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Abstract

The use of cryptographic hash functions like MD5 or SHA for message authentication has
become a standard approach in many Internet applications and protocols. Though very easy to
implement, these mechanisms are usually based on ad hoc techniques that lack a sound security
analysis.

We present new constructions of message authentication schemes based on a cryptographic
hash function. Our schemes, NMAC and HMAC, are proven to be secure as long as the un-
derlying hash function has some reasonable cryptographic strengths. Moreover we show, in a
quantitative way, that the schemes retain almost all the security of the underlying hash function.
In addition our schemes are efficient and practical. Their performance is essentially that of the
underlying hash function. Moreover they use the hash function (or its compression function) as
a black box, so that widely available library code or hardware can be used to implement them
in a simple way, and replaceability of the underlying hash function is easily supported.
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1 Introduction

1.1 Authenticity and MACs

Verifying the integrity and authenticity of information is a prime necessity in computer systems
and networks. In particular, two parties communicating over an insecure channel require a method
by which information sent by one party can be validated as authentic (or unmodified) by the other.
Most commonly such a mechanism is based on a secret key shared between the parties and takes
the form of a Message Authentication Code (MAC). (Other terms used include “Integrity Check
Value” or “cryptographic checksum”). In this case, when party A transmits a message to party B,
it appends to the message a value called the authentication tag, computed by the MAC algorithm
as a function of the transmitted information and the shared secret key. At reception, B recomputes
the authentication tag on the received message using the same mechanism (and key) and checks
that the value he obtains equals the tag attached to the received message. Only if the values
match is the information received considered as not altered on the way from A to B.1 The goal
is to prevent forgery , namely, the computation, by the adversary, of a message (not sent by the
legitimate parties) and its corresponding valid authentication tag. A precise definition of MACs
and their security is in Section 2.

1.2 MACing with cryptographic hash functions

MACs have most commonly been constructed out of block ciphers like DES. (The most popular in
this genre is the CBC MAC, analyzed in [BKR, PV1].) More recently, however, there has been a
surge of interest in the idea of constructing MACs from cryptographic hash functions like MD5 [Ri]
and SHA-1 [SHA]. This is particularly visible in the Internet community, where the development of
security protocols has led to the need for simple, efficient, and widely available MAC mechanisms.

It is easy to see why people want to MAC with cryptographic hash functions: the popular hash
functions are faster than block ciphers in software implementation; these software implementations
are readily and freely available; and the functions are not subject to the export restriction rules of
the USA and other countries. The more difficult question is how best to do it. These hash functions
were not originally designed to be used for message authentication. (One of many difficulties is
that hash functions are not keyed primitives, ie. do not accommodate naturally the notion of secret
key.) So special care must be taken in using them to this end. In particular, although many
constructions have been proposed, they lack a sound and realistic security analysis. Thus there is
a need for constructions which maintain the efficiency of the hash functions but are backed by a
more rigorous analysis of their security. This is what we provide.

Section 1.5 describes some background and previous work on this subject. We now proceed to
describe our work.

1.3 This work

In this paper we present two (related) new schemes, NMAC (the Nested construction) and HMAC
(the Hash based mac). They can utilize any cryptographic hash function of the iterated type, and
enjoy several attractive security, efficiency, and practicality features.

Security. Our constructions enjoy a formal security analysis that relates the security of the new
functions to basic properties of the underlying hash schemes, like their resistance to collision finding.

1 More generally, MAC schemes can involve the use of state information (e.g., a counter), use random nonces, or
apply other mechanisms than just appending a tag. For concreteness we stick for now to simple MACs.
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Our analysis considers any generic attack on MAC schemes (rather than showing security against a
partial list of possible attacks) and shows that such an attack succeeds only if the underlying hash
function is weak. Moreover, this relation between the assumed properties of the hash function and
the security of the resultant MAC mechanism can be tightly quantified.

In summary, what this analysis says is that if significant weaknesses are ever found in the MAC
schemes proposed here, then not only does the underlying hash function need to be dropped from
these particular usages, but also it must be dropped from a wide range of other standard and
popular usages to which these functions are now subject. Moreover, our constructions require from
the hash function significantly weaker properties than standard collision-freeness. In particular,
current successful methods for finding collisions in MD5 [Do1, Do2] seem inapplicable to breaking
our schemes when the hash function in use is MD5 [Do3].

Efficiency. Our constructions use the cryptographic hash functions in a very simple way. In
particular, the performance degradation relative to the underlying hash scheme is minimal. This
is motivated by the use of these functions in basic applications like IP (Internet Protocol) security
[At1, At2] where the performance cost of such a function influences the computational and network
performance of many other applications.

Black box usage of hash functions. The constructions and analysis presented here are free
from any dependency on the peculiarities of the underlying hash function. We only exploit the
general structure of functions like MD5 and SHA-1, as being built on top of a basic compression

function which works on fixed length messages, and is then iterated multiple times in order to
process variable length inputs (see Section 2). Therefore, the underlying hash function (or the
corresponding compression function) can be seen as a module that can be easily replaced in case
serious weaknesses are found in the hash function, or when new (possibly, more secure or more
efficient) hash functions are designed. This replaceability property is fundamental given the limited
confidence earned so far by these functions.2

Besides the security advantage, there is a practical advantage to MAC schemes that use the
underlying hash functions as a “black-box” (ie. by applying the hash function, or compression
function, “as is”, without any modifications). Namely such schemes permit the immediate use of
existing and widely available library code that implements these functions. They also permit use
of hardware-based implementations of the underlying hash scheme. Our NMAC construction uses
the compression function as a black-box; our HMAC construction, even more conveniently, uses
only calls to the iterated hash function itself.

1.4 A closer look

Before getting into the more technical aspects of the paper we further discuss our approach and
results.

