.2 times the distance
of the particle to the nearest training image.

3. Weight the sample x
(j)
t by the importance factor p(yt|x

(j)
t ), i.e. the likelihood

of the sample x
(j)
t given the measurement yt. In our method, we first search

the nearest training image to each particle. The test and the training image
are then matched using WGIIs or SIFT, and the score of the match becomes
the new weight of the particle. We additionally multiply the new weight with
a factor that decreases with the distance of the particle to its nearest training
image. In the case of integral invariants, we potentiate the new weight by 20,
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because the differences between weights are all low (but still distinctive at
this low level). This way the difference between the weights becomes clearer.

After the third step, we normalize the importance factors and calculate the
estimated position. Before repeating the three steps for the next test image, we
delete the worst 5% of the particles. For these particles, we randomly insert
new ones with importance factors 1

m
. After that, we renormalize all importance

factors. The random insertion of new particles ensures that the robot can fastly
recover its position if the position was lost.

To speed up the calculation of the weights, we save for each particle the
matching result between the test image and the nearest training image to the
particle. If another particle has the same nearest training image, we do not
have to recalculate the match. In the case of SIFT, this method speeds up the
estimation of a new position by a factor of about 5. For the weighted grid integral
invariants, we only get a slight speedup.

4 Experimental Results

In our experiments, we use images collected by our RWI ATRV-JR outdoor
robot. We took one 320×240 pixel grayscale image per second with the left
camera of the Videre Design SVS stereo camera system mounted on top of
the robot. As we used a constant velocity of about 0.6 m/s, the positions of
subsequent images are about 0.6 meters away from each other. The robot is also
equipped with a differential GPS (DGPS) system, which we used to get ground
truth data for the position of each image. Under ideal conditions, the accuracy of
the DGPS is below 0.5 m. However, due to occlusion by trees and buildings, the
GPS path sometimes significantly deviated from the real position or contained
gaps. As we know that we moved the robot on a smooth trajectory, we corrected
some wrong GPS values manually. As we also always used a constant velocity,
we closed gaps by linearly interpolating between the positions before and after
the gap.

In our experiments, we used two different datasets. Dataset 1 consists of
six rounds around a big building. Each of the rounds is about 260 m long and
contains about 400 images. We collected three of the rounds under sunny con-
ditions. However, there are some short sections (about 5 to 10 seconds long)
during which the sun was covered. Six weeks later, we collected the other three
rounds on a cloudy day. The images of dataset 1 contain many artifical objects
like buildings, streets and cars. Additionally, there are some dynamic objects
like cars and people passing by. We also traversed a parking lot, where on the
two days different cars were parked.

We acquired the images of dataset 2 in a different area mostly containing
vegetation like grass, bushes and trees. We again collected different rounds under
varying illumination conditions. We recorded two rounds in the early afternoon,
in which the sun was shining brightly. In the evening, we collected the third
and fourth round. It was cloudy and starting to get dark. There are also some
dynamic objects in the images of the evening rounds, namely people playing
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Fig. 1. GPS ground truth data. a) Six rounds around a big building (dataset 1). b)
Four rounds on a meadow (dataset 2).

soccer and moving one of the goals around. Each round of dataset 2 is about 220
m long and consists of about 350 images. Fig. 1 shows the GPS ground truth
data of dataset 1 and 2. Fig. 2 shows example images of dataset 1 and 2 under
different illumination conditions.

In our experiment, we calculated the error of all possible training/test combi-
nations of rounds. For each round of test images, we also repeated the experiment
n times, where n is the number of test images. For each of these experiments, we
used a different image as starting image for the localization. Then we calculated
the mean error of all experiments that are similar, e.g. all experiments in which
we used the sunny images of dataset 1 for training and the cloudy images of
dataset 1 for testing. In all experiments, we used m = 300 particles.

Figure 3 a) and b) as well as Tab. 1 show the results of the experiments in
which the training and test images have similar illumination. Figure 3 shows
a mean curve for the two results of each dataset. In all experiments, the error
decreases rapidly. The mean error for the WGIIs (2.75 m) is about 1.36 times
higher than the mean error for the SIFT approach (2.02 m).

Table 1. Mean localization errors using the particle filter (in meters)

dataset training images test images SIFT WGII

sunny sunny 2.15 3.53
dataset 1

cloudy cloudy 2.06 2.18

sunny sunny 1.78 1.48
dataset 2

cloudy cloudy 2.10 3.79

sunny cloudy 3.27 5.97
dataset 1

cloudy sunny 2.52 6.10

sunny cloudy 2.88 3.82
dataset 2

cloudy sunny 2.74 3.66
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Fig. 2. Example images of dataset 1 and 2. a) dataset 1, sunny. b) dataset 1, cloudy.
c) dataset 2, sunny. d) dataset 2, cloudy.

