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Management Science and Engineering

Stanford University

Stanford, CA 94305

oozer@stanford.edu

Abstract

The success of a product in today’s global marketplace depends on capabilities of firms in the
product’s supply chain. Among these capabilities, effective inventory management is a capability
necessary to lead in the global marketplace. The chapter provides a discussion of four funda-
mentals of effective inventory management. First, it requires managers to know how best to use
available information. Second, managers need to quantify the value of information. Third, they
need to coordinate decentralized inventory operations. Finally, effective inventory management
requires decision tools that can be embraced by their users. The chapter’s emphasis is on the use
of information, and the role of new information technologies in inventory management. Previous
research on inventory management played an important role in the advancement and develop-
ment of new technologies and processes. Today more research is needed because new technologies
(such as RFID Radio-Frequency Identification) and new management methods (such as collab-
orative forecasting and planning) are emerging and evolving faster than ever before. Inventory
management and research will continue to play a central role in the success of a product and the
firms in its supply chain. The chapter brings together separate but inherently related streams
of research in inventory management. By doing so, we highlight potential research opportunities
that lie on the boundaries.

1This manuscript will appear in the Handbook of Production Planning. (Eds) K. Kempf, P. Keskinocak and R.

Uzsoy.
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1 Introduction

Inventory control problems have attracted researchers for many years2. Fundamentally, the problem
is one of matching supply and demand by efficiently coordinating the production and the distribu-
tion of goods. Recent developments in information technology have equipped managers with the
means to obtain better and timely information regarding, for example, demand, lead times, available
assets and capacity. Technology has also enabled customers to obtain vast amounts of information
about a product, such as its physical attributes and availability. In today’s increasingly competi-
tive marketplace, consumers are constantly pressuring suppliers to simultaneously reduce costs and
lead times and increase the quality of their products. Good inventory management is no longer a
competitive advantage. It is an essential capability to survive in a global market.

An important aspect of good inventory management is effective use of information. Knowing
how to use information effectively also enables a manager to decide what data to collect, buy and
store, and what information technology to invest in. Note that information has no value, if it is not
used effectively. For example, an inventory manager can obtain order progress information through
the use of a tracking technology. If this information is not used to improve replenishment decisions,
then neither the information nor the technology used to obtain it has any value. In this chapter,
we provide some examples of how information is incorporated into classical inventory management
problems.

The second important aspect of good inventory management is to quantify the value of informa-
tion. A manager may need to invest in a technology that collects and stores information relevant for
effective inventory management. The cost of obtaining information is often not difficult to analyze.
Quantifying the benefits, however, requires thorough analysis and modeling. Consider, for exam-
ple, the recent tracking technology known as Radio Frequency Identification (RFID). Quantifying
the cost of RFID implementation is relatively straightforward. But the benefit of this technology
for the management of inventory is not clear. Comparing inventory models with and without the
information obtained through RFID enables an inventory manager to quantify the value of RFID.
In this chapter, we provide modeling examples through which an inventory manager can quantify
the value of information.

The third important aspect of good inventory management is to coordinate decentralized op-
erations. The coordination of information and inventory management have become increasingly
more difficult with recent increases in supply chain complexity. Such complexities are the result of
dramatic changes in manufacturing and distribution, including globalization and outsourcing. As
a result, independent firms manage inventory allocated across different parts of the global supply
chains. Each firm in the supply chain individually and myopically sets strategic and operational
goals to minimize inventory and production related costs. Firms also maximize profits by using local
information such as local cost structures, profit margins and forecasts. As a result, the supply chain
is sub-optimized and not synchronized.

We have observed in the past that inability to optimize and synchronize these very complex
inventory management issues can lead to catastrophic supply chain failures that make top business
news. In 2001, Solectron, a major electronics manufacturer, had $4.7 billion in excess component

2Throughout the chapter we use the terms inventory/production control, replenishment/production and or-

der/produce interchangeably.
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capacity due to inflated forecasts provided by its customers. For exactly the same reason, Cisco,
a major telecommunication equipment manufacturer, held $2.1 billion in excess inventory during
the same year. Anticipating such inflation, manufacturers may discount the forecast information.
Unfortunately, this caution, e.g., second guessing the forecast, may also lead to huge losses. In 1997,
Boeing’s suppliers were unable to fulfill Boeing’s large orders because they did not believe in Boeing’s
forecasts. In this chapter we provide examples of research that show such catastrophic outcomes are
due to misaligned incentives and lack of coordination. These research works consider the interaction
among multiple inventory managers and illustrate how these managers can align incentives through
structured agreements and avoid (or mitigate) the adverse effects of lack of coordination.

Finally, good inventory management requires decision tools that can be embraced by their users.
The formulations and the methodologies developed in multi-echelon production and distribution
systems are often very difficult to explain to non-mathematically oriented students and practitioners.
In addition, data fed to these tools are not always accurate. Systems and people are bounded by
limited information. In this chapter, we provide a discussion of some efforts to efficiently control
multi-period, multi-product supply chains by developing easy-to-describe, near-optimal and robust
heuristics that can be implemented on a spreadsheet by solving, for example, newsvendor type
problems.

To summarize, the chapter aims to provide a discussion of various topics and concepts from the
centralized and decentralized inventory management literature. The emphasis will be on the use of
information, and the role of new information technologies in inventory management. We provide
examples of some ongoing research work. Our focus is on the modeling aspect rather than the
detailed analysis. We do not state all the assumptions, the results nor the proofs. We deliberately
trivialize and simplify the models so as to make the discussions easier to follow. We aim to bring
together separate but inherently related research in inventory literature. By doing so, we hope
to highlight potential research opportunities that lie on the boundaries. We focus primarily on
the author’s previous work. The chapter does not aim to provide a review of the rich volume of
publications. For that purpose, where possible, we refer the reader to comprehensive reviews.

The rest of the chapter is organized as follows. In § 2, we provide some examples of how managers
can use information to better control inventory. In § 3, we consider the interaction between multiple
inventory control managers and the economics of contracting. In § 4, we provide a discussion on
large-scale inventory systems and rationality. In § 5, we provide some concluding thoughts and
possible future research directions.

2 Information in Centralized Inventory Management

We will first discuss the use of information in centralized inventory management systems. An
inventory management system is centralized when the system has access to credible information
collected in a central location and managed by a single decision maker. Such a system is ideal; it
does not have to coordinate disparate decisions and information. The manager needs to incorporate
available information into the inventory control problem, identify the best replenishment policy and
manage the system accordingly.

There are at least four reasons for studying centralized inventory systems. First, the results pro-
vide a benchmark against which decentralized inventory systems are measured. Second, the results
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enable us to quantify and understand the role and value of information in inventory management.
Third, small scale inventory systems are often centralized and are common in practice. Hence, it
is necessary to know how to manage these systems. Industry has also learned the importance of
centralized decision making such as the vendor managed inventory (VMI) initiatives. Fourth, the
results also provide building blocks for large scale systems with decentralized operations.

To effectively manage inventory, a manager must have access to three fundamental sets of in-
formation (i) information about demand such as forecasts; (ii) information about assets such as
the inventory available for sales, on order and where they are located; (iii) and information about
replenishment lead times. In §2.1–2.4, we discuss single location inventory control problems, which
are the minimal building blocks for multi location centralized inventory systems. We illustrate how
the three fundamental sets of information are incorporated to develop effective production and in-
ventory policies. We also show how managers can quantify the value of information by means of
numerical computations. In §2.5, we provide a discussion on how these single-location inventory
control models are used to study multi-location inventory systems.

2.1 Current Demand Information

We refer to demand information as current when the information is based on current data such as
point of sales information and when it does not provide future information such as a promotion
scheduled for next period, or advance order information. Here, we briefly review the classical single
location inventory literature as a bridge to more recent work that incorporates the dynamic nature
of demand information, such as forecast updates.

Early inventory models addressed the problem of minimizing ordering, holding, and backlogging
costs for a single product at a single location over either a finite or an infinite horizon. Demand
uncertainty is modeled as independent and identically distributed over time, i.e., demand Dt at each
period t is an iid random variable. This modeling assumption uses current demand information.

In particular, the sequence of events for such a system is as follows. At the beginning of each
period t, the manager reviews on-hand inventory It, any backorders Bt and the pipeline inventory.
The manager decides whether or not to produce zt ≥ 0. She incurs a non-stationary production
cost of Ktδ(zt) + ct(zt), where δ(z) = 1 if z > 0, Kt is the fixed production cost, and ct is the
variable production cost. The production initiated at period t−L is added to the inventory, that is,
L periods are required to complete the production. Demand Dt is observed. The demand for period
t is satisfied through on-hand inventory; otherwise it is backordered. The manager incurs holding
and penalty costs based on end-of-period net inventory.

