Information Flow Audit for PaaS clouds

Thomas F. J.-M. Pasquier, Jatinder Singh, Jean Bacon

Computer Laboratory, University of Cambridge
Cambridge, United Kingdom
Email: firstname.lastname @cl.cam.ac.uk

Abstract—With the rapid increase in uptake of cloud services,
issues of data management are becoming increasingly prominent.
There is a clear, outstanding need for the ability for specified
policy to control and track data as it flows throughout cloud
infrastructure, to ensure that those responsible for data are
meeting their obligations.

This paper introduces Information Flow Audit, an approach
for tracking information flows within cloud infrastructure. This
builds upon CamFlow (Cambridge Flow Control Architecture), a
prototype implementation of our model for data-centric security
in PaaS clouds. CamFlow enforces Information Flow Control
policy both intra-machine at the kernel-level, and inter-machine,
on message exchange. Here we demonstrate how CamFlow can
be extended to provide data-centric audit logs akin to provenance
metadata in a format in which analyses can easily be automated
through the use of standard graph processing tools. This allows
detailed understanding of the overall system. Combining a con-
tinuously enforced data-centric security mechanism with mean-
ingful audit empowers tenants and providers to both meet and
demonstrate compliance with their data management obligations.

I. INTRODUCTION

There is increasing awareness of privacy and security
concerns in cloud computing. Such concerns mean that certain
regulated sectors such as health, finance or government are
reluctant to use public cloud services [1], [2]. The wide use
of social media has highlighted occasions when data willingly
provided by users has been used outside of the data owner’s
expected context [3], [4]. Those providing cloud services,
or using cloud infrastructure to provide services, are often
subject to legal obligations, be they through contracts (SLAs)
or imposed by regulation, such as data protection law [5].

However, despite the significant body of law and regulation
that applies to cloud computing [6], as yet there is little
technical basis for enforcing and demonstrating compliance.
While much effort has been put into understanding and demon-
strating quality of service, solutions that provide transparency
and demonstrate the proper handling of data are less mature.
Strong, reliable mechanisms to control data dissemination and
demonstrate compliance are clearly needed [5].!

We have argued [7], as have others [8], that Information
Flow Control (IFC) addresses these requirements. IFC enforces
the proper (i.e. according to a specified policy) use of data, by
controlling its exchange between components of a system over
the dimensions of secrecy and integrity [9]. We have shown
that IFC can provide Security as a Service for the cloud [10],
complementing existing security mechanisms through end-to-
end, data-bound security policy.

'We are concerned with situations of corporate/organisational compliance;
surreptitious actions by malicious parties or government agencies—e.g. for
reasons of national security, through the US Patriot Act, or the French 2013
Military Program Law—are beyond the scope of this discussion.

David Eyers
Department of Computer Science, University of Otago
Dunedin, New Zealand
Email: dme@cs.otago.ac.nz

We extend IFC to collect audit records that can be used
to demonstrate compliance with data handling requirements,
through what we term Information Flow Audit (IFA). Compli-
ance concerns can be internally or externally imposed on an
organisation, company, industry or product, perhaps emerging
from contractual obligations (including SLAs), legal regula-
tion, internal policy or industry standards. In cloud services,
managing obligations and demonstrating compliance requires
the means for monitoring and understanding the circumstances
in which data moves between the components comprising the
cloud infrastructure.

Provenance systems [11], [12] concern audit; they assist in

understanding the lifecycle of data (further details are given
in §III-A): how was it created? when? by whom? how was it
manipulated? As both provenance and IFC concern the flow
of information between entities, IFC enforcement is a natural
source of provenance-like data. The advantage of IFC with IFA
compared with general provenance metadata collection, is that
in IFC, audit data is a by-product of enforcement, whereby IFC
audits only selected (labelled) entities. Further, as the audit data
of IFA is intrinsically linked to the control mechanism (IFC), it
readily assists policy management including the identification
of policy errors.
Contributions: In this paper, we discuss our novel approach,
combining IFC and provenance techniques to provide Informa-
tion Flow Audit. We give an in-depth description of the tech-
nical implementation of the capture mechanism as a Linux Se-
curity Module and the simple user-space framework to handle
the captured data. The data generated and collected during IFC
enforcement can help in understanding system-wide behaviour.
Further, we evaluate our mechanism in conjunction with open
source and off-the-shelf tools, to allow audit to be performed
on the collected data. Finally, we discuss related work and
open challenges, giving some of the relevant literature on the
subject. The combination of IFC and provenance techniques
has the potential to demonstrate compliance with contracts,
laws and regulations. Our current focus is within the context
of PaaS, based on our implementation described in [7], [10].
In a wider context, such mechanisms will become increasingly
relevant, given the emerging Internet of Things (IoT), which
cloud services will be integral in realising [13].

In §II, we briefly describe our IFC model. In §III, we
describe how audit data is generated during IFC and give
examples of its usage. In §IV, we describe our prototype
implementation and discuss our design choices. In §V, we
evaluate our solution, discussing practical integration with
graph visualisation and analysis frameworks. In §VI, we
discuss related work, focusing on provenance and data flow
management systems. In §VII we discuss open challenges, and
conclude in §VIII.

II. ENFORCING INFORMATION FLOW CONTROL

IFC systems provide guarantees over the secrecy and
integrity dimensions of data, by controlling and restricting
where in a system data is allowed to flow. An IFC secu-
rity model was first introduced by Denning [14] and later
refined for decentralised environments by Myers [15]. When
implemented from the OS kernel level upwards, applications
running under IFC enforcement do not need to be trusted for
the data management policy to be properly enforced [16]. If
the enforcement mechanism in the kernel and the mechanism
interconnecting machines can be trusted, trust can be estab-
lished across the whole distributed system [17]. If a Trusted
Platform Module (TPM) is present, it is possible to remotely
verify the presence of our IFC enforcement implementation
using remote attestation [18], [19], further strengthening the
trust relationship (this is discussed further in §IV-A).

We do not see IFC as a replacement for existing security
schemes such as access control or encryption of sensitive data,
but rather as a complement to provide guarantees when sharing
sensitive data between parties or services. IFC simplifies the
trust assumptions that need to be made. Instead of a need
to trust all parties involved, only trust in the cloud provider
implementing the IFC security mechanism is required. We
now outline our IFC model, focussing on that relevant to the
discussion in this paper. See [20] for a more formal definition.

A. Data Flow Constraints

In our model, entities, such as processes and data, are
labelled with secrecy (S) and integrity (I) labels. A label
comprises a set of tags, each of which represents some
security concern such as secrecy:medical or integrity:verified.
The security context of an entity is the state of its .S and [
labels and domain is used for entities that inhabit the same
security context in the secrecy or integrity dimension.

A flow of information A — B is safe if and only if:

A = B, iff {S(A) C S(B) ANI(B) C I(A)}

‘ Component

—_— Allowed Flow
====» Prevented Flow

Fig. 1: End to end secrecy enforcement.