Keying hash functions. The first obstacle that one faces when coming to design a MAC scheme
based on a cryptographic hash function (we limit ourselves, from now on, to “MD5-like” iterated
hash functions, as described above), is that the latter usually do not use any cryptographic key.
Rather, they are public functions that anyone can compute without the involvement of keys and
secrets. This is in sharp contrast to a MAC function, which uses a secret key as an inherent part of
its definition. Our approach to solve this problem is to key these hash functions through their initial

2 It is worth observing that in the case of message authentication, as opposed to encryption, the breaking of a
MAC does not compromise traffic authenticated in the past with the broken MAC. One can avoid the vulnerabilities
created by new attacks, by replacing the underlying hash scheme as soon as this is broken.
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variable (IV) (for details see Section 2). That is, the usually fixed IV defined by these functions is
replaced by a random (and secret) string which becomes the key to the MAC.

Secure MACs from secure hash functions. A more fundamental problem is how to build
the message authentication function in a way that the hardness of forging an authenticated message
can be related to the cryptographic strength of the underlying hash function.

You can’t make good wine from bad grapes: obviously, some strengths must be assumed of the
hash function. On the other hand the assumptions should not be too strong, especially given that
not enough confidence has been gathered in current candidates like MD5 and SHA-1. (In particular,
it would certainly be possible to come up with “provably secure” MACs if one assumed the hash
functions behaved like completely random functions, but this is less useful.) Our goal is to design
MACs that involve the use of cryptographic hash functions in a simple way, yet their security can be
argued on the basis of reasonable security assumptions on the underlying hash function. Moreover,
we want this analysis to provide a quantitative relationship between the assumed strength of the
hash function and the proven strength of the MAC.

We achieve the above goals in a strong sense. We are able to present a relatively simple analysis
of our scheme which shows that an attacker that is able to forge our MAC function can, with the
same effort (time and amount of collected information), break the underlying hash function in one
of the following ways: (1) The attacker finds collisions in the hash function even when the IV is
random and secret, and the hash value is not explicitly known; or, (2) The attacker is able to forge
the secretly keyed compression function viewed as a MAC function applied to fixed length and
partially unknown messages.

Consequently, existence of such attacks would contradict some of the basic assumptions about
the cryptographic strength of these hash functions. Success in the first of the above attacks means
success in finding collisions, the prevention of which is the main design goal of cryptographic hash
functions. But in fact, even more is true: success in the first attack above is even harder than
finding collisions in the hash function, because collisions when the IV is secret and the hash value
is not explicitly known (as is the case here) is far more difficult than finding collisions in the plain
(fixed IV) hash function. In particular, attacks when the IV is secret require interaction with the
legitimate user of the function, and disallows the parallelism of traditional birthday attacks. Thus,
even if the hash function is not collision-free in the traditional sense, our schemes could be secure.
The success of the second attack above would imply that the randomness properties of the hash
functions are very poor, and that all the bits of the hash output are simultaneously predictable
(even with a secret IV and partially unknown input).

We stress that our analyses use exact analysis (no asymptotics involved), consider generic rather
than specific attacks, and establish a tight relationship between the securities of the MAC and the
underlying hash function.

Actual versus proven strengths. It is important to realize that our results are guided by
the desire to have simple to state assumptions and a simple analysis. In reality, our constructions
are even stronger than the analyses indicate, in the sense that even were the hash functions found
not to meet the stated assumptions, our schemes might be secure. For example, even the weak
collision resistance property as we state is an overkill, because in actuality, in our constructions,
the attacker must find collisions in the keyed function without seeing any outputs of this function,
which is significantly harder.

The later remark is relevant to the recently discovered collision attacks on MD5 [Do2, Do3].
While these attacks could be eventually adapted to attack the weak collision-resistance property
of MD5, they do not seem to lead to a breaking of NMAC or HMAC even when used with MD5.
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(See Section 6 for further discussion.) A more complex set of assumptions on the hash functions
can be formulated to capture these extra strengths of our constructions but it is omitted here.

1.5 Related work

The exact security treatment of MACs began in [BKR] (where CBC-MAC is analyzed), and we use
their definitions. Further block cipher based constructions were provided and analyzed in [BGR].

MAC constructions based on cryptographic hash functions have been in use for a few years
(see Tsudik [Ts] for an early description of such constructions and Touch [To] for a list of In-
ternet protocols that use this approach). Preneel and van Oorschot [PV1, PV2] survey existing
constructions and point out to some of their properties and weaknesses; in particular, they present
a detailed description of the effect of birthday attacks on iterated constructions. (These attacks
remain the best possible ones on our schemes. But in practice they are infeasible. See Section 6
for more information.) They also present a heuristic construction, the MDx-MAC, based on these
findings. Kaliski and Robshaw [KR] discuss and compare various constructions. Performance issues
are discussed in [To, BGV].

In this work we have initiated the first rigorous treatment of the subject and, in particular,
present the first constructions whose security can be formally analyzed, without resorting to unre-
alistic assumptions such as the “ideality” of the underlying hash functions.

In a companion work [BCK1] we consider how to design “pseudo-random functions” based
on iterated compression functions. We show that if the compression function is pseudo-random
then so is its iteration. The notion of a pseudo-random function is stronger than that of a MAC,
and therefore that work can be viewed as making stronger assumptions than us (namely that the
compression function is pseudo-random) in order to attain a stronger end (namely that the iterated
construction too is pseudo-random).

Our HMAC construction was recently chosen as the mandatory to implement authentication
transform for Internet security protocols and for this purpose is described in an Internet draft
[KBC] and an upcoming RFC.