Completing production takes L periods; hence, the manager needs to protect the system against
the lead time demand DL

t =
∑t+L

s=t Ds. We let

xt : inventory position before the production decision is made

= It +
t−1∑

s=t−L

zs −Bt,

yt : inventory position after the production decision is made

= xt + zt.

The expected holding and penalty costs charged to period t are given by G̃t(yt) = αLEgt+L(yt−DL
t ),
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where α is the discount factor and gt(x) is the single period holding and penalty cost based on
inventory on hand at the end of period t. The expectation is with respect to the lead time demand
DL

t . It is assumed that gt is convex and coercive for all t.3 These properties are satisfied, for
example, when a positive holding cost is charged per unit of inventory on hand and a positive
penalty cost is charged per unit of backlog. The solution to the following dynamic programming
recursion minimizes the cost of managing this single item, single location system for a finite horizon
problem with T − t periods remaining until termination.

Jt(xt) = min
yt≥xt

{Ktδ(yt − xt) + Gt(yt) + αEJt+1(yt −Dt)},

where JT+1(·) ≡ 0 and Gt(yt) = (ct − αct+1)yt + G̃t(yt).4

Scarf (1959) characterizes the optimality of an (s, S) policy. Under this policy the manager
orders up to St whenever the inventory position xt falls below a critical level st. Veinott (1966)
proves the optimality of (s, S) policies under different conditions. Infinite horizon results are due to
Iglehart (1963). When the fixed cost of ordering is negligible, i.e., K = 0, an optimal policy is the
base-stock policy with base-stock level St. Karlin (1960) and Veinott (1965) generalize the problem
to account for seasonal variations in demand and non-stationary data and prove the optimality of
period dependent base-stock policy. We refer the reader to Porteus (1990) for a review of classical
inventory models.

Such policy parameters can often be obtained by a backward induction algorithm. A remarkable
result that significantly reduces the computational burden is the optimality of a myopic policy that
minimizes the current period inventory cost. Karlin (1960) and Veinott (1965) show that a myopic
policy is optimal when the problem is stationary5; demand is stochastically increasing over time; or
the myopic base-stock levels are increasing6. Morton and Pentico (1995) provide empirical evidence
of how a myopic policy performs under various non-stationary environments. They also propose
close-to-optimal, near-myopic policies. Iida (2001) also shows that myopic policies are effective
when data changes “slowly”.

Noticing that historical demand information might be used to understand uncertain customer
demand, several authors incorporated demand history into inventory control problems. Three groups
of work capture this idea. The first group uses Bayesian models. Under these models Bayes’ rule
defines a procedure to update the distribution of demand as new information becomes available.
To the best of our knowledge, Dvoretzky, Keifer and Wolfowitz (1952) were the first to use this
approach. Scarf (1960), Azoury and Miller (1984), and Azoury (1985) extended this approach.
The second group, Johnson and Thompson (1975), Miller (1989), and Lovejoy (1990), realized that
the demand over consecutive periods might be correlated and used time series models to subsume
demand dynamics. The third group incorporates Markov modulated demand to the above inventory
control problem (see, for example, Song and Zipkin 1993, Beyer and Sethi 1997, Abhyankar and
Graves 2001 and Atali and Özer 2005).

3A function g : R→ R is coercive if lim|x|→∞ g(x) =∞.
4It is often assumed that leftover inventory at the end of the planning horizon T is salvaged for cT+1 per item.

Veinott (1965) shows that the inventory control problem with linear salvage value can be converted into an equivalent

problem with zero salvage. Here we report the result of this conversion.
5An inventory problem is said to be stationary if the cost and demand distributions are time invariant.
6We use the terms increasing and decreasing in the weak sense. Increasing means nondecreasing.
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2.2 Advance Demand Information

Most businesses rely heavily on demand forecasts for production and inventory planning. Demand
over time can be highly correlated. Forecasting methods can help identify such patterns. A group
of scholars have incorporated the dynamic nature of forecast revisions into inventory control prob-
lems. Papers in this group include those of Hausman (1969), Graves et al. (1986), Heath and
Jackson (1994), Güllü (1996) and Toktay and Wein (2001). All of these works show that incorpo-
rating demand updates to control problems reduces the cost of managing inventories by proposing
control methods that are responsive to forecast information.

Recent advances in information technology have enabled managers to be more proactive and
obtain advance demand information in addition to improving demand forecast. Different customers
have varying willingness to wait for the orders they placed. A good example of this concept is Dell’s
online Intelligent Fulfillment initiative, which allows four different levels of response time to customer
orders: (1) standard (conventional or 5 day promised order lead time) (2) value delivery (slower but
lower shipping cost); (3) premium delivery (same day delivery); and (4) precision delivery (specific
date). A portfolio of online customers with differing response time preferences gives rise to advance
demand information (ADI). Comparing inventory models with and without ADI, a manager can
quantify the value of demand information contained in ADI (Özer 2003).

Several plausible strategies can be used to obtain advance demand information. When people
order a customized product, they expect to wait for the product to be customized to their request.
This can be called a built-in ADI. Alternatively, a discount could be offered for early orders to
segment the customer based on their willingness to wait. If pricing is not an option, special service
incentives could be offered for early orders. For example, a major truck manufacturer in North
America provides free maintenance (up to ten years) for third party logistic providers (such as
UPS) who purchase trucks a few years in advance of using them. Essentially, we are seeking those
customers who have a high sensitivity to customization, price or service, and who also have a lower
sensitivity to lead time or waiting time. These are denoted by “A” in Figure 1. They are the possible
source of ADI.

Figure 1: Source of ADI

Designing effective strategies to collect this information requires one to quantify the benefit
of ADI. To do so, Gallego and Özer (2001), Özer (2003) and Özer and Wei (2004) show how to
use this information optimally. In particular, they incorporate advance demand information into
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periodic-review inventory control problems.

ADI is obtained when a customer places an order in any period t for delivery in a future period
s ∈ {t + 1, . . . , t + N}. From the perspective of the production manager, the demand stream during
period t is a vector:

Dt = (Dt,t, . . . , Dt,t+N ),

where Dt,s represents the nonnegative demand for period s placed during period t and N is the
length of the information horizon. Note that when N = 0, the problem reduces to the inventory
problem with current demand information. This is a random vector and its uncertainty is resolved
at the end of period t. Under this demand model, at the beginning of each period t, demand for a
future period s > t can be decomposed into two parts as illustrated in Figure 2: the observed part
Ot,s ≡

∑t−1
r=s−N Dr,s and the unobserved part Ut,s ≡

∑s
r=t Dr,s.

s-N t t-1 ... s s+1 ... 

Ds-N,s + ... + Dt-1,s 

Dt,s + ... + Ds,s 

observed part: 

unobserved part 

Figure 2: Observed and Unobserved Part of the Demand

The sequence of events is similar to the one described in the previous section. Completing
production takes L periods; hence, the manager should protect the system against the lead time
demand. Because of advance demand information, the manager knows part of the lead time demand,
that is,

∑t+L
s=t Ot,s. The expected cost charged to period t is based on the net inventory at the end

of period t + L. Let

xa
t : modified inventory position before the production decision is made

= xt −
t+L∑
s=t

Ot,s,

ya
t : modified inventory position after the production decision is made

= xa
t + zt.

Notice that these variables subtract the observed part of the lead time demand, hence the name
modified. In addition to xa

t , the manager also keeps track of observations beyond the lead time,
Ot = (Ot,t+L+1, . . . , Ot,t+N−1). At the end of the period t, we update the state space by

xa
t+1 = ya

t −Dt,t −
t+L+1∑
s=t+1

Dt,s −Ot,t+L+1, (1)

Ot+1,s = Ot,s + Dt,s. (2)

The expected holding and penalty cost charged to period t is given by G̃t(yt) = αLEgt+L(yt −∑t+L
s=t Ut,s). The solution to the following dynamic programming recursion minimizes the cost of

managing this system for a finite horizon problem with T − t periods remaining to the termination.

Jt(xt, Ot) = min
yt≥xt

{Ktδ(yt − xt) + Gt(yt) + αEJt+1(xt+1, Ot+1)}, (3)
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where JT+1(·, ·) ≡ 0 and Gj(yj) = (cj − αcj+1)yj + G̃j(yj).

