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Predicate abstraction is a technique for creating abstract models of software that are amenable to
model checking algorithms. We show how polymorphism, a well-known concept in programming
languages and program analysis, can be incorporated in a predicate abstraction algorithm for C
programs. The use of polymorphism in predicates, via the introduction of symbolic names for values,
allows us to model the effect of a procedure independent of its calling contexts. Therefore, we can
safely and precisely abstract a procedure once and then reuse this abstraction across multiple
calls and multiple applications containing the procedure. Polymorphism also enables us to handle
programs that need to be analyzed in an open environment, for all possible callers. We have proved
that our algorithm is sound and have implemented it in the C28pP tool as part of the SLAM software
model checking toolkit.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verifica-
tion—Model checking, reliability, validation
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1. INTRODUCTION

Predicate abstraction [Graf and Saidi 1997; Das et al. 1999] is a technique for
automatically creating a finite-state system (for which a fixpoint analysis will
terminate) from an infinite-state (or very large finite-state) system (for which
a fixpoint analysis will, in general, not terminate). With predicate abstraction,
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the concrete states of a system are mapped to abstract states according to their
valuation under a finite set of predicates.

Predicate abstraction has been used to construct abstractions of hardware
and protocol designs in the model-checking community. The technique has
been recently applied to software written in general-purpose programming lan-
guages [Visser et al. 2000; Ball et al. 2001a; Henzinger et al. 2002; Flanagan
and Qadeer 2002]. In previous work, we introduced an automatic predicate
abstraction algorithm for C programs, as implemented in the C28p tool [Ball
et al. 2001a]. Given a C program P and a set E = {¢1,¢2,..., ¢,} of pure
Boolean C expressions over the variables in P, C2BP automatically constructs
a Boolean program abstraction BP(P, E), a program that has identical con-
trol structure to P (including procedures and procedure calls) but contains
only Boolean variables. The program BP(P, E) contains n Boolean variables
(b-variables) V = {by, b, ..., b,}, where each b-variable b; represents the value
of predicate ¢;. Each b-variable in V has a three-valued domain: false, true,
and *(representing “don’t know”). Boolean programs are amenable to model-
checking algorithms, including the one implemented in the BeBop tool [Ball
and Rajamani 2000]. The combination of the C2Bp and BEBoP tools can be used
to discover inductive invariants in a C program that are boolean functions over
the predicates in E.

The C2Bp algorithm presented in our previous work is unique in that it sup-
ports modular abstraction of procedures and procedure calls. Each procedure
R is abstracted by C28P into an abstract version R’, without requiring access
to its callers. Each call to R can then separately be abstracted to a call to R/,
without requiring access to the implementations of either R or R’. This ap-
proach contrasts with other work on predicate abstraction in the presence of
procedures, in which procedures are simply inline-expanded.

Modular abstraction of procedures provides a number of important benefits.
First, it allows abstraction to be robust to program evolution. For example, the
abstraction of some procedure R need not be modified as a program evolves to
include new calls to the procedure; R’s original abstraction can be safely reused
by the new callers. Second, modular abstraction supports independent code
development. For example, the implementer of R can produce its abstraction
once, in isolation from all client programs that use R. Given R’s abstraction,
those client programs can be safely abstracted without ever requiring access to
R’s source code. Third, modular abstraction does not incur the potential for code
explosion that is possible with procedure inlining. Finally, modular abstraction
of procedures naturally supports (mutually) recursive procedures.

While our earlier C2Bp algorithm allows a procedure to be abstracted in iso-
lation from its callers, some knowledge of these callers is nonetheless necessary
in practice, in order for the procedure’s abstraction to be sufficient to prove the
desired properties about these callers. As an example, consider the following
procedure, which is the identity function on integers:

int id(int x) {return x;7}.

Suppose we would like the Boolean program abstraction to prove that the value
returned by id is 5 when some client £1 invokes it. In this case, we must add the

ACM Transactions on Programming Languages and Systems, Vol. 27, No. 2, March 2005.



316 o T. Ball et al.

predicate (x = 5) to E. Similarly, to prove that the value returned by id is 73
when another client £2 invokes it, we must add the predicate (x = 73) to E. In
general, a separate predicate is required for each concrete value to be tracked.

This dependence of a procedure’s abstraction on its callers limits the bene-
fits of a modular abstraction process described above. A procedure will likely
need to be re-abstracted (to incorporate new predicates) whenever a call to the
procedure is added. This makes it difficult to reuse a procedure’s abstraction
as a program evolves or in multiple programs containing the procedure. In the
limit, the number of predicates required in the abstraction of a procedure will
be proportional to the number of call sites of the procedure. Because the ab-
straction process is exponential in the number of predicates, this requirement
can become prohibitively expensive.

The above example also illustrates an expressiveness limitation of the pred-
icate language in our earlier work. Using only pure Boolean C expressions, the
model checker will not be able to deduce a fact such as “id returns the same
value that it is passed.” Instead, the model checker can deduce only instantia-
tions of this fact, for specific actual parameter values. Deducing facts about all
possible callers is especially critical when model checking programs in an open
environment. For example, the SLAM software model checking toolkit [Ball and
Rajamani 2002b], which employs the C2BP tool, analyzes device drivers without
also analyzing the entire Windows operating system in which the drivers run.
To prove properties of device drivers conservatively in such a setting, SLAM
must analyze their source code under the assumption that the drivers’ routines
can be called from an arbitrary context.

In this article, we show how to resolve all of these previous limitations of
predicate abstraction by incorporating a form of polymorphism. We extend the
predicate language to allow the use of symbolic constants, which are names
given to the initial values of a procedure’s formal parameters. A predicate con-
taining a symbolic constant is said to be polymorphic. In our example above,
we can use the single polymorphic predicate (x = 'x) (where 'x is the symbolic
constant for x) to capture the relevant information about id in the resulting
Boolean program. The predicate abstraction algorithm is extended to appropri-
ately handle polymorphic predicates, substituting concrete values for symbolic
constants during the abstraction of each procedure call (just as types are sub-
stituted for type variables at each call site of a type-polymorphic function, in
languages supporting parametric polymorphism). In this way, all calls to id can
reuse its single polymorphic abstraction. In the presence of pointers, we also
support symbolic constants that refer to dereferences of formal parameters, in
order to talk about the initial values of locations reachable from a procedure’s
formal parameters.

The generalized predicate abstraction algorithm is implemented in our C2BP
tool, which is part of the SLAM toolkit [Ball and Rajamani 2002b]. The toolkit
automatically checks whether a C program satisfies a given set of temporal
safety properties [Ball and Rajamani 2001]. SLAM involves an iterative process
that employs three components: C2Bp, the BEBoP model checker, and a predi-
cate discoverer. This article focuses on the polymorphic predicate abstraction
algorithm employed by C2Bp. While beyond the scope of this article, the other
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int inc(int x) { inc { inc {
X := x+1; x = 2, X = ’x,
return x; x = 3, x = 'x+1
} x =4 }
}
void foo(int a) {
int b,c; foo { foo {
b := inc(a); a=2, a=2,
c := inc(b); b = 3, b = 3,
return; c =4 c =4
} } }
| Program I Prono | PPOZZI I

Fig. 1. A simple program and two sets of predicates, Pp,ono and Ppoly,
two components naturally support polymorphic predicates as well. The model
checker BEBOP need not be modified at all: as far as BEBOP is concerned, it is
immaterial that the predicates are polymorphic, since BEBoP does not interpret
what the b-variables in a Boolean program represent. The issue of how SLAM
discovers predicates for use by C2BP is an interesting one, and it is discussed
in detail elsewhere [Ball and Rajamani 2002a]. SLAM’s predicate discovery
algorithm can naturally generate polymorphic predicates as required by poly-
morphic predicate abstraction.

Section 2 informally reviews by example how C2Bp performs monomorphic
predicate abstraction for C programs and then presents the same example using
polymorphic predicate abstraction. Section 3 introduces a core language used
to formally explain the predicate abstraction algorithm, and Appendix A for-
mally describes the three-valued logic used in this language. Section 4 presents
the technical details of our algorithm, in the case when programs do not in-
volve pointers, and Section 5 extends the algorithm to accommodate pointers.
Section 6 discusses related work and Section 7 concludes the article. Appendix B
proves that the modular C28pP abstraction algorithm is sound.

2. EXAMPLE

Figure 1 shows a simple example of a C program in which procedure foo calls
an increment procedure inc twice.! Our goal is to prove that if foo is called with
the value 2, then the value of c in foo will be 4. Consider the set of predicates
Pono in the figure. The predicates are partitioned between the two procedures.
Procedure inc will be abstracted with respect to the first three predicates, and
foo will be abstracted with respect to the last three. It is also possible to provide
a set of global predicates to be employed during the abstraction of all procedures
in a program, but this example contains none.

