
VMWARE WHITE PAPER
VMware

Timekeeping in VMware
Virtual Machines
Because virtual machines work by time-sharing host physical hardware, a virtual machine
cannot exactly duplicate the timing behavior of a physical machine. VMware virtual machines
use several techniques to minimize and conceal differences in timing behavior, but the
differences can still sometimes cause timekeeping inaccuracies and other problems in guest
software. This white paper describes how timekeeping hardware works in physical machines,
how typical guest operating systems use this hardware to keep time, and how VMware products
virtualize the hardware. The paper also describes several known timekeeping issues you may
encounter and how to correct or work around them.

This document contains the following sections:

• Introduction

• Review of Time and Frequency Units

• PC Timer Hardware

• VMware Timer Virtualization

• Timekeeping in Specific Operating Systems

• Increasing the Host Timer Interrupt Rate

• Synchronizing Hosts and Virtual Machines with Real Time

• Time Measurements Within a Virtual Machine

• Known Issues and Troubleshooting

• Conclusion

This white paper is intended for partners, resellers, and advanced system administrators who are
deploying VMware products and need to understand the issues and work around potential
problems that may arise in keeping accurate time on virtual machines.
1

Timekeeping in VMware Virtual Machines
Introduction
Generally speaking, PC-based operating systems keep track of time by counting timer interrupts
or ticks. When the operating system starts up, it reads the current time to the nearest second
from the computer's battery-backed (CMOS) real time clock or queries a network time server to
obtain a more precise time. To update the time from that point on, the operating system sets up
one of the computer's hardware timekeeping devices to interrupt periodically at a known rate
(say, 100 or 1000 times per second). The operating system then fields these interrupts and keeps
a count to determine how much time has passed.

Supporting this form of timekeeping accurately in a virtual machine is difficult. Virtual machines
share their underlying hardware with the host operating system (or on VMware ESX Server, the
VMkernel). Other applications and other virtual machines may also be running on the same host
machine. Thus, at the moment a virtual machine should generate a virtual timer interrupt, it may
not actually be running. In fact, the virtual machine may not get a chance to run again until it
has accumulated a backlog of many timer interrupts. In addition, even if a virtual machine is
running at the moment when one of its virtual timer interrupts is due, the virtual machine may
not check for the interrupt at that moment and deliver it to the guest operating system on time.
Constantly checking for pending virtual timer interrupts would introduce a substantial
overhead, slowing down all virtual machines, so the VMware timekeeping implementation
checks for virtual timer interrupts only occasionally — often not until the next real interrupt
occurs on the host machine.

Because the guest operating system keeps time by counting interrupts, time as measured by
the guest operating system falls behind real time whenever there is a timer interrupt backlog. A
VMware virtual machine deals with this problem by keeping track of the current timer interrupt
backlog and delivering timer interrupts at a higher rate whenever the backlog gets too large, in
order to catch up. Catching up is made more difficult by the fact that a new timer interrupt
should not be generated until the guest operating system has fully handled the previous one;
otherwise the guest operating system may fail to see the next interrupt as a separate event and
miss counting it. This phenomenon is called a lost tick.

If the guest is running too slowly, perhaps due to competition for CPU time from other virtual
machines or processes running on the host machine, it may be impossible to feed the guest
enough interrupts to keep up with real time. In current VMware products, if the backlog of
interrupts grows beyond 60 seconds, the virtual machine gives up on catching up, simply
setting its record of the backlog to zero. After this happens, if VMware Tools is installed in the
guest and the time synchronization feature is enabled, the tools correct the clock reading in the
guest operating system sometime within the next minute by synchronizing the guest operating
time to match the host machine's clock. The virtual machine then resumes keeping track of its
backlog and catching up any new backlog that accumulates.

Another problem with timer interrupts is that they cause a scalability issue as more and more
virtual machines are run on the same physical machine. Even when a virtual machine is
otherwise completely idle, it must run briefly each time it receives a timer interrupt. If a virtual
machine is requesting 100 interrupts per second, it thus becomes ready to run at least 100 times
per second, at evenly spaced intervals. So roughly speaking, if N virtual machines are running,
processing the interrupts imposes a background load of 100*N context switches per second
(even if all the virtual machines are idle). Virtual machines that request 1000 interrupts per
second create ten times the context switching load. (Virtual machines running Microsoft
Windows request 1000 interrupts per second if they are running certain applications that make
use of the Microsoft Windows multimedia timer service. Linux virtual machines running
2

Timekeeping in VMware Virtual Machines
kernel 2.6, or versions of kernel 2.4 with certain vendor patches, do so as well, and they request
even higher rates if running SMP-enabled kernels.)

Besides getting the correct initial time when the virtual machine is powered on and keeping
track of the passage of time accurately after that, a virtual machine also needs to have its clock
updated when it resumes operation after being suspended or when it reverts to a snapshot. In
those cases, the virtual machine must be able to get the time updates it needs from the host,
but must not be required to run in the host's time zone. For special applications, it must also be
possible for a virtual machine to have its clock set to a fictitious time different from the time kept
on the host.

The following sections provide more detail on what the timekeeping devices in a PC do, how
standard operating systems use these devices, how VMware products virtualize the devices and
support the special requirements discussed in this section, and how you can diagnose and deal
with common timekeeping problems.

Review of Time and Frequency Units
The following table provides a quick review and summary of units in which time or frequency
are measured:

PC Timer Hardware
For historical reasons, PCs contain several different devices that can be used to keep track of
time. Different guest operating systems make different choices about which of these devices to
use and how to use them. Using several of the devices in combination is important in many
guest operating systems. Sometimes, one device that runs at a known speed is used to measure
the speed of another device; sometimes a fine-grained timing device is used to add additional
precision to the time read from a more coarse-grained timing device. Thus, it is necessary to
support all these devices in a virtual machine, and the times read from different devices must
appear to be consistent with one another, even when they are somewhat inconsistent with real
time.

All PC timer devices can be described using roughly the same block diagram, as shown in
Figure 1. Not all the devices have all the features shown, and some have additional features, but
the diagram still is a useful abstraction.

Unit Abbreviation Time Measurement

s Seconds

ms Milliseconds (1/1000 second)

us Microseconds (10-6 seconds)

ns Nanoseconds (10-9 seconds)

ps Picoseconds (10-12 seconds)

Hz Frequency (cycles or other events per second)

kHz Kilohertz (1000 cycles or events per second)

MHz Megahertz (1,000,000 cycles or events per second)

GHz Gigahertz (109 cycles or events per second).
3

Timekeeping in VMware Virtual Machines
Figure 1: Block diagram of a timer device

The oscillator provides a fixed input frequency to the timer device. The frequency may be
specified, or the operating system may have to measure it at startup time. The counter may be
readable or writable by software. The counter counts down one unit for each cycle of the
oscillator. When the counter reaches zero, it generates an output signal that may interrupt the
processor. At this point, if the timer is set to one-shot mode, it stops; if set to periodic mode, it
continues counting. There may also be a counter input register whose value is loaded into the
counter when it reaches zero; this register allows software to control the timer period. (Some
real timer devices count up instead of down and have a register whose value is compared with
the counter to determine when to interrupt and restart the count at zero, but both count-up
and count-down timer designs provide equivalent functionality.)

PIT (Programmable Interval Timer)
The PIT is the oldest PC timer device. It uses a crystal-controlled 1.193182MHz input oscillator
and has 16-bit counter and counter input registers. The oscillator frequency was not chosen for
convenient timekeeping; it was simply a handy frequency available when the first PC was
designed. (The oscillator frequency is one-third of the standard NTSC television color burst
frequency.) The PIT device actually contains three identical timers that are connected in different
ways to the rest of the computer. Timer 0 can generate an interrupt and is suitable for system
timekeeping. Timer 1 was historically used for RAM refresh and is typically programmed for a
15 microsecond period by the PC BIOS. Timer 2 is wired to the PC speaker for tone generation.
Linux and most uniprocessor versions of Microsoft Windows use PIT 0 as the main system timer.

Oscillator

Counter

Counter input

 = 0

Interrupt
4

Timekeeping in VMware Virtual Machines
CMOS RTC (Real Time Clock)
The CMOS RTC is part of the battery-backed memory device that keeps a PC's BIOS settings
stable while the PC is powered off. The name CMOS comes from the low-power integrated
circuit technology in which this device was originally implemented. There are two main time-
related features in the RTC. First, there is a continuously running time of day (TOD) clock that
keeps time in year/month/day hour:minute:second format. This clock can be read only to the
nearest second.

There is also a timer that can generate periodic interrupts at any power-of-two rate from 2Hz to
8192Hz. This timer fits the block diagram model in Figure 1, with the restriction that the counter
cannot be read or written, and the counter input can be set only to a power of two.
Multiprocessor and ACPI-capable versions of Microsoft Windows use the CMOS periodic timer
as the main system timer.