Gallego and Özer (2001) characterize the optimality of (i) a state-dependent (s, S) policy for
an inventory system with positive fixed (set-up) costs and (ii) a state-dependent base stock policy
for an inventory system without set-up costs both for finite and infinite horizon problems. The
policy parameters depend on customer commitments made beyond the production leadtime. For
example, if the production lead time is four periods, optimal policy parameters depend on the total
customer commitments made today for delivery after four periods. Under this policy the manager
produces up to S whenever the modified inventory position xa

t drops to or below s. Gallego and Özer
provide monotonicity results and characterize conditions when myopic policies are optimal. They
also determine conditions under which ADI has no operational value. Through numerical studies
and by comparing models with and without ADI, the authors quantify the benefit of inducing and
obtaining ADI.

We note that incorporating advance demand information not only yields better practices through
reducing inventories, but also enables companies to have control policies that are more responsive to
changes in demand patterns. This information allows a shift from make-to-stock to make-to-order
production. There is a growing body of research that shows how ADI can be used to improve costs
in a capacity constrained system, continous review problems, or multi-echelon structures (Hariharan
and Zipkin 1995, Schwartz et al. 1998, Gallego and Özer 2002, Karaesmen et al. 2002, Zhu and
Thonemann 2003, Özer 2003, Özer and Wei 2004, Hu et al. 2004, Benjafaar et al. 2005, Marklund
2006 and Gayon et al. 2007). These models can be used to quantify the value of advance demand
information in various settings. Being able to quantify its value, an inventory manager can decide
how to optimally acquire advance demand information through pricing and advance sales and how
to use this information in, for example, capacity decisions (Boyaci and Özer 2004). Such research
also bridges the revenue management literature with the capacity management literature.

ADI and Capacity Management: We discuss how the results from the ADI literature were
used to quantify the value of capacity and advance demand information for a global telecommu-
nications equipment manufacturer. During the last quarter of 2002, this equipment manufacturer
explored the strategy of advance selling to improve long-range forecasting for planning the capacity
of a new factory. Accordingly, before securing the capacity the firm considered preselling wireless
base-stations to its regional cellular phone operators.

The traditional view of capacity planning is that capacity is fixed, and lead times will vary to
compensate for surges and gaps in orders. A different viewpoint is that one can fix and guarantee
a lead-time; this requires the ability to flex capacity as needed. Figure 3 summarizes these two
approaches. Suppose we had several types of customers as in Figure 4, where each class had different
lead time requirements. Then we could guarantee lead times by customer segment, and implement
this through careful scheduling of the facility. This strategy enables the firm to obtain advance
demand information which can be used for better inventory and capacity planning.

The next issue is the management of the production system given the available capacity Q

and the advance demand information. In order to minimize the cost of managing this production
system, the manager maintains a safety stock. Recall that the manager would also like to satisfy
some customers who have short lead times (even shorter than the production lead time) in addition
to those who book well in advance. Hence one needs to maintain a safety stock. But what is the
optimal level of inventory? More inventory means more money tied up, while less inventory may
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Figure 3: Resource Planning: Always Having
Capacity

Figure 4: Resource Planning: Fixed Capac-
ity with Advance Demand Information

result in loss of customers and loss of goodwill. The solution to a dynamic program similar to the
one in Equation (3) (but significantly more difficult to analyze) provides the best level of safety
stock that minimizes the cost of underage and overage for a given planning horizon (see Özer and
Wei 2004 for details).

Through an extensive numerical and simulation studies one can quantify the benefits gained
through ADI for a capacity constrained system. In Figure 5 we provide one such example. The x

axis shows the available capacity for production. The y axis shows the total inventory management
cost (which is rescaled so that the cost of managing a system with infinite capacity and 100% ADI
is zero). The three curves illustrate different levels of ADI. Curve A is the base case where all
customers demand the product as soon as they place an order, whereas curve C has some customers
who place their orders well in advance, and curve B is in between.

A= Base case (no ADI)
B= Some customers w/ long lead times
C= More customers w/ long lead times

B

C

Tight Capacity            Excess Capacity

A

Figure 5: ADI versus Capacity

A= Base case (no ADI)
C= More customers w/ long lead times

C

A

Total cost

Capacity cost

Q*=7

Q*=5

Figure 6: Optimal Capacity Size

We observe from each of these curves that additional capacity has diminishing returns. This
suggests that there is an optimal level of capacity beyond which increasing capacity has limited
operational value in managing this system. We also observe the reduction in the inventory man-
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agement cost as a function of ADI and capacity. The vertical difference between these curves (for
example between curves A and C) depicts the reduction in inventory costs due to employing advance
demand information. Note that this reduction is more valuable when the firm is working under tight
capacity.

Consider a capacity expansion (contraction) problem with capacity increment ∆Q. The ex-
pansion cost C(∆Q) may take several forms, such as linear, power or step cost function (Luss
1982). If capacity expansion is a one time decision, then the manufacturer’s problem is to solve
min∆Q{C(∆Q) + Jt(x,O|Q + ∆Q)}. Figure 6 provides an example of this problem when C(∆Q) =
100∗∆Q under two advance demand information scenarios. For this particular example, convincing
customers to place orders in advance reduces the optimal capacity expansion decision from Q∗ = 7
to 5 units. This is another example illustrating how advance demand information can be a substitute
for capacity (Özer and Wei 2004).

2.3 Imperfect Asset Information

Since the early 80’s the availability of cheaper and faster computation enabled companies to automate
their inventory management processes and to use inventory management softwares. Automatic
replenishment systems track the number of products in stock and place replenishment orders based
on the control policies set by the underlying software. A crucial assumption used by these inventory
management systems is that inventory record and actual on-hand inventory are identical.

Similarly, the standard inventory control literature has never differentiated between inventory
record and actual inventory. The two have always been considered to be the same. In the previous
sections we assumed that the manager knows the exact value of, for example, the inventory position.
The implicit assumption was that all demand sources are visible. However, recent surveys and
empirical work have shown that unaccounted inventory due to, for example, theft or misplacement,
can lead to a significant discrepancy between inventory records and actual inventory (as documented
by empirical studies such as Rinehart 1960, Raman et al. 2001a,b, ECR Europe 2003). As a result,
stock-outs are widespread at retailers and distributors (Alexander et al. 2002).

Early modeling approach for inventory control under imperfect asset information is due to Igle-
hart and Morey (1972). They study the impact of transaction errors only and do not consider
misplacement or shrinkage. They also decompose the error management problem from inventory
management. In particular, they establish the approximate buffer stock required to hedge against
transaction errors independent of the buffer stock necessary to hedge against paying customer de-
mand. Kang and Gershwin (2005) consider discrepancy due to shrinkage and its impact on inventory
management through a simulation study. We refer the reader to Lee and Özer (2007) for a detailed
discussion of inaccuracy problems. Through model based analysis, the authors quantify the benefit
of a tracking technology known as RFID in supply chain management.

In a recent paper, Atali, Lee and Özer (2004, 2006) characterize three different kinds of demand
streams that result in inventory discrepancy. Some demand streams result in permanent inventory
shrinkage (such as theft and damage). They refer to this stream as shrinkage. Some demand streams
are temporary and can be recovered by physical inventory audit and returned to inventory (such as
misplacement). They refer to this demand stream as misplacement. The final type of demand stream
(such as scanning error) affects only the inventory record and leaves actual inventory unchanged.
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They refer to this stream as transaction errors. It is necessary to characterize these sources separately
because each of these sources affects the system in a unique way. For example, misplaced items can
be returned back to inventory after an inventory audit, whereas stolen items cannot.

There are four ways to manage an inventory system that faces an inventory discrepancy problem,
summarized in Figure 7 (Atali, Lee and Özer 2004, 2006). The first way is to ignore the discrepancy
problem and use only the point of sales data information to drive the replenishment process. The
second way is to use the statistics about unobservable demand sources in driving the replenishment
process, for example, by carrying additional buffer stock to hedge against transaction errors. The
third way is to invest in a technology such as RFID that enables complete visibility of inventory
movement and use the actual information (instead of the statistics) to drive the replenishment
process. The fourth way is to go one step further and use the visibility to prevent or reduce
unobservable demand sources, for example, by locating and reshelving misplaced items as soon as a
customer misplaces the item).