Fig. 1 describes the end-to-end behaviour of data flow,

in the secrecy dimension. Data produced in a certain secrecy
domain can only flow within the same domain or into a more
restricted subdomain. This means that data produced by a
component cannot be used for a purpose other than the one
originally defined (e.g. medical data is only used within the
medical security context domain).
Example—Secrecy: A person may have sensor devices for
health and lifestyle monitoring. As the data streams from these
sensors are highly sensitive, they can only flow into remote
data storage labelled to receive data from that person.

Fig. 2 shows the end-to-end behaviour of data flow in the

‘ Component

— Allowed Flow
==== Prevented Flow

Fig. 2: End to end integrity enforcement.

integrity dimension. Data can only flow within an integrity
domain or towards a parent domain with a lower integrity
guarantee. In practice, this means that the final data consumer
can be assured that all the chain from the original data producer
can be trusted.

Example—Integrity: Suppose that in health and lifestyle
monitoring, analysis of the collected data indicates that the
sampling rate should be increased. Generally, actuators estab-
lish a trust relationship with the entity issuing the actuation
command. We argue that trust should encompass not only
the immediate command issuer, but the data source and all
the services (e.g. analytics) that were involved in influencing
the actuation command. Integrity tags can capture such a
notion, assuring the actuator that the source data and any
transformation made on it are part of the trusted chain.

B. Endorsement and Declassification

In Figs. 1 and 2, we have shown how data flows are
restricted to equal or increasing secrecy constraints and equal
or decreasing integrity constraints. However, data may undergo
transformations and/or checks that change its security prop-
erties. For example, moving data through an anonymisation
engine renders the data less sensitive, so less strict secrecy
constraints can apply to the anonymised output. In the integrity
dimension, data may go through a validation process on input,
thus becoming more trustworthy. Declassifiers and endorsers
are the entities in the system that are trusted to change
the security context of data. Declassifiers change the secrecy
properties and endorsers change the integrity properties.

S={ta};1=10

=

-
- ‘ Declassifier /Endorser

‘ Component

— Allowed Flow
- Prevented Flow

Fig. 3: Declassification and endorsement.

As shown in Fig. 3, declassifiers and endorsers are trusted
entities that perform some operation on the data (e.g. analysis,
transformation, etc.) and change its security context when the
operation has executed successfully, transferring information
across security context domains. These entities are allocated
privileges that allow them to change their security context in
order for data to be transferred from one domain to another.
As mentioned, IFC allows untrusted applications to run on top
of the enforcement mechanism, and declassifiers and endorsers
may be small, tightly-scoped elements of a trusted computing

base that generally perform a one-way, well-defined task (e.g.
encrypt, anonymise, etc.).

Endorsers and declassifiers can therefore be seen as trusted
gateways between security context domains where the general
IFC constraints would prohibit a direct flow. Such gateways,
when accompanied by audit, can help ensure that regulation
is enforced, e.g., medical data might only flow to a research
domain if it has gone through a declassifier that applies a
well defined anonymisation algorithm [5]. IFA can demonstrate
that no other path exists (see §III). Similarly, regulations may
indicate that medical data must be encrypted before being
stored in databases. IFC labelling and endorsement can ensure
compliance and IFA can demonstrate this compliance. See §III
for more detail.

Some approaches to data management couple a rich policy
specification with the enforcement regime (see §VI). IFC aims
more generally to provide secrecy and integrity security primi-
tives to bound data flows. Here, complexity and expressiveness
emerge from the interaction of these primitives with the build-
ing blocks provided by the trusted declassifiers/endorsers. This
avoids every entity in the system being burdened with the over-
heads associated with complex policy enforcement. That is,
policy can be encoded in small endorser/declassifier services,
separate from the application, that could be made available
by the cloud provider or tenants. IFC constraints guarantee
that these transformations are applied before data is allowed
to flow between components of a system. The combination of
IFC policy and declassifiers/endorsers allows the enforcement
of policy such as medical data stored in database X must have
received proper consent and be anonymised [S] or European
personal data sent to the US must first be anonymised [21].
We are actively working on a higher-level mechanism to
facilitate the translation of such concerns into IFC tags and
the composition of cloud-provided security primitives.

C. Privileges and Entity Creation

We have so far considered two types of data flow mecha-
nism: data flow constraints and security context change through
endorsement/declassification. Declassifiers and endorsers are
allocated privileges associated with specific tags in order to
perform security context change operations. Such privileges
are owned by the creator of a particular tag and can be
passed to other entities in the system. Note that a change in
security context does not itself result in a flow of information
outside the entity, but still represents a recordable flow, as data
has effectively been transferred (logically) from one security
context to another through the entity’s security context change.

A newly created entity inherits the security context of its
parent. Though other implementations [16], [22] allow more
flexibility, they modify system call semantics, and therefore
require applications to be rewritten [10]. Creation of an entity
represents a flow of information between the parent and the
child entity. In summary, there are four types of flow within
our model: data flow, creation flow, security context change
and privilege passing.

III. INFORMATION FLOW AUDIT (IFA)
Traditional cloud logging systems are mostly based on and
composed of legacy and/or service-specific logging systems
(OS, web-server, database etc.). These are difficult to interpret
system-wide, as they tend to log only those events relevant
to the particular system component. As such, it is argued that

cloud logging systems should be redesigned to be information-
centric (rather than system-centric), thus accounting for the
movement of information [23]. Pohly et al. argue that forensic
investigation requires the collection of data that captures the
actions of processes, IPC mechanisms and the kernel [24].

IFC complements existing security mechanisms by provid-
ing guarantees about proper (i.e. policy-compliant) data usage.
Our aim is to augment IFC with audit that makes visible how
the data flows through the system and is used. This allows
tenants to effectively demonstrate that proper mechanisms are
in place and that all data goes through those mechanisms. If
information has been shared when it should not have been, or
this is claimed by some party, we aim to provide forensic data
to understand how/whether this sharing happened.

A. Provenance Systems

Provenance systems concern audit, associating with each
data object metadata describing the transformation involved in
generating this data. They typically concern some aspects of:
data quality, replication recipes, ownership attribution, context
understanding and audit [25]. Provenance systems generally
present the relationship between data objects and transforma-
tions (processes) as a directed graph leading to and from the
data objects being audited. Such graphs capture when, why, by
whom and how this data object was created and/or used and
their processing allows such behaviour to be understood. In
this work on IFA we leverage the graphs and processing tools
that have been developed for establishing data provenance.

B. From Provenance to Information Flow Audit

IFC constrains the flow of information in a system, being
enforced as system components interact. As such, information-
centric logging is naturally provided by recording information
flow decisions, metadata on the entities involved in the flow
and any metadata associated with the decisions. This includes
details of data exchanges (e.g. reading from a pipe or file,
sending a message), process management operations (such as
creating a new process and setting up its security context), and
security operations such as declassification or endorsement.
This covers the four types of flow described in §II.

The information produced by IFC enforcement can allow
the generation of a provenance-like directed graph, answering
the questions: how, when, where and by whom a piece of
information was manipulated. This allows understanding of
how a particular piece of information moved through the
system infrastructure, across various components and services.
Importantly, the tight coupling between the enforcement and
audit mechanism facilitates understanding and verifying sys-
tem behaviour and control policy. From this audit graph, it
is possible to demonstrate compliance with data management
policy and/or provide forensic data to determine the cause of
any unintended data disclosure.