Two other interrupts can also be enabled: the update interrupt and the alarm interrupt. The
update interrupt occurs once per second. It is supposed to signal the TOD clock turning over to
the next second. The alarm interrupt occurs when the time of day matches a specified value or
pattern.

Local APIC (Advanced Programmable Interrupt Controller) Timers
The Local APIC is a part of the interrupt routing logic in modern PCs. In a multiprocessor system,
there is one local APIC per processor. On Pentium and later processors, the local APIC is
integrated onto the processor chip. The Local APIC includes a timer device with 32-bit counter
and counter input registers. The input frequency is generally the processor's base front-side
memory bus frequency (before the multiplication by two or four for DDR or quad-pumped
memory). Thus, this timer is much finer-grained and has a wider counter than the PIT or CMOS
timers, but software does not have a reliable way to determine its frequency. Generally, the only
way to determine the Local APIC timer's frequency is to measure it using the PIT or CMOS timer,
which yields only an approximate result.

ACPI (Advanced Configuration and Power Interface) or Chipset Timer
The ACPI timer is an additional system timer that is required as part of the ACPI specification. It
has a 24-bit counter that runs at 3.579545MHz (three times the PIT frequency). The timer can be
programmed to generate an interrupt when its high-order bit changes value. There is no
counter input register; the counter always rolls over. (That is, the counter turns back to zero after
it reaches the maximum 24-bit binary value.) The ACPI timer continues running in some power-
saving modes in which other timers are stopped or slowed. Some versions of Microsoft
Windows read the ACPI timer to implement the QueryPerformanceCounter system call.
Linux kernel 2.6 can use the ACPI timer to interpolate between PIT ticks.

TSC (Time Stamp Counter)
The TSC is a 64-bit cycle counter on Pentium CPUs and newer processors. The TSC runs off the
CPU clock oscillator, typically 2GHz or more on current systems. (At current processor speeds it
would take years to roll over.) The TSC cannot generate interrupts and has no counter input
register. The TSC can be read by software in one instruction, although this instruction is
surprisingly slow on Pentium 4 chips. The instruction is normally available in user mode, but
operating system software can choose to make it unavailable. The TSC is, by far, the finest-
grained, widest, and most convenient timer device to access. However, the TSC also has several
drawbacks:
5

Timekeeping in VMware Virtual Machines
• As with the local APIC timer, software does not have a reliable way to determine the TSC's
input frequency. Generally, the only way to determine the TSC's frequency is to measure it
approximately using the PIT or CMOS timer.

• Several forms of power management technology vary the processor's clock speed
dynamically and thus change the TSC's input oscillator rate with little or no notice.

• On shared-bus SMP machines, all the TSCs run off a common clock oscillator, so they can
generally be synchronized with each other at startup time and thereafter treated as a
single system-wide clock. This does not work on some NUMA (non-uniform memory
access) multiprocessors, however, as different NUMA nodes often run off separate clock
oscillators. Although the nominal frequencies of the oscillators on each NUMA node may
be the same, each oscillator is controlled by a separate crystal, and the crystal precision is
typically no better than 20 parts per million. In fact, on some systems (such as the IBM
x440/x445 family), these clock rates are intentionally varied dynamically over a small range
(2% or so) to reduce the effects of emitted RF (radio frequency) noise, a technique called
spread-spectrum clocking.

Despite these drawbacks, both operating systems and application programs frequently use the
TSC for timekeeping. Some versions of the Windows operating system read the TSC to
implement the QueryPerformanceCounter system call. Many versions of Linux use the
TSC to generate additional bits of precision for the gettimeofday system call, beyond the
count of timer interrupts received. VMware products also use the hardware TSC for fine-grained
timekeeping.

HPET (High Precision Event Timer)
The HPET is a device available in some newer PCs. Most PC systems do not have this device and
most operating systems do not use it. The HPET has one central up-counter that runs
continuously (unless stopped by software). It is usually 64 bits wide, but 32-bit implementations
are permitted by its specification. The counter's period can be read from a register. The HPET
provides multiple timers (three or more), each consisting of a register that is compared with the
central counter. When a register value matches, the corresponding timer fires. If the timer is set
to be periodic, the HPET hardware automatically adds its period to the compare register, thus
computing the next time for this timer to fire.

VMware Timer Virtualization
VMware products use a patent-pending technique to allow the many timer devices in a virtual
machine to fall behind real time and catch up as needed, yet remain sufficiently consistent with
one another that guest software is not disrupted by anomalous time readings. In VMware
terminology, the time that is visible to guests on their timer devices is called apparent time.
Generally, all timer devices in a virtual machine operate identically to the corresponding timer
devices in a physical machine, but they show apparent time instead of real time. The following
sections note some exceptions to this rule and provide some additional details about each
emulated timer device.

Virtual PIT
VMware products fully emulate the timing functions of all three timers in the PIT device. In
addition, when the guest operating system programs the speaker timer to generate a sound,
the virtual machine requests a beep sound from the host machine. (Note, however, that the host
sound generated may not be the requested frequency or duration.)
6

Timekeeping in VMware Virtual Machines
Virtual CMOS RTC
Current VMware products emulate all the timing functions of the CMOS RTC, including the time
of day (TOD) clock and the periodic, update, and alarm interrupts that the CMOS RTC provides.
There is one exception: The alarm interrupt is not yet available in VMware ESX Server version 2.x,
so attempts to set this interrupt in that environment are ignored.

Many guest operating systems use the CMOS periodic interrupt as the main system timer, so
VMware products run it in apparent time to be consistent with the other timer devices. Some
guest operating systems use the CMOS update interrupt to count off precisely one second to
measure the CPU speed or the speed of other timer devices, so VMware products run the CMOS
update interrupt in apparent time as well.

In contrast, VMware products base the virtual CMOS TOD clock directly on the real time as
known to the host system, not on apparent time. This choice makes sense because guest
operating systems generally read the CMOS TOD clock only to initialize the system time at
power on and occasionally to check the system time for correctness. Operating systems use the
CMOS TOD clock this way because it provides time only to the nearest second, but is battery-
backed and thus continues to keep time even when the system loses power or is restarted.

Specifically, the CMOS TOD clock provides a Coordinated Universal Time (UTC) value plus an
offset. (UTC values are approximately equal to GMT, or Greenwich Mean Time.) The offset from
UTC is stored in the virtual machine's nvram file along with the rest of the virtual machine's
CMOS nonvolatile memory contents. The offset is needed because many guest operating
systems want the CMOS TOD clock to display local time in the current time zone, not in UTC.
When you create a new virtual machine (or delete the nvram file of an existing virtual machine)
and power it up, the offset is initialized, by default, to the difference of the host operating
system's local time zone from UTC. If the guest writes a new time to the CMOS RTC, VMware
software updates the offset.

If you want, you can force the CMOS TOD clock's offset to be initialized to a specific value at
power on. To do so, set the option rtc.diffFromUTC in the virtual machine's .vmx
configuration file to a value in seconds. For example, setting rtc.diffFromUTC = 0 sets
the clock to UTC at power on, while setting rtc.diffFromUTC = -25200 sets it to Pacific
Daylight Time, seven hours earlier than UTC. The guest operating system can still change the
offset value after power on by writing directly to the CMOS RTC.

You can also force the CMOS TOD clock to start at a specified time whenever the virtual machine
is powered on, independent of the real time. To do this, set the configuration file option
rtc.startTime. The value you specify is in seconds since Jan 1, 1970 00:00 UTC, but it is
converted to the local time zone of the host operating system before setting the TOD clock
(under the assumption that the guest operating system wants the CMOS TOD clock to read in
local time). If your guest operating system is running the CMOS TOD clock in UTC or some other
time zone, you should correct for this when setting rtc.startTime.

Because the alarm interrupt is designed to be triggered when the CMOS TOD reaches a specific
value, it also operates in real time, not apparent time.

All these choices reflect the way guest operating systems commonly use the CMOS timer
device. Guest operating systems typically have no difficulty with part of the device operating in
apparent time and other parts operating in real time. However, one unsupported guest
operating system (USL Unix System V Release 4.21) is known to crash if it sees the CMOS device's
update-in-progress bit set while starting up. It is not known whether this crash would occur on
real hardware or whether the guest operating system is confused by the fact that the update
interrupt, the update-in-progress (UIP) bit, and the rollover of the TOD clock to the next second
7

Timekeeping in VMware Virtual Machines
do not all occur at the same moment, as they would on real hardware. In VMware products
beginning with VMware Workstation 5, you can work around this problem by setting
rtc.doUIP = FALSE in the virtual machine's configuration file, which forces the UIP bit to
always return 0.

Note: Do not use the rtc.doUIP = FALSE setting unless you are running an old version
of USL Unix or Xenix that requires it. Setting this value for other guest operating systems may
prevent timekeeping from working correctly.

Virtual Local APIC Timers
VMware products fully emulate the local APIC timer on each virtual CPU. The timer runs in
apparent time, matching the other timer devices. Currently, the virtual APIC timer's input
frequency is always 66.000MHz.