2 Basic Notions

2.1 MACs and their security

A MAC is a function which takes the secret key k (shared between the parties) and the message m
to return a tag MACk(m). The adversary sees a sequence (m1, a1), (m2, a2), · · · , (mq, aq) of pairs of
messages and their corresponding tags (that is, ai = MACk(mi)) transmitted between the parties.
The adversary breaks the MAC if she can find a message m, not included among m1, · · · , mq,
together with its corresponding valid authentication tag a = MACk(m). The success probability
of the adversary is the probability that she breaks the MAC. (Notice that an adversary who finds
the key certainly breaks the scheme, but the scheme can also be broken by somehow combining a
few messages and corresponding checksums into a new message and its valid checksum.)

The sequence (m1, a1), (m2, a2) · · · , (mq, aq) might have arisen in several ways. The simplest is
a known message attack in which the legitimate parties choose the messages in a way un-influenced
by the adversary, and the adversary, eavesdropping on the wire, picks them up. If the adversary can
choose the sequence of messages m1, · · · , mq, then it is called a chosen message attack. Notice that
a MAC scheme secure against chosen messages is stronger than one which is secure only against
“known messages”. Here we will refer to chosen-message attacks, except if otherwise stated. We
will consider the chosen messages as “queries” chosen by the adversary and answered (i.e., the
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corresponding checksums revealed) by the party (or parties) possessing the key to the MAC. Notice
that a message mi can be chosen by the adversary as a function of the previously seen messages
and corresponding authentication tags.

Following [BKR], we quantify security in terms of the success probability achievable as a function
of the number q of valid MAC examples seen by the adversary, and the available time t. (Note
the success probability achievable for given t, q depends on the parameters of the MAC scheme, in
particular its key length.) Then we say that MAC is a (ε, t, q, L)-secure MAC if any adversary that
is not given the key k, is limited to spend total time (number of operations) t on the attack, and
to request the value of the function MACk in up to q messages m1, m2, . . . , mq of its choice, each
of length at most L, cannot break the scheme except with probability better than ε.

As a convention we include in the time bound t the time it takes to compute the function MACk

in each of the requested queries. This captures more realistically the fact that the time taken to
compute the MACs which form the answers to these queries (especially when the number q of them
is big) may constitute a significant portion of the time complexity of the attack. We also include
in it the size of the code of the adversary’s algorithm. (One can imagine an adversary who has
pre-computed a lot of information and put it into its code).

Notice that the above definition is stated in terms of a generic attacker; we do not limit the
attacker to any particular attacks or cryptanalytical techniques. Anything the adversary can do
under the given resource bounds (time and queries) is captured by this definition. Also, notice the
lack of asymptotics in this definition. Here t, q, and L can be replaced by actual numbers.

We observe that although we motivate and present our message authentication schemes in
the context of message authentication for communications, the same techniques can be used to
authenticate information that is stored in an insecure medium, and can be subject to malicious
modification. Finally, we stress that while in this paper we concentrate solely on MAC constructions
that use cryptographic hash function as their basis, there is an extensive literature covering MAC
schemes based on different techniques.

2.2 Cryptographic Hash Functions

Basic properties. Cryptographic hash functions map strings of different lengths to short, fixed-
size, outputs. These functions, e.g., MD5 or SHA-1, are primarily designed to be collision resistant.
This means that if we represent such a hash function by F , then it should be infeasible for an
adversary to find two strings x and x′ such that F (x) = F (x′). Notice that this cryptographic notion
does not involve any secret key. Indeed, the collision-resistance property is usually attached to key-
less functions. The prime motivation for such functions is to be combined with digital signatures
in a way that makes these signatures more efficient and yet unforgeable. For that application it is
required that the function be publicly computable and, in particular, that it involve no secret key.
(See [Ne] for background on collision-resistant hash functions.)

In addition to the basic collision-resistance property, cryptographic hash functions are usually
designed to have some randomness-like properties, like good mixing properties, independence of
input/output, unpredictability of the output when parts of the input are unknown, etc. Not only
do these properties help in making it harder to find collisions, but also they help to randomize the
input presented to the signature algorithm (e.g., RSA) as usually required for the security of these
functions.

It is the combination of these properties attributed to cryptographic hash functions that make
them so attractive for many uses beyond the original design as collision-resistant functions. These
functions have been proposed as the basis for pseudorandom generation, block ciphers, random
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Figure 1: A compression function. (b = 512, ` = 128 in MD5.).

transformation, and message authentication codes. We concentrate on a particular class of crypto-
graphic hash functions, which we call iterated constructions.

Iterated constructions. A particular methodology for constructing collision-resistant hash
function has been proposed by Merkle [Me] (and later by Damg̊ard [Da].) This methodology forms
the basis for the design of the most common cryptographic hash functions like MD5 and SHA-1.
It is based on a basic component called compression function which processes short fixed-length
inputs, and is then iterated in a particular way in order to hash arbitrarily long inputs. Such a
compression function, which we denote by f , accepts two inputs: a chaining variable of length `
and a block of data of length b. (For MD5 and SHA-1 we have b = 512, while for the first ` = 128
and for the second ` = 160. For the detailed description of the compression functions of these
functions see [Ri, SHA].) See Figure 1.

The operation of the iterated hash function is as follows. First, an b-bit value IV is fixed. Next
an input is hashed by iterating the compression function. That is, if x = x1, x2, . . . , xn is the
input, where the xi’s are blocks of length b each and n is an arbitrary number of blocks, then let
xn+1 = |x| be the message length. The value of the iterated function F on x is hn+1 where h0 = IV
and hi = f(hi−1, xi) for i = 1, 2, . . . , n + 1. See Figure 2.

Notice that a way to pad messages to an exact multiple of b bits needs to be defined, in
particular, MD5 and SHA pad inputs to always include an encoding of their length.