As described in Table I, audit entries can be divided
into two main categories: flows (i.e. edges of the graph) and
information about entities (i.e. describing the nodes of the
graph). A node corresponds to [entity, security context], with
a change in security context represented by a security context
change flow towards a new node. Fig. 4, gives an example
of how flow of information in the system can be represented.
An edge entry is relatively simple: it describes the sender and
receiver of a data flow, the type of flow, whether or not it was
allowed, and an event identifier for allowing dependencies to
be determined. Node entries contain metadata describing the

Nodes Edges
Attribute Description Attribute Description
Entity ID Unique local identifier of the entity. Event ID The ID of the event (e.g. a number,
timestamp, etc.)
Machine ID Unique identifier for the machine on || Machine ID Unique identifier for the machine on
which the node was recorded. which the edge (flow) was recorded.
Type Type of node: e.g. process, FIFO, || Type Type of flow: data flow, privilege,
socket, file etc. creation, security context change.
Name A name for the node (e.g. filename, || Sender ID The ID of the entity from which the
executable name etc.). data is flowing.
User ID The user ID of the principal owning || Receiver ID The ID of the entity to which the data
the entity. is flowing.
IFC Labels Secrecy and integrity label of the || Allowed If the flow was allowed or not.
entity (and privileges for processes).
Additional metadata | Node type specific or user space || Additional metadata | Edge type specific metadata (e.g. sys-
application-specified attributes. tem call name).

TABLE I: The attributes of audit nodes (entities) and edges (flows).

node: its type (e.g. file, socket, process etc.), its ID etc. and
again, an event ID so that dependencies can be determined.

C. Example: Discovering Data Disclosure Paths

As discussed, IFA can be represented in a directed graph.
The graph can be analysed to 1) trace information flows within,
across and between system components; and 2) to examine
which components are attempting to violate IFC constraints.

For example, the IFA graph can be used to identify the
origin of a data leak. Suppose that an information leak is
suspected between different security context domains [S, I]
and [S’,I']. Determining whether such a leak can occur is
equivalent to discovering whether there is a path in the graph
between the two contexts. If the leak occurred, there must be
a path between some entity E such that S(E) = SAI(E) =1
and another entity F' such that S(F) = S'AI(F)=1TI'.

The existence of such a path demonstrates that a leak is
possible. To investigate whether a leak occurred it is essential
to consider the event identifier associated with the edges
comprising the path. We denote by e;, the last incoming edge
to the entity under investigation with labels [S’, I']; only edges
such that e < e; should be considered. When applied to all
nodes along a path, this rule ensures strictly monotonically
increasing event identifiers from the first node to the last.

Fig. 4, shows in pale blue a possible data disclosure path
between the [S’, '] and [S”, ()] security context domains. We
can see from the order of the event identifiers ej and e; that
the data disclosure could not have occurred through file F} and
process Ps, but occurred through P;’s security context change.
P; wrote into the public security context domain (represented
by a single node as flows are not tracked within this domain)
and P, read from it at e7. We present in §V-A how this analysis
can be done in practice with our prototype implementation.

D. IFA compared with Provenance Logs

One of the problems of provenance systems is the ex-
tremely large amount of data being collected, rendering the
approach impractical. Data is typically collected at the granu-
larity of system calls [24], [26] (as in kernel-level IFC systems)
but IFA records provenance-like metadata only on IFC labelled
entities. “Public" entities are not audited as, from an IFC
perspective, the information is not sensitive and therefore can
flow freely. IFC essentially aims at labelling sensitive data,
which is the data we need to keep track of in practice. IFC

[
4

s - Bisn1]

s € €6

| P, [:9, 1 |

| ppa | | nsmo |
€3
€1 ey
C7 e Information Exchange
| R[S, I | | Public[0, 0] | ===m=p Security Context Change

eceed (Create

Fig. 4: Simplified audit graph from IFC OS execution (we omit
metadata for readability). Blue/pale arrows show the path to
disclosure.

audit can be seen as attaching policy metadata to sensitive
entities, thus applying a policy filter to select the entities to be
audited. In other words, our approach involves a tight coupling
between the enforcement and provenance mechanism, which
allows a large reduction in the amount of data collected. We
argue that much provenance data is excess “background noise"
generated by the system, and so is uninteresting and unrelated
to the sensitive data that we aim to protect.

The granularity at which provenance is tracked via IFC
audit depends on the IFC enforcement mechanisms employed;
CamFlow entails OS object-level and message-level enforce-
ment. Enforcing IFC in a database, for example, would require
a specific database implementation, such as IFDB [27], where
IFC would be enforced at a finer granularity than at the kernel-
object level. Different levels of IFC enforcement can be made
to interact gracefully, as in [22] or through means described in
§IV-C. As IFC mechanisms are made to interoperate, an API
should be provided for (internal) IFA to complement system-
wide audit data. Similarly, the metadata collected will vary,
according to the IFC enforcement mechanism(s), the applica-
tions involved, and higher-level provenance requirements [25].

IV. IMPLEMENTATION

We aimed to implement IFA in a modular, flexible fashion,
giving freedom to system developers to implement or add
different tools to fit their needs. The CamFlow framework
provides the mechanism to enforce and audit information
flow within the local machine, plus a fully fledged messaging
middleware to deal with information flow across machines.
In addition, APIs allow a cloud provider to build additional

ow-MW CamFlow-MW CamF;ow-MW

E CamPFl g
o =]
b1 :
Q Process g Process Process
O g o} o)
] | L 2
CamFlow-LSM || [[camFlow-LSM |
Kernel Kernel
File [0, I] —[Enforcement Point

Fig. 5: High-level view of CamFlow use for PaaS.

trusted components (see §IV-C), for example, to link applica-
tions’ processes to an IFC-enforcing key-value store.

As described in [7] and shown in Fig. 5, the CamFlow
framework can be used to underlie current PaaS architectures.
Our current prototype cloud derives from Dokku? and hosts
cloud services within Docker [28] containers. A local ma-
chine’s IFC&A are provided as part of the underlying kernel
(see §IV-B), and other cloud-provided trusted components
(such as the messaging middleware or other custom compo-
nents) can be managed through the CamFlow APIL

A. Trust Assumptions

The following assumptions were made when building our
IFC enforcement and audit mechanism:

Hardware Integrity: We assume that the cloud providers have
taken sufficient technical and non-technical measures to ensure
that the hardware has not been tampered with.

Physical Security: We assume that best practices are in
place on physical access to hardware, when managed by the
cloud provider or by a third party managing the underlying
infrastructure [29].

Low-level software stack: We assume that the integrity of
the low-level software stack is recorded and monitored, which
includes BIOS/UEFI, boot loader code and configuration,
Options ROM, host platform configuration, virtualisation hy-
pervisor etc. We assume that such integrity measurements
are kept safe through a hardware mechanism and cannot be
tampered with.