Virtual ACPI Timer
VMware products fully emulate a 24-bit ACPI timer. The timer runs in apparent time, matching
the other timer devices. It generates an interrupt when the high-order bit changes value.

Virtual TSC
Current VMware products virtualize the TSC in apparent time. The virtual TSC matches the other
timer devices visible in the virtual machine. Like those devices, the virtual TSC falls behind real
time when there is a backlog of timer interrupts and catches up as the backlog is cleared. Thus,
the virtual TSC does not count cycles of code run on the virtual CPU — it advances even when
the virtual CPU is not running. The virtual TSC also does not match the TSC value on the host
hardware. When a virtual machine is first powered on, its virtual TSC is set, by default, to run at
the same rate as the host TSC, but if the virtual machine is moved to a different host with a
different CPU speed (using VMotion, or by suspending on one host machine and resuming on
another), the virtual TSC continues to run at its original startup rate, not at the host TSC rate on
the new host machine.

You can force the virtual TSC's rate to a specific value N (in cycles per second or Hz) by adding
the setting timeTracker.apparentHz = N to the virtual machine's .vmx configuration
file. This feature is rarely needed. One possible use is to test for bugs in guest operating systems;
for example, Linux 2.2 kernels will hang during startup if the TSC runs faster than 4GHz. Note that
this feature does not change the rate at which instructions are executed. In particular, you
cannot make programs run more slowly by setting the virtual TSC's rate to a lower value.

Running the TSC in apparent time is necessary for some guest operating systems to start up and
run properly, particularly SMP-enabled versions of both Microsoft Windows and Linux operating
systems. However, there are some drawbacks. Reading the TSC takes a single instruction
(rdtsc) and is fast on real hardware, but in a virtual machine this instruction incurs substantial
virtualization overhead. Thus, software that reads the TSC very frequently may run more slowly
in a virtual machine. Also, some software uses the TSC to measure performance, and such
measurements are less accurate using apparent time than using real time.

You can turn off virtualization of the TSC in a virtual machine. After you do this, reading the TSC
in the virtual machine returns the host machine's TSC value and incurs no virtualization
overhead. To turn off TSC virtualization, add the following setting to the virtual machine's
configuration file:

monitor_control.virtual_rdtsc = false

Be aware that some guest operating systems may fail to start up if the virtual TSC is turned off. A
possible workaround for this problem is to start up the guest operating system with the virtual
8

Timekeeping in VMware Virtual Machines
TSC turned on, suspend the virtual machine and add the configuration setting to turn off the
virtual TSC, then resume the virtual machine.

It is also possible for the guest operating system to read the real TSC's value as a pseudo-
performance counter using a VMware experimental feature (subject to change). This feature
uses a trap to catch a machine instruction issued by the guest operating system and thus is
slower than reading the TSC directly, but it does permit the virtual TSC to continue to show
apparent time. To enable this feature, use the following configuration file setting:

monitor_control.pseudo_perfctr = true

You can then issue the machine instruction rdpmc 0x10000 in the virtual machine to obtain
the host TSC. This instruction is privileged unless the PCE flag is set in the virtual machine's CR4
control register, so you may have to modify the guest operating system (or write a driver) to turn
on this bit before you use it.

Virtual HPET
Current VMware products do not provide a virtual HPET.

Other Time-Dependent Devices
Computer generation of sounds is also time-sensitive. The sounds a virtual machine generates
are always played by the host machine's sound card at the correct sample rate, regardless of
timer behavior in the virtual machine, so they always play at the proper pitch. Also, there is
enough buffering between the virtual sound card of the virtual machine and the host machine's
sound card so that sounds usually play continuously; however, there can be gaps or stuttering if
the virtual machine falls far enough behind to exhaust the supply of buffered sound information
available to play. Another source of problems is that playback of MIDI sound (as well as many
other forms of multimedia) requires software to provide delays for the correct amount of time
between notes or other events. Thus, playback can slow down or speed up if the apparent time
deviates too far from real time.

VGA video cards produce vertical and horizontal blanking signals that depend on a monitor's
video scan rate. VMware virtual machines currently make no attempt to emulate these signals
with accurate timing. There is very little software that uses these signals for timing, but a few
games do use them. These games currently are not playable in a virtual machine.

Timekeeping in Specific Operating Systems
This section details some of the peculiarities of specific operating systems that affect their
timekeeping performance when they are run as guests in virtual machines. A few of these issues
also affect timekeeping behavior when these operating systems are run as hosts for VMware
Workstation or VMware GSX Server.

Microsoft Windows
Microsoft Windows operating systems generally keep time by counting timer interrupts (ticks).
System time of day is precise only to the nearest tick. The timer device used and the number of
interrupts generated per second vary depending on which specific version of Microsoft
Windows, and which Windows HAL (hardware architecture layer), is installed. Most uniprocessor
Windows installations use the PIT as their main system timer, but multiprocessor HALs and some
ACPI uniprocessor HALs use the CMOS periodic timer instead. For systems using the PIT, the
base interrupt rate is usually 100Hz, although Windows 98 uses 200Hz. For systems that use the
CMOS timer, the base interrupt rate is usually 64Hz.
9

Timekeeping in VMware Virtual Machines
Microsoft Windows also has a feature called the multimedia timer API that can raise the timer
rate to as high as 1000Hz (or 1024Hz on systems that use the CMOS timer) when it is used. For
example, if your virtual machine has the Apple QuickTime icon in the system tray, even if
QuickTime is not playing a movie, the guest operating system timer rate is raised to 1000Hz. This
API is not used exclusively by multimedia applications. For example, the BEA WebLogic product
and the Chameleon NFS client also raise the timer rate to 1000Hz.

Microsoft Windows has an additional time measurement feature accessed through the
QueryPerformanceCounter system call. This name is a misnomer, since the call never
accesses the CPU's performance counter registers. Instead, it reads one of the timer devices that
have a counter, allowing time measurement with a finer granularity than the interrupt-counting
system time of day clock. Which timer device is used (the ACPI timer, the TSC, the PIT, or some
other device) depends on the specific Windows version and HAL in use.

To initialize the system time of day on startup, Microsoft Windows reads the battery-backed
CMOS TOD clock. Occasionally, Windows also writes to this clock so that the time is
approximately correct on the next startup.

Microsoft Windows has two built-in clock synchronization mechanisms that correct for
problems such as lost ticks and off-frequency timer input oscillators.

1. A daemon present in Windows NT-family systems (that is, Windows NT 4.0 and later)
checks the system time of day against the CMOS TOD clock once per hour. If the system
time is off by more than 60 seconds, it is reset to match the TOD clock. This behavior is
mostly harmless in a virtual machine, but it can conflict with VMware Tools time
synchronization in some rare cases. In addition, it is possible (though rare) for the daemon
to set the clock too far ahead because it is not aware that the virtual machine is in the
process of catching up to real time. Windows provides a way for an application to disable
this daemon, and it is planned that future versions of VMware Tools will do so when the
time synchronization feature is turned on.

2. The Windows Time Service (W32Time), present in Windows 2000 and later, implements a
simple subset of the Network Time Protocol (NTP). The subset is called SNTP. W32Time
allows you to synchronize a Windows machine's clock in several different ways, each
providing a different level of accuracy. Like the CMOS-based time daemon, W32Time is not
aware of any attempts by a virtual machine to process timer interrupt backlogs and catch
up the virtual machine's clock to real time. So, W32Time can set the clock too far ahead or
otherwise be confused by the clock behavior, and it can conflict with VMware Tools time
synchronization. In most cases, it's recommended that you turn the W32Time service off in
virtual machines and run only VMware Tools time synchronization. (It is planned that future
versions of VMware Tools will do this automatically. Also see VMware Knowledge Base article
1318.) If you have a requirement to use W32Time, see Guest Clock Synchronization With
Non-VMware Software on page 16.

Some versions of Windows, especially multiprocessor versions, set the TSC register to zero
during their startup sequence, in part to ensure that the TSCs of all the processors are
synchronized. Microsoft Windows also measures the speed of each processor by comparing the
TSC against one of the other system timers during startup, and this code also sets the TSC to
zero in some cases. Because of these operations, some versions of Windows will fail to start up in
a virtual machine if TSC virtualization is turned off, since the virtual machine is not allowed to
change the value of the host's TSC.
10

http://www.vmware.com/support/kb/enduser/std_adp.php?p_faqid=1318
http://www.vmware.com/support/kb/enduser/std_adp.php?p_faqid=1318

Timekeeping in VMware Virtual Machines
Some multiprocessor versions of the Windows operating system program the local APIC timers
to generate one interrupt per second, while other versions of Windows do not use these timers
at all.

Some multiprocessor versions of Windows route the main system timer interrupt as a broadcast
to all processors, while others route this interrupt only to the primary processor and use
interprocessor interrupts for scheduler time slicing on secondary processors.