Figure 2 shows the Boolean program that C2BP produces when given the C
program and the predicate set P,,,,, from Figure 1. The Boolean program has
the same control-flow structure as the C program and contains a b-variable for

IThroughout, we use “:=” for the assignment operator and “=” for the equality operator.
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bool,bool,bool inc(bool {x=2}, bool {x=3}, prml := choose({a=2}, !'{a=2});
bool {x=4}) { prm2 := choose(false, {a=2});
{x=2}, {x=3}, {x=4} prm3 := choose(false, {a=2})
:= choose(false, {x=2}|{x=3}|{x=4}), retl, ret2, ret3 := inc(prml, prm2, prm3);
choose ({x=2}, '{x=2}), {b=3} := choose(ret2, !'ret2);
choose ({x=3}, !'{x=3});
return {x=2},{x=3},{x=4}; prml := choose(false, {b=3});
} prm2 := choose({b=3}, !{b=3});
prm3 := choose(false, {b=3});
void foo(bool {a=2}) { retl, ret2, ret3 := inc(prml, prm2, prm3);
bool {b=3},{c=4}; {c=4} := choose(ret3, !ret3);
bool prml, prm2, prm3; return;
bool retl, ret2, ret3; }
. // continued in the next column

Fig.2. Boolean program abstraction created by the C28Bp tool, given the program shown in Figure 1
and predicates Ppono-

each predicate input to C28p.2 A b-variable whose associated predicate refers
only to formal parameters and global variables of the original program is a
formal parameter, called a b-parameter, in the Boolean program. For example,
the procedure inc takes three formal b-parameters, {x=2}, {x=3}, and {x=4}, cor-
responding to the three predicates in P,;,,, that mention the formal parameter
x. The procedure returns three b-variables that represent the updated values
of the predicates about x. Procedure foo has a formal b-parameter{a=2}. It also
has local b-variables for the predicates in P,,,,, involving the local variables b
and c.

C2BP creates this Boolean program by separately translating each statement
s of the C program into one or more statements S in the Boolean program. The
statements in S conservatively model the effect of s on each predicate that is
in scope at the corresponding point in the C program. Consider the assignment
statement x := x+1 in the inc procedure. C2BpP discovers that the predicate
(x = 3) will be true (false) after the assignment if the predicate (x = 2) is
true (false) before the assignment. This results in the translation (as part of
the parallel assignment in inc): {x=3} := choose({x=2}, !'{x=2}). The choose
function is included in every Boolean program and is defined as follows:

bool choose(bool pos, bool neg) {
if (pos) return true;
else if (neg) return false;
else return *;

}.

The pos b-parameter of the choose function represents sufficient conditions
for the truth of a predicate, while neg represents sufficient conditions for the
falsehood of a predicate. C2BP guarantees that choose is never called with both
b-parameters evaluating to true. Both b-parameters may evaluate to false be-
cause the predicates being modeled are not strong enough to provide a definite

2Boolean programs permit an identifier to be of the form {p}, where p is an arbitrary string. This
is useful for naming b-variables with the exact predicates they represent.
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answer, or because the theorem proving machinery that C2Bp uses is incom-
plete. In that case, the choose function conservatively returns *, representing
the “don’t know” value.

The abstraction process is modular. For example, the inc procedure is ab-
stracted without knowledge of callers like foo. Each call is abstracted sepa-
rately, given only inc’s abstraction. For example, consider the first procedure
call b := inc(a) in procedure foo. In the C program, the actual parameter
passed to inc is the expression a, whose value is assigned to the formal param-
eter x of inc. By substituting the actual parameter a for formal x in the predicate
(x = 2), C28P determines that if the predicate (a = 2) is true (false) before the
call then the predicate (x = 2) is true (false) at the entry of inc, resulting in the
statement prm1 := choose({a=2}, !'{a=2}). The b-variable prm1 is then sent as
the actual parameter for the first b-parameter of inc in the Boolean program,
which represents the predicate (x = 2). The other b-parameter values are de-
termined similarly via assignments to the b-variables prm2 and prm3. There are
three return predicates in inc: (x = 2), (x = 3) and (x = 4). Because the result of
the call is assigned to b, C2BP determines that the predicate (b = 3) will be true
(false) after the call if (x = 3) (represented by ret2 in foo) is true (false) at that
point. Thus, C2BP generates the assignment {b=3} := choose(ret2, !ret2).

The Boolean program in Figure 2 was created in a completely modular way. In
addition, it achieves our goal: when BEBoP model checks that Boolean program,
it will determine that if foo is passed the value 2, then the variable c will
have the value 4. Unfortunately, deducing this property of foo has required
us to abstract inc in a way that is not of general use. The predicates (x = 2)
and (x = 3) are necessary so BEBOP can determine that the return value is 3
when the value 2 is passed into inc. Similarly, the two predicates (x = 3) and
(x = 4) are necessary so BEBoOP can determine that the return value is 4 when
the value 3 is passed into inc. An entirely different set of predicates would be
required if we later wanted to reason about the value of ¢ when foo is passed the
value 5, thereby forcing us to re-abstract inc. Similarly, if the program evolves
to contain other calls to inc, then inc will have to be re-abstracted with yet more
predicates. Finally, there is no way to determine the effect of inc independent of
a particular set of calling contexts, which is critical when attempting to reason
about partial programs containing inc.

2.1 Polymorphic Predicate Abstraction

Although calls may differ in the values of arguments passed to a procedure, they
often rely on the same underlying abstract transfer function of the procedure.
The idea of polymorphic predicate abstraction is to employ predicates that allow
the Boolean program abstraction to directly model this transfer function, which
can then be shared across all call sites. In the example of the inc procedure, we
wish to know that the return value of inc is always one more than the initial
value of the formal parameter x of inc. Symbolic constants offer a way to do
this. We denote the value of x at entry to inc by the symbolic constant 'x. To
precisely summarize the effect of inc for all possible call sites then requires
only two predicates: x = 'x and x = 'x + 1. The predicate set P,,;, in Figure 1
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bool,bool inc() { void foo(bool {a=2}) {
bool {x=’x}, {x=’x+1}; bool {b=3},{c=4};
{x="x} := true; bool retl, ret2;
{x="x}, {x="x+1} := retl, ret2 := inc();
choose(false, {x=’x}|{x=’x+1}), {b=3} := choose({a=2}&ret2,
choose ({x="x}, !{x=’x} ); ({a=2}&'ret2) | (1 {a=2}&ret2));
return {x=’x}, {x=’x+1}; retl, ret2 := inc();
} {c=4} := choose({b=3}&ret2,
({b=3}&!ret2) | (!{b=3}&ret2)) ;
return;
}

Fig. 3. Boolean program abstraction created by the C28P tool, given the input C program shown
in Figure 1 and predicates P,

oly*
shows such polymorphic predicates. At each call site, C2BP will bind 'x to the
appropriate actual parameter value to get the desired effect.?

Figure 3 shows the Boolean program created by C2Bp when applied to the
C program and the predicate set P,,;,. This Boolean program is similar to its
monomorphic counterpart, but the use of symbolic constants allows it to prove
much stronger properties about the original inc procedure. In particular, the
Boolean program is able to model the fact that inc returns a value that is one
greater than the original value of x, represented by 'x. For example, consider
the abstraction of the statement x:=x+1. The Boolean program records the fact
that (x = 'x + 1) is true (false) after that statement if (x = 'x) is true (false)
beforehand.

As before, the abstraction process is completely modular. Predicates involv-
ing symbolic constants 'x get interpreted appropriately at each call site, allow-
ing callers to retain precision. For example, at the point of the b := inc(a) call
in foo, the returned predicate (x = 'x+1) (represented by ret2) gets interpreted
as (b = a + 1), since the returned variable x is assigned to b at the call site and
the original value of x is equivalent to the value of the actual parameter a. This
interpretation allows foo’s abstraction to learn that & has the value 3 after the
call if a has the value 2 beforehand.

The abstractions of inc and foo in Figure 3 achieve our goal of showing that
if foo is passed the value 2 then c has the value 4. However, the abstraction of
inc can as easily be used to reason about other calling contexts. For example,
modifying foo’s abstraction to reason about a call to foo (5) does not require re-
abstraction of inc. Similarly, as the program evolves to incorporate more calls
to inc, these calls can safely and precisely use the abstraction of inc in Figure 3.

3. CORE LANGUAGE

To simplify the presentation of the central ideas in our approach, we focus our
attention on a small core language containing procedures and references (but
without type casts, pointer arithmetic, structures, arrays, unions, and explicit
allocation and deallocation). Figure 4 presents the syntax of the core language.

31t is also possible to perform a polymorphic abstraction of foo, with the predicates (@ = 'a),
(b="a+1),and (¢ =’a + 2). We retain foo’s monomorphic predicates for simplicity.
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Types: 7 == void | bool | int | ref 7
Expressions: e u= c|az|eope | &z | x---xzx
Declaration: d == T X1, ,Tn;
Statements: s == skip|gotoL|L:s

| branchsy||---|| 5, end

|  assume(e)

\ return x1,--- ,Tn

\ *r = e

| 21, % = e, en

| T, T = td(€1, - ,€n)
Statement Sequences: s = Si1; - Sp;
Procedure: p = T, Tmdd (fi T, fa i Ta)

{ dy---dgs }

Program: g = di-dmp1-DPn

Fig. 4. A core language containing references and procedures.

The core language contains void, Boolean, integer, and reference types. The
Booleans are three-valued, and we use Kleene’s three-valued logic to interpret
them (see Appendix A for a formal description). The expressions include Boolean
and integer constants (ranged over by metavariable ¢), variables (ranged over
by metavariable x), and the usual arithmetic and binary operations (ranging
over metavariable op). We also provide two pointer expressions, the ability to
create a reference to a variable and the ability to dereference a pointer variable
as many times as its type allows. All variables must be declared before being
used. Boolean variables are assumed to initially hold the value x; other variables
are assumed to initially hold an arbitrary value of the appropriate type.