Trusted Platform Module (TPM): We assume that TPM or
vIPM [30] features are leveraged to guarantee the integrity of
the platform on top of which cloud hosted applications and ser-
vice are running. We further assume, that such configurations
could eventually be monitored in real-time [31] using remote
attestation [18] to ensure that our security mechanism is in
place at all times and is correctly configured. Hardware-assured
software is relatively new for cloud services, and further
work is needed, e.g., to consider issues such as continuous
assessment. Without this, attack analysis may suffer from the
disparity between time-of-attack and time-of-detection.
Cryptographic Security: We assume cryptographic func-
tions to be secure and data exchange across machines to be
encrypted. We assume that message integrity on exchange
between machines can be verified. Furthermore, data may be
encrypted on disc to provide further guarantees.

In this work we assume that Cloud Service Providers that
manage the underlying infrastructure can and should be trusted
as they are 1) bound by contract and regulations [6], 2) it is in
their best economic interest to ensure proper security measures
and 3) they are in practice already trusted by large numbers
of cloud tenants.

Zhttps://github.com/progrium/dokku

| User space Process

User Space

Kernel Space

| Open system call |

!}

| Look up inode |

I

| Error checks |

! CamFlow-LSM
| DAC checks |

i

| LSM hook
* yes/no

allowed?| Verify IFC constraints

-]

Record audit entry

| Complete request | Grant or deny access

'
[inode]

Fig. 6: Linux Security Services Module hooks example on
open system call.

B. Local Information Flow Control and Audit

The local enforcement builds upon a Linux Security Mod-
ule (LSM) [32], a general framework that allows a variety of
different access control models to be implemented into the
Linux OS. SELinux [33] and AppArmor [34] are examples of
two well known mandatory access control implementations as
LSMs. The LSM framework has also been used beyond access
control e.g. to include Provenance within Linux [24].

The LSM framework calls security hooks when access to
a kernel object is attempted, as shown in Fig. 6. Security
metadata can be associated with kernel objects and is used
by the LSM module to make access decisions. In order to
implement IFC, we associate IFC labels and privileges with
kernel objects [26].

We assume that the rest of the kernel can be trusted and
does not interfere with the IFC/IFA enforcement mechanism.
LSM system hooks have been statically and dynamically
verified [35], [36], [37], and our implementation inherits from
LSM the formal assurance of IFC’s correct placement on
the path to any controlled kernel object. This is sufficient
to guarantee that we control flow and record audit on any
operation on a controlled kernel object.

CamFlow-LSM also provides an API for processes (the

active entities) to manipulate their security context dynami-
cally at run-time (assuming the process holds the requisite
privileges). Additional features are not part of our LSM but
rather, are implemented as user space helpers (ushers).> This
allows a greater modularity of the system and customisation
to meet particular needs.
Audit-usher: The kernel records data flows between kernel
objects and the metadata on those objects. These audit entries
are then read by an audit-usher. The usher’s role is to translate
the raw and binary data provided by the kernel into human/-
machine readable log data.

A system developer wanting to implement a custom audit-
usher needs to implement the callbacks illustrated in Listing
1. The underlying concerns (access to log data, threading etc.)

3 An usher is an official in a court of law that ensures secure transactions
on documents and escorts participants to the courtroom.

1

/+ callback to handle edge =/

> void log_edge (edge_t= e);

3 /% callback to handle label node metadata =/
void log_label (meta_label _tx 1);
s /% callback to handle string metadata =/

void log_str(meta_str_ts s);

/% callback to handle node =/
void log_node(node_t* n);

/# callback for filer function =x/
bool filter (byte_t* raw);

audit_op_t op = {
.log_edge = log_edge,

.log_label = log_label,

.log_str = log_str,

.log_node = log_node,

.filter = filter // set to NULL if no filter

1B

int main(void) {
register_audit(&op, 4); //
number of worker threads
/% do whatever =/
stop_audit(); //
return O;

}

register callbacks and

stop audit recording

Listing 1: CamFlow Audit-usher API.

(orn) (oo) (ovw) (Corun)
relay_write l l l

kbuf0 kbufl
velayfs |77 ST [TTO T T
files (VFS) /epud /epul
kernel

L T P T T Y TR T T T T P
userspace mmap
relayfs | | | | | |
files (mounted) /mnt /cpu0 /mnt /cpul /mnt/cpu2 /mnt/cpu3
) ¥)

management
thread

audit
thread 0

audit
thread 1

audit
thread 2

audit
thread 3

Audit-usher

Fig. 7: Audit-usher leveraging relayfs.

are handled transparently by the CamFlow library. The current
implementation relies on relayfs [38].

Relayfs provides a per-CPU kernel buffer that can be
efficiently written to by kernel code and read from user space.
These buffers are represented as files that the audit-usher can
mmap and read efficiently from user space. Relayfs has been
designed to provide the simplest possible mechanism to read
and log large amount of data by relaying them from kernel to
user space. The architecture is illustrated in Fig. 7.

Customisation of the audit collection allows the cloud
provider to tailor the mechanism to its needs. For example,
one may want to format the data in accordance with the Open
Provenance Model [39], feed the data to a graph database,
use a graph processing framework to perform real-time event
detection, etc. Our proposed implementation does not constrain
developers into a particular usage pattern, and while dealing
transparently with the underlying mechanisms, allows them to
focus on the aspects relevant to them. We describe an example
implementation to graphically display an IFA graph through a
web interface or to feed the information to a graph database
in §V-A.

System Objects: Processes are the only active entities within

the Linux OS. Each process is associated with IFC labels and
privileges at creation and assigned a unique ID within the
current boot (boot and machine are also allocated unique IDs).
A process and its memory are treated as a black box. Fork
generates a create flow from the current process to the forked
process. Exec creates a data flow from the file being executed
to the calling process.

Files, pipes, sockets etc. fall under the inode category
within the kernel. They are passive entities and their security
context is immutable. Creation, read and write from those
entities are protected by IFC policies and flows are recorded.

Files need to be identified as they persist across boots. A
file inode ID is unique within its file system and a file system
is generally associated with a unique identifier at creation.
We generate unique identifiers for kernel-internal pseudo-
filesystems. The combination of inode ID and filesystem ID
allows files to be identified uniquely within our audit logs.
Sockets and pipes can be identified in the same fashion as,
from the kernel perspective, they are inodes that belong to
pseudo-filesystems.

Messages in message queues are handled individually and
each message represents a unique node in the audit graph. As
they have no kernel source of identifier, their IDs are generated
by CamFlow-LSM.

Finally, a file mapped to an address space or shared mem-
ory does not provide fine grained read/write semantics from the
audit perspective. We can only enforce and record flows when
mapping is established. However, to prevent such a mechanism
leaking data across security contexts, once memory has been
mapped (in read/write/both mode), the security context of the
associated process is frozen. We conservatively assume that
any data accessed by a process mapped to this shared memory
flows to other mapped processes. Again, the underlying mech-
anism relies on filesystems or pseudo-filesystems, which can
be used to uniquely identify nodes within the audit graph.