Linux
Current versions of Linux use periodic timer interrupts for timekeeping and scheduling. Linux
kernels generally use PIT 0 as their main source of timer interrupts. The interrupt rate used
depends on the kernel version. Linux 2.4 and earlier kernels generally program the PIT 0 timer to
deliver interrupts at 100Hz. Some vendor patches to 2.4 kernels increase this rate. In particular,
the initial release of Red Hat 8 and some updates to Red Hat 7 used 512Hz, but later updates
reverted to the standard 100Hz rate. Novell SuSE Pro 9.0 uses 1000Hz when the desktop
command line option is provided to the kernel, and the SuSE installation program sets this
option by default. Linux 2.6 kernels use a base rate of 1000Hz.

In addition to the main PIT 0 timer interrupts, SMP-capable kernels (as well as some UP kernels
that are configured to enable the local APIC) also program the local APIC timer on each CPU to
deliver interrupts at approximately the same base rate as the PIT 0 timer. Thus, a one-CPU virtual
machine running an SMP Linux 2.4 kernel requires a total of 200 timer interrupts per second
across all sources, while a two-CPU virtual machine requires 300 interrupts per second. A one-
CPU Linux 2.6 kernel virtual machine that uses the local APIC requires a total of 2000 timer
interrupts per second, while a two-CPU virtual machine requires 3000 interrupts per second.
Linux attempts to stagger these interrupts so that taken together, the interrupts from all the
timers are evenly spaced. (Since the rates are not exactly the same, however, this staggering
does not work; in fact, the PIT and local APIC timer interrupts drift slowly in and out of phase
with one another.) The Linux scheduler uses local APIC timer interrupts to time slice CPU
resource usage among processes, but the interrupts play no role in keeping track of the time of
day.

User applications on Linux can request additional timer interrupts from the CMOS timer using
the /dev/rtc device. This feature is used by some MIDI software such as MusE.

Most Linux distributions are set up to initialize the system time from the battery-backed CMOS
TOD clock at startup and to write the system time back to the CMOS TOD clock at shutdown. In
some cases, Linux kernels also write the system time to the CMOS TOD clock periodically (once
every 11 minutes). You can manually read or set the CMOS TOD clock using the /sbin/
hwclock program.

Linux kernel 2.4 and earlier versions interpolate the system time (as returned by the
gettimeofday system call) between timer interrupts using an algorithm that is somewhat
prone to errors. First, the kernel counts PIT timer interrupts to keep track of time to the nearest
10 milliseconds. When a timer interrupt is received, the kernel reads the PIT counter to measure
and correct for the latency in handling the interrupt. The kernel also reads and records the TSC
at this point. On each call to gettimeofday, the kernel reads the TSC again and adds the
change since the last timer interrupt was processed to compute the current time.
Implementations of this algorithm have had various problems that result in incorrect time
readings being produced when certain race conditions occur. These problems are fairly rare on
real hardware, but are more frequent in a virtual machine. The algorithm is also sensitive to lost
ticks (as described earlier), and these seem to occur more often in a virtual machine than on real
hardware. As a result, if you run a program that loops calling gettimeofday repeatedly, you
11

Timekeeping in VMware Virtual Machines
may occasionally see the value go backward. This occurs both on real hardware and in a virtual
machine, but is more frequent in a virtual machine.

Linux kernel 2.6 implements several different algorithms for interpolating the system time and
lets you choose between them with the clock= kernel command line option. Unfortunately,
all the available options have some drawbacks. (Information presented here is current up to
kernel version 2.6.8.1.)

Two of the algorithms incorporate code that attempts to automatically detect lost ticks from
non-processed timer interrupts and add extra ticks to correct for the time loss. Unfortunately,
these algorithms may add extra, spurious ticks to the operating system clock when timer
interrupt handling is delayed such that two interrupts are handled in close succession, but
neither is lost. Such bunching of interrupts occurs occasionally on real hardware, usually due to a
CPU that is busy handling other tasks while interrupts are temporarily disabled. This problem
occurs much more frequently in a virtual machine because of the virtual machine's need to
share the real CPU with other processes. So, this problem can cause the clock to run too fast
both on real hardware and in a virtual machine, but the effect is much more noticeable in a
virtual machine. The following paragraphs describe the Linux kernel 2.6 algorithms for
interpolating time that can be used in a virtual machine:

• Option clock=tsc selects an algorithm that makes use of the PIT counter and the TSC
for time interpolation. This algorithm is similar to that of Linux kernel 2.4, but incorporates
lost tick correction. As previously noted, the methods used to adjust time for lost ticks may
overcorrect, making the clock run too fast. Time gains of up to 10% have been observed
when running this algorithm in a virtual machine. When run in a VMware virtual machine,
SuSE Linux Enterprise Server version 9 (SLES9) uses this algorithm by default because of a
SuSE-specific patch.

• Option clock=pmtmr selects a simpler but more robust algorithm that makes use of the
ACPI timer for interpolation. This option also includes lost tick correction code that may
cause time gains. However, when used in a virtual machine, time gains from using this
option are much smaller. This option is usable in a virtual machine, if you can tolerate the
small time gain. An unpatched kernel uses this algorithm by default when run in a VMware
virtual machine.

• Option clock=pit is the simplest and most robust of the available algorithms. It uses
only the PIT counter for interpolation. This option does not include lost tick correction
code, so it does not gain time, but it does lose time when a tick is actually lost. This option
is recommended for use in VMware virtual machines, together with VMware Tools time
synchronization, to correct for the occasional lost ticks.

Other Operating Systems
The Be Operating System (BeOS) version 5 system clock typically runs too fast in a virtual
machine. BeOS 5 bases its clock on the TSC, after measuring the TSC's speed against the PIT
timer. This measurement is taken over too short an interval to achieve accuracy even on real
hardware, and this deficiency is magnified in a virtual machine. Later versions of BeOS may have
fixed this issue.
12

Timekeeping in VMware Virtual Machines
Increasing the Host Timer Interrupt Rate
Generally, to keep up with the timer interrupt rate requested by a guest operating system,
VMware products require the host's timer interrupt rate to be at least as high as the guest
operating system's interrupt rate. This is because guest code usually executes directly on the real
processor. The virtual machine gets a chance to check whether the guest is due to receive a
virtual timer interrupt only when some event occurs on the real processor that causes it to trap
out of direct execution. Only physical timer interrupts can be relied on to occur regularly
enough. It is sometimes helpful to make the host rate higher than the guest rate, as this provides
more opportunities to catch up if the guest falls behind.

As previously described, the Windows multimedia timer service provides a way to increase the
host timer interrupt rate, but only up to a maximum of 1000 or 1024Hz. Because of this limit,
guest operating systems that use higher timer interrupt rates — in particular, many Linux 2.6
configurations — generally fail to keep up with real time when run under VMware for Windows.
For workarounds to this problem, see VMware Knowledge Base article 1420.

Also, as previously described, Linux provides a way to generate additional timer interrupts at up
to 8192Hz using the /dev/rtc device. (VMware Workstation and GSX Server for Linux use this
mechanism when needed.) There are some cases where /dev/rtc interrupts are unavailable,
because another application is using the device, the device is not configured, or the device does
not work in your specific Linux kernel. For workarounds in these situations, see VMware
Knowledge Base article 892.

VMware ESX Server can also increase its host timer interrupt rate as needed to service guest
operating systems. VMware ESX Server 1.x versions dynamically vary the rate up to a maximum
of 1000Hz per CPU. VMware ESX Server 2.x versions currently use a fixed rate of 1000Hz. As
previously mentioned, this rate is not high enough for certain guest operating systems (for
example, many Linux 2.6 guests), but in ESX Server 2.5 and later, you can manually increase the
interrupt rate if needed. See VMware Knowledge Base article 1518 for instructions. On ESX Server
3.x (future planned release), the default rate will be set higher and you will be able to increase
the rate further if necessary.

Synchronizing Hosts and Virtual Machines
with Real Time
Because of the way that timer devices in a virtual machine may fall behind real time and then
catch up later, standard clock synchronization software such as the Windows Time Service
(W32Time) or the Network Time Protocol (NTP) does not work well when run in a virtual
machine. If the virtual machine is aware that it is behind real time and is already delivering timer
interrupts at a higher rate so that the guest clock can catch up to real time, running non-VMware
clock synchronization software inside the guest at the same time may also advance the virtual
machine's clock, causing it to end up ahead of real time. Also, the widely varying timer interrupt
rate of a virtual machine, as compared with real time, is likely to confuse algorithms in non-
VMware clock synchronization software that attempt to detect the machine's exact timer
oscillator input frequency and correct for small variations from the specified frequency.