The motivation for this iterative structure arises from the observation (of Merkle [Me] and
Damg̊ard [Da]) that if the compression function is collision-resistant then so is the resultant iterated
hash function. (The converse is not necessarily true). Thus, this structure provides a general design
criterion for collision resistant hash functions since. Namely, it reduces the problem to the design
of a collision resistant function on inputs of some fixed size.

In the rest of this paper we will concentrate on iterated hash functions, except if stated otherwise.
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Figure 2: The iterated construction of a hash function given a compression function f . The input |x| to

the last iteration illustrates the appending of the message length as in MD5 and SHA-1.
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We will use the symbol f to denote the compression function, and F to denote the associated
iterated hash which we assume to include a standard way to pad inputs to to an exact multiple of
b bits.

3 Keyed Hash Functions

Recall our goal is to build secure message authentication functions from cryptographic hash func-
tions (in particular, from iterated hash functions). A first clear obstacle is that while secret keys are
an essential ingredient in a message authentication function, most cryptographic hash functions,
and specifically functions like MD5 or SHA, do not use keys at all. Therefore, we first need to
define a way to use cryptographic hash functions in conjunction with a key.

The most common approach to key a hash function (see [Ts]) is to input the key as part of the
data hashed by the function, e.g., hashing data x using key k is performed by applying the hash
function F to the concatenation of k and x. Our approach is to key the function’s IV. Namely,
instead of using a fixed and known IV as defined by the original function, we replace it by a
random and secret value known only to the parties. It turns out that the latter approach has some
significant analytical advantages. It allows for a better modeling of keyed hash functions as needed
for the security analysis of these functions. On the other hand, we will also see that this approach
can be “simulated” through the use of keys padded and prepended to data (see Section 5).

Using the “keyed IV” approach we can define keyed hash functions as a family of functions. Let
fk defined by fk(x) = f(k, x) be the keyed compression function, where |k| = ` and |x| = b. Now
we associate to any iterated hash construction (e.g., MD5, SHA-1) a family of (keyed) functions
{Fk}k . Namely for x = x1 . . . xn define Fk (x ) to be kn+1 where ki = fki−1

(xi) for i = 1, . . . , n + 1,
k0 = k, and xn+1 = |x|. Notice that the space of keys is the same for the keyed compression
functions and for the keyed iterated hash functions: it is the set of all the strings of length `. The
original iterated hash function is obtained as a particular member of the keyed family, namely, FIV .

As noted before the notion of collision-resistance has been traditionally attached to public
(keyless) functions. In this work we extend this notion to (secretly) keyed hash functions.

Definition 3.1 We say that a family of keyed hash functions {Fk} is (ε, t, q, L)-weakly collision-
resistant if any adversary that is not given the key k, is limited to spend total time t, and sees the
values of the function Fk computed on q messages m1, m2, . . . , mq of its choice, each of length at
most L, cannot find messages m and m′ for which Fk(m) = Fk(m

′) with probability better than ε.

Notice that the above requirement is weaker than the traditional requirement of collision-
resistance from (key-less) hash functions. In the latter case, it is enough to find collisions for
a known and fixed IV. Also in the case of secretly keyed hash functions the adversary needs to get
its “examples” (the messages m1, m2, . . . , mq in the above definition) from the legal user itself who
knows the key k. In the key-less case, the attacker can work in finding collisions independently
of any user or key. Moreover, even brute force collision search attacks can become feasible for
functions like MD5 due to the easiness of parallelization of these attacks (see [VW]). In contrast,
attacks on secretly keyed hash functions cannot be parallelized as they require interaction with the
legal user.

The best known collision attacks (see Section 6) on our schemes would require the legal user to
hash about 264 messages (of, say, one block each) known to the adversary using the same key. If
the hashing can be done at a speed of 1Gbit/second this would require continuous hashing (using
the same key) during 250,000 years.
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We note that attacks that find collisions on the hash function with random and known IVs
(such attacks are known for MD4 [Do1]) can be adapted (via extension attacks) to find collisions
even if the IV is secret. Such an attack would compromise the weak collision resistance property
of the hash function. We will see that in our constructions, extension attacks are prevented by a
double application of the hash function. (This issue is further discussed in section 6.)

4 The Nested Construction NMAC

We present our basic construction NMAC (for “Nested MAC”) and its analysis. In the next section
we describe a variant, HMAC, that is further geared towards practical applications. Denote by fk

and Fk the keyed versions of a given compression function and its iterated function, as described
in Section 2.

4.1 The function NMAC

Let k = (k1, k2) where k1 and k2 are keys to the function F (i.e., random strings of length ` each).
We define a MAC function NMAC(x) which works on inputs x of arbitrary length as

NMACk(x) = Fk1
(Fk2

(x)).

Notice that the outer function acts on the output of the iterated function and then it involves only
one iteration of the compression function. That is, this outer function is basically the compression
function fk1

acting on Fk2
(x) padded to a full block size (in some standard way as defined by the

underlying hash scheme F ).
Notice the simplicity and efficiency of the construction. The cost of the internal function is

exactly the same as hashing the data with the basic (keyless hash function). The only additional
cost is the outer application which, as said, involves only one iteration of the compression function.
Most importantly, in the next section we provide with a rigorous analysis of the strength of this
construction relative to the cryptographic strength of the underlying hash function.

4.2 Security analysis

Following we state the main analytical result regarding the proposed function NMAC. For the
definitions of a secure MAC and weakly collision-resistant functions see Sections 2.1 and 3, respec-
tively.

Theorem 4.1 If the keyed compression function f is an (εf , q, t, b)-secure MAC on messages of
length b bits, and the keyed iterated hash F is (εF , q, t, L)-weakly collision-resistant then the NMAC
function is an (εf + εF , q, t, L)-secure MAC.