The statements include the skip statement, goto statement, and labeled
statements. The branch statement nondeterministically selects one of its n
branches to execute. Having a nondeterministic conditional statement in the
language of Boolean programs (which, as discussed in Section 4, is a subset of
this core language) allows us to easily model incomplete information about the
original program’s control flow. The assume statement is the dual of the assert
statement found in some languages: the assume statement silently terminates
execution if its expression evaluates to false. The branch and assume state-
ments can be used to implement the common if-then-else and C-style switch
statements. For example, the statement “if e then 57 else 53” is implemented
as “branch assumel(e); s7; | assume(le); 53; end”.

There are three forms of assignment statement in the language. The (xx := e)
form is an indirect assignment through a variable with reference type. For ease
of exposition, we do not allow more than one dereference on the left-hand side of
the assignment. This does not limit expressiveness. The second form is a parallel
assignment of n expressions to n variables. Finally, the language contains a
procedure call statement, in which the procedure can return a tuple of m values.

4. POLYMORPHIC PREDICATE ABSTRACTION ALGORITHM

This section presents our polymorphic predicate abstraction algorithm for
the core language without reference types and associated expressions and
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statements. We are given a program P in the core language and a set £ =
{¢1,...,9,} of pure Boolean expressions over the variables in P. Each formal
parameter has an associated symbolic constant, which may also be referred to
in the predicates in E. The goal of the algorithm is to create a Boolean program
abstraction BP(P, E) that conservatively (yet as precisely as possible) repre-
sents the effect of each statement in P on each predicate in E that is in scope
at that statement. The language of Boolean programs is simply the language
of Figure 4, but with integers, reference types, and all associated expressions
and statements removed.*

After defining some preliminaries, we discuss the concepts of weakest pre-
conditions and predicate strengthening that form the basis of our abstraction al-
gorithm. We then present the syntax-directed abstraction of the basic program
statements, which follows our earlier algorithm for C2Bp [Ball et al. 2001a].
Finally, we present the abstraction of procedure calls, which extends our earlier
algorithm to safely and precisely handle symbolic constants in the predicates.

4.1 Preliminaries

It is useful in the following to assume that programs are in internal form. A
program P is in internal form if each procedure of P has the following proper-
ties:

—The procedure has a single return statement, and it is the last statement of
the procedure. Further, that statement has the form return r, where r is a
local or formal of the procedure.

—Each statement in the procedure has a unique label.

—The actual parameters of each procedure call in the procedure are variables,
rather than arbitrary expressions.

—The left-hand side of each procedure call statement has only local variables.

—For each formal parameter f of the procedure, there is a local variable’ f and
an initialization statement L :'f := [ at the beginning of the procedure’s
sequence of statements. The variable’ f is never referenced again in the pro-
cedure. This requirement initializes symbolic constants to their appropriate
values.

It is clear that transforming a program to internal form does not change its
semantics. Throughout the rest of the section, we assume programs are in in-
ternal form.

Let Gp = {g1,g9,...} be the global variables of the program P. For a
procedure R, let Fgr = {f1, f2,...} be the formal parameters of R, and let
Lr ={l1,19,...} be the local variables of R.

Each predicate in £ = {¢1, ..., ¢,} will have a corresponding b-variable in
BP(P, E). The user annotates each predicate in E as being either global to

4Technically, the choose function given in Section 2 is not in the language of Section 3 (because the
language does not contain an if-then-else statement). We also often employ a parallel assignment
where the right-hand sides are all calls to choose, another violation of the language’s syntax. Both
of these relaxations can be straightforwardly desugared to the appropriate syntax.
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BP(P, E) or local to a particular procedure in BP(P, E) (see Figure 1, in which
predicates are declared local to inc or foo—there are no global predicates de-
clared in that example), thereby determining the scope of the corresponding
b-variable in BP(P, E). Let Eg denote the global predicates of E. Global pred-
icates must only reference variables in Gp. BP(P, E) will contain one global
b-variable declaration for each predicate in Eg. For a procedure R, let Er de-
note the subset of predicates in E that are local to R. Local predicates to R
can reference only variables in scope of R. BP(P, E) will contain either a local
b-variable declaration or a formal b-parameter declaration in its abstraction of
R for each predicate in Eg.

Let V = {b4, ..., b,} be the associated b-variables of the predicates in E and
let £ be a mapping from each b; to the associated ¢;. We often extend £ to
negations, conjunctions, and disjunctions of Boolean variables, in the obvious
way.

4.2 Weakest Preconditions and Monomials

For a statement s and a predicate ¢, let WP(s, ¢) denote the weakest liberal pre-
condition [Dijkstra 1976; Gries 1981] of ¢ with respect to statement s. WP(s, ¢)
is defined as the weakest predicate whose truth before s entails the truth of
¢ afterward. The standard weakest precondition rule says that WP(x := e, ¢)
is ¢ with all occurrences of x replaced with e, denoted ¢le/x]. For example,
WP(x:=x+1, x <5) = (x+1) <5 = (x < 4). Therefore, (x < 4) is true before
x:=x+1 executes if and only if (x < 5) is true afterward.

Given a statement s, a set of predicates E, and predicate ¢ € E, it may be
the case that WP(s, ¢) is not in E. For example, suppose E = {(x < 5), (x = 2)}.
We have seen that WP(x:=x+1, x < 5) = (x < 4), but the predicate (x < 4)
is not in E. Therefore, we use decision procedures (i.e., a theorem prover) to
strengthen the weakest precondition to an expression over the predicates in E.
In our example, we can show that x = 2 = x < 4. Therefore, if (x = 2) is true
before x:=x+1, then (x < 5) is true afterward.

We formalize this strengthening of a predicate as follows: A monomial over
a set of Boolean variables V = {b4, ..., b,} is a conjunction ¢ A --- A ¢,, Where
each ¢; € {b;, —b;}. For any predicate ¢, a set of Boolean variables V, and a
function £ that maps each variable b in V to a predicate £(b) in E, let Fy ¢(¢)
denote the disjunction of all monomials m over V such that £(m) implies ¢. The
predicate E(Fy ¢(¢)) represents the weakest predicate over E that is stronger
than ¢. In our example, if V = {b1, b3}, £(b1) = (x < 5), and £(by) = (x = 2),
then Fy ¢(x <4) = (b1 Abg) v (=by A bg), so

EFvelx <4) = (x <BH)Alx =2) Vv (—(x <b5)Ax =2)),

which is equivalent to (x = 2).

It will also be useful to define a corresponding weakening of a predicate to
the set of predicates in E. Define Gy ¢(¢) as =Fy ¢(—¢). The predicate E(Gy ¢(¢))
represents the strongest predicate over E that is implied by ¢.

For each monomial, the implication check involves a call to a theorem prover
implementing the required decision procedures. Our implementation of C28p
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uses Simplify [Detlefs et al. 2003], a Nelson—Oppen theorem prover [Nelson
1981]. The naive computations of Fy ¢(-) and Gy ¢(-) require exponentially many
calls to the theorem prover in the worst case. We have implemented several
optimizations that make the Fy ¢(-) and Gy ¢(-) computations practical [Ball
et al. 2001a].

4.3 Abstracting Statements Besides Procedure Calls and Returns

Each statement of program P (other than a procedure call or return) abstracts
to one statement in BP(P, E). We define the function BP(s, V, £) to output the
abstraction of statement s, given the set of Boolean variables V and a mapping £
to the associated predicates being modeled. Most of the statement abstractions
are straightforward:

BP(skip, V, &) = skip
BP(gotoL,V,£) = gotoLL
BP(L:s,V,£) = L:BP(s,V,¢&)
BP(branch 51||- - -||5, end, V, £) = branch BP(1, V, &)||---|BPG,, V, £) end

The notation BP(s, V, £) used in the abstraction for branch statements abbre-
viates

BP(s1,V,&);---BP(sy, V, E);

where s = s1;- - - Sy;.

For a statement s of the form assume(e), we know by the semantics of
assume that e is true immediately after the execution of s in P. However,
it is possible that e is not in the set E of predicates being modeled, so the best
we can do in BP(P, E) is to assume the strongest predicate over expressions in
E that is implied by e:

BP(assumele), V, £) = assume(Gy ¢(e))

For example, suppose the statement s is assume (x < 2) and the set of pred-
icates E is {(x < 5),(x = 2)}. Then BP(s, V, &) (under the obvious V and &£
interpretations) is assume ({x<5}&!{x=2}).

Finally, consider an assignment statement s of the form x := e.> The as-
sociated statement in BP(P, E') must appropriately update all of the Boolean
variables in V that are in scope at statement s. For every b;, if WP(s, ¢;) is
true before execution of s, then b; may be safely set to true in BP(P, E). Sim-
ilarly, if WP(s, —¢;) is true before execution of s, then b; may be safely set to
false in BP(P, E). Because the predicate WP(s, ¢;) may not be in E, we need to
strengthen it to a predicate over expressions in E that implies WP(s, ¢;), and
similarly for WP(s, —¢;). Therefore, BP(P, E) will contain the following parallel

5The abstraction process can be straightforwardly extended to handle parallel assignments in the
source program.
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assignment statement in place of s5:

BP(x :=e,V,£) = by,...,b,:=
choose(Fy ¢(WP(x :=e, ¢1)), Fy e (WP(x := e, —¢1))),

choose(Fy ¢(WP(x :=e, ¢,)), Fv e(WP(x := e, —¢,))).