C. Bridging with Other Layers of Enforcement

IFC can be implemented across different layers of the
software stack, for example, within applications [22] or within
database systems [27]. The CamFlow framework provides a
mechanism to bridge from an IFC-constrained process to a
trusted process enforcing IFC at a different layer of abstraction
(our messaging middleware is such a process and is described
in more detail in §IV-D). A system developer can implement
such a mechanism to build more complex systems.

CamFlow associates a bridge-usher process with a con-
strained process and allows communication through a standard
socket interface. This usher process can perform operations
outside the IFC constraints applied to the constrained process.
Data sent through the kernel socket is forwarded by CamFlow-
LSM from the constrained process to its associated bridge-
usher (and vice versa). Such messages are recorded and associ-
ated with a unique identifier by the CamFlow-LSM module, i.e.
logging the flow of information between the bridge-usher and
its attached process. As there is “layered” IFC, it is possible to
provide layered audit data [40]. An API allows a bridge-usher
to generate an audit subgraph of its internal behaviour and
allows incoming or outgoing messages’ nodes to be connected
to this subgraph. This complements the system’s observed
provenance, by disclosed provenance from applications [41],
which provides richer semantic knowledge and allows a better
understanding of the system. For example, in the case of a

—pp- Jata flow

machine_id:event_id

Fig. 8: Communication through an inter-machine message.
Partial order along the path: 2 : 159 <X 1: 47.

database, this could be providing details of information flow
in relation to database objects.

Integration with a system natively supporting IFC is trivial,
since IFA is a simple by-product of IFC enforcement. One
possible approach to integrate IFC&A with a legacy solu-
tion is to use aspects for instrumentation. We used aspect-
oriented programming to incorporate IFC into web applications
[42], and in [43], aspects are used to track data flows in
MapReduce/HDFS. Our solutions provide the API to insert
the data collected at that level into the whole system graph,
but integration is beyond the scope of current work.

D. Inter-machine Enforcement

Only processes P such that S(P) = () (i.e. not subject to
security constraints) are allowed to directly connect or receive
messages from outside connections (e.g. through a socket). In
order to connect directly to the outside world, a process must
either: 1) be able to declassify to S = (; or 2) communicate
through a bridge-usher.

A bridge-usher is used to integrate our messaging sub-
strate, CamFlow-MW (see [10] and [44]), that handles cross-
machine communication. Each communicating process has an
associated CamFlow-MW process to manage its messaging,
through the kernel-mediated socket discussed earlier. The
substrate then enforces IFC in its dealings with the substrate
processes of other applications (local or remote), ensuring
that the tags on each side accord. This enforcement occurs
on the establishment of communication (messaging) channels
between components, where a channel is only established
if the IFC policy allows. This is monitored throughout the
connections’ lifetime, where a change in security context
triggers re-evaluation: a channel is terminated if it is no longer
authorised. All of these operation are recorded to generate an
audit-graph.

In §III, we discussed how the ordering of event identifiers
is used to understand the succession of events within the
audit graph. Once the system is distributed, one may be
tempted to introduce a complex synchronisation scheme to
maintain this ordering. We believe this is not necessary and
should be avoided for simplicity and runtime performance.
Indeed, the flow of sensitive data is allowed across machines
only through limited IFC-aware communication channels with
well-understood semantics. This creates a partial order of
events across machines, which is sufficient to order events
along any given path. For example, as shown in Fig. 8, in
the case of cross-machine message passing, all writes at the
message sending entity/node happened before any read on the
destination machine.

V. EVALUATION
A. Using the Framework for Information Flow Audit
In order to evaluate the usefulness and usability of Cam-
Flow Information Flow Audit we now show that the collected

C' | [http://127.0.0.1:3080

process-80237

audit-graph/index.html

process-74597

process-8023
process-80235]

Fig. 9: Example screen-shot of a small audit sub-graph. Edges’
key: orange/dashed—security context change; purple/dotted—
creation flow; pink/light—privilege passing; black/plain—
allowed data-flow; red/dashed—disallowed data-flow.

data can provide useful insights and can easily be integrated
with existing tools. We demonstrate the feasibility of our ap-
proach through two simple audit-usher prototypes that connect
to open-source graph visualisation tools and graph databases
respectively. We selected the open-source Cytoscape tool [45]
for visualisation and Neo4J* for the graph database as they
have previously been used in a provenance context [46], [47],
[48], [49] and can therefore be considered as realistic solutions.
The code base is small and relies on off-the-shelf libraries and
tools. We have shown that it is possible to generate an audit
graph from IFC enforcement and now discuss the use of this
data by means of a graph analysis framework.

Visualising Data Flow: In order to evaluate the feasibility of
our approach we built a small tool that reads raw data from the
kernel and formats it to generate an audit file. The audit usher
application is very simple, comprising fewer than 100 lines
of C code. These log files are then parsed by a Ruby script
that builds a graph description in JSON that can be visualised
through the Cytoscape tool.

Fig. 9 presents a sub-graph generated from IFA logs. Nodes
are labelled with the tuple {type-id}, where the id uniquely
identify the pair {object, security-context}. The following
events are represented in the graph: edge 8 shows a parent
process process-80229 creating a pipe fifo-80230 and, down
edge 11, a child process process-80231. The parent passes
privileges (edge 14) to the child and writes to the pipe (edge
18) then the child reads from it (19). The child changes its
security context (20, 26) and its process ID. Finally, the parent
writes to the pipe (30) but the child process-80236 can no
longer read from it (31) due to incompatible security contexts.
Analysing the Audit Graph: Our second experiment with the
Information Flow Audit aspect of our framework consisted of
pushing data into a graph database in order to perform query
and analyses of system behaviour. The implementation of the
audit-usher has a small code footprint and easily allows the
well-established Neo4]J graph database to be leveraged.

Listing 2 presents a single-machine query using the Cypher
query language.’ This solves in practice the example presented
in §III. The query searches for all paths between a node
in the medical domain to a node in the public domain on
machine 1234. The results are a collection of nodes and edges
representing the paths between the nodes. These paths can

4http://neodj.com/
Shttp://neodj.com/developer/cypher-query-language/

1

> MATCH p =(:Entity {machineid:1234,

s // Restrict

// Find all "1234" from medical

Secrecy:

paths on machine
secrecy: "public" })
to path with monotonically

WITH p, range(0,length(p)—2) AS idx,

s WHERE ALL (i IN idx

increasing flow event
relationships (p) AS rs

to public
"medical"

}) —[(FLOWx%] —>(: Entity {machineid:1234,

ids

WHERE (rs[i]).eventid <(rs[i+1]).eventid)

7 RETURN p;

Listing 2: Query (simplified) to find all paths from medical to public.

be used to generate subgraphs that represent the transfer of
information between the two security contexts’ domains. The
query presented here, for simplicity, does not deal with node-
specific semantics (e.g. shared memory) and is restricted to a
single machine (see §1V). Such considerations can be either 1)
encoded within a more complex query by extending the where
clause to deal with entity-specific semantic, or 2) managed
through Neo4]’s traversal APL®

Compliance with obligations can be demonstrated through

queries over the graph. For example, the plain English policy
example given in §1I-B:
— “Medical data stored in database X must have received
consent and be anonymised” [5] can be expressed as a query
verifying that there is no path between medical labelled data
and the database without a consent and anonymiser process;

“European personal data sent to the US must be
anonymised” [21] is equivalent to writing a query that verifies
that there is no path between EU and US labelled data without
an encryption process.