C
on

tro
l

Without

Base Case

POS-driven
replenishment

Smart Case
Adjustment based on
statistical parameters

With

RFID I Case
Replenishment based
on accurate inventory

RFID II Case
Actively correct
misplaced items

Passive

Active

Visibility

Figure 7: Inventory Management Cases under Imperfect Asset Information

Here we discuss the formulation of the third case (RFID I case in Figure 7) and refer the reader
to Atali, Lee and Özer (2004, 2006) for a detailed treatment of the other cases. The sequence of
events for this case is as follows. At the beginning of period t, the inventory manager reviews the
state of the system and decides to order zt ≥ 0 units from an outside supplier with ample supply.
The replenishment lead time is assumed to be zero. The cost of ordering is ct per unit. There
is no fixed cost for placing an order. Purchasing customer Dp

t , misplacement Dm
t , shrinkage Ds

t ,
transaction errors Dτ

t arrive in any sequence. Note that the realizations of these error sources are
observed because we are considering the third way to manage the inventory system. At the end of
the period, the manager incurs a linear holding cost ht and a linear lost-sales cost pt based on the end
of period physical on-hand inventory. Holding cost is incurred for the misplaced items even though
they are not available for sales. No lost-sales cost is incurred for unmet demand from nonpaying
customers. If the period is a counting (audit) period, an inventory audit is conducted at the end
of that period. The inventory record is reconciled: error is corrected, and all misplaced items are
returned to inventory. Otherwise, errors continue to accumulate. The planning horizon is a multiple
of counting cycle length, that is, T ∈ {N, 2N, 3N, ...}. At the end of the planning horizon T , the
inventory left over is sold for a linear salvage value of cT+1.

At the beginning of period t, the manager knows the inventory record xr
t , the accumulated error

terms es
t , e

m
t , eτ

t and the number of periods elapsed since the last inventory count, it. The state space
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of such as system can be summarized by (xt, e
m
t , it), where

xt = xr
t − em

t − es
t − eτ

t

is the sales-available on-hand inventory, and it ∈ {0, 1, ..., N − 1}. The state of the system evolves
according to the following equations.

xt+1 =

{
[yt −Dt]+, if it 6= N − 1
[yt −Dt]

+ + em
t + mt, if it = N − 1

(4)

em
t+1 =

{
em
t + mt, if it 6= N − 1

0, if it = N − 1
(5)

it+1 = (it + 1) mod N, (6)

where yt = xt + zt and Dt = Dp
t + Ds

t + Dm
t and mt is the realized misplacement. The single period

expected holding and penalty cost charged to period t is based on sales-available on-hand inventory
and the accumulated misplacement.

G̃t(yt, e
m
t ) = htEDt,mt([yt −Dt]+ + em

t + mt) + ptEDp
t ,at

(Dp
t − at). (7)

Transaction errors are random observation disturbances and they have no direct impact on the
sales-available on-hand inventory xt.

With perfect visibility, the manager optimizes the stock levels in full awareness of the inventory
errors that take place during period t. Let Jv

t be the cost of managing this system for a finite horizon
with T − t periods remaining to the end of the planning horizon. The optimal replenishment policy
would be to select the value of yt that minimizes the following dynamic programming algorithm.

Jv
t (xt, e

m
t , it) = min

yt≥xt

{Gt(yt, e
m
t ) + αEJv

t+1(xt+1, e
m
t+1, it+1)}, (8)

where Jv
T+1(xT+1, ., .) = 0 and Gt(yt, e

m
t ) = ctyt−αct+1Ext+1 + G̃t(yt, e

m
t ). The leftovers at the end

of the planning horizon T + 1 are salvaged for a linear price.

To calculate the aforementioned expectations in the dynamic programming algorithm, one needs
to obtain the distribution of sales at and misplacement mt during any period t. However, the
realization of these variables and their distribution depend on the sales-available on-hand inventory
xt and the order in which misplacement, shrinkage and paying customer demands arrive.

Consider a modified model in which the paying customer demand always arrives first, demand for
shrinkage arrives next and demand for misplacement arrives last. With this sequence, sales during
any period are maximized while misplacement is minimized. The transaction error can arrive in any
where in the sequence because it does not affect the physical inventory. Given this sequence, the
sales and the misplacement during period t are

at = min{Dp
t , yt}, (9)

mt = min{Dm
t , [yt −Dp

t −Ds
t ]

+}. (10)

The state of the system evolves according to the Equations in (4-6), but with mt replaced by its new
definition above. Similarly, the single period cost function is the same as in Equation (7) but with
at and mt replaced by their respective definitions. Using similar demand prioritization ideas, one
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can construct bounds and effective solutions for the above dynamic programming problem. They
enable effective inventory control methods when the manager uses RFID or a similar technology
that provides complete visibility of inventory movement in the store.

Atali, Lee and Özer (2004) characterize efficient replenishment policies for all four cases in Figure
7. Using these models and comparing the resulting cost of each scenario, they quantify the true value
of visibility provided by RFID. Consider, for example, the value of visibility. When the system does
not use a technology such as RFID, the manager can use; either the informed policy that corresponds
to the smart case, or an ignorant policy that corresponds to the base case in Figure 7. Recall that in
the base case the replenishment policy is obtained without consideration of the discrepancy problem
whereas informed policy uses some statistics about discrepancy. The true value of visibility is given
by the cost difference between the informed policy and the policy that uses visibility, i.e., RFID I
or II.

Base case

Smart case

RFID I case

RFID II case

Figure 8: Value of Visibility and Active Control as a Function of Total Error Source

Figure 8 compares the resulting cost for a problem instance as a function of total error with
respect to paying customer demand, i.e., total average error divided by average paying customer
demand. The lowest curve is the cost of following an effective replenishment policy when the manager
has complete visibility of inventory and follows an active control strategy. This figure illustrates that
by using an informed policy to compensate for the discrepancy problem, the manager can reduce
costs significantly. The value of visibility also increases with the total percentage errors. For a
particular example, when compared to the ignorant policy (base case), the visibility enabled system
reduces cost by 9.1% and increases sales by 1.8%. However, when compared to the smart policy, the
cost is reduced by 3.1% and the sales is increased by 0.1%. For this system, assuming that visibility
also enables one to reduce the shrinkage rate by 50%, the manager can save (the difference between
the visibility enabled systems with different shrinkage rates) an additional 2.6%, and increase sales
by 0.1%, both of which can be interpreted as the value of prevention due to visibility brought by a
technology such as RFID.

Recently, Atali, Lee, and Özer (2006) model demand streams using a random disaggregation
model. In particular, let Dt denote the random customer demand during period t. An arriving
customer buys the product with probability θp; misplaces the item with probability θm; or dam-
ages/steals the item with probability θs such that θp + θm + θs = 1 for all t. Both demand modeling
approaches have their own appeal. Random disaggregation approach simplifies the previous analysis.
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In particular, one does not need to construct bounds through demand prioritization. Calibrating
the model and fitting data is relatively simpler as well. However, the previous approach allows for
independent demand streams for paying and non-paying customers.

2.4 Lead Time Information

When lead times are uncertain, information on the location of the supply plays a critical role.
Classical inventory models assume that lead time for an order is independently drawn from a given
distribution. Kaplan (1970) and Ehrdhardt (1984) discuss two assumptions that allow optimal
control policies analogous to classical results with deterministic lead times. These assumptions are
(i) deliveries of orders cannot cross in time and (ii) the delivery leadtime is independent of the number
and size of outstanding orders. Anupindi, Morton and Pentico (1996) provide close-to-optimal, near-
myopic heuristics to solve stochastic lead time inventory control problems. Janakiraman and Roundy
(2004) provide some convexity results that enables the use of search procedures to determine optimal
base-stock levels (see Chapter 7 of Zipkin 2000 for a comprehensive review of the stochastic lead
time inventory control problems).

Song and Zipkin (1996) model the supply process as a Markov chain. The lead time Lt for an
order in period t is a Markov chain with a finite state space. The transition matrix is such that
orders are received in the order they were shipped (i.e., order cross over is not allowed). They
assume that the inventory manager has visibility of the supply process (i.e., the Markov state) at
the beginning of each period. She uses this information to revise the inventory ordering decision.
The authors show that a state-dependent replenishment policy is optimal. Chen and Yu (2005)
consider the problem in which the manager does not know the status of the system, but knows that
the lead time is generated by a Markov process. Chen and Yu show that the value of lead time
information is small for slow moving items. However, it can be as high as 40% for fast moving items.
To demonstrate this, they numerically compare the model in which lead time is observable to that
of Song and Zipkin.