Figure 3 c) and d) as well as Tab. 1 present the results of the experiments
in which the training and test images were taken under different illumination
conditions. In average, the error using the weighted grid integral invariants is
about 1.78 times higher than for images with similar illumination. Using SIFT,
the error rises by a factor of 1.41. Thus, if we use SIFT as a reference for ro-
bustness against illumination changes, the weighted grid integral invariants also
seem to be reasonably robust to illumination changes.

The experiments show that the SIFT approach generates more exact position
estimates than the WGII approach. But even though we used a particle filter
and the two techniques described in Sections 2.3 and 3 to accelerate the SIFT
localization, it is still slow. On our robot, which is equipped with a 1.8 GHz
Pentium M Processor and 1 GB of RAM, the SIFT feature extraction for one
test image takes about 0.821 s, the SIFT match to the preceeding image needed
for reducing the number of SIFT features takes about 0.104 s and one particle
filter step takes about 0.771 s. This sums up to a total of 1.696 s for one test
image (Fig. 4).

In contrast, our WGII approach runs in less than one second. On our robot,
feature extraction for one test image needs 0.545 s. One particle filter step needs
only 0.106 s, due to the much faster calculations of image similarities. In total,
localization for one image only takes 0.651 s.

Thus, we can see that there is a trade-off between accuracy and computa-
tion time. The errors using the grid integral invariants approach are between
about 1.4 and 2 times larger than using the SIFT approach. On the other hand,
localization using the WGIIs is about 2.6 times faster than using SIFT.
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Fig. 3. Mean errors for particle filter experiments up to image 100. There is no sig-
nificant change for the following images. The mean initial errors are about 36 m for
dataset 1 and about 26 m for dataset 2.
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Fig. 4. Computation times for localization of one test image.

5 Conclusion

We presented a new method for outdoor mobile robot localization based on inte-
gral invariant features, which we call weighted grid integral invariants (WGII).
We split the images into a 4×4 grid of subimages and calculate a multidimen-
sional 8×8 histogram of integral invariant features for each subimage individ-
ually. The feature vector for the whole image is the concatenation of the his-
tograms of the subimages. We also combined the WGIIs with a particle filter.

Experiments on image datasets of two different areas and under varying
illumination show that localization using our approach is possible with mean
errors between about 2 and 6 meters, depending on the dataset. A comparison
to a SIFT-based approach showed that the SIFT approach is more exact. But
in contrast to the SIFT approach, localization using our approach is possible in
less than one second.
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In future work, we will examine combinations of the two approaches. In
most situations, in which the robot is relatively sure about its position, the fast
weighted grid integral invariant approach will give good position estimations. If
the robot is not sure about its position, the more exact but slower SIFT approach
can be used to give more reliable position estimates.

References

1. Lowe, D.: Distinctive Image Features from Scale-Invariant Keypoints. Intl. Journal
of Computer Vision, vol. 60, no. 2 (2004) 91–110

2. Se, S., Lowe, D., Little, J.: Local and Global Localization for Mobile Robots Using
Visual Landmarks. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS 2001), Maui, Hawaii (2001) 414–420

3. Tamimi, H., Zell, A.: Global Robot Localization using Iterative Scale Invariant
Feature Transform. In 36th Intl. Symposium on Robotics (ISR 2005), Tokyo, Japan
(2005)

4. Barfoot, T. D.: Online Visual Motion Estimation using FastSLAM with SIFT
Features. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS 2005), Edmonton, Canada (2005) 3077–3082

5. Tamimi, H., Halawani A., Burkhardt H., Zell, A.: Appearance-based Localization
of Mobile Robots using Local Integral Invariants. In Proc. of the 9th Intl. Conf.
on Intelligent Autonomous Systems (IAS-9), Tokyo, Japan (2006) 181–188

6. Bradley, D. M., Patel, R., Vandapel, N., Thayer, S. M.: Real-Time Image-
Based Topological Localization in Large Outdoor Environments. In Proc. of the
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS 2005), Edmonton,
Canada (2005) 3062–3069

7. Jogan, M., Leonardis, A.: Robust Localization using an Omnidirectional
Appearance-based Subspace Model of Environment. Robotics and Autonomous
Systems, vol. 45, no. 1 (2003) 51–72
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