The theorem thus states that any adversary that mounts an attack against the function NMACk as
a MAC by querying the function in q inputs of length at most L (i.e., the adversary, that does not
know k, gets the value of the function NMACk on q messages of its choice) and spending a total
processing time of t in the attack, has a probability of success which is no more than twice the
probability of success of an adversary that spends the same resources in finding collisions for the
secretly keyed iterated function, and no more than twice the probability of success of an adversary
that under the same resources tries to break the keyed compression function as a MAC.

Proof of Theorem 4.1: Let’s fix parameters q,t, and L, for the number of queries, processing
time, and length of messages, respectively, available to an attacker that tries to break the function

10



Choose random k2

For i = 1, . . . , q do
AN → xi

AN ← fk1
(Fk2

(xi))
AN → (x, y)

output (Fk2
(x), y)

Figure 3: The algorithm Af

NMAC. Let’s denote this attacker by AN and its probability of success by εN . Let εF be the best
probability of success of any adversary that under the above same resources tries to find collisions
for the function Fk2

without knowing k2. Using AN we will build an adversary Af that forges the
MAC function fk1

on inputs of length b by spending q queries and time t with a success probability
of εf ≥ εN − εF . Thus, we show that any adversary that tries to break the function NMAC using
the above resources has a probability of success εN of at most εf + εF . The theorem then follows.

We specify Af using AN as a subroutine. Recall that AN works as follows. It queries the function
NMACk (for which it does not know k) on a message x1 and gets the response NMACk(x1), it
then produces a second query x2 for which it gets NMACk(x2), and so on for a total of q queries.
It finally outputs a pair (x, y). If x 6= xi, for i = 1, 2, . . . , q, and y = NMACk(x) then the attack
succeeds, otherwise it fails.

Remember that the goal of Af is to forge fk1
, by querying the latter function on messages that Af

itself chooses. In order to describe Af we need to specify how it chooses the messages to query, and
how it finally outputs a message x and an authentication tag. We use the following notation: for
a string s of length `, we denote by s the result of s padded to a full block of length b as specified
by the underlying hashing scheme.

Af starts by first choosing a random key k2 for the keyed iterated hash function Fk2
. It then

activates AN which produces queries to the function NMAC that are answered by Af in the following
way: for each query xi presented by AN , the algorithm Af computes zi = Fk2

(xi), and queries fk1

on zi; the answer fk1
(zi) returned by fk1

is then fed to AN as the response to its query xi. (Notice
that the answers to AN correspond to the case that AN is querying the function NMACk for
k = (k1, k2).) Finally, after such q queries are answered, AN outputs its forgery (x, y). Af uses this
pair (x, y) to compute the pair (Fk2

(x), y), which it then outputs as its forgery. See Figure 3.

Next we analyze the success probability εf of the above algorithm Af . Notice that Af fails in two
cases: whenever AN fails (i.e., AN fails to output a successful forgery for a new message), or when
AN outputs a correct forgery for a new message x (different from all queried xi’s) but for which
Fk2

(x) = Fk2
(xi), for some i = 1, . . . , q. Notice that in the later case,

Fk2
(x) = Fk2

(xi). (1)

We then bound the failure probability of Af by the sum of the above two failure events, namely,
that AN fails or that equality (1) holds. Notice, first, that the behavior of AN as used in the above
algorithm Af , is equivalent to the behavior of AN when trying to break the function NMACk, where
k = (k1, k2) and each of k1 and k2 were chosen at random and not given to AN . This is so since
each of AN ’s queries xi is answered by Af with the value fk1

(Fk2
(xi)) which is exactly NMACk(xi).

Therefore, the probability that AN fails during the above algorithm is as its probability to fail to
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forge NMACk, which by definition is at most 1− εN .

In order to bound the probability that equality (1) holds, one needs to note that the algorithm
described above for Af can be used as an algorithm for finding collisions for the function Fk2

with
secret k2, by choosing a random key k1 for the compression function fk1

, and quering the function
Fk2

on the messages xi produced by AN . In this case equality (1) implies the success of the collision-
finding algorithm. By the definition of εF , no collision search algorithm against Fk2

which is limited
to the above resources (number of queries and time) can find collisions with probability better than
εF , therefore we get that the probability that (1) holds is at most εF .

Summarizing, the probability 1 − εf that the above algorithm Af fails to forge fk1
is at most

(1− εN ) + εF . That is, εf ≥ εN − εF . Therefore, εN ≤ εf + εF and the theorem follows.

Next we present a few remarks on the above analysis.

Remark 4.2 An important aspect of the analysis is that the proof of the theorem is constructive,
namely, given an adversary (or algorithm) that breaks the new function NMAC with some significant
probability, one can explicitly show an algorithm that using the same resources breaks the underlying
hash function with at least half of that probability. This shows the practicality of the analysis and
that the degradation of security when going from the underlying hash function to the NMAC
construction is minimal. This is even stronger considering the generic nature of our “attacker”. It
represents all possible attackers, including all possible future developments in cryptanalysis.

Remark 4.3 Our definitions and analysis are stated in terms of chosen (and adaptive) message
attacks since these are the strongest attacks that one wants to protect against. One can have more
refined definitions which quantify separately the number of chosen messages and number of known
messages required by an attack. Although this distinction is significant in practice, we omit it here
for simplicity. However, it is important to realize that our analysis deals very satisfactorily with
this practical aspect as it preserves the number of known/chosen messages when translating an
attack on the NMAC function to an attack on the underlying hash (e.g., if there is a known-only
message attack on NMAC, then such an explicit attack exist also against the iterated function F ,
or the compression function f).