The conventional modeling approaches for stochastic lead times generally assume that the sta-
tistical information essentially boils down to the mean and standard deviation of the lead time, and
the safety stock takes into consideration such statistics. Recent information technologies, however,
enable a manager to collect some advanced knowledge about the lead time as the product progresses
over intermediate points, known in logistics as “choke points”. Through tracking technologies and
well connected computer networks, a manager can follow the progress of a supply before it reaches
the store. Gaukler, Özer and Hausman (2004) quantify the benefit of this supply progress infor-
mation. They propose and evaluate a replenishment policy that uses order progress information
for emergency ordering together with the (Q,R) policy. In particular, the manager places a regu-
lar replenishment order of size Q when the inventory position drops to the reorder level R. They
model the sojourn time for a regular order to move from one choke point to the next with a general
non-identical distribution and provide additional results for the exponential distribution case. In
addition, the manager also has the option to place an emergency order at a cost premium K(l) of
size αQ which arrives after a deterministic lead time l. They characterize the optimality of a state-
dependent threshold policy for releasing an emergency order. In particular, the retailer monitors
the outstanding regular orders location in the supply system, that is, the last choke point where the
regular order was registered (of course, if a regular order is outstanding). If the inventory position
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is less than a state-dependent threshold ȳ, the retailer places the emergency order. The threshold
depends on where the regular order was registered last. Through a numerical study, the authors re-
port overall cost savings ranging from 2.8-5.5% due to supply progress information. They show that
the emergency ordering option eliminate up to 99% of the cost due to backlogging a customer. See
also Moinzadeh and Schmidt (1991) and Moinzadeh and Aggarwal (1997) for the use of emergency
ordering in single and multi-echelon inventory systems.

2.5 Multi-Location Inventory Systems

Clark and Scarf (1960) initiated the study of multi-echelon inventory systems. They show that
a serial system can be optimally decomposed into single location problems and characterize the
optimality of echelon base-stock policies. Under this policy a central inventory manager observes
the echelon inventory position of each location and places an order from the outside supplier if the
first echelon’s inventory position is below its base-stock level. The manager also pushes inventory (as
much as possible) to the downstream location j from its immediate predecessor if location j’s echelon
inventory position is less than its echelon base-stock level. Federgruen and Zipkin (1984), extend the
results for stationary infinite horizon problems. Chen and Zheng (1994) establish lower bounds on
the average cost and construct feasible policies that achieve these bounds. Unlike the single location
inventory control literature, the multi-echelon in series literature lacks models that incorporate
historical demand information. Chen and Song (2001) write the only paper to study the serial system
with a non-stationary demand process, which is modulated by a finite-state, exogenous Markov chain.
Graves et al. (1998) provide heuristic allocation of inventories across a serial system that obtains
a forecast over a finite horizon. Gallego and Özer (2004) incorporate advance demand information
into multiechelon, inventory systems in series and prove the optimality of state-dependent, echelon
base-stock policies for finite and infinite horizon problems. The authors show that under certain
conditions a myopic policy is optimal for a finite horizon multi-echelon inventory problem in series
with and without advance demand information. This result significantly reduces the computational
burden required to solve such serial systems. These systems are also fundamental to the study of
more general structures. For example, Rosling (1989) shows that under mild conditions assembly
systems can be treated as serial systems.

One of the most common multi-echelon structures in practice are the distribution systems, which
are also known as one-warehouse-multi-retailer systems. Products enter the system from an outside
supplier to the warehouse, which in turn replenishes various retailers. Stochastic demand is satisfied
as much as possible through on hand inventory at the retailers. Clark and Scarf (1960) show that
optimal control policies, if they exist, would be very complex for distribution systems. Since then
the research on distribution systems has shifted towards identification of close-to-optimal heuristics
and evaluation of a plausible class of policies. There are two approaches to solve this problem:
approximation by relaxation as in Federgruen and Zipkin (1984a), Aviv and Federgruen (2001a),
Özer (2003) and approximation by restriction as in Eppen and Schrage (1981), Federgruen and
Zipkin (1984b) and Özer (2003). The first approach considers relaxing a constraint set to obtain
a simpler problem with lower-dimensional state space. It develops a heuristic based on this lower
bound problem to solve the original problem. The second approach restricts the policy space to
a class of policies and optimizes over this class under additional assumptions. The restriction
approach, unlike the relaxation approach, does not guarantee any bound on the optimal solution.
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Other researchers that use approaches that do not guarantee any bounds include Diks and de Kök
(1998). Comprehensive earlier reviews can be found in Axsäter (1993) for continuous review (also
known as pull) and Federgruen (1993) for periodic review (also known as push) inventory systems.

In distribution systems, the “warehouse” may serve as the coordination center. It may also help
negotiate lower procurement prices. Eppen and Schrage (1981) illustrate that the warehouse also
serves an important enabler for statistical economies of scale, commonly known as risk pooling, that
is, the portfolio effect of coordinating inventory decisions and holding inventory at the distribution
center rather than at the retailers. Aviv and Federgruen (2001) incorporate a Bayesian framework
into the demand process and introduce the concept of learning effect to the benefit of having a
central distribution center. The ability to obtain information about the demand during the first
periods enables updating the demand process, resulting in improved allocation to retailers. Özer
(2003) incorporates advance demand information structure obtained from customers through each
retailer. The author establishes a close-to-optimal state dependent replenishment and allocation
policy that responds to the changes in customer demand. The author also provides a closed-form
solution to approximate the system-wide inventory level. Using such explicit solutions, the model
and the heuristic, he quantifies, for example, the benefit of advance demand information and its
impact on allocation decisions and the joint role of risk pooling and advance demand information.
For a review of these approaches we also refer the reader to Özer (2003).

The distribution system described here can also be interpreted as a multi-item production system
with a common intermediate product. In this interpretation, the warehouse represents the differen-
tiation point. During the first phase of the production a common batch is produced. At the end of
this phase, the manager must decide on how much of each differentiated item to produce from the
batch of the common intermediate product. This interpretation forms the basis of postponement
strategies; see the papers by Lee, Padmanadbhan and Whang (1993) and Lee and Tang (1997). We
conclude this section by noting that at the heart of all complex inventory systems lies the single
location (stage, product, item) model that we addressed in the previous subsections.

3 Information in Decentralized Inventory Management

Global operations involve several locations managed by several inventory managers. The decisions
and information are often decentralized. Many experts have heralded advances in information tech-
nology and Internet infrastructure, both of which enable better visibility and information sharing,
as the key to effective management of inventory. Suppliers and manufacturers can share private
information regarding, for example, costs or forecasts, but will they want to? Firms may be reluc-
tant to collect, process and share information because of conflicting incentives. Aligning incentives
improves firms profits and sustains the use of information technology.

Inventory managers can use formal contracts to align incentives and induce information sharing.
There are two forms of information asymmetry. The informed party may withhold information to
gain strategic advantage. In such cases, the uninformed partner can propose a menu of contracts to
extract this information; this interaction is known as adverse selection or screening. Alternatively,
the informed party may signal his information to gain cooperation. However, he needs to signal
private information in a credible way; this interaction is known as signaling game. Another form of
information asymmetry arises as moral hazard where one partner influences system profit through an
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action or choice not observable to the other. The non-acting partner designs a contract to maximize
his own profit (Fudenberg and Tirole 1991 and Salanie 1997). This section provides examples of
such interactions in inventory management.

We attribute incentive problems in supply chains to lack of credible information sharing and
three major risk imbalances: capacity risk, inventory risk and quality risk (Özer 2004). Because of
lack of credible information sharing, the adverse effects of inventory and quality risks are more severe
for a decentralized supply chain than for a vertically integrated supply chain. Here, we discuss some
recent and ongoing research in designing contracts to eliminate or mitigate these adverse effects.
We typify a two level supply chain by referring to an upstream member as the supplier and the
downstream as the manufacturer.

3.1 Capacity Risk

Here we summarize results from Özer and Wei (2006). Forecasting demand is inherently difficult
due to short product life cycles and long production lead time. Hence, supply chains face the risk of
either excess capacity due to low demand realization (downside risk) or lack of product availability
due to high demand realization (upside risk). Consider a manufacturer who builds to order and
requires the supplier to deliver just in time. To deliver on time, the supplier secures component
capacity or inventory in advance of a manufacturer order. If consumer demand turns out to be high,
both the supplier and the manufacturer face upside capacity risk. However, if consumer demand
turns out to be low, only the supplier faces downside capacity risk. Lack of proper risk sharing
exacerbates the cost of capacity risk.