In practice, further human input may be required to in-
vestigate data leakage or compliance. This is reasonable given
that flow policy will be specified by users, another advantage
of coupling enforcement and provenance. The subgraphs gen-
erated by a query for a disclosure path may be visualised
as described above. In addition, other types of query can
be performed over the audit graph such as determining how
a particular piece of data has been generated, determining
ownership in case of dispute, understanding the cause of a
confidentiality breach etc. Exploitation of the type of data we
collect creates many opportunities for forensics and demon-
stration of compliance.

B. Performance

We tested the CamFlow-LSM module on Linux Kernel
version 4.1.5 (08/2015) from the Fedora distribution. The tests
were run on an Intel 2.6Ghz i7 CPU and 8GiB RAM machine.

Measurements are done using the Linux tool ftrace [50] to
provide a microbenchmark. Two processes read from and write
to a pipe respectively. Each has 20 tags in its security label,
substantially more than we have seen a need for in current use
cases. We measure the overhead induced by: creating a new
process (sys_clone), creating a new pipe (Sys_pipe), writing
to the pipe (sys_write) and reading from the pipe (sys_read).
The results are given in Fig. 10.

We can distinguish two types of induced overhead on
core CamFlow IFC enforcement: verifying an IFC con-
straint (sys_read, sys_write) and allocating labels (sys_clone,
sys_pipe). The sys_clone overhead is roughly twice that of
sys_pipe as memory is allocated dynamically for the active

Shttp://neod]j.com/docs/stable/tutorial-traversal-java-api.html

sys_clone

sys_read

sys_write

sys_pipe |
| | | | | | | | |
0 10 20 30 40 50 60 70 80 90 (us)
I audit [dyn. label I CamFlow I LSM
[native

Fig. 10: Overhead introduced into the OS by the CamFlow LSM.

entity’s labels and privileges. Note that passive entities have
no privileges (§IV-B). Audit on creation of a new entity is
more costly as, in addition to the flow being logged, the new
entity and its associated metadata are logged. Overhead mea-
surements for other system-calls/data-structures are essentially
identical, as they rely on the same underlying enforcement
mechanism, and are not presented.

The CamFlow-LSM overhead is a few percent, see Fig. 10.
We provide a build option that further improves performance
by declaring labels and privileges with a fixed size (by de-
fault, label size can increase dynamically to meet application
requirements). This reduces the overhead of the system calls
that create new entities.

The overhead on system calls is in line with IFC [22] or
provenance [24], [26] systems that operate at OS level. For
most applications, the overhead imposed is minimal and hard
to measure; the variation between two executions due to system
noise is often greater than the overhead. On kernel compilation,
which evaluates a typical combination of process execution and
file manipulation, we incur an overhead of 3.6% compared’
with 2.5% [24], 2.7% [26] (but these systems only deal with
provenance).

VI. RELATED WORK

PASS [51] collects data within the Linux OS, mostly
concerning the file system, recording relationships between
processes and files, but does not capture whole-system data
flows. Hi-Fi [24] collects whole-system provenance data at the
kernel level leveraging the LSM framework. Macko et al. [52],
also proposed the collection of provenance data in the Xen
[53] hypervisor, capturing provenance information from the
host VM without requiring its modification. As discussed in
$III-B, the amount of data collected by a provenance system is
hard to manage and collection should be limited, based on the

"Here the values are as reported in their respective publications. Note that
the kernel versions are different from ours, namely 3.2.15 (Arch Linux) and
2.6.32 (RedHat) respectively.

policy in place. Bates et al. [54] used SELinux policy to reduce
the amount of data collected by Hi-Fi. Expanding on this
work, Bates et al. [26], propose a Linux Provenance Module
providing hooks akin to LSM, but for the specific purpose of
provenance data collection and enforcement of Provenance-
Based Data Loss Prevention—i.e. preventing sensitive data
from leaving a corporate domain—policy that can easily be
expressed in IFC. Provenance checking is easily incorporated
as part of IFC by enabling IFA. Coupling the enforcement
and audit mechanisms enables more concise logs (i.e. corre-
sponding to labelled flows). This facilitates the management of
audit logs, and at the same time, more readily indicates issues
in policy specification and/or enforcement.

Taint tracking (TT) systems (e.g. [55], [56]) entail the
recording of data flows. TT is used to determine whether an
application has accessed tainted data: based on secrecy (data
sensitivity) or integrity (trust in data sources) concerns. TT
systems only enforce policy (check for this taint) at specified
sink points, e.g., at the point where the results of a MapReduce
procedure are to be output. In contrast, IFC enforces policy
on every data flow within a system. In TT systems, there is
likely to be delay between some ‘problematic’ event (i.e. a
violation of data flow policy) and its detection at a sink point—
meaning there is scope for applications to operate on tainted
data. We argue that TT can be equated to forming a query
on the existence of a path between the source and the sink,
therefore, potentially subsumed by our work (e.g. is the data
written to a destination derived from sensitive information?).

Akoush et al. [57] demonstrated that it is possible to verify
IFC constraints in MapReduce a posteriori from provenance
records. This approach is conceptually similar to TT and
suffers from the same gap in time between a ‘problematic’
event and its time of detection, requiring re-execution of all or
some MapReduce jobs.

VII. OPEN CHALLENGES

So far we have described and practically demonstrated
how IFC can naturally lead to provenance-like capabilities.
However, a number of open challenges remain.

Controlling access to audit data: Audit data may be sensitive
and controlling access to provenance data is challenging [58].
A number of different languages have been proposed to model
provenance access control (PAC) [59], [60], but there is no
well-accepted standard nor model.

The need for storage: Managing the size of IFA data is a
significant challenge, especially since every flow in the system
may potentially be recorded. As audit data is represented in a
tree structure, pruning techniques [51] can be used to ‘garbage
collect’, i.e. compress or delete audit data that is unnecessary,
such as that irrelevant to an application’s context. However, it
is important to ensure that relevant data is not deleted. Machine
learning could be used to help filter and record only that audit
data relevant to the situation.

Data visualisation and analysis: In §V-A we showed how
IFA data can be visualised. As our focus is on IFA in PaaS
clouds, we aimed to provide information relevant to system
architects. More work is needed on representing data relevant
to application end-users and auditors.

IFA data can be considered ‘big data’, meaning that big
data analytics techniques such as those based on machine
learning can be used to infer meaning from the audit data. Such
approaches already exist in intrusion detection systems [61].

Widely distributed audit: Our work has considered the cloud
provider acting as the trusted policy enforcer and audit data
collector. Future work involves considering provenance across
cloud boundaries, e.g. to other clouds, IoT devices, etc. This
requires means for trust management—we discuss the use
of hardware-based roots of trust in [19]—and also tools for
distributed provenance analyses [62].