Instead of running non-VMware clock synchronization software in virtual machines, it is
recommended that you run such software in the host operating system (for VMware hosted
products) or the service console (for VMware ESX Server), then run VMware Tools in each guest
operating system with the time synchronization option turned on. With this setup, your host
receives the correct time from the network, and your virtual machines receive the correct time
13

http://www.vmware.com/support/kb/enduser/std_adp.php?p_faqid=1420
http://www.vmware.com/support/kb/enduser/std_adp.php?p_faqid=892
http://www.vmware.com/support/kb/enduser/std_adp.php?p_faqid=892
http://www.vmware.com/support/kb/enduser/std_adp.php?p_faqid=1518

Timekeeping in VMware Virtual Machines
from the host operating system. Some customers may have requirements to run non-VMware
clock synchronization software in guest environments, however. See Guest Clock
Synchronization With Non-VMware Software on page 16, if you have this requirement.

Host Time Synchronization
On Microsoft Windows 2000 and later, the Windows Time Service (W32Time) comes with the
operating system. There are many ways to configure W32Time, some of which give more precise
synchronization than others. See Microsoft's documentation for details. In addition to W32Time,
there are also many other third-party clock synchronization programs available for Windows.

All Linux distributions come with an NTP (network time protocol) daemon. The daemon is called
ntpd on current distributions, xntpd on older ones. NTP is an excellent way to synchronize a
Linux host machine's time.

VMware ESX Server also includes an NTP daemon for use on the service console. See VMware
Knowledge Base article 1339 for instructions on setting it up.

Guest Time Synchronization With VMware Tools
VMware Tools includes a time synchronization feature that periodically checks the guest
operating system clock against the host operating system clock and corrects the guest clock.
Unlike non-VMware synchronization software, VMware Tools time synchronization works in
concert with the built-in catchup feature in VMware virtual machines and avoids turning the
clock ahead too far.

To enable VMware Tools time synchronization in a guest, first install VMware Tools in the guest
operating system. Next, check that time synchronization is turned on. You can enable
synchronization from the graphical VMware Toolbox application within the guest. Alternatively,
you can set the .vmx configuration file option tools.syncTime = true to enable time
synchronization. Note that time synchronization in a Linux guest works even if you are not
running the VMware Toolbox application. All that is necessary is that the VMware guestd
process is running in the guest and tools.syncTime is set to true.

VMware Tools time synchronization is designed to be a second line of defense to deal with
special cases where a guest operating system's clock falls behind real time despite the built-in
catchup mechanism provided in the virtual machine. It is normal for a guest's clock to be behind
real time whenever the virtual machine is stopped for a while and then continues running; in
particular, after a suspend/resume, snapshot, disk shrink, or VMotion operation. These are the
main cases that VMware Tools time synchronization is meant to handle. The guest's clock may
also fall behind in less common circumstances, such as under heavy load when the guest has
not been able to get enough CPU time to handle all its timer interrupts.

The VMware Tools time synchronization daemon is quite simple and has a few limitations. The
daemon checks the guest clock only once per minute. If the guest clock is much farther behind
the host time than the virtual machine's built-in catchup mechanism expects it to be, the
daemon resets the guest clock to host time and cancels any pending catchup. For most guest
types, the daemon never turns the guest clock backward, even if the guest's clock time is
running ahead of real time. Turning the clock backward is seldom needed and can cause some
guest software to become confused. If your guest's clock is running ahead of real time, see
Known Issues and Troubleshooting on page 18 for troubleshooting tips and potential solutions
and workarounds.
14

http://www.vmware.com/support/kb/enduser/std_adp.php?p_faqid=1339
http://www.vmware.com/support/kb/enduser/std_adp.php?p_faqid=1339

Timekeeping in VMware Virtual Machines
Note: Future VMware products (tentatively, Workstation 5.5, ESX Server 3.0, and GSX Server 4.0)
will allow changing how often the tools daemon checks the guest time against the host time.
The default period between time checks is 60 seconds. To select a different period, set the
configuration variable tools.syncTime.period to the desired time period (value
specified in seconds).

Keeping a Fictitious Time In a Guest System
Occasionally you may have a need to test a guest system with its clock set to some value other
than real time. Some examples include setting a virtual machine's date to 1999 to work around
Y2K problems in legacy software, or setting a virtual machine to various times to test date
printing routines. You may want to have the virtual machine show the same time whenever it is
powered on, to specify a constant offset from real time, or to synchronize a virtual machine with
a Microsoft Windows domain controller whose time is out of sync with the host machine on
which the virtual machine is running.

VMware Tools can synchronize guest operating systems only to the real time as maintained by
the host operating system, so you need to turn off VMware Tools time synchronization if you
want to maintain a fictitious time in a guest system.

In addition, VMware Tools automatically updates the guest's time to match the host operating
system's time in a few other cases where the guest can be expected to have lost a large amount
of time (even if periodic time synchronization is turned off). To maintain a fictitious time, you
need to set the following options to false:

tools.syncTime = FALSE

time.synchronize.continue = FALSE

time.synchronize.restore = FALSE

time.synchronize.resume.disk = FALSE

time.synchronize.shrink = FALSE

Note: Information on these settings is also available in VMware Knowledge Base article 1189.

Here is what each option controls:

• tools.syncTime — If set to TRUE, the time syncs periodically, as described above.

• time.synchronize.continue — If set to TRUE, the time syncs after taking a
snapshot.

• time.synchronize.restore — If set to TRUE, the time syncs after reverting to a
snapshot.

• time.synchronize.resume.disk — If set to TRUE, the time syncs after resuming
from suspend.

• time.synchronize.shrink — If set to TRUE, the time syncs after defragmenting a
virtual disk.

Since guest operating systems generally get their time from the virtual CMOS TOD clock when
they are powered on, you need to set this device to your fictitious time if you want the time to
persist across guest restarts. If you want to start a guest with the same time on every startup, use
the rtc.startTime option described in the earlier section Virtual CMOS RTC. If instead you
want the guest to have a constant offset from real time as maintained by the host, you can use
the rtc.diffFromUTC option, or simply set the CMOS TOD clock time from the virtual
machine's BIOS setup screen or from within the guest operating system. In Microsoft Windows,
setting the system time automatically updates the CMOS clock. In Linux, you can use the
15

http://www.vmware.com/support/kb/enduser/std_adp.php?p_faqid=1189

Timekeeping in VMware Virtual Machines
/sbin/hwclock program to set the CMOS clock directly. Alternatively, as most Linux
distributions are configured to copy the system time into the CMOS TOD clock during system
shutdown, you can simply set the system time and shut down the guest system before
restarting it again.

Guest Clock Synchronization With Non-VMware Software
If you must run non-VMware clock synchronization software (such as the Windows time service
W32Time) in a virtual machine, the built-in clock catchup that the virtual machine performs can
confuse the non-VMware clock synchronization software. This confusion may cause time in the
guest to get ahead of real time and generally may cause the clock synchronization software to
have difficulty in tracking real time closely. Also, if VMware Tools time synchronization is enabled,
both VMware Tools and the non-VMware clock synchronization software you are running will try
to correct the clock without knowledge of each other, causing similar problems.

Some customers have a requirement to use a virtual machine as a primary domain controller for
a Windows network. The primary domain controller must run W32Time as a time server, to
provide time to secondary domain controllers and other hosts on the network. However, the
domain controller does not need to use W32Time's client functionality to receive time from
another source and synchronize the virtual machine's own clock. So, you can use VMware Tools
to synchronize the virtual machine's clock while still running W32Time in a server-only mode.
For instructions on setting up W32Time this way, refer to Microsoft documentation on the
Windows Time Service; specifically, the NoSync registry option.

If this approach is not applicable to your situation and you must synchronize a virtual machine's
clock using W32Time or other non-VMware software, you can take the following actions to
minimize problems:

1. Completely disable VMware Tools time synchronization, as described in Keeping a
Fictitious Time In a Guest System on page 15.

2. In addition, if you still observe the virtual machine getting ahead of real time, you can try
limiting the built-in clock catchup. Normally, the built-in catchup is active whenever the
guest is between 50 milliseconds and 60 seconds behind real time, and the guest clock
attempts to run 200% faster than normal speed while catching up. You can modify this
behavior by setting the following options in the virtual machine's .vmx configuration file.

timeTracker.catchupPercentage = 200

timeTracker.catchupIfBehindByUsec = 50

timeTracker.giveupIfBehindByUsec = 60000000

Note: The option settings shown in the example are the default values. Reducing the
giveupIfBehindByUsec option value may help in limiting the built-in catchup operation.
Setting this option to a lower value makes the catchup give up more quickly if the virtual
machine gets significantly behind real time, thereby letting the non-VMware clock
synchronization software you are running take care of synchronizing the clock. It is probably not
a good idea to completely disable the built-in catchup, however, since the virtual machine may
then lose time faster than your operating system or application software expects to be possible
in a real machine.
16

http://download.microsoft.com/download/2/0/f/20f61625-7b2a-4531-b007-1c714f1e51b7/wintimeserv.doc

Timekeeping in VMware Virtual Machines
Time Measurements Within a Virtual Machine
Customers often ask how to measure the system CPU load from within a virtual machine, or are
puzzled about seeing anomalous readings from CPU usage measurement tools running within
a virtual machine. This is a difficult issue for two reasons.