Consider again the assignment statement x:=x+1 and the set of predicates
E = {(x < 5),(x = 2)}. The abstraction of this assignment in the Boolean
program is:

{x<5}, {x=2} := choose({x=2}, '{x<5}), choose(false, {x=2}|!{x<5});.

4.4 Abstracting Procedures, Calls, and Returns

This section describes the abstraction of procedures and procedure calls. When
abstracting a program P, C2BP first produces the interface of each procedure in
P, which is essentially the procedure’s type signature in BP(P, E). Interfaces
can be determined for each procedure in isolation. Once this is done, the state-
ments of each procedure are abstracted one-by-one; the abstraction of a call to
procedure R relies only on R’s interface.

4.4.1 Procedure Interfaces. Let R’ be the version of procedure R in
BP(P, E). The interface of R’ is a six-tuple (Fr,r, Sg, E ¢, E,, Br), which C2Bp
constructs by examining Er and the procedure R in program P. The terms Fg
and r (the variable returned by R) were defined earlier. Sg = {'f1,'fo,...} is
the set of symbolic constants used in the predicates in Eg.

Let scs(p) be the set of symbolic constants in predicate ¢. Let vars(¢) be the
set of variables referenced in predicate ¢. The set E; contains the subset of
E i that should be formal parameter predicates in BP(P, E). Intuitively, these
are the predicates that can be given a meaning in the calling context before R
executes. Specifically, these are the predicates in Er that refer to variables in
Fg, and possibly to globals, but do not refer to local variables of R or to symbolic
constants’

E; = {9 € Eg | vars(p) N Fr # ¥ Avars(p) N Lg = 0 A scs(p) = B}.

The associated b-variable in V of each member of E; will be a formal b-
parameter in R’. The associated b-variables of all other members of Er will
be declared as local variables in R’. For example, in Figure 3, {a=2} is a formal
b-parameter because it only refers to the formal a of foo, while {b=3} and {c=4}
are local b-variables because b and c are locals.

The set E, contains the subset of predicates in E that should be returned
by R’. Intuitively, these are the predicates that can be given a meaning in the
calling context after R executes. Specifically, these are the predicates in Ep

6This “pointwise” updating of the Boolean variables corresponds to a Cartesian approximation of
the most precise Boolean abstraction possible. For details, see Ball et al. [2001b].

7Although symbolic constants can be given a meaning in the calling context, it is not useful to
include them, because a symbolic constant will have the same value as its corresponding formal
parameter initially.
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that refer to the return variable r or to symbolic constants, but not to local
variables or formals of R (other than r):

E,. = {9 € Er | (r evars(p)V scs(g) # @) A (vars(p) — {r}) N(Lr U Fg) = ¢}.

For example, in Figure 3 both local b-variables of inc are returned, because
x is the return variable of inc in the original C program and 'x is a symbolic
constant.

Finally, for each symbolic constant 'f in Sg, we require that there exist a
predicate (f = 'f)in Ex.% The set B C Ep consists of the predicates in Er
of the form (f = 'f), which are called the binding predicates of R. They are
used, in conjunction with the initialization statements required by internal
form, to provide the Boolean program abstraction with the information that
initially each symbolic constant has the same value as its corresponding formal
parameter. Procedure inc in Figure 3 has a single binding predicate (x =" x).
Its corresponding b-variable is initially set to true as a result of performing
the ordinary abstraction for assignment statements (discussed earlier) on the
initialization statement ’x := x in the internal form of inc in Figure 1.

4.4.2 Abstracting Return Statements. Now we can define the rule for ab-
stracting return statements. Let b, ..., b,, be the associated b-variables in V
for each member of E,. Then the abstraction of R’s return statement is defined
as follows:

BP(returnr, V,£) =return by, ..., b,

4.4.3 Abstracting Procedure Calls. Consider a call v := R(ay,...,a;) in
some procedure @ in program P.? Let Vg be the b-variables in scope at @’
(the Boolean program version of @), and let £g be the submap of £ from Vg
to the predicates they represent. Let (Fg,r, Sg, Ef, E,, Br) be the interface
of R’. We divide the computation of BP(v := R(ay,...,a;), Vg, £g) into three
parts: computation of the actual parameters, generation of the call to R’, and
updating of the variables in the calling context.

First, C2BP computes an actual value to pass to R’ for each formal pa-
rameter predicate ¢ € E,, assigning it to a fresh local variable prm. Let
¢ = olai/f1,a2/f2,...,a;/f;], where fi, fo,..., f; are the formals from Fg.
The expression ¢’ represents the value of formal parameter predicate ¢ in the
current calling context. Therefore, if ¢’ is true (false) before the call, then the
corresponding formal b-parameter of ¢ in R’ should be passed the value true
(false). As with assignment statements, in general we need to strengthen ¢’ to
an expression over the expressions in E:

prm := choose(Fy, &, (@), Fvy,eo(—¢"); (1)

As an example, consider the abstraction of the callb := inc(a) in Figure 2.
The b-variables Vy,, in scope at foo are {{a=2}, {b=3}, {c=4}}. The &, func-
tion is obvious from the notation (e.g., &po({a=2}) = (@ = 2), etc.) The formal

8A tool could easily insert such predicates into Eg as necessary.
9For simplicity, we assume that the call has a single return value. Extending the abstraction process
to multiple return values is straightforward.
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b-parameters of inc in the abstraction are {x=2}, {x=3} and {x=4}. In order to
compute the actual for {x=2}, C2BP outputs

prml := choose(Fvy,, g, (@ = 2), Fy,, &, (@ # 2)),

where (@ = 2) is obtained by substituting the actual a for formal x. The values
for prm2 and prm3 are computed in a similar manner.

Generating the call to R’ is straightforward: we pass all |Ef| of the prm
variables to R’, and we use |E,| fresh ret variables to catch the return values
from the call:

reti,...,relg, == R’(prml,...,prm‘Ef‘); (2)

The most difficult part of the abstraction is in conservatively (but precisely)
updating the b-variables in the scope of @' whose associated predicates can
change values as a result of a call to R. In particular, any predicate that men-
tions v (the left-hand side of the call to R in @) or a global variable might have
changed its value. The set of such predicates is formally defined as follows:

E,={pcEqg|@evars(p) Vv (vars(p) NGp # 0)}.

We will update the value of each b-variable whose corresponding predicate is
in E,, in the context of the return predicates of R’ as well as the old values of the
b-variables in V. To perform this update, it is useful to conceptually consider
the call v := R(ay, ..., a;) equivalently as v, := R(a1,...,a;);V := Uy, Where
Urer 18 a fresh variable. This allows us to capture the intermediate state when
the call from R has returned but before the update to v, which is useful for
the generalization to handle pointers in Section 5. We saw above that for each
return predicate ¢ of E,, there is an associated b-variable ret local to procedure
Q'. Let Tq be the set of these b-variables and let V = Vg U Tq. The effect
of the implicit statement v,.; := R(ai, ..., a;) is accounted for by the creation
of a temporary map £ that provides a conservative interpretation for each b-
variable in V after the call (but before the update to v). This map is then used
to update the corresponding b-variable b of each predicate ¢ in E,,, with respect
to the implicit assignment v := vy

b := choose(Fy (WP 1= Vyer, 9)), Fyy 2(WP(V 1= Vyer, =9))); 3)

To complete the description of the algorithm, we provide the definition of £.
We distinguish three categories of b-variables in V: globals in Vg, locals and
formals in Vg, and the variables in T . Recall that £ maps the b-variables Vg
in scope in @ to predicates that they represent. Because the globals in Vg are
also in scope of R’ (by nature of being globals), their truth values will be updated
properly by the call to R’. Therefore, their ordinary interpretation suffices:

E(b) = E(b) if b is a global b-variable in V.

The truth values of locals and formals in V¢ may have been invalidated by
the call. In particular, such b-variables are not in scope of R’ (and hence are not
modified by R’) but their associated predicates may depend on the value of a
global variable in the original C program, whose value can be modified by a call
to R in P. To address this discrepancy, we introduce a mapping orig that says
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how to interpret each variable in these predicates after the call to R. For local
variables and formal parameters y of @, we define orig(y) = y, since their
values are not affected by the call to R (as there are no references, for now).
For global variables y, we define orig(y) = y,, where y, is a fresh variable
called an original variable. Conceptually, we can think of y, as representing
the unknown value of the global variable y before the call to R. We extend orig
to expressions in the usual way. Then we define € as follows for local and formal
b-variables of Vg

E(b) = orig(£q(b)) if b is a local or formal b-variable in Vg

For example, consider the first call to inc in procedure foo of Figure 3. After
this call, £ maps the b-variable{a=2} to origla = 2), which is simply (@ = 2).
Because a is a local variable, its value cannot be affected by the call. Therefore,
if {a=2} is true after the call to inc in the Boolean program, we are assured that
(a = 2) is true after the call to inc in the original program. However, if a were
a global variable (but (a = 2) were still declared a local predicate of foo), then
{a=2} would instead be mapped to (a, = 2), to account for the fact that a could
be modified by the call to inc in P. Therefore, if {a=2} is true after the call to
inc in the Boolean program, we may only assume that the original, unknown
value of @, rather than its current value, is equal to 2 in the original program.