VIII. CONCLUSION
In this paper, we outlined how IFC can be enforced in
the cloud and discussed how audit data can be collected as
an intrinsic part of IFC. By leveraging tools developed for
provenance systems, we demonstrated that the collected data
can have practical use investigating system behaviour, and in
demonstrating compliance with data management obligations.

Acknowledgement

This work was supported by UK Engineering and Physical Sci-
ences Research Council grant EP/KO11510 CloudSafetyNet:
End-to-End Application Security in the Cloud. We acknowl-
edge the support of Microsoft through the Microsoft Cloud
Computing Research Centre. Thanks to S. Akoush and K. R.
Jayaram for their comments.

REFERENCES

[1] M. Bellamy, “Adoption of Cloud Computing services by public sector
organisations,” in World Congress on Services. 1EEE, 2013, pp. 201—
208.

[2] R.F. El-Gazzar, “A Literature Review on Cloud Computing Adoption
Issues in Enterprises,” in Creating Value for All Through IT. Springer,
2014, pp. 214-242.

[3] C.Zhang, J. Sun, X. Zhu, and Y. Fang, “Privacy and security for online
social networks: challenges and opportunities,” Network, IEEE, vol. 24,
no. 4, pp. 13-18, 2010.

[4] Z. Papacharissi and P. Gibson, “Fifteen minutes of privacy: Privacy,
sociality, and publicity on social network sites,” in Privacy Online.
Springer, 2011, pp. 75-89.

[5] J. Singh, J. Powles, T. Pasquier, and J. Bacon, “Data Flow Manage-
ment and Compliance in Cloud Computing,” IEEE Cloud Computing
Magazine, SI on Legal Clouds, 2015.

[6] C.J. Millard, Ed., Cloud Computing Law.
2013.

[71 T. FE J.-M. Pasquier, J. Singh, and J. Bacon, “Information Flow
Control for Strong Protection with Flexible Sharing in PaaS,” in IC2E,
International Workshop on Future of PaaS. 1EEE, 2015.

[8] K. Singh, S. Bhola, and W. Lee, “xBook: Redesigning Privacy Control
in Social Networking Platforms,” in Security Symposium. USENIX,
2009, pp. 249-266.

[9] N. Kumar and R. Shyamasundar, “Realizing Purpose-Based Privacy
Policies Succinctly via Information-Flow Labels,” in Big Data and
Cloud Computing (BDCloud’14). 1EEE, 2014, pp. 753-760.

[10] T. Pasquier, J. Singh, D. Eyers, and J. Bacon, “CamFlow: Managed
Data-Sharing for Cloud Services,” IEEE Transactions on Cloud Com-
puting, 2015.

[11] A. Chapman, M. D. Allen, and B. T. Blaustein, “It’s About the Data:

Provenance as a Tool for Assessing Data Fitness.” in Workshop on the
Theory and Practice of Provenance. USENIX, 2012.

[12] L. Carata, S. Akoush, N. Balakrishnan, T. Bytheway, R. Sohan, M. Sel-
ter, and A. Hopper, “A primer on provenance,” Communications of the
ACM, vol. 57, no. 5, pp. 52-60, 2014.

[13] 1. Singh, T. Pasquier, J. Bacon, H. Ko, and D. Eyers, “Twenty security
considerations for cloud-supported Internet of Things,” IEEE Internet
of Things Journal, 2015.

[14] D. E. Denning, “A lattice model of secure information flow,” Commu-
nication of the ACM, vol. 19, no. 5, pp. 236-243, 1976.

[15] A. C. Myers and B. Liskov, “A Decentralized Model for Information
Flow Control,” in Symposium on Operating Systems Principles (SOSP).
ACM, 1997, pp. 129-142.

[16] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler,
and R. Morris, “Information Flow Control for Standard OS Abstrac-
tions,” in Symposium on Operating Systems Principles. ACM, 2007,
pp. 321-334.

Oxford University Press,

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

(33]
[34]

[35]

[36]

(371

[38]

[39]

N. Zeldovich, S. Boyd-Wickizer, and D. Mazieres, “Securing Dis-
tributed Systems with Information Flow Control,” in 5th USENIX
Symposium on Networked System Design and Implementation, 2008,
pp. 293-308.

C. Kil, E. C. Sezer, A. M. Azab, P. Ning, and X. Zhang, “Remote
Attestation to Dynamic System Properties: Towards Providing Com-
plete System Integrity Evidence,” in Dependable Systems & Networks
(DSN’09). 1EEE, 2009, pp. 115-124.

T. F. J.-M. Pasquier, J. Singh, and J. Bacon, “Clouds of Things
need Information Flow Control with Hardware Roots of Trust,” in
International Conference on Cloud Computing Technology and Science
(CloudCom’15). 1EEE, 2015.

T. F. J.-M. Pasquier, J. Singh, J. Bacon, and O. Hermant, “Managing
Big Data with Information Flow Control,” in International Conference
on Cloud Computing (CLOUD). IEEE, 2015.

T. Pasquier and J. Powles, “Expressing and Enforcing Location Require-
ments in the Cloud using Information Flow Control,” in IC2E Interna-
tional Workshop on Legal and Technical Issues in Cloud Computing
(CLaw’15). 1EEE, 2015.

D. E. Porter, M. D. Bond, I. Roy, K. S. McKinley, and E. Witchel,
“Practical Fine-Grained Information Flow Control Using Laminar,”
ACM Transactions on Programming Languages and Systems (TOPLAS),
vol. 37, no. 1, p. 4, 2014.

R. K. Ko, M. Kirchberg, and B. S. Lee, “From System-centric to Data-
centric Logging-accountability, Trust & Security in Cloud Computing,”
in Defense Science Research Conference and Expo (DSR), 2011. 1EEE,
2011, pp. 1-4.

D. J. Pohly, S. McLaughlin, P. McDaniel, and K. Butler, “Hi-Fi:
Collecting High-Fidelity whole-system provenance,” in Proceedings of
the 28th Annual Computer Security Applications Conference. ACM,
2012, pp. 259-268.

Y. L. Simmbhan, B. Plale, and D. Gannon, “A Survey of Data Provenance
in e-Science,” ACM SIGMOD Record, vol. 34, no. 3, pp. 31-36, 2005.

A. Bates, D. Tian, K. Butler, and T. Moyer, “Trustworthy Whole-System
Provenance for the Linux Kernel,” in Proceedings of 24th USENIX
Security Symposium on USENIX Security Symposium, 2015.

D. Schultz and B. Liskov, “IFDB: Decentralized Information Flow
Control for Databases,” in European Conference on Computer Systems
(Eurosys’13). ACM, 2013, pp. 43-56.

D. Bernstein, “Containers and Cloud: From LXC to Docker to Kuber-
netes,” IEEE Cloud Computing Magazine, no. 3, pp. 81-84, 2014.

Cloud Security Alliance, “Security guidance for critical areas of focus
in cloud computing v3.0,” 2011, accessed: 13th January 2016. [Online].
Available: https://cloudsecurityalliance.org/research/security-guidance/

S. Berger, R. Céceres, K. A. Goldman, R. Perez, R. Sailer, and L. van
Doorn, “vTPM: Virtualizing the Trusted Platform Module,” in Security
Symposium. USENIX, 2006, pp. 305-320.