First, CPU load and usage measurement tools running within a virtual machine can observe
activity only within the virtual machine. But the virtual machine itself is a set of processes that
are scheduled by the host operating system and receive only a varying fraction of the host CPU.
Moreover, CPU load and usage measurement algorithms generally depend on precise time
measurements, enough so that the distortion of time that takes place in a virtual machine can
have a sizable effect.

Second and more fundamentally, it is not even clear what it should mean to measure CPU load
and usage within a single virtual machine. As a simple example, suppose a virtual machine is
running just one process that repeatedly computes for one second, then sleeps for one second.
While the process is sleeping, the guest operating system has nothing to do (other than field
timer interrupts) and spends almost all of its time in a halted state. If this were a real machine,
the process's CPU usage, as well as the total CPU load, obviously would be 50%. However, a
virtual machine deschedules itself whenever the guest operating system halts and does not
receive any physical CPU time until the halt state ends. Thus, the process receives 100% of the
physical CPU time that is actually allocated to the virtual machine, though still only 50% of the
time that could potentially have been allocated to it. The situation becomes more complicated
if the host machine is heavily loaded. In that case the process may receive far less than 50% of a
physical CPU.

Because of these issues, CPU load or idle time measured from within a virtual machine currently
is not a very meaningful number. If you are running software in a virtual machine that measures
and adapts to system load, you should experiment to find out how the software behaves, and
you may find that you need to modify the software's measurement and adaptation algorithms.

Experiments have shown that the relative CPU usage of different processes running within a
virtual machine (as measured by the guest operating system) is usually approximately correct.
However, these measurements can be biased if a particular process frequently causes the virtual
machine to be descheduled and thus require timer interrupt catchup when the virtual machine
runs again. This bias arises because guest operating systems often use statistical sampling to
determine CPU usage, with samples collected from the timer interrupt handler.

Similarly, because time in a virtual machine may frequently fall behind and catch up, measuring
short time intervals within a virtual machine tends to produce inaccurate results. See Virtual TSC
on page 8 for information on how to access the real TSC from within a virtual machine.

If possible, use host CPU (and other resource) usage statistics instead of statistics measured
inside a guest. For VMware ESX Server, see Knowledge Base article 1078. Statistics are also
available from VMware Virtual Center.
17

http://www.vmware.com/support/kb/enduser/std_adp.php?p_faqid=1078

Timekeeping in VMware Virtual Machines
Known Issues and Troubleshooting
This section describes some known timekeeping issues and problems and discusses some
workarounds and troubleshooting techniques. For additional information, search for "time" or
"clock" in the VMware Knowledge Base.

Gathering Information
The first step in dealing with a timekeeping problem is to observe your system behavior
carefully and gather detailed information about the problem. Many different problems can have
similar symptoms or can appear similar if not observed or described clearly. Some specific things
you can do are the following:

1. Check whether your host machine (or for VMware ESX Server, the Service Console) has the
correct time and is running proper clock synchronization software, as described in Host
Time Synchronization on page 14. If not, correct this before going on.

2. Check whether VMware Tools is installed in the guest systems that are having timekeeping
problems, and whether VMware Tools time synchronization is turned on. (Of course, in
some cases you may have reason not to run VMware Tools time synchronization software;
if so, check and verify that you are not running it.)

3. Note exactly how the guest time differs from real time, under what circumstances the
timekeeping problem appears, and how severe the problem is.

4. If you are running a Linux guest, run the following script in the guest:

Note: You may have to run the script as root, as /sbin/hwclock requires root privilege with
some Linux distributions. When you run the script, capture the output to a file and include the
output if you file a support request (SR) with VMware.

cat /etc/issue

uname -a

date

/sbin/hwclock

date

cat /proc/interrupts

sleep 10

cat /proc/interrupts

date

/sbin/hwclock

date

Using the output from the script, you can see which timer interrupts are in use and the
frequency with which interrupts are generated. Check how much the values shown in
/proc/interrupts change during the 10 second sleep measured by the guest. The timer
interrupts most commonly used by Linux are 0 or “timer” (the PIT) and LOC (the local APIC
timer).

This script also provides a rough way to observe any large difference in running rate between
the guest and host clocks. While the date command returns the guest operating system clock
time, /sbin/hwclock returns the CMOS TOD clock time, which VMware virtualizes at a fixed
offset from the host's clock.
18

http://www.vmware.com/support/kb/enduser/std_alp.php

Timekeeping in VMware Virtual Machines
5. You can turn on additional logging of timekeeping statistics in a virtual machine by adding
the following lines to its configuration file and restarting the virtual machine:

timeTracker.periodicStats = TRUE

timeTracker.statInterval = 10

The second line specifies the sampling period (in seconds); the default period is 60
seconds. If you are planning to file a support request with VMware, please enable these
settings, do whatever is necessary to reproduce the problem, and run the affected virtual
machine in its problematic state for about 30 minutes. Include the resulting vmware.log
file with your report.

The following listing shows the output from a typical vmware.log file. Note that the
format of this output is subject to change:

Mar 21 17:17:36: vmx| TimeTrackerStats behind by 104218351
cycles (43668 us); running at 100%; 0 stops, 0 giveups

Mar 21 17:17:36: vmx| TimeTrackerStats APIC0 9972 ints, 997.40/
sec, 1023.94 avg, 1000.49 req; 51188 tot, 50015 req; 59 loprg,
60 rtry

Mar 21 17:17:36: vmx| TimeTrackerStats timer0 9970 ints, 997.20/
sec, 1023.62 avg, 1000.15 req; 51172 tot, 49998 req; 1395 loprg,
1400 rtry

The phrase "behind by 104218351 cycles (43668 us)" means that the
virtual machine's built-in time tracker knows that the guest's clock is slightly behind real
time, by 43668 microseconds (=0.043668 seconds), or 104218351 CPU cycles on the guest
TSC.

The phrase "running at 100%" indicates that the virtual machine is currently running
the guest's clock at normal speed. 300% is another common speed you may see in the
vmware.log file, used when the guest clock is far enough behind that it needs to be run
faster to catch up.

The phrase "0 stops" means that VMware Tools has not asked the time tracker to stop
catchup since the virtual machine was powered on. VMware Tools stops catchup
whenever it detects that the guest's clock is significantly behind real time and turns the
clock ahead.

The phrase "0 giveups" means that the time tracker itself has not detected that the
guest clock is too far behind to catch up.

The "APIC0" line gives details for the local APIC timer on CPU 0, and the timer0 line for
PIT timer 0. Other names that can appear on these lines include CMOS-P and CMOS-U
(the CMOS timer periodic and update interrupts), and PIIX4PMTT (the ACPI timer).

The phrase "9972 ints, 997.40/sec" indicates that there were 9972 virtual APIC0
timer interrupts delivered since the last point when timeTracker statistics were output
(roughly the specified statInterval, 10 seconds in this example), or 997.40 per
second.

The phrase "1023.94 avg, 1000.49 req" means that there was an average of
1023.94 interrupts per second over the interval since the guest last reprogrammed this
timer to a different rate. The guest asked for 1000.49 interrupts per second. In this case, the
average is higher than requested, probably because the virtual machine was in catchup
mode at the point when the guest last reprogrammed the timer, so it ran fast for a while.
19

Timekeeping in VMware Virtual Machines
The phrase "51188 tot, 50015 req" indicates there have been a total of 51188
interrupts since the guest last reprogrammed the timer, while there should have been
50015 at the nominal, requested rate. Again the excess interrupts are probably due to
catchup mode.

The phrase "59 loprg, 60 rtry" indicates that on 59 occasions, when the virtual
machine wanted to deliver a virtual interrupt to the guest, it was not safe to do so
because the guest had made too little progress running code since the last virtual
interrupt of this type. The time tracker did a total of 60 retries, so usually it was able to
deliver the interrupt on the first retry.