Lastly, we consider the interpretation of b-variables in Tg. We saw above that
for each return predicate ¢ of E, for R’, there is an associated b-variable ret
local to procedure @’. Let £grg be a map with domain T such that Egg(ret) = ¢
for each such pair. We define a mapping y which says how to interpret the
return predicates in the calling context. Since a symbolic constant ' f refers to
the initial value of a formal parameter f of R, we define y(' f) = orig(a), where
a is the associated actual of f in the call to R. For the return variable r in R,
y(r) = v,. Finally, since R appropriately updates globals, for each global g in
Gp we have y(g) = g. We extend y to expressions in the usual way. Then, we
can define £ as follows for the variables in Tq:

E(b) = y(Ere)) if b e Tq.

égain consider the first call to inc in procedure foo of Figure 3. After this call,
& maps the b-variable ret1 to y(x ='x) = (bt = ).
Putting all of the pieces together, we have:

E(b) = orig(Eq(b)), if bis a local or formal b-variable in Vg
Eq(b), if b is a global b-variable in Vg (4)
V(gRQ(b)), ifb e TQ .

Consider the processing of return values from the abstraction of the callb :=
inc(a) in the monomorphic predicate abstraction of Figure 2. The set of return
temporaries Ty, is {retl, ret2, ret3}. We have V = Voo U Tho, E(retl) =
(bret = 2), E(ret2) = (ber = 3), and E(ret3) = (byy = 4), obtained by sub-
stituting b,.; for x in the return predicates of inc. We also have £({a=2}) =
(@ = 2), £&({v=3}) = (b = 3), and &({c=4}) = (c = 4). The new value of {b=3} is
choose(Fy s(WP(b := byet, b = 3)), Fyy 2(WP(b :=brer, b # 3)), which compiles
to choose(ret2, !ret2).
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Now consider the abstraction of the call b := inc(a) in the polymorphic
predicate abstraction of Figure 3. The b-variables Vj, in scope at foo are
{{a=2}, {b=3}, {c=4}}, with the same interpretation as above. The set of return
temporaries Ty, is {retl, ret2}. We have E(retl) = (b = a) and E(ret2) =
(byet = a + 1). The new value of {b=3} is choose(fv,g(b,.et = 3), fV’f‘(bret # 3)),
which compiles to

choose ({a=2}&ret2, ({a=2}&'ret2)|!{a=2}&ret2))

To summarize, BP(v := R(a1,...,a;), Vg, Eq) is obtained by concatenating
the assignments of the form (1) for every predicate in E ¢, a call of the form (2)
and assignments of the form (3) for every predicate in E,,.

5. ADDING POINTERS

In this section, we extend the algorithm of Section 4 to handle programs with
pointers. We now allow the full syntax of the language of Section 3. We also
now allow pointers, pointer dereferencing, and addresses of variables in the
predicates in E. In addition, symbolic constants may now refer to dereferences
of formal parameters. Define an access expression q to be a variable preceded
by zero or more dereference (*) symbols. Let var(q) be the underlying variable
in the access expression. Consider a procedure R. Given an access expression
g, where var(q) is a formal parameter of R, the symbolic constant 'q refers to
the value of ¢ on entry to R. These generalizations require modification to the
internal form as well as the translation of assignment statements, procedure
interfaces, and procedure calls.

5.1 Internal Form

We modify the definition of the internal form in two ways. First, we allow ex-
pressions of the form &x and *"x (the value of n > 0 dereferences of x) as actual
parameters of calls, in addition to variables. Second, we augment initialization
statements to properly initialize symbolic constants of dereferences to formal
parameters. For each procedure, for each access expression " f such that f isa
formal of the procedure and the access expression " f is allowed by the formal’s
type, we require a local variable '+" f. Further, we require the existence of an
initialization statement L : 's" f := %" ' f after the initialization statement for
'f. The variable '+" f is never referenced again in the procedure.

5.2 Assignment Statements

When translating an assignment statement (either of the form x := e or xx :=e),
the standard weakest precondition computation described in Section 4.2 no
longer suffices. For example, consider WP(x := 5, *y > 6). According to the
standard definition, WP(x :=5,%y > 6) = (xy > 6)[5/x] = *y > 6. This means
that if xy > 6 is true before the execution of x:=5, then it is true afterward.
However, this is not the case if xy and x are aliases of one another.

To handle this problem, we adapt Morris’ general axiom of assignment
[Morris 1982; Ball et al. 2001a]. Let metavariable [ range over locations, which
are l-valued expressions. Consider the computation of WP(1 := e, ¢), and let [’
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be alocation mentioned in the predicate ¢. Then there are two cases to consider:
either / and !’ are aliased, and hence a change in the contents of [ will cause a
change in the contents of /’; or they are not, and an assignment to [ leaves [’
unchanged. Define

i 1 e if [ and [’ are aliased;

ces I’ otherwise.
Then the predicate WP(1:=e, ¢) is defined as ¢[l < e], where ¢[/ <« e] denotes
the predicate obtained by syntactically substituting each location /’ in ¢ by the
expression I'[l < e]. In this way, all aliases of [ are replaced by e.

Of course, this ideal weakest precondition semantics is not statically com-
putable in general, because we do not have complete alias information. Instead,
the weakest precondition that we compute explicitly considers all possible alias
scenarios for [. If ¢ has % locations in it, there will be 2% alias scenarios to con-
sider, since [ could be aliased to any subset of these % locations. For each sce-
nario, we compute @[l < e], simultaneously substituting all locations in ¢ that
are aliased to/ under the current alias scenario with e. The resulting predicate
is conjoined with a conjunction of equality predicates that formally describe the
associated alias scenario. Finally, the complete weakest precondition is the dis-
junction of the predicates computed for each alias scenario. In our example
above, WP(x :=5,xy > 6) = (&x = y) A (5 > 6) V((&x # y) A(xy > 6)).
We use a may-alias analysis [Das 2000] to improve the precision of this weak-
est precondition computation, pruning disjuncts that represent infeasible alias
scenarios [Ball et al. 2001a].

5.3 Procedure Interfaces

The components of a procedure R’s interface are defined as in Section 4.4, with
one exception. The definition of binding predicates By is augmented to provide
the Boolean program with information about the values of the new kinds of
symbolic constants. We require predicates of the form (+* 'f = 's" f) where
's" f isin Sg.

5.4 Procedure Calls

Consider a call v := R(ay,...,a;) in some procedure @ in program P. The
computation of the actuals for the corresponding call to R’ in BP(P, E) is un-
changed, as is the generation of the call to R’. However, in the presence of
pointers, the set of local predicates E, in @' that must be updated after the call
to R needs to be generalized to include predicates that can be invalidated due
to pointer indirection and aliasing. Let [ be a location in scope in . We say
that [ is possibly affected by the call to R if before the call any of the following
conditions holds:

—1 is an alias of a global variable
—1 is an alias of a (transitive) dereference of a global variable

—1 is an alias of a (transitive) dereference of an actual parameter to the call
to R
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The set of locations that are possibly affected by the call to R is computed con-
servatively using a may-alias analysis. Then E, can be conservatively defined
as follows:

E,={pcEq|¢ references an alias of v v
¢ references a location that is possibly affected by the call to R}.

Next, the mappings orig and y are extended. The mapping orig is generalized
to handle all locations. Given an access expression *" y, if that access expression
is possibly affected by the call to R, then orig(x"y) = y,.,, where y, , is fresh.
As before, y, , is used to represent the unknown value of " y before the call to
R. Otherwise, orig(¥"y) = ™ y. Also, orig(&y) = &y. We sometimes abbreviate
Yo,0 @8 Yo.

Now y is generalized in the natural way to use the extension of orig. Specif-
ically, if f is a formal parameter of R with associated actual a, then

y(s" f) = orig(x"a).
For example, consider the following simple procedure:

void simple(int* p) {

P = P;
HPp 1= K0P
*p := 8;

T

The first two assignments are the initialization statements. The symbolic con-
stant 'xp refers to the value of xp at the entry of the procedure. On the other
hand, «'p refers to the value obtained by dereferencing the original value of p.
Note that unlike "xp, the value of «’p can change through the procedure. For
example, after the assignment to xp, ' p has the value 8, while ' p still has the
original value of *p. Assume a is the actual parameter to some call to simple,
and assume ¢ is a local variable of its procedure. Then y maps 'xp to a,1 at
that call site, to represent the unknown value of xa before the call. On the other
hand, y maps *'p to xa, which has the updated value 8 in the calling context.

Finally, updating the predicates in E, proceeds as described in Section 4.4.
In particular, the extended orig and y mappings are used in the definition of &
shown in (4). The extended £ mapping in turn is used to update the b-variables
corresponding to predicates in E,, as shown in (3).

Appendix B contains the proof of soundness of the full C28p algorithm in-
cluding pointers.

5.5 Example

Figure 5 shows a detailed example involving pointers. The polymorphic pred-
icates in the swap function allow all callers to prove that the values of *p and
*q are swapped after the call to swap returns. Figure 6 shows the (optimized)
Boolean program output by C28p.