Remark 4.4 The actual assumptions required by our analysis are even weaker than stated above
since an attacker trying to break NMAC by attacking the compression function as a MAC cannot
choose or control (and even know) the exact value on which this function is applied since the value
of Fk2

(x) is not exposed to the attacker. Similarly, when trying to break the function via collisions
of the internal computation Fk2

(x) the adversary does not obtain the actual result of this function
but only its value after applying Fk1

(however, notice, that the application of the outer function
does not hide the fact that collisions occurred in the internal computation).

Remark 4.5 The weak-collision-freeness assumption made in the theorem can be replaced by the
significantly weaker assumption that the inner hash function is collision resistant to adversaries
that see the hash value only after it was hashed again with a different secret key.

Remark 4.6 Another aspect by which the result is more general than stated in the theorem is
as follows. Notice that although we use the same function for the inner and outer application
in NMAC one could use totally different functions for these two applications. In that case the
above theorem would still hold given the MAC assumption on the outer function, and the collision-
resistance property of the internal function. This can lead to hybrid approaches like using SHA-1
(keyed through its IV) for the internal iterated function, and DES-MAC-CBC for the external, etc.
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Remark 4.7 In spite of the use of two different keys k1 and k2, the security of the function is
given by each individual key (of length `) and not by the combination (2`) of their lengths. For
more details on this aspect see the divide and conquer attack in Section 6.

Remark 4.8 Preneel and van Oorschot [PV1] recommend outputting only half of the bits of the
hash output as the authentication tag. This recommendation is motivated by the fact that forgery
attacks are anyway doable with complexity 2`/2 through birthday attacks (see Section 6), and that
by outputting only half of the bits these attacks require more chosen messages. Carrying this
recommendation to our constructions would require the assumption that the compression function
with truncated output (e.g., only the `/2 most significant bits of output) constitutes a secure MAC.
Whether this is acceptable or not depends on the assumed properties of the particular compression
function in use. (The tradeoff here is that by outputting less bits the attacker has less bits to
predict in a MAC forgery but, on the other hand, the attacker also learns less about the output of
the compression function from seeing the authentication tags computed by the legitimate parties.)
Applications for which a saving in the MAC length is important can adopt our constructions with
a reduced output of (at least) `/2 bits.

Remark 4.9 One can ask how much our assumptions on the underlying hash function can be
further weakened and still have a simple construction of a secure MAC. Although we cannot answer
this question in a formal way (e.g., secure MAC functions can be built from the weaker assumption
that the compression function is a one-way function, but the known constructions to achieve that are
totally impractical), we can point out to two facts. First, by just assuming that the compression
function is a MAC one cannot guarantee that the iterated function is a MAC. That is clearly
shown by the extension attacks discussed in Section 6. In particular, this shows that one cannot
just omit the outer application of Fk1

in NMAC and still get a secure MAC. As for basing the
construction in collision-resistance only, we stress that this property also is insufficient to make the
function a secure MAC. Indeed, one can construct examples of strong collision-resistant functions
that are easily forgeable as MAC. Moreover, one can show this to hold for specific proposals of
MAC functions based on hash schemes.

5 HMAC: A fixed IV variant

Due to the wide availability of free library code for existing hash functions (especially MD5), it is
a practical advantage to build MAC mechanisms that use these functions as a black-box, so that
the MAC can be implemented by simply calling the existing function. The NMAC construction
presented in Section 4 requires direct access to code for the compression function (rather than
for the overall hash function), in order to key the IV. Such a change is trivial for functions with
well-structured code like MD5 (see [Ri]). However, in some cases one would still like to avoid even
those minimal changes, and use the code (or hardware implementation) as is. Here we present an
adaptation of NMAC that achieves this goal. As an additional advantage, this construction involves
a single `-bit long key k as opposed to two different keys as in NMAC. This has some advantages
at the level of key management. With an additional assumption on the underlying compression
function one can show the applicability of the NMAC analysis to HMAC.

5.1 The function HMAC

Let F be the (iterated and key-less) hash function initialized with its usual fixed IV. The function
HMAC works on inputs x of arbitrary length and uses a single random string k of length ` as its
key:
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HMACk(x) = F (k̄ ⊕ opad, F (k̄ ⊕ ipad, x))

where k̄ is the completion by adding 0’s of k to a full b-bit block-size of the iterated hash function,
opad and ipad are two fixed b-bits constants (the “i” and “o” are mnemonics for inner and outer), ⊕
is the bitwise Exclusive Or operator, and the commas represent concatenation of the information.
opad is formed by repeating the byte x’36’ as many times as needed to get a b-bit block, and ipad

is defined similarly using the byte x’5c’. (For example, in the case of MD5 and SHA-1 these bytes
are repeated 64 times).

5.2 Security of HMAC

The security of HMAC is based on the security of NMAC. The main observation for relating these
two functions and their security is that by defining k1 = f(k̄ ⊕ opad) and k2 = f(k̄ ⊕ ipad), we get
that HMACk(x) = NMAC(k1,k2)(x). In other words, the above transformation on the key makes
HMAC a particular case of NMAC, where the keys k1 and k2 are “pseudorandomly” derived from k
using the compression function f . Since the analysis of NMAC assumes that k1 and k2 are random
and independently chosen keys, then in order to apply this analysis to HMAC one needs to assume
that k1 and k2 derived using f cannot be distinguished by the attacker from truly random keys.
This represents an additional assumption on the quality of the function f (keyed through the input

k) as a pseudorandom function. We require a relatively weak form of pseudorandomness since the
adversary trying to learn about possible dependencies of k1 and k2 does not get to see directly
the output of the pseudorandom function on any input. To sum things up, attacks that work on
HMAC and not on NMAC are possible, in principle. However, such an attack would reveal major
weaknesses of the pseudorandom properties of the underlying hash function.