Double Marginalization:

The severity of capacity risk for each party depends on the contractual agreements. Under a
wholesale price contract, for example, the manufacturer pays a wholesale price w to the supplier
for each unit ordered. The supplier decides on the component capacity K to maximize his profit
prior to observing demand. Let ck be the unit cost of capacity. This cost could also represent an
equivalent annual cost of capacity. Demand D is realized and the manufacturer places an order.
The supplier fills the order as much as possible, at a unit cost c; that is, he delivers min(D,K). The
manufacturer receives the order and sells at a fixed price r > 0.7. Suppose unmet demand is lost
without additional stock out penalty, and unsold inventory has zero salvage value without loss of
generality.

Note that demand D is uncertain at the time when the supplier builds capacity. Suppose the
demand forecast is such that D = µ + ε, where µ is the mean, which is a positive constant, and ε is
a zero mean random variable with a cdf G(·), which represents the market or forecast uncertainty.
Such information can be constructed by using information obtained, for example, through a third-
party market research firm (such as Dataquest services of Gartner group). For a given capacity K,
the manufacturer’s and the supplier’s expected profit before demand is realized are given by

Πm(K) = (r − w)E min(D,K), (11)

Πs(K) = (w − c)E min(D,K)− ckK. (12)
7The manufacturer may carry out some value added operations that cost, say m per unit. She sells at a fixed unit

price r′ > 0. So her effective sales price is r = r′ −m. Hence, without loss of generality, we assume m = 0. Of course,

the story would be different if the manufacturer were building to stock as we will discuss in §3.2.
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The supplier maximizes his profit in (12) by setting capacity to

Kw = µ + G−1(
w − c− ck

w − c
).

Next consider the centrally integrated supply chain in which a single firm owns the manufacturer
and the supplier. This centralized firm’s expected profit and it’s optimal capacity would be

Πcs(K) = (r − c)E min(D,K)− ckK, (13)

Kcs = µ + G−1(
r − c− ck

w − c
). (14)

Note from (12) and (13) that the supplier’s marginal profit is less than the vertically integrated
supply chain’s marginal profit. This difference is due to double marginalization. The supplier,
therefore, secures less capacity than what would be optimal for a vertically integrated supply chain,
that is Kw ≤ Kcs. Note that Πcs(Kcs) ≥ Πm(Kw) + Πs(Kw). Hence, both the manufacturer and
the supplier are leaving money on the table due to decentralized operations. The magnitude of this
inefficiency depends on the parameters.

The manufacturer may encourage the supplier to build more capacity by providing some protec-
tion against the downside risk, the risk of having excess capacity. Observe that the manufacturer’s
payoff (the realized profit) is always nonnegative, while the supplier faces the risk of a negative
payoff. The manufacturer can share this risk by providing a payment in case of excess capacity after
demand is realized. One such contract is the payback contract (w, τ), under which the manufacturer
pays the supplier w per unit for its order and τ per unit for unused capacity (K −D)+.

The manufacturer’s and the supplier’s expected profit functions for this case are

Πm(K) = (r − w)E min(D,K)− τE(K −D)+,

Πs(K) = (w − c)E min(D,K) + τE(K −D)+ − ckK.

The supplier solves maxK≥0 Πs(K). The optimal capacity is Kτ ≡ µ + G−1(w−c−ck
w−c−τ ). To achieve

channel coordination, we equate Kτ with Kcs and solve for τ , resulting in τ = (r−w)ck

r−c−ck
. Hence,

the payback contract (w, τ) can coordinate the channel, that is the sum of the manufacturer’s and
supplier’s profit under this contract is equal to the profit of the centralized firm. The supplier
captures w−c−ck

r−c−ck
× 100% of the total profit; and the manufacturer captures r−w

r−c−ck
× 100% of the

total profit. Notice that arbitrary profit division among the parties is also achievable by changing
the wholesale price w. Therefore, with the appropriate choice of (w, τ) the payback contract results
in mutually beneficial terms, that is, the manufacturer’s and the supplier’s expected profits are at
least as large as their profits under any wholesale price contract8.

Asymmetric Forecast Information

Another issue in the aforementioned supply chain is the forecast sharing problem. The wholesale
price is often set during the product design stage, which takes place long before the manufacturer
ramps up the production. Component capacity or inventory commitments, however, are often made
closer to production. Hence, the forecast sharing problem is often decoupled from product design
and wholesale price negotiations. The manufacturer often has better forecast information than the

8The payback contract provides a reward mechanism that induces the supplier to secure more capacity. Another

mechanism is to penalize the supplier for every unit of order that he is unable to satisfy due to capacity shortage.
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supplier due to her proximity to consumers. Lee, Padmanadbhan and Whang (1997) provide four
reasons, such as order batching, for why the downstream member distorts the demand forecast when
sharing it with the upstream member. Özer and Wei (2006) show that another key reason for the
bullwhip is the form of the contract.

Suppose that the aforementioned manufacturer has new forecast information before the supplier
sets the capacity. Let ξ denote the manufacturer’s private information about demand forecast.
Suppose ξ is a deterministically known quantity to the manufacturer. The manufacturer’s new
demand forecast information is D = µ + ε + ξ. If the supplier has access to the manufacturer’s
private forecast information ξ, he maximizes (12) by setting the capacity to

Kw = µ + ξ + G−1(
w − c− ck

w − c
). (15)

However, ξ is known only to the manufacturer. Can the manufacturer share this forecast information
credibly? The answer is no because the manufacturer has an incentive to inflate her report of ξ. This
incentive arises because the manufacturer’s profit in (11) is increasing in the supplier’s capacity choice
K and the suppliers optimal capacity Kw is increasing in the manufacturer’s forecast information
ξ. Hence, by sharing an inflated forecast the manufacturer can increase her expected profit. The
supplier, therefore, would never consider the forecast information provided by the manufacturer to
be credible regardless of the manufacturer’s sincere effort to share her forecast information. Instead,
the supplier would resort to his prior belief about the manufacturer’s private forecast information.
For example, the supplier may perceive ξ to be a zero mean random variable that takes values in
[ξ, ξ̄] with cdf F (·).

This concept is what is known as asymmetric forecast information. The supplier and the man-
ufacturer have asymmetric information about ξ and hence the overall demand forecast. The man-
ufacturer knows ξ deterministically, whereas the supplier has a prior belief about its possible value.
Hence, the supplier’s expected profit is

EξΠs(K, ξ) = (w − c)E min(µ + ξ + ε,K)− ckK, (16)

where the uncertainty is due to both ξ and ε. The supplier maximizes (16) by setting capacity level

Kwa ≡ µ + (F ◦G)−1(
w − c− ck

w − c
), (17)

where F ◦G is the distribution function of ξ + ε.

Comparing the supplier’s capacity decision when she has and does not have access to the man-
ufacturer’s forecast information reveals the source of inefficiency. The supplier’s capacity choice
without having access to ξ under asymmetric information Kwa is not a function of ξ. Without
credible forecast information sharing, the supplier cannot adjust the capacity to account for the
manufacturer’s private forecast. The consequences of this inefficiency could be severe for both par-
ties. When the manufacturer’s private forecast is very high, both parties may lose sales, resulting
in lower profits (as the Boeing case in Cole 1997). When the manufacturer’s private forecast infor-
mation is low, the supplier may suffer from excess capacity (as the Solectron case in Hibbard 2003).
The remedy for this inefficiency is to induce credible information sharing.

Özer and Wei (2006) show that the supplier can hold the manufacturer accountable for her private
forecast information by requiring a monetary commitment before securing component capacity. This
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accountability can be achieved by designing a menu of prices for reserving capacity. The menu should
be designed in a way that the supplier can screen the manufacturer’s forecast information. To do
so, the supplier offers this menu any time before setting the capacity.

The sequence of events is as follows. The supplier provides a menu of contracts {K(ξ), P (ξ)} for
all ξ ∈ [ξ, ξ̄]. Both capacity and corresponding payment are functions of private forecast information
ξ. Here, the supplier’s objective is to find the optimal menu that maximizes his profit. Given this
menu, the manufacturer chooses a particular contract (K(ξ̂), P (ξ̂)) that maximizes her profit. By
doing so, she announces her forecast information to be ξ̂, which could differ from her true forecast
information ξ. The supplier receives the payment P (ξ̂) and builds capacity K(ξ̂) at unit cost ck.
The manufacturer observes demand D and places an order. The supplier produces as much of the
order as possible given the capacity constraint; that is, he delivers min(D,K(ξ̂)). The manufacturer
receives the order and sells at unit price r > 0. Two decisions are the supplier’s choice for the
optimal menu of contracts that maximizes his profit; the manufacturers’ choice from this menu is
the optimal contract that maximizes her profit.