The swap function has four binding predicates, (p ='p), (¢ ='q), (*' p = "*p)
and (¥q = 'xq), which are initialized to true at the beginning of the proce-
dure as a result of abstracting the initialization statements introduced by the
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void swap {
swap(ref int p, ref int q) { p="p,
int t; q="q,
t := *p; *’p = ’*p,
*p 1= *Q; *’q = ’*q,
*q 1=t *'p = *q,
return; *’q = ’*p,
} t = ’*p
¥
void test() {
int x, y; test {
x := b; X = 4,
y = 4; x =5,
swap (&x,&y) ; y =4,
return; y =5
1 ¥
(a) Program (b) Predicates

Fig. 5. Polymorphic predicate abstraction with pointers

bool,bool,bool,bool swap() {
bool {p="p},{q=’q};
bool {*’p=’#*p},{*’q="*q},
{x p="%q},{*’q="*p};
bool {t=’*p};

{p="p} := true;
{g="q} := true;
{*x’p="%p} := true;
{x’q="*q} := true;

{t="*p} := {p="p} & {*’p=’*p}; // t

//*p = *q;
{x’p="%q}, {*’p=*’p} :=
choose ({p="p}&{q="q}&{*’q="*q},
{p="p}&{g="q}&!{*’q="*q}),
choose ({p="p}&{q=’q}&{*’q="*p},
{p="pr&{q="q}&!{*’q="*p});

//*q = t;
{*x’q="*p},{*’q="*q} :=
choose ({q="q}&{t="*p},
{g="q}&!{t="*p}), *;

return {*’p=’#p},{*’q="%q},
{*)p=)*q}’{*)q=:*p};

}

1= xp;

void test() {
bool {x=4},{x=5},{y=4},{y=5};
bool retl,ret2,ret3,retd;

{x=5},{x=4} := true, false; // x :
{y=4},{y=56} := false, true; // y :

retl,ret2,ret3,ret4 := swap();

{x=53},{x=4},{y=5},{y=4} :=
choose ({y=5}&ret3|{x=5}4retl,
choose ({y=4}&ret3|{x=4}&ret1,
choose ({y=5}&ret2|{x=5}4ret4,
choose ({y=4}&ret2|{x=4}&4ret4,

return;

}

&

Fig. 6. Boolean program abstraction created by the C28P tool, given the input program and pred-

icates shown in Figure 5.
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internal form. The abstraction of the three assignment statements uses the
updated weakest precondition for pointers. For example, when abstracting the
statement *q := t, we must consider the possibility that xq is aliased to xp,
in which case predicates involving *p (and its aliases) may be affected. In this
case, however, our (global) alias analysis deduces that *p and g are not aliased,
since the actuals for p and ¢ in the sole call to swap are distinct addresses &x
and &y.

According to the definition of E,, the predicates (*'p = ’xp), (¥'q = 'xq),
(*'p ='xq), and (¥'q = 'xp) are returned from swap. Consider the call to swap
from the test function. Because x and y are dereferences of the actual pa-
rameters to the call, they are both possibly affected by the call. Therefore, all
four local predicates of test are in E, as defined earlier, so they must be up-
dated after the call. By the y mapping, the returned predicates {(*'p = 'xp),
(¥q="%q), ¥ p="%q), (¥'q ="+p)} are mapped to the predicates {(x=x,),
(y = ¥0), x=y,), (y =x,)}.1° For example, y('s«p)=orig(x)=x,, representing
the unknown value of x before the call. Similarly, the local predicates {(x = 4),
(y = 5),(x = 5),(y = 4)} are mapped by orig to {(x, = 4),(y, = 5), (x, = 5),
(y, = 4)}. These mappings suffice to prove that the swap property holds in test.
For example, we can deduce that if (y, = 4) and (x = y,) are true, then (x = 4)
is also true after the call to swap. This can be seen by the update to {x=4} after
the call to swap in the abstraction of test.

6. RELATED WORK

Predicate abstraction was first introduced by Graf and Saidi [1997] in the con-
text of guarded transition systems. Others have since reported on variants
and optimizations of the original technique for similar kinds of transition sys-
tems [Das et al. 1999; Saidi and Shankar 1999; Clarke et al. 2000]. The tran-
sition systems considered in these works lack important source-level features
including pointers and procedures, making them unsuitable for representing
software directly. Instead, a transition system is typically used to represent a
model of some software protocol, and that model is then abstracted and vali-
dated.

More recently, predicate abstraction has been applied directly to source-level
languages. Visser et al. [2000] describe two systems for validating properties of
software. The first system model checks C++ code by translating it to Promela,
the input language of the Spin model checker [Holzmann 1997]. Predicate ab-
straction is applied manually in order to drastically reduce the state space of
the resulting models, thereby speeding up verification considerably. The second
system is an automatic predicate abstractor for Java. The output of the ab-
straction process is another Java program, with some of the original variables
removed and with Boolean variables added to track user-specified predicates.
This Java program can then be validated with a model checker such as the
Java Pathfinder [Havelund and Pressburger 1998]. Because Java is the target
language of the predicate abstraction, pointers can be retained in the transla-
tion, rather than carefully abstracted away as in our approach. For a similar

10Technically, x should be *&x, and similarly for y.
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reason, dynamic memory allocation and concurrency are handled, while safely
and precisely supporting these features in C2Bp would be quite challenging.
On the other hand, Boolean programs are simple enough to support a decid-
able model checking algorithm, while Java model checking will not terminate
in general. Therefore, in practice, a Java model checker may be able to find
bugs but not prove their absence. It is not clear how the described predicate
abstractor for Java handles procedure calls, and polymorphic predicates are not
supported.

The BLAST tool [Henzinger et al. 2002] is, like SLAM, a software model
checker for C programs. The key innovation of BLAST is the idea of lazy ab-
straction. Rather than treating abstraction, model checking, and predicate dis-
covery as three independent tasks, the BLAST tool integrates them in order
to reduce redundant and unnecessary work. Abstraction is performed on de-
mand during a depth-first exploration of the program’s state space. When an
error state is reached, new predicates are added, but only on the portion of the
state space that can lead to that error state. Exploration of a path terminates
upon either reaching an error state or reaching a state that has already been
explored in the same (or a weaker) context. Unlike SLAM’s modular abstrac-
tion process, BLAST handles procedure calls by inline-expansion, abstracting
and model checking a procedure body anew in different contexts. Based on
our work, BLAST has recently been extended to support polymorphic predi-
cates [Henzinger et al. 2004]. Polymorphic predicates allow BLAST to analyze
a procedure body fewer times during model checking, by finding more calling
contexts to be similar to one another. Polymorphic predicates are also employed
in the predicate discovery phase to compute an interpolant, which is used to
reduce the number of new predicates that must be added to the abstraction in
the next iteration.

Flanagan and Qadeer [2002] show how to use predicate abstraction to in-
fer loop invariants for Java programs, in the context of the ESC/Java sys-
tem [Flanagan et al. 2002]. The programmer annotates a loop with predicates
of interest, and predicate abstraction is used to synthesize the strongest loop
invariant that can be expressed as a Boolean combination of those predicates.
The technique allows skolem constants in predicates, which are used to infer
universally quantified loop invariants. Skolem constants play a similar role for
loops that our symbolic constants play for procedures, allowing invariants to be
deduced with respect to all possible contexts. The key difficulty of symbolic con-
stants in our setting is the need to map them to each call site, so that callers can
be safely and precisely abstracted. This mapping process has no analogue for
loop invariants. In addition, our algorithm safely handles pointers to symbolic
constants.

There have been several other proposals for automatically constructing ab-
stract models of programs. Holzmann [2000] describes an approach to abstract-
ing C code. The programmer defines an abstraction table that defines how var-
ious C constructs and code snippets should be treated in the abstract program.
Holzmann’s system uses this abstraction table to automatically construct a pro-
gram’s abstraction, which is then model checked with Spin. Similarly, Engler’s
meta-level compilation system [Engler et al. 2000] allows programmers to map
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C-code patterns to abstract states. This mapping is then used to automatically
determine whether a C program satisfies a user-specified finite-state protocol.
The mapping technique enjoys a number of advantages. Users can express a
wide range of useful abstractions. Further, because the abstraction mapping
is completely user-directed, it is straightforward to accommodate complicated
language features like concurrency. Finally, the abstraction algorithm is fairly
lightweight and can scale to large systems. A disadvantage of the approach is
that the user must direct the entire abstraction process. This contrasts with
predicate abstraction, for which the user need only provide a set of predicates,
from which the system automatically produces the abstraction for each program
statement. Further, abstractions in the mapping approach are not guaranteed
to be sound: a program may be buggy even if its abstraction is found to be bug-
free. On the other hand, abstractions produced by C28p are provably sound.

The Bandera toolset [Corbett et al. 2000; Dwyer et al. 2001] provides an au-
tomatic abstraction technique for Java programs based on abstract interpreta-
tion [Cousot and Cousot 1977]. For each type T in the program, the user provides
an abstract domain of tokens and an abstraction function mapping each value
of type T to its corresponding abstract token. The toolset uses this information
to automatically produce sound abstractions of each operation of type 7. The
abstraction process then consists in replacing each concrete variable, literal,
and operation with its corresponding abstract version. The resulting abstract
Java program is model checked with Java PathFinder. Bandera’s abstraction
process is simpler than ours and can more easily scale to large programs. Also,
as discussed earlier, using Java as the target language allows Bandera to handle
features such as dynamic memory allocation and concurrency, at the expense
of an undecidable model checking problem. The biggest drawback of Bandera’s
approach as compared with predicate abstraction is its limited expressiveness.
Bandera’s technique can be viewed as a special case of predicate abstraction
in which each predicate mentions only a single variable. Predicate abstraction
as embodied in C2BP is additionally able to capture interesting relationships
among multiple variables.