6. With VMware ESX Server, you can find out what timer interrupt rate a guest is requesting
even when TimeTrackerStats are not enabled. Read the contents of the node /proc/
vmware/timers in the Service Console file system and look for lines containing the
word "guest". Here is an example:

 deadlineTS periodTS periodUS function data flags
1686744858945268 747574 500 47415c 0 periodic
1686744870510526 14951486 10000 47b250 9dccb8 one-shot
1686744860003050 14951486 10000 47b250 9e8310 one-shot
1686744867214924 14972418 10014 443ba4 b7 periodic, guest 183
1686744869355698 14951486 10000 47b250 a02c88 one-shot
1686744873607566 14951486 10000 47b250 a0a618 one-shot
1686744859794360 1499634 1003 443ba4 ad periodic, guest 173
1686744868798312 14972418 10014 443ba4 ab periodic, guest 171

The line that ends "guest 183" indicates that the guest that has a virtual CPU with
VMkernel worldID 183 is requesting a timer interrupt every 10014 microseconds; that is, at
a frequency of 1000000/10014 = 99.86 Hz. This is a typical rate for a uniprocessor Windows
guest. The periodUS shown in this line reflects the aggregate interrupt rate over all
timers in the virtual machine; so, for example, an SMP Linux 2.6 guest with two CPUs would
show a periodUS of approximately 333 — because it requests 1000 PIT interrupts per
second, plus 1000 local APIC timer interrupts per second per CPU. There are several ways to
find which virtual machine corresponds to each specific worldID. First, the node /proc/
vmware/sched/cpu contains a line for each active worldID, and for virtual machine
worlds, the "name" column contains a short form of the virtual machine's name.
Alternatively, you can look for a line with the corresponding number in the vmware.log
file for each of your virtual machines; for example:

Apr 21 15:04:24: vcpu-0| VMMon_Start: vcpu-0: fd=15 worldID=183

7. If you are submitting a support request (SR), VMware Support also asks you to run the
vm-support script to gather additional information about your host system and virtual
machines. On Linux-hosted and VMware ESX Server systems, this script is named /usr/
bin/vm-support. On Windows-hosted systems, the script is named vm-
support.vbs and is located in the VMware installation directory. See the VMware
Support Web page for more information.
20

http://www.vmware.com/support/

Timekeeping in VMware Virtual Machines
Specific Timekeeping Issues and Problems
This section lists specific timekeeping issues and problems along with suggested workarounds
or solutions.

Guest time is wrong but time runs correctly after you reset it
If you see this issue, the possible causes and actions to take are the following.

1. Was the guest started in the wrong time zone? Check that both host and guest are set to
the time zone you want, correct the time manually, and check if the problem recurs. For
Linux guests, it is best to set the option in your Linux distribution to keep the so-called
"hardware" clock (actually the virtual CMOS TOD clock) in UTC, not local time. This avoids
any confusion when your local time changes between standard and daylight saving time
(in England, "summer time").

2. Is VMware Tools installed and time synchronization enabled? VMware Tools can correct the
guest clock after a suspend/resume, disk shrink, or migration operation.

3. Could the guest have been started with its clock ahead of real time, or could it have been
set ahead of real time manually or by some software running in the guest? VMware Tools
for most guest operating systems currently does not turn the guest clock back because
time going backward can confuse some software running in guests. Correct the time
manually and check if the problem recurs.

Guest time runs slower than real time
If you set the guest clock correctly, but it steadily falls behind again afterward, check the
following.

1. Is VMware Tools installed and time synchronization enabled? Guest time ideally should run
at the correct rate even if VMware Tools time synchronization is not used, so even if turning
it on helps, you may want to continue down this checklist to further investigate the
problem.

2. Check for excessive load on the host. If your virtual machine is not getting enough CPU
time to handle all the timer interrupts it has requested, it will fall behind real time. In this
case you may see a high value for "loprg" in the TimeTracker statistics described in the
previous section Gathering Information.

3. In general, the faster the timer interrupt rate the guest requests, the more overhead the
interrupts cause and the more difficult it is for the system to deliver the interrupts rapidly
enough for the guest to keep up with real time. If the guest requests a faster rate than the
host operating system normally provides, VMware products attempt to increase the host
timer rate dynamically, but sometimes this is not possible. It is sometimes helpful to make
the host rate higher than the guest rate, as this provides more opportunities to catch up if
the guest falls behind.

• On Linux hosts, VMware products use the /dev/rtc device to request additional
timer interrupts when needed, but on some hosts /dev/rtc is not available or is not
configured to be able to generate periodic interrupts. In this case, if /dev/rtc is
needed, you should see a hint popup (if hints are enabled), and there should be a
message in vmware.log stating that /dev/rtc was not available. See VMware
Knowledge Base article 892 for more information and workarounds.

• On VMware ESX Server 2.x, the VMkernel hardware timer interrupt rate is set to 1000Hz,
by default. You can raise this rate to help deal with guests that need virtual timer
interrupts at 1000Hz or more. Setting the rate higher will increase VMkernel overhead
21

http://www.vmware.com/support/kb/enduser/std_adp.php?p_faqid=892
http://www.vmware.com/support/kb/enduser/std_adp.php?p_faqid=892

Timekeeping in VMware Virtual Machines
slightly, but is otherwise generally harmless. See VMware Knowledge Base article 1518. On
ESX Server 3.x (future planned release), the default rate will be set higher and you will be
able to increase the rate further if necessary.

• Linux kernel 2.6 guests normally request 1000 PIT 0 timer interrupts per second, plus, in
some cases, 1000 local APIC timer interrupts on each virtual CPU. For single processor
guests, you can usually eliminate the unneeded APIC timer interrupts by including the
kernel command line flags noapic nolapic nosmp. (All three flags may not be
needed, depending on your exact kernel version, but it should be harmless to give all
three.)

In addition, you can recompile your guest Linux kernel to reduce the base timer rate
back to 100Hz; see VMware Knowledge Base article 1420 for more information.

4. A known bug that is fixed in recent VMware releases can cause frequent lost ticks,
especially at guest timer interrupt rates of 1000Hz or higher. Upgrading to the latest release
will help if you have this problem. The problem is fixed in VMware Workstation 5 and
VMware ESX Server 2.5.1, and a fix is scheduled to appear in VMware GSX Server 3.2.

5. Newer Linux 2.6 kernels (beginning at least as far back as 2.6.8.1) trigger another known
bug that is fixed in recent VMware releases. This bug causes the guest operating system
clock to run too slowly and disables catchup. Typically the clock runs at around 50% of
normal speed. A fix is currently scheduled to appear in VMware Workstation 5.5, VMware
ESX Server 2.5.2, and VMware GSX Server 3.2.

6. Your VMware Workstation or VMware GSX Server host system may have power-saving
technology that varies the CPU clock speed. Such technology is most common on laptops,
but it is coming into use on other types of host machines as well. A varying CPU clock
speed can cause virtual machines to lose or gain time. See VMware Knowledge Base
articles 1227 (for Windows hosts), 1591 and 916 (for Linux hosts), and 708 (for other related
tips and information).

7. In rare cases, it may be possible for VMware hosted products to measure the host CPU
speed incorrectly at driver load time, even if the host machine does not have power-saving
features. You can check the "KHZEstimate" line logged in the virtual machine's
vmware.log file to see the estimated speed of your host, measured in KHz. In these
cases, restarting the host system should eliminate the problem.

Guest time runs faster than real time
If you set your guest clock to the correct time but it steadily gains time thereafter, check the
following.

Note: This problem is much less common than losing time, but there are still a few possible
causes.

1. As described in the Linux section of Timekeeping in Specific Operating Systems on page 9,
Linux 2.6 kernels have code that tries to automatically detect lost ticks (from unprocessed
timer interrupts) and add extra ticks to correct for the time loss, but this code can
overcorrect and cause a virtual machine's clock to run too fast. In some cases, the guest
clock may run as much as 10% faster than real time. See VMware Knowledge Base article
1420 for more information and workarounds for this problem.

2. Try not to run more than one form of clock synchronization software in a guest system at
the same time. As discussed in Synchronizing Hosts and Virtual Machines with Real Time
on page 13, if you do this, when the clock falls behind, multiple clock synchronization
programs may all turn it ahead, causing it to overshoot real time. In particular, this can
22

http://www.vmware.com/support/kb/enduser/std_adp.php?p_faqid=1420
http://www.vmware.com/support/kb/enduser/std_adp.php?p_faqid=1518
http://www.vmware.com/support/kb/enduser/std_adp.php?p_faqid=1227
http://www.vmware.com/support/kb/enduser/std_adp.php?p_faqid=1591
http://www.vmware.com/support/kb/enduser/std_adp.php?p_faqid=916
http://www.vmware.com/support/kb/enduser/std_adp.php?p_faqid=708
http://www.vmware.com/support/kb/enduser/std_adp.php?p_faqid=1420
http://www.vmware.com/support/kb/enduser/std_adp.php?p_faqid=1420

Timekeeping in VMware Virtual Machines
occur if the Windows time service (W32Time), the built-in Windows time daemon, or some
other third-party clock synchronization program is running and turns the clock ahead
while the virtual machine's built-in catchup is also running. The built-in catchup cannot tell
this has occurred, so it continues to run the clock at high speed and eventually advances
the clock time beyond real time. Similarly, if you have both VMware Tools time
synchronization and a third-party clock synchronization program running, they may both
add time to the clock, causing it to get ahead of real time. However, also as discussed
earlier, the built-in catchup in a virtual machine and VMware Tools are designed to work
together to keep the clock correct.

If you do need to run third-party clock synchronization software in a guest, refer to Guest
Clock Synchronization With Non-VMware Software on page 16.