By choosing a contract, the manufacturer defines her profit, the supplier’s profit and the total
supply chain profit as

Πm(K(ξ̂), P (ξ̂), ξ) = (r − w)E min(µ + ξ + ε,K(ξ̂))− P (ξ̂), (18)

Πs(K(ξ̂), P (ξ̂), ξ) = (w − c)E min(µ + ξ + ε,K(ξ̂)) + P (ξ̂)− ckK(ξ̂). (19)

The supplier’s challenge is to elicit truthful information and to maximize his profit by choosing
a menu of contracts while ensuring the manufacturer’s participation. To identify an optimal menu
of contracts, the supplier solves

max
K(·),P (·)

EΠs(K(ξ), P (ξ), ξ) (20)

s.t. IC: Πm(K(ξ), P (ξ), ξ) ≥ Πm(K(ξ̂), P (ξ̂), ξ), for all ξ̂ 6= ξ

PC: Πm(K(ξ), P (ξ), ξ) ≥ πm
min, for all ξ ∈ [ξ, ξ̄].

The expectation in the supplier’s objective is with respect to ξ. The first set of constraints is the
incentive compatibility (IC) constraints. These constraints ensure that the manufacturer maximizes
her profit only by truthfully revealing her forecast information. The second set of constraints is the
participation constraints (PC). They ensure a minimum profit πm

min to the manufacturer regardless
of her forecast information. This minimum profit could be the manufacturer’s profit from her outside
option, or her profit under other contracts. Note that this optimization problem is a difficult one
that involves optimization over functions. Through obtaining structural results, this problem can
be converted to equivalent but gradually simpler formulations that are easier to deal with (see Özer
and Wei 2006).

The authors provide closed-form solutions/formulas as a solution to the the optimization problem
in (20). They also show that the optimal P cr(ξ) and Kcr(ξ) are monotone in ξ. Hence, one
can construct a function P (K) by setting P (K) = P cr(ξ), if K = Kcr(ξ). This function can be
interpreted as a capacity reservation contract; i.e., pay P (K) to reserve K units of capacity. Note
that the optimal contract is independent of the manufacturer’s forecast information. The supplier
simply gives this contract as a menu of fees for the corresponding capacity level that the manufacturer
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may reserve. Essentially the supplier delegates the capacity decision right to the manufacturer, who
has superior forecast information.

The supplier can also hold the manufacturer accountable for her private forecast information
by requiring a quantity commitment before the supplier secures component capacity. Özer and Wei
structure the advance purchase contract under which the manufacturer pays the supplier wa for
each unit she orders before the supplier secures capacity; hence the name, advance purchase. This
agreement provides an option to the manufacturer to place firm orders at an advance purchase price
before the supplier secures capacity. The advance purchase could be costly to the manufacturer
if the realized demand turns out to be smaller than the advance purchase quantity. Intuitively,
this commitment prevents a manufacturer with a low forecast from communicating a high forecast.
Özer and Wei (2006) show that the manufacturer can credibly signal her forecast through placing
an advance purchase before the supplier decides the capacity. The authors also show that channel
coordination is possible even under asymmetric forecast information by combining the advance
purchase contract with an appropriate payback agreement. The formulation and analysis of the
advance purchase contract leads to a signaling game, whereas the capacity reservation contract is a
screening game. By comparing these models and analysis, the authors also show analytically when
to use these contracts.

Which Contract Form to Adopt?

Özer and Wei (2006) identify two key drivers of the (supplier’s, manufacturer’s and supply
chain’s) expected profits under different contracts: the risk adjusted profit margin and the degree of
forecast information asymmetry.

Recall that the supplier’s profit margin is less than the integrated supply chain’s profit margin per
unit of capacity investment. Hence, the supplier builds less than the supply-chain-optimal capacity.
Two factors determine the impact of this inefficiency on the supply chain: the market uncertainty
modeled by ε, and the supplier’s profit margin per unit sold or per unit of capacity built, that is
w − c − ck. Hence, this inefficiency can be measured by the risk-adjusted profit margin (w−c−ck)

σε
,

that is, the supplier’s profit margin per unit sold per unit of market uncertainty.

The severity of supply chain inefficiency also depends on how much the supplier knows about
demand as compared to the manufacturer. This knowledge disparity is measured by the degree
of forecast information asymmetry. Let σξ and σε be the standard deviations of F (·) and G(·),
respectively. Consider a supply chain with σξ >> σε. For this supply chain, the inefficiency due
to the lack of credible forecast information sharing would be large because the supplier’s knowledge
of market demand is much less certain than that of the manufacturer’s. One possible measure of
degree of forecast information asymmetry is the ratio of the standard deviations σξ

σε
.

Özer and Wei (2006) show that the supplier and the manufacturer can choose among structured
agreements that enable a mutually beneficial partnership depending on the risk adjusted profit mar-
gin and the degree of forecast information asymmetry. The results are summarized in Figure 9. For
example, when forecast information between the parties is highly imbalanced, and the risk adjusted
profit margin is high, then their analysis shows that the advanced purchase contract generates higher
profits for both parties.

Through our private conversations with executives from several industries, we also observed that
the (risk adjusted) profit margin and the degree of forecast information asymmetry are two primary
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drivers of capacity risk. Figure 10 maps the level of these drivers for industries. For example, in
the semiconductor industry, compared to the manufacturer, the supplier knows very little about the
manufacturer’s private forecast. Further empirical and field research is needed to verify Figure 10.

Degree of Forecast Information Asymmetry

R
is

k 
Ad

ju
st

ed
 P

ro
fit

 M
ar

gi
n

High

Symmetric

H

L

Low

AP with 
Payback
contract

Wholesale 
price

contract

Advance
purchase 
contract

Payback
contract

Or
Linear CR

Capacity
reservation
contract 

! 

"#

"$

! 

w " c " c
k

#$

Zero

Asymmetric

Figure 9: Mutually Beneficial Contracts

Degree of Forecast Information Asymmetry

R
is

k 
Ad

ju
st

ed
 P

ro
fit

 M
ar

gi
n

High

Symmetric

H

L

Low

! 

"#

"$

! 

w " c " c
k

#$

Zero

Asymmetric

Semi-conductor

Telecom

Aerospace

Apparel

Automotive

Figure 10: Capacity Risk Drivers across Dif-
ferent Industries

A Brief Review

Research exploring contracts that coordinate the supply channel under full (or symmetric) fore-
cast information falls into two groups. In the first group, contracts align incentives by inducing the
supplier and manufacturer to share the risk of low demand, resulting in excess capacity or inventory.
Buyback contracts (Pasternack 1985), quantity flexibility contracts (Tsay 1999), and capacity reser-
vation contracts (Erkoc and Wu 2001) are a few examples. The second category of contracts aligns
incentives by sharing the risk of high demand, resulting in capacity or inventory shortage. Revenue
sharing contracts (Cachon and Lariviere 2000) and quantity premium contracts (Tomlin 2003) are
two examples from this category. Cachon (2003) provides a comprehensive review of supply chain
contracting and coordination9. The supply chain literature that explicitly models asymmetric in-
formation can be classified into two groups. A group of researchers (Corbett and de Groote and Ha
2001) focus on information asymmetry in production cost, and another group (Porteus and Whang
1991, Cachon and Lariviere 2001, Özer and Wei 2006) focuses on information asymmetry in market
demand and forecasts. Chen (2003) provides an excellent review of the use of these models in supply
chains.

3.2 Inventory Risk

Lutze and Özer (2004) study the incentive problems in a multi-period, two-echelon supply chain with
a manufacturer and a retailer both of whom build or procure to stock. Note that the manufacturer
in this case faces inventory risk, unlike the previous section’s build-to-order manufacturer. Both
the manufacturer and the retailer hold inventory to satisfy their respective customers. They review
inventory periodically, i.e., at the beginning of each period t. The manufacturer produces at a per

9In this literature, mainly the downstream firm is assumed to face demand uncertainty while the upstream firm

“builds to order”, unlike the interaction discussed in this section. Nevertheless, the results are analogous.
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unit cost cm > 0 and the retailer places an order at a per unit ordering cost cr > 0. Suppose all
cost and demand parameters are stationary, i.e., independent of period t. There is no fixed cost for
production or placing an order. The manufacturer has ample capacity for production, which takes L

periods to complete. The retailer orders are processed and shipped in l periods. Customer demand
Dt is realized. The retailer satisfies customer demand through on-hand inventory. Unsatisfied
demand is backlogged. Backorders of end customer demand incur a unit penalty cost pr per period
only at the retailer. The manufacturer incurs a shortage cost for unsatisfied retailer order based on
the contractual agreement we specify later. The manufacturer and the retailer incur unit holding
cost hm > 0 and hr > 0, respectively, where hm ≤ hr, for any inventory remaining at the end of each
period. Both the retailer and the manufacturer choose an optimal inventory replenishment policy
to minimize their respective total expected inventory costs over T periods. At the end of period T ,
leftover inventory (resp., backlog) is salvaged (resp., purchased) at a linear per unit value of cm and
cr, at each stage, respectively.