The use of polymorphism in programming languages [Milner 1978; Cardelli
and Wegner 1985] and program analysis has a rich history. For example, the ML
programming language [Milner et al. 1997] has a polymorphic type system that
allows the definition of generic functions, whose types contain type variables.
For example, the identity function has type Va.o — «. A generic function can
be safely typechecked once, no matter what types a particular calling context
substitutes for the function’s type variables. In our setting, symbolic constants
allow for the generic abstraction of procedures. Each procedure can be safely
abstracted once, no matter what values a particular calling context substitutes
for the procedure’s symbolic constants.

A context-sensitive program analysis is one that analyzes each call to a given
procedure @, based on @’s calling context [Sharir and Pnueli 1981]. Trans-
fer functions summarize the input-output behavior of a procedure and provide
a way to avoid redundant work during context-sensitive analysis [Sharir and
Pnueli 1981]. The tools C2BP and BEBoP together compute transfer functions
on demand [Ball et al. 2001a]. On-demand computation of transfer functions
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| A ||true|false| * | | \Y ||true|false| * | | - || |

true||true|false| x true||true|true|true true||false

false||false|false|false false||true|false| = false||true
* x |false| =x * |[true| = x * *

Fig. 7. Kleene’s three-valued interpretation of A, v and —.

has also been explored in the context of program analysis [Wilson and Lam
1995; Reps et al. 1995]. Polymorphic predicates allow us to raise the level of
abstraction of the transfer functions computed in C28p, allowing a single trans-
fer function to be instantiated differently in different calling context. The use
of polymorphism in transfer functions has also been explored in the context of
work on polymorphic points-to analysis [Foster et al. 2000]. The binding of in-
formation between callers and callees has been discussed before in the context
of interprocedural pointer analysis [Landi and Ryder 1992].

7. CONCLUSION

We have presented an algorithm for polymorphic predicate abstraction of C
programs and proved it sound. Polymorphism is critical for obtaining the ben-
efits of a modular abstraction process for procedures, allowing each procedure
to have a single abstraction that can be safely and precisely used by all callers.
In addition, polymorphism allows a procedure to be conservatively analyzed
in an open environment, for all possible calling context. Finally, polymorphism
can lead to more efficient abstraction, since a constant number of polymorphic
predicates can often be used in place of monomorphic predicates proportional
to the number of call sites of a procedure. The main technical challenge of poly-
morphic predicate abstraction is in capturing the effect of procedure calls on the
local state of the caller, in the presence of symbolic constants and pointers. We
have implemented polymorphic predicate abstraction in the C28p tool. We have
used C2Bp as part of the SLAM toolkit to validate properties of Windows NT
device drivers and to find invariants in several programs [Ball and Rajamani
2001].

APPENDIXES
A. KLEENE’S THREE-VALUED LOGIC

Figure 7 presents Kleene’s interpretation for conjunction, disjunction, and
negation of three-valued logic. This interpretation is used in the programs of
the language presented in Section 3.

B. SOUNDNESS

We represent a program state as a pair o = (L, Q), where L is the label on
the statement to be executed next and 2 is a store mapping the locations in
scope at L to values. We sometimes extend Q to expressions in the obvious
way. An initial state of a program P is a state (L, Q) such that L labels the
first statement of a distinguished “main” procedure and Q2 maps all locations
in scope to appropriate initial values, as described in Section 3.
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We say that (L1, 1) — (Lg, Q9) if execution of the statement at L; with
store @7 produces store Q¢ and moves to the statement labeled Ls. The se-
mantics of the — relation is standard. A #race of a program P is a sequence
o1 — .-+ — o, where the first state of the sequence is an initial state of P
and where procedure calls and returns are properly matched: execution of a
return statement transfers control to the statement after the most recent un-
matched procedure call. Therefore, a trace represents a valid prefix of an execu-
tion of P. Let —* denote the transitive closure of the — relation. We sometimes
denote traces using a sequence of states with every pair of successive states
related by —*, when the implicit intermediate states on the trace are of no
importance.

Soundness intuitively means that every execution of a program has a corre-
sponding execution in the associated Boolean program abstraction. The main
theorem we prove says that one execution step of a program has a correspond-
ing sequence of execution steps in the associated Boolean program abstraction.
First, we define a simulation relation on program states, which captures the
notion that b-variables should be conservative abstractions of the expressions
they represent.

Definition 1. Let P be a program, E be a set of predicates over symbolic
constants and variables in P, and B = BP(P, E) be the Boolean program ab-
straction computed by C2Bp. Let V be the b-variables corresponding to predi-
cates in E and £ be the mapping from V to E. We say that a state (L, Q) of P
is simulated by a state (L', Q') of B if L = L’ and for all b-variables b € V in
scope at L’ in B we have that:

(Q'(b) = true = Q(E(b)) = true) and (Q'(b) = false = Q(E(b)) = false).
Our theorem then says that simulation is preserved by the — relation.

THEOREM 1. Let P be a program, E be a set of predicates over symbolic con-
stants and variables in P, and B = BP(P, E) be the Boolean program abstrac-
tion computed by C2Bp . Let V be the b-variables corresponding to predicates in
E and £ be the mapping from V to E. Let 01 — --- — o — o be a trace of P
and oy —* .-+ —* oy be a trace of B. If for all 1 <i < k it is the case that o; is
simulated by o], then there exists some o' such that o; —* --- =" 0, =>* o' isa
trace of B and o is simulated by o’.

Proor. Since o}, is simulated by oj,, we have that o; has the form (L, Q)
and oy, has the form (L, Q). Let s be the statement labeled L in P and s’ be the
statement labeled L in B. Case analysis of the form of s:

—s = skip. Then, s’ = skip as well. By the semantics of skip, we have o =
(L1, Q) where L is the label of the statement following s. Since s’ = skip,
we have that o, — o/, where ¢’ = (L1, ;). Then since o3, is simulated by o3,
it follows that o is simulated by o”’.

—s = goto L. Then s’ = goto L; as well. By the semantics of goto, we have
o = (L1, Q) and ¢’ = (L1, QJ,), where o;, — ¢’. Since o}, is simulated by o3,
it follows that o is simulated by o”’.
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—s = branch 51| - - - |5, end. Then s’ = branch BP(1, V,E)|| --- |BPG,, V, )
end. By the semantics of branch we have o = (L1, ), where L1 is the label
of the first statement in one of the branch cases. Then, by the semantics
of branch and the rules for abstracting statement sequences and labeled
statements, we have o, — ¢’, where o’ = (L1, Q},). Since o}, is simulated by
o0y, it follows that o is simulated by ¢’.

—s is an assignment statement: Then o = (L1, Q), where L; is the label of
the statement following s. By the abstraction process we know that s’ is a
parallel assignment, so there exists ¢’ = (L1, ') such that o, — ¢’. Now
suppose Q'(b) is true, for some b-variable b in scope at L; in B. To finish this
case, we show that Q(£(b)) is true as well. (A similar proof can be done for
the case in which Q/(b) is false.)

Since Q'(d) is true, we know by the abstraction of assignments that some
monomial in Fy ¢(WP(s, £(b))) was true in Q. Let that monomial beci A---A
Cm,soforeach 1 <r < m, Q;(c,) = true. Since o; is simulated by o, we have
that for each 1 <r < m, 2;(E(c,)) = true. By the definition of Fy ¢, we know
that E(c1) A -+ A Elen) = WP(s, £(b)), so Q,(WP(s, £(b))) = true. Then, by
definition of WP, Q(£(b)) is true as well.

—s is of the form assume(e): Then ¢ = (L1, ), where L; is the label of
the statement following s. By the abstraction process, we know that s’ is
assume(—Fy ¢(—e)). Suppose o;, can take an evaluation step to some ¢’. Then,
by the semantics of assume, ¢’ will have the form (L, 2),). Since o}, is sim-
ulated by oy, it follows that o is simulated by o

Therefore, we just need to prove that o, can take an evaluation step to
some o', which is the case according to the semantics of assume if and only if
@, (=Fy ¢(—e)) is not false. Since o, — o, we know that Q(e) is true. There-
fore, Q2. (—e) is false. By definition, E(Fy ¢(—e)) = —e, so also Q;(E(Fy c(—e)))
is false. Therefore, Qi(=E(Fy c(—e))) = Qp(E(=Fy (—e))) is true. Then
since o3, is simulated by oy, it cannot be the case that Q,(=Fy c(—e)) is
false.

—s is a procedure call of the form v := R(ay,as,...,a;): Then, 0 = (L1, Q),
where L1 is the label of the first statement in procedure R and where Q maps
locations involving global variables to their values in ), maps locations in-
volving formal parameters to the values of the corresponding locations involv-
ing actuals in Q;, and maps local variables of R to appropriate initial values.
By the abstraction process, s’ is a call to R’, the version of R in B, preceded
by assignment statements that compute the values of the actual parameters
to the call. Therefore, there exists some ¢’ = (L1, Q'), where o, —* ¢’ and &’
maps global b-variables to their values in €, maps formal b-parameters to
the values of their actuals in ), and maps local b-variables of R’ to x.