It is important to note that in practice most keys are chosen pseudorandomly rather than as
truly random strings; in particular, it is plausible that even if one uses NMAC, implementations
will choose to derive k1 and k2 using a pseudorandom generator. In the case of HMAC such a
pseudorandom generator is “built-in” through the definition of the function using the function f
and the above defined pads. This use for pseudorandom generation of functions like MD5 or SHA-1
is very common in practical implementations (in fact, the designers of SHA-1 recommended using
this function for pseudorandom derivation of various quantities in the DSS standard [DSS]).

The above particular values of opad and ipad were chosen to have a very simple representation
(to simplify the function’s specification and minimize the potential of implementation errors), and
to provide a high Hamming distance between the pads. The latter is intended to exploit the mixing
properties attributed to the compression function underlying the hash schemes in use. These
properties are important in order to provide computational independence between the two derived
keys.

Finally, we note that the use of a single `-bit long key as opposed to two (independent) keys
does not represent a weakening of the function relative to exhaustive search of the key, since even
when chosen independently the keys k1 and k2 can be individually searched through a divide and
conquer attack as described in Section 6.

5.3 Implementation considerations for HMAC

Here we point out to some implementation issues. Notice that HMAC results in a slower function
than NMAC since the former requires two extra computations of the compression function (on the
blocks (k̄⊕opad) and (k̄⊕ ipad)). This can have a negligible effect when authenticating long streams
of data but may be significant for short data. Fortunately, an implementation can avoid this extra
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computation by “caching” the values of k1 and k2 (as defined in section 5). That is, these values
are computed only once when the key k is generated or shared the first time, and then stored as
the actual keys to the function NMAC. To use these separate keys the implementation needs to
be able to initialize the IV’s of the hash function to these values before processing the data. (As
said before this is usually very easy to do.) In this way, HMAC serves those implementations that
require the use of the iterated hash function with no modification (i.e., with the fixed IV), and at
the same time it does not penalize implementations that can key the function through the IV.

Notice that one can define the function HMAC to support variable length keys. However, less
than ` bits for the key is not recommended since that would weaken the strength of the keyed IV
(i.e, k1 and k2). On the other hand, longer than `-bit keys will not provide, in general, with added
strength since the derived k1 and k2 are anyway of length ` (still, having a longer key k may help,
depending on the properties of the compression function f and the randomness of the key k, to
have a stronger pseudorandom effect on the generation of k1 and k2).

Finally, we stress that as in any cryptographic implementation, a secure key management is
essential for the security of functions like the ones proposed here. In particular, a periodic refresh-
ment of keys is advisable. Even if under currently known attacks (see Section 6) one could use the
same key for extremely long periods of time without cryptanalytic compromise, implementation
should limit the time and amount of information processed with the same key.

6 Attacks and Comparison to other Proposals

In Section 4 we have established a tight and general relationship between the security of the
function NMAC and the underlying hash function, in a way not known to hold for any other similar
construction. We are thus assured that if a “good” cryptographic hash function is used then all
attacks against our schemes will fail to be practical. Nonetheless it is instructive to actually see
what known attacks achieve, and cross-check that indeed they don’t work. We also compare our
construction to other proposals.

Birthday attacks. As shown in [PV1] and our companion work [BCK1], birthday attacks, that
are the basis to finding collisions in cryptographic hash functions, can be applied to attack also
keyed MAC schemes based on iterated functions (including also CBC-MAC, and other schemes).
These attacks apply to our new constructions as well. In particular, they constitute the best known
forgery attacks against both the NMAC and HMAC constructions. Consideration of these attacks is
important since they strongly improve on naive exhaustive search attacks. However, their practical
relevance against these functions is negligible given the typical hash lengths like 128 or 160, since
these attacks require knowledge of the MAC value (for a given key) on about 2`/2 messages (where
` is the length of the hash output). For values of ` ≥ 128 the attack becomes totally infeasible.3 In
contrast to the birthday attack on key-less hash functions, the new attacks require interaction with
the key owner to produce the MAC values on a huge number of messages, and then allow for no
parallelization. For example, when using MD5 such an attack would require the authentication of
264 blocks (or 273 bits) of data using the same key. On a 1 Gbit/sec communication link, one would

3We illustrate the birthday attack against NMAC (it similarly applies against HMAC). Other variations are
possible. The attacker collects the value of NMACk on a number of equal-length messages until it finds two different
messages m1 and m2 for which NMACk(m1) = NMACk(m2). Subsequently, it requests the value of NMACk on a
message m′

1 = (m1, B), for some block B (i.e., m′
1 equals m1 concatenated with the block B; the issue of length

padding is omitted here as it can be easily handled). The attacker then outputs a forgery for m′
2 = (m2, B) using the

authentication tag NMACk(m′
1). If the collision NMACk(m1) = NMACk(m2) was due to a collision in the internal

function Fk2
(m1) = Fk2

(m2) then the forgery is successful. Only after collecting about 2`/2 messages the probability
of such an attack to succeed is significant.
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need 250,000 years to process all the data required by such an attack. This is in sharp contrast to
birthday attacks on key-less hash functions which allow for far more efficient and close-to-realistic
attacks [VW].

Notice that these attacks produce forgery of the MAC function but not key recovery. In [PV2],
however, it is shown that in some versions of the envelope method (the case where the same key
is used to prepend and append and no block alignment of the appended key is performed), the
birthday attacks can be further enhanced to provide full key recovery in time much shorter than
required by full exhaustive search. Since these attacks require at least the complexity mentioned
above for forgery based on birthday attacks, they cannot be considered as practical ones. Yet, it is
interesting to note that they do not apply to either of our constructions, since here the alignment
issue exploited by these attacks is no applicable.