S. Berger, K. Goldman, D. Pendarakis, D. Safford, E. Valdez, and
M. Zohar, “Scalable Attestation: A Step Toward Secure and Trusted
Clouds,” in International Conference on Cloud Engineering (IC2E).
IEEE, 2015.

C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-Hartman,
“Linux Security Modules: General security support for the Linux
kernel,” in Foundations of Intrusion Tolerant Systems. 1EEE, 2003,
pp. 213-213.

S. Smalley, C. Vance, and W. Salamon, “Implementing SELinux as a
Linux Security Module,” NAI Labs Report, vol. 1, p. 43, 2001.

M. Bauer, “Paranoid Penguin: an Introduction to Novell AppArmor,”
Linux Journal, vol. 2006, no. 148, p. 13, 2006.

A. Edwards, T. Jaeger, and X. Zhang, “Runtime verification of autho-
rization hook placement for the Linux Security Modules framework,” in
Conference on Computer and Communications Security. ACM, 2002,
pp. 225-234.

T. Jaeger, A. Edwards, and X. Zhang, “Consistency analysis of autho-
rization hook placement in the Linux security modules framework,”
ACM Transactions on Information and System Security (TISSEC),
vol. 7, no. 2, pp. 175-205, 2004.

V. Ganapathy, T. Jaeger, and S. Jha, “Automatic placement of authoriza-
tion hooks in the Linux security modules framework,” in Conference on
Computer and Communications Security. ACM, 2005, pp. 330-339.
T. Zanussi, K. Yaghmour, R. Wisniewski, R. Moore, and M. Dagenais,
“relayfs: An efficient unified approach for transmitting data from kernel
to user space,” in Linux Symposium, 2003, p. 494.

L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, N. Kwas-
nikowska, S. Miles, P. Missier, J. Myers et al., “The Open Provenance

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

[48]

[49]

[50]

(511

[52]

[53]

[54]

[55]

[56]

[571

[58]

[59]

[60]

[61]

[62]

Model Core Specification (v1. 1),” Future Generation Computer Sys-
tems, vol. 27, no. 6, pp. 743-756, 2011.

K.-K. Muniswamy-Reddy, U. Braun, D. A. Holland, P. Macko,
D. Maclean, D. W. Margo, M. L. Seltzer, and R. Smogor, “Layering
in provenance systems.” in USENIX Annual technical conference.
USENIX, 2009.

U. Braun, S. Garfinkel, D. A. Holland, K.-K. Muniswamy-Reddy,
and M. 1. Seltzer, “Issues in automatic provenance collection,” in
Provenance and annotation of data. Springer, 2006, pp. 171-183.

T. F. J.-M. Pasquier, J. Bacon, and B. Shand, “FlowR: Aspect Oriented
Programming for Information Flow Control in Ruby,” in International
Conference on Modularity. ACM, 2014.

J. Mace, R. Roelke, and R. Fonseca, “Pivot tracing: Dynamic causal
monitoring for distributed systems,” in 25th Symposium on Operating
Systems Principles (SOSP ’15). ACM, 2015.

J. Singh, T. Pasquier, J. Bacon, and D. Eyers, “Integrating Middleware
and Information Flow Control,” in International Conference on Cloud
Engineering (IC2E). 1EEE, 2015, pp. 54-59.

M. E. Smoot, K. Ono, J. Ruscheinski, P-L. Wang, and T. Ideker,
“Cytoscape 2.8: New features for data integration and network visu-
alization,” Bioinformatics, vol. 27, no. 3, pp. 431-432, 2011.

P. Chen, B. Plale, Y. Cheah, D. Ghoshal, S. Jensen, and Y. Luo,
“Visualization of network data provenance,” in International Conference
on High Performance Computing (HiPC). 1EEE, 2012, pp. 1-9.

P. Chen and B. A. Plale, “Big data provenance analysis and visu-
alization,” in International Symposium on Cluster, Cloud and Grid
Computing (CCGrid). 1EEE/ACM, 2015, pp. 797-800.

G. Tylissanakis and Y. Cotronis, “Data provenance and reproducibility
in grid based scientific workflows,” in Grid and Pervasive Computing
Conference. 1EEE, 2009, pp. 42-49.

S. Woodman, H. Hiden, P. Watson, and P. Missier, “Achieving re-
producibility by combining provenance with service and workflow
versioning,” in workshop on Workflows in support of large-scale science.
ACM, 2011, pp. 127-136.

T. Bird, “Measuring Function Duration with ftrace,” in Japan Linux
Symposium, 2009, pp. 47-54.
K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. I. Seltzer,
“Provenance-aware storage systems.” in USENIX Annual Technical
Conference, 2006, pp. 43-56.

P. Macko, M. Chiarini, and M. Seltzer, “Collecting Provenance via the
Xen Hypervisor,” in TaPP. USENIX, 2011.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the Art of Virtualization,”
SIGOPS Operating Systems Review, vol. 37, no. 5, pp. 164-177, 2003.

A. Bates, K. R. Butler, and T. Moyer, “Take only what you need: lever-
aging mandatory access control policy to reduce provenance storage
costs,” in Conference on Theory and Practice of Provenance. USENIX,
2015, pp. 7-7.

W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “TaintDroid: An information-flow tracking system
for realtime privacy monitoring on smartphones,” in Conference on
Operating systems design and implementation (OSDI’10). USENIX,
2010, pp. 1-6.

C. Priebe, D. Muthukumaran, D. O’Keeffe, D. Eyers, B. Shand,
R. Kapitza, and P. Pietzuch, “CloudSafetyNet: Detecting Data Leakage
between Cloud Tenants,” in Cloud Computing Security Workshop.
ACM, 2014.

S. Akoush, L. Carata, R. Sohan, and A. Hopper, “MrLazy: Lazy
Runtime Label Propagation for MapReduce,” in 6th Workshop on Hot
Topics in Cloud Computing (HotCloud). USENIX, 2014.

U. Braun, A. Shinnar, and M. 1. Seltzer, “Securing provenance,” in
HotSec. USENIX, 2008.

Q. Ni, S. Xu, E. Bertino, R. Sandhu, and W. Han, “An access control
language for a general provenance model,” in Secure Data Management.
Springer, 2009, pp. 68-88.

T. Cadenhead, V. Khadilkar, M. Kantarcioglu, and B. Thuraisingham, “A
language for provenance access control,” in Proc. 1st ACM Conference
on Data and Application Security and Privacy, 2011, pp. 133-144.
C.-F. Tsai, Y.-F. Hsu, C.-Y. Lin, and W.-Y. Lin, “Intrusion detection by
machine learning: A review,” Expert Systems with Applications, vol. 36,
no. 10, pp. 11994-12 000, 2009.

A. Gehani and D. Tariq, “Spade: Support for provenance auditing in
distributed environments,” in Proc. 13th ACM/IFIP/Usenix Middleware.
Springer, 2012, pp. 101-120.