3. If you run VMware GSX Server (or VMware Workstation) on a NUMA machine, such as an
IBM x440, x445, or x460 with more than one CEC (NUMA node), several problems can arise
because the hardware timestamp counters (TSCs) of the different NUMA nodes are not
synchronized with each other. In fact, they run at substantially different speeds, varying by
as much as 1.5%. See VMware Knowledge Base article 1236 for more information and
workarounds for this situation. Note that this workaround is currently available only on
Microsoft Windows hosts in VMware GSX Server 3.1, but is scheduled for Linux 2.6 hosts in
GSX Server 3.2. An automated form of the workaround is also in development.

4. Your VMware Workstation or VMware GSX Server host system may have power-saving
technology that varies the CPU clock speed, which can cause virtual machines to either
lose or gain time. This issue is most common on laptops, but can also arise on other types
of hosts. See VMware Knowledge Base articles 1227 (for Windows hosts), 1591 and 916 (for
Linux hosts), and 708 (for other related tips and information).

5. In rare cases, it may be possible for VMware hosted products to measure the host CPU
speed incorrectly at driver load time even if the host does not have power-saving features.
You can check the "KHZEstimate" line logged in the virtual machine's vmware.log
file to see the estimated speed of your host, measured in kHz. In these cases, restarting the
host machine should eliminate the problem.

Second hand on clock applet in guest moves too fast or too slowly
If you watch the clock applet running in a virtual machine, you may see its second hand move
more slowly than real time for a while, then move more quickly to catch up. In general, this
behavior is normal and should not be considered a problem if the time is maintained accurately
over the long term. However, if the behavior is disruptive to your application, refer to the next
troubleshooting item for remedies.

MIDI (or other media) plays at varying rate
When listening to MIDI music, or watching or listening to other multimedia content in a virtual
machine, you may notice songs playing too slowly for a while, then playing faster to catch up.
This phenomenon is typically caused by the virtual machine's clock falling behind and catching
up, since some media players (particularly MIDI players) use the guest operating system's clock
to determine when to play notes. This issue is difficult to resolve completely; real time media is
simply a difficult application to handle well in a virtual machine. There are a few things, however,
that you can try to improve the situation:

1. Make sure your host system is not overloaded. Run the virtual machine on a faster host
system if necessary.
23

http://www.vmware.com/support/kb/enduser/std_adp.php?p_faqid=1227
http://www.vmware.com/support/kb/enduser/std_adp.php?p_faqid=1591
http://www.vmware.com/support/kb/enduser/std_adp.php?p_faqid=916
http://www.vmware.com/support/kb/enduser/std_adp.php?p_faqid=708
http://www.vmware.com/support/kb/enduser/std_adp.php?p_faqid=1236

Timekeeping in VMware Virtual Machines
2. See the workarounds listed for the troubleshooting item Guest time runs slower than real
time on page 21.

3. Search for "sound" in the VMware Knowledge Base and read the corresponding articles.

4. You can experiment with the timeTracker parameters described in Guest Clock
Synchronization With Non-VMware Software on page 16. In some cases increasing
catchupPercentage (to make catchup faster) or reducing
catchupIfBehindByUsec (to trigger catchup sooner) may help, but both options are
a last resort.

On a Linux host, the vmware-rtc kernel thread uses too much CPU time
When one or more of the virtual machines on a Linux host machine requests timer interrupts at
a higher rate than the host's hardware timer interrupt rate, VMware products attempt to use the
/dev/rtc device to obtain additional timer interrupts on the host machine. The vmware-rtc
kernel thread fields these interrupts and uses them to wake up virtual machines as needed. In
some cases, this thread can consume considerable CPU time. There are several ways of dealing
with this issue.

1. If the CPU consumption is not actually causing a performance problem on your host,
simply ignore it.

2. In some cases the guest timer interrupt rate can be reduced. For Linux kernel 2.6 guests,
see the troubleshooting item Guest time runs slower than real time on page 21.

3. See Increasing the Host Timer Interrupt Rate on page 13 for a way to increase the base host
timer interrupt rate, which may eliminate the need for extra clock interrupts from /dev/
rtc.

4. You can prevent /dev/rtc from being used. This will generally cause clocks to run slow
in any virtual machines you have that need the additional interrupts, but that may be
acceptable to you, depending on your application. To do so, add the following setting to
each virtual machine's .vmx configuration file, or add the setting globally to the host's
configuration file (/etc/vmware/config):

host.useFastClock = FALSE

This setting should work on all recent versions of VMware for Linux, but if you have an older
version on which it does not work, an alternative workaround is to remove the /dev/rtc
node from your host filesystem. (That is, become root and run the command:

rm /dev/rtc

VMware is tracking this issue internally and we hope to reduce the CPU usage of the vmware-rtc
thread in the future.

Linux error: "IO-APIC + timer doesn't work!"
Occasionally a Linux guest will fail to start up, displaying a garbled screen image or the following
error message:

"IO-APIC + timer doesn't work! pester mingo@redhat.com"

or

"IO-APIC + timer doesn't work! Try using the 'noapic' kernel
parameter"

The virtual machine's vmware.log file also includes the message:

"Possible PR 17486. Discarding interrupt".
24

http://www.vmware.com/support/kb/enduser/std_alp.php

Timekeeping in VMware Virtual Machines
This problem occurs because of some extremely time-critical code in the Linux startup
sequence that is run if the Linux kernel is configured to use the IO-APIC (advanced
programmable interrupt controller) hardware for interrupt routing. This problem occurs only
during startup, not during normal operation of the virtual machine.

A simple workaround is to restart the virtual machine; the machine normally succeeds in
starting up on the next try.

Another workaround is to give the guest kernel the command line parameters noapic
nolapic nosmp. All three flags may not be needed, depending on your exact kernel version,
but it is safe to provide all three. Adding kernel command line parameters is done by editing the
guest's lilo.conf or grub.conf file as appropriate; see your Linux distribution's
documentation if you are not familiar with this process. This workaround cannot be used if your
virtual machine is configured to have more than one virtual processor; that is, if it is an SMP
virtual machine. Uniprocessor virtual machines running on an SMP host or ESX Server system
can use the workaround.

Limited date range
Various issues can arise in host operating systems, guest operating systems, the guest BIOS,
VMware Tools, or the VMware application itself, if the host or guest date is set outside the range
1981 to 2037. VMware is in the process of correcting the upper limit values that are under our
control; obviously we have no control over limitations in host and guest operating systems.

Crashes running hosted products on NUMA systems
In addition to the guest clock speed problems previously described, hosted virtual machines
may crash with various assertion failures if run on a NUMA system (such as IBM x440, x445, or
x460) without applying the workarounds discussed in VMware Knowledge Base article 1236. This
issue does not apply to VMware ESX Server.

Conclusion
Timekeeping in virtual machines is a complex subject. We hope this white paper has provided
information to help you understand more clearly the issues involved, the problems that can
arise, and the solutions that are currently available in VMware products.
25

VMware, Inc. 3145 Porter Drive Palo Alto, CA 94304 www.vmware.com
Copyright © 1998-2005 VMware, Inc. All rights reserved. Protected by one or more of U.S. Patent Nos. 6,397,242, 6,496,847,
6,704,925, 6,711,672, 6,725,289, 6,735,601, 6,785,886, 6,789,156 and 6,795,966; patents pending. VMware, the VMware “boxes”
logo and design, Virtual SMP and VMotion are registered trademarks or trademarks of VMware, Inc. in the United States and/or
other jurisdictions. Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation. Linux is a
registered trademark of Linus Torvalds. All other marks and names mentioned herein may be trademarks of their respective
companies. Revision: 20050725 Item: NP-ENG-Q305-127

http://www.vmware.com/support/kb/enduser/std_adp.php?p_faqid=1236

	Timekeeping in VMware Virtual Machines
	Introduction
	Review of Time and Frequency Units
	PC Timer Hardware
	PIT (Programmable Interval Timer)
	CMOS RTC (Real Time Clock)
	Local APIC (Advanced Programmable Interrupt Controller) Timers
	ACPI (Advanced Configuration and Power Interface) or Chipset Timer
	TSC (Time Stamp Counter)
	HPET (High Precision Event Timer)

	VMware Timer Virtualization
	Virtual PIT
	Virtual CMOS RTC
	Virtual Local APIC Timers
	Virtual ACPI Timer
	Virtual TSC
	Virtual HPET
	Other Time-Dependent Devices

	Timekeeping in Specific Operating Systems
	Microsoft Windows
	Linux
	Other Operating Systems

	Increasing the Host Timer Interrupt Rate
	Synchronizing Hosts and Virtual Machines with Real Time
	Host Time Synchronization
	Guest Time Synchronization With VMware Tools
	Keeping a Fictitious Time In a Guest System
	Guest Clock Synchronization With Non-VMware Software

	Time Measurements Within a Virtual Machine
	Known Issues and Troubleshooting
	Gathering Information
	Specific Timekeeping Issues and Problems

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