The forms of birthday attacks that apply to our constructions can become feasible only if very
significant weaknesses in the collision probability of the underlying hash function are discovered.
However, in such a case the basic use of such a function as collision-resistant (as originally intended)
would be strongly compromised, and the function should be dropped for cryptographic use. Finally,
we mention that these birthday attacks (at least in their straightforward form) can be avoided by
randomizing the MAC construction in a per-message basis. We refer to [BCK1] for further details.

Collision attacks on the key-less hash function. Consider the “append-only” construc-
tion: MACk(x) = F (x, k). Assume that two strings x and x′ are known for which F (x) = F (x′)
(this collision corresponds to the key-less hash function). Then, regardless of the key k in use,
one knows that MACk(x) = MACk(x

′) (actually, that is true for extensions of x and x′ as well).
Finding a collision pair x, x′ for the function F is far easier than attacking NMAC through collisions
in Fk, where k is unknown. As showed in the above discussion on birthday attacks, while the latter
is totally infeasible even for hash lengths of ` = 128, finding collisions to the plain hash function
through birthday attacks approaches feasibility (see [VW]). The reason is that such a collision at-
tack on the plain hash function can be performed off-line and independently of any secret key (and
thus requires no interaction with the legitimate owner of k), and it is strongly parallelizable. None
of these advantages for the attacker exist when attacking NMAC. In addition, as the recent expe-
rience teaches us, it is much easier to find collisions via analytical methods (e.g., [Do1, Do2, Do3])
against the key-less function than breaking our schemes. We finally note that a variant of NMAC
where the outer function is keyed but not the internal (i.e., Fk(F (x))) is susceptible to the same
attack through plain collisions as the append-only construction, and is significantly weaker than
NMAC.

The extension attack. Consider the “prepend-only” construction: MACk(x) = F (k, x) (i.e.,
the key k is prepended to the data x and the hash function – with the fixed IV – computed on
the concatenated information). Because of the iterative structure of F it is easy to see that if one
knows the value of MACk(x) where x contains an integral number of blocks, then one can compute
the value of MACk on any extension y of x (i.e., any string y that contains x as a prefix) by just
using the result of MACk(x) as an intermediate value of the chaining variable in the computation
of MACk(y). This attacks needs no knowledge of or direct attack on the key k. In NMAC this
attack is prevented through the outer application of Fk1

, which avoids the exposure of the result of
the iterated function Fk2

.
As noted in section 3 extension attacks can allow the transformation of attacks against a hash

function that uses a random but known IV into an attack against secret IVs. Such attacks are
known against MD4 [Do1] and are plaussible to exist against MD5 [Do2, Do3]. However, these
attacks are inapplicable against our MAC constructions where, as said above, the outer application

16



of the hash function prevents the extension attacks.

Divide and conquer attacks. Consider the method, known as the “envelope” method, that
combines the above prepend and append constructions, namely, MACk1,k2

(x) = F (k1, x, k2). Pre-
neel and van Oorschot [PV1] observe that in an attack directed to recover the whole key one does
not need to work exponential time on the added length of keys k1 and k2 but one can recover both
keys in a total time which is exponential on the length of one key. This is done by first finding
collisions in the MAC function, and then searching exhaustively for a key (k1) that produces these
collisions. Once we have the right k1 it is straightforward to find k2 by exhaustion. Although this
attack is impractical, it serves to illustrate the basic fact that the strength of the function comes
from its individual keys and not from their combined length.

A similar attack holds against NMAC. This is in no contradiction with the analysis of Sec-
tion 4 that shows the security of NMAC based on the strength of the individual underlying func-
tions, i.e., the keyed compression function as a MAC and the keyed iterated function as weakly
collision-resistant. The divide and conquer attack shows that one cannot replace in Theorem 4.1
the expression εf + εF by the much stronger εf · εF . It also serves to show that the use of a single
`-bit long key in HMAC does not weaken the function against exhaustive search.

Comparison with the construction of [PV1]. In [PV1] a construction is proposed which is
also a variant of the envelope method. It uses a keyed IV and an appended key, but in addition
it uses a third key that is applied to influence the internal rounds of the compression function
in use. (All these keys are derived from a single underlying key.) This is a heuristic measure
intended to counter possible weaknesses of the compression function in use, and no formal analysis
of the construction is provided. We note that this construction is more “intrusive” in the sense
that it requires some more changes to the existing hash functions, and it impacts performance in a
moderate but noticeable way.

Comparison with rfc1828. The MAC scheme described in RFC1828 [MS] has been proposed as
a standard mechanism for message authentication in the context of IP (Internet Protocol) security.
This function, which uses MD5 as the underlying hash function, is based on the envelope method,
but pads the prepended key to a full block boundary. In addition, it uses the same key for prepend-
ing and appending. The best analysis known for this type of functions is given in [BCK1] which
show that when using different and independent keys (for prepend and append) the security of the
function can be based on the pseudorandom properties of the underlying compression function.
The NMAC function presented in this paper enjoys a superior security analysis in two important
aspects: it requires weaker assumptions on the underlying hash function (since the pseudorandom-
ness of the compression function implies our assumptions), and the security of the underlying hash
function is preserved in a significantly stronger way (as quantified in Theorem 4.1) than in the
analysis in [BCK1]. Another important difference is that the HMAC variant deals better with the
use of a single key than does the construction of RFC1828; in the latter, the use of the same key
for prepend and append makes the analysis in [BCK1] less applicable and, in particular, makes the
scheme susceptible to the above mentioned key recovery attack of [PV2].

HMAC has now replaced the RFC1828 construction as the mandatory to implement authenti-
cation transform for Internet security protocols [KBC].
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