Suppose Q'(b) is true, for some b in scope. To finish this case, we show
that also Q(£(d)) is true. (A similar proof can be done for the case in which
Q'(b) is false.)

—If b is a global b-variable, then we know that ©'(b) = ©,,(b), so ,(b) is
true. Then since Q is simulated by Q, we have that Q.(£(d)) is true.

Since b is global, we know that £(b) refers only to locations involving
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global variables of P. Since for each such location ! we have Q(I) = Q(),
also Q(E(b)) = Qr(E(b)). Therefore Q(E(H)) is true.

—If b is a formal b-parameter of R’, then b has the value of the associated
actual parameter to the call. Then by the process for computing the
prm actual b-variables, some monomial in Fy £(ED)ai/f1,...,a;/f;])
was true in Q), where f; is the associated formal for actual a; in
the call to R in P. Let that monomial be ¢; A --- A ¢, so for each
1 <r <m,Qy(c,) = true. Then since o}, is simulated by o; we have that
for each 1 < r < m, Q(E(c,)) = true. By the definition of Fy ¢ we have
Ee)N - ANElew) = EDBNar/f1,...,a;/f;], s0 Q(EBai/f1,...,a;/f;]is
true. Since b is a formal b-parameter of R’, it may only refer to locations
involving formal parameters of R and global variables of P. Therefore by
the relationship between ;, and Q we have that Q(£(b)) is true.

—Otherwise, b is a local variable. But by the definition of ' we know that
b has the value *, contradicting the fact that Q'(d) is true.

—s is a return statement of the form return r. Then o = (L4, Q), where L,
is the label of the first statement after the last unmatched procedure call in
P’s trace. Statement s’ is also a return statement. Since o; is simulated by
o/ for 1 <i <k, the two traces must agree on the last unmatched procedure
call. Then there exists an appropriate ¢’ = (L1, Q') such that o; — o',

Let (L, <) represent the program state before that last unmatched
procedure call in P’s trace. Similarly, let (L, ') represent the program state
before computing actual parameters for the last unmatched procedure call
in B’s trace. Let the call in P have the form v := R(ai,as,...,a;), and let
it appear in procedure . Then, the call in procedure @' of B has the form
reti,...,rety := R'(prmy, ..., prm,), followed by updates of the b-variables
associated with expressions in E,.

Suppose Q'(b) is true, for some b in scope. To finish this case, we show
that also Q(£(d)) is true. (A similar proof can be done for the case in which
Q'(b) is false.) There are three cases to consider:

—First, suppose b is a global b-variable. Then, b was in the scope of the call.
Further, since each b-variable in E, is a local variable, we know that b
is not in E,,. Also, b is not one of the ret variables, so b is not assigned to
upon return from the call. Therefore by the semantics of return we have
that Q'(b) = Q},(b). So we have Q}(b) is true, and since o, is simulated by
o, also Qx(E(D)) is true. We know that v is not a global variable (see the
definition of internal form in Section 4), so by the semantics of return we
have that the values of all locations involving global variables agree in
Qr and Q. Since b is a global b-variable, £(b) may only refer to locations
involving global variables, so we have Q;(£(b)) = Q(E(b)), and therefore
Q(ED)) is true.

—Second, suppose b is a local b-variable or formal b-parameter of Vg and
£(b) ¢ E,. By the semantics of procedure calls, ' and Q' agree on the
values of local and formal b-variables in Vg, so we have that Q'(b) = Q/(b)
and €/(b) is true. Then, since (L, ) is simulated by (L, &), we have
Q(E(b)) is true. Since £(b) € E,, by the definition of E, we have that the
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value of £(b) cannot change as a result of the call to R, so Q(£(b)) = Q(E(b)).
Therefore, Q(E(H)) is true.

—Finally, suppose b is a local b-variable or formal b-parameter of Vg and
E(b) € E,. For this case, we consider the call to R in P to consist of the
two statements

Uret '= R(a1,as, ..., aj);l) ‘= Uret,

where v,; is a fresh local variable in @. Additionally, just before the
call we add a statement of the form x, := x; for each variable x in scope
such that orig(x) = x,, where x, is fresh. Similarly we add a statement
of the form x, , := +"x for each access expression x"x in scope such that
orig(x"x) = x,,, where x, , is fresh. Clearly, the semantics of the call is
preserved by these modifications.

Let & be the mapping from b-variables in V = Vo UTgq as defined in
Section 4. Let 2, be the store at the point in (the revised) P between the
two statements above, and let 2. be the store at the point in B just after the
call to R’, before the updates to the associated b-variables of expressions
in E,. Our strategy is to show that for all 6-variables b, in the domain of &

(R.(bo) = true = 2,(£(by)) = true) and
(€2.(by) = false = Q,(E(by)) = false).

Suppose we can show this is the case. Then, since b (the b-variable
we are currently considering in E,) is subsequently assigned in B
to choose(Fy (WP = vser, £())), Fy (WP = Uy, ~E(b)))) and the
current statement in P is v = U, it follows from the same argument as
in the case above for assignment statements that Q(£(b)) is true.

Therefore, suppose Q.(by) = true, for some by in the domain of E. (A
similar proof can be done for the case in which /() is false.) According
to the definition of &, there are three cases to consider:

—by is a global b-variable in Vg, and E(by) = Eq(by) = E(bp). This case is
proven by an analogous argument as used for global b-variables in the
first subcase above for the return statement.

—by is a local b-variable in Vg, and Eby) = orig(€g(by)). By the semantics
of procedure calls, Q' and Q. agree on the values of local and formal
b-variables in Vg, so we have that Q/(by) = Q.(by) and Q'(by) is true.
Then, since (L, Q) is simulated by (L, '), we have Q(Eq(bp)) is true.
Then, by the assignments x, := x and x,, = *"x before the call,
that means that orig(€q(by)) is true in Q. By the definition of orig, all
locations in £¢(by) that can be affected by the call to R are replaced by
fresh local original variables. Therefore, no locations in orig(£q(bg)) can
be affected by the call to R. Further, none of those locations can alias the
ret variables, since those are fresh. Therefore, orig(q(by)) is true in €,.

— by is a local of the form ret, and £(by) = v(Erg(bo)). We need to prove that
Q,(y(Erq(b)) is true. Since by is true in Q. and is a returned b-variable
from R’, we know that by’s counterpart b;, which is returned from R’ in
its return statement, is true in Q;, also. Therefore, since o}, is simulated
by o, we have that Q,(Eg(bf)) is true. That is equivalent to saying
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that ©;(Erg(bo)) is true. Therefore, we can conclude that Q,.(y(Erg(bo)))

is true if we can show that for all locations [ in the domain of y,

Q) = Q.(y()). We do a case analysis on /. We have three cases:

—uvar(l)is a global, so y(I) = [. By the semantics of return and the fact
that the return value is assigned to the local variable v, the result
follows.

—var(l) is the return variable r, so y(I) = [[v,e/var(l)]. By the seman-
tics of return and the fact that the return value r is assigned to v,
the result follows.

—var(l)is a symbolic constant '+" [, so y(I) = l[orig(¥"a)/var(l)], where
a is the actual for formal f. By the internal form definition, the
symbolic constant '+" f is a local of R’ that is assigned the value
of " f at the entry point of the procedure and never modified.
By the definition of orig, the value of orig(x"a) must not be modified
by the call, so Q(orig(x"a)) = Q,(orig(x"a)). By the definition of orig
and the assignments to original variables at the call site, we know
that " f at the entry point of the procedure has the same value as
orig(x"a) before the call, so we have that Q,(*" f) = Q(orig(x"a)). So
we have shown that Q,('x" f) = Q,(orig(x"a)), which implies by the
semantics of return that Q, () = Q,.(y()). O

Finally, soundness follows as a simple corollary to the above theorem:

CoroLLARY 1 (SOUNDNESS). Let P be a program, E be a set of predicates over
symbolic constants and variables in P, and B = BP(P, E) be the Boolean pro-
gram abstraction computed by C28P. Let V be the b-variables corresponding to
predicates in E and & be the mapping from V to E. If o1 — --- — o}, is a trace
of P, then there exists a trace o; —* --- —* o3, of B such that forall 1 <i <k,
o; is simulated by o].

Proor. The proof is by induction on k. For the base case, suppose £ = 1, so
the trace in P consists solely of o1, an initial state. Let o7 = (L, Q), where L is
the label of the first statement in the “main” procedure. Then there is an initial
state o] of B, of the form (L, Q'). Further, since the initial values of b-variables
is *, all b-variables in the domain of Q" have value *. Therefore, o7 is simulated
by o, vacuously.

For the inductive case, suppose k is some j > 1, and assume the corollary
holds for traces of P of length smaller than j. Since we'’re given thato; — --- —
ojisatraceof P,soiso; — --- — o;_1. Then, by the inductive hypothesis there
exists a trace o] —* .- —* ‘7]/'_1 of B such that forall 1 <i < j, o; is simulated
by ;. Then, by Theorem 1, there exists some o’ such that o; —* ... —* o;isa
trace of B and o is simulated by o7, so the result follows. O
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