The manufacturer needs to protect himself against the retailer’s demand over the production
lead time L, and the retailer needs to protect herself against the consumer demand during the
processing lead time l. Hence, to reduce inventory exposure, the manufacturer prefers the retailer
to commit to purchase in advance and wait for delivery (commit and wait). However, the retailer
prefers to delay her order and have immediate product availability and delivery (now or never). To
address these opposing interests, Lutze and Özer consider a promised lead time contract with two
parameters: promised lead time τ and corresponding per period lump-sum payment K.

Under a promised lead time contract, when the retailer places an order, the manufacturer
promises to ship this order, in full, after τ periods. To guarantee this delivery, the manufacturer
arranges an alternate sourcing strategy to fill retailer demand that exceeds the manufacturer’s on-
hand inventory. That is, the manufacturer borrows emergency units from an alternative source and
incurs penalty pm per unit per period until the alternative source is replenished.10 The effect of
promised lead time is to shift the responsibility for demand uncertainty from the manufacturer to
the retailer. Note that if the retailer agrees to a promised lead time L + 1, exceeding the manufac-
turer’s production lead time, the manufacturer builds to order for the retailer and does not carry
any inventory.

Under this agreement, each firm independently solves a periodic-review inventory control problem
discussed in § 2.1. Let xj

t and yj
t be firm j ∈ {m, r} inventory position before and after ordering,

respectively, in period t, where m and r stand for the manufacturer and the retailer. The following
dynamic program recursion minimizes the cost of managing the inventory system for a finite horizon
problem with T − t periods remaining until termination.

J j
t (xj

t |τ) = min
yj

t≥xj
t

{Gj(yj
t |τ) + αEDJ j

t+1(x
j
t+1|τ)}

where J j
T+1(x

j
T+1|τ) ≡ 0 for j ∈ {m, r}, and

Gm(ym
t |τ) = (1− α)cmym

t + E[hm(ym
t −DL+1−τ )+ + pm(DL+1−τ − ym

t )+] and

Gr(yr
t |τ) = (1− α)cry

r
t + E[hr(yr

t −Dl+1+τ )+ + pr(Dl+1+τ − yr
t )

+].
10Similar alternative sourcing strategies are also discussed in Lee, So and Tang (2000) and Graves and Willems

(2000).
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For the stationary finite horizon inventory control problems, a myopic base stock policy is known
to be optimal (Veinott 1965). These myopic base stock levels for the manufacturer and retailer are
the minimizers of their respective single period cost functions and are defined as

Y m(τ) = F−1
L+1−τ

(
pm − (1− α)cm

hm + pm

)
and

Y r(pr, τ) = F−1
l+1+τ

(
pr − (1− α)cr

hr + pr

)
.

Hence, with promised lead time τ , firm j orders up to an optimal base stock level Y j(τ) if its
inventory position xj

t is below this level at the beginning of period t. The expected discounted
inventory cost over T periods equals the sum of the discounted single period costs, that is,

Jm(xm
1 |Y m(τ), τ) =

T∑
t=1

αt−1Gm(τ),

where Gm(τ) ≡ cmµ + E
{
hm[Y mt(τ)−DL+1−τ ]+ + pm[DL+1−τ − Y m

t (τ)]+
}
, and

Jr(xr
1|Y r(pr, τ), τ) =

T∑
t=1

αt−1Gr(pr, τ),

where Gr(pr, τ) ≡ crµ + E
{
hr[Y r

t (pr, τ)−Dl+1+τ ]+ + pr[Dl+1+τ − Y r
t (pr, τ)]+

}
.

When the manufacturer has full information about the retailer’s inventory related costs, she can
determine the optimal promised lead time contract (τ,K) by solving the following problem.

minimizeτ,K
∑T

t=1 αt−1{Gm(τ)−K}
subject to K + G∗

r(pr, τ) ≤ πr
max

τ ∈ {0, . . . , L + 1}
(21)

The constraint ensures that the retailer is not charged a cost larger than her maximum reservation
cost. Note also that the summation over T periods does not affect the solution of this problem, hence
it can be dropped from the objective function for optimization purposes. The constraint must be
binding at optimality. Otherwise, we can increase K and reduce the objective function. Substituting
K = πr

max −G∗
r(pr, τ) one can solve for the optimal contract parameters.

To solve the above problem, the manufacturer needs to know the retailer’s cost information. He
can perhaps estimate hr fairly accurately because he knows the value of the product. The same
may not necessarily be true for pr. Companies often state penalty cost as a strategic cost parameter
never to be revealed. Lutze and Özer show that the retailer has every incentive to conceal her
service level to end consumers (or equivalently the penalty cost structure). Intuitively, the retailer
has an incentive to exaggerate the service level, thereby shortening the promised lead time for the
same agreed upon price and reducing his expected inventory cost per period. Hence, it is often not
possible for the manufacturer to know the retailer’s penalty cost.

Suppose that there are two types of retailers in the market: one with a low penalty cost pL
r

and the other one with a high pH
r . Suppose also that the belief is such that with probability q,

she is a high penalty cost retailer and with probability (1 − q) she is a low penalty cost retailer.
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To determine the optimal contract mechanism {(τL,KL), (τH ,KH)}, the manufacturer solves the
following problem.

minimize(τi,Ki)i=L,H
q[Gm(τH)−KH ] + (1− q)[Gm(τL)−KL]

subject to

IC1 : KH + Gr(pH
r , τH) ≤ KL + Gr(pH , τL)

IC2 : KL + Gr(pL
r , τL) ≤ KH + Gr(pL

r , τH)

IR1 : KH + Gr(pH
r , τH) ≤ πr

max

IR2 : KL + Gr(pL
r , τL) ≤ πr

max

τi ∈ {0, . . . , L + 1} for i = L,H

The first two incentive compatibility constraints ensure that a retailer with a high penalty cost vol-
untarily chooses the contract (τH ,KH) and the low penalty cost retailer chooses (τL,KL). The next
two individual rationality constraints guarantee the retailer finds a satisfactory contract regardless
of his service level. This problem can be solved once we show certain properties of the cost function
Gr and the result is in closed form solution. For example, IC2 and IR1 imply that IR2 is redundant
when we show Gr is increasing in pr. Note also that IC2 must be binding at optimality otherwise
the manager can increase KL and reduce the objective function until IC2 binds. By showing that
Gr(pr, τ) has single crossing property11, we can also show that τH ≤ τL. Intuitively, it is optimal
to offer a shorter promised lead time to a retailer that has higher penalty cost. Together with this
observation, the binding IC2 implies that IC1 is redundant. At optimality

τH = minimizer of q[Gm(τH) + Gr(pH
r , τH)] + (1− q)[Gr(pH

r , τH)−Gr(pL
r , τH)]

KH = πr
max −Gr(pH

r , τH)

τL = minimizer of (1− q)[Gm(τL) + Gr(pL
r , τL)]

KL = [πr
max −Gr(pL

r , τL)]− [Gr(pH
r , τH)−Gr(pL

r , τH)]

Lutze and Özer (2004) discuss properties of optimal promised lead time contracts and the re-
sulting inventory levels under both full and asymmetric service information with multiple discrete
types. We caution that the results for mechanism design problems with multiple discrete types do
not simply follow from two-type case. The study of the more general case requires intricate analysis
and may lead to different solutions. Lovejoy (2006)’s paper is an excellent reference that clarifies
related issues. Lutze and Özer (2004) also show how the ensuing inventory risk sharing strategy
changes under asymmetric service information. They also compare the performance of a supply
chain operating under a central decision maker to one with independent firms operating under a
promised lead time contract. By comparing different control mechanisms and information scenar-
ios, they provide insight into stock positioning and how the promised lead time affects the system
performance. They quantify, for example, how much and when the manufacturer and the retailer
over- or under-invest in inventory as compared to centralized supply chain, which operates as a serial
system, discussed in § 2.5 and later in § 4.

11When f(x, y)− f(x, y − 1) is increasing in x, then function f is said to satisfy single crossing property.
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3.3 Quality Risk

So far, we discussed the two risk imbalances in supply chains, leading to incentive problems. They
were namely capacity and inventory risk. Next we discuss the third one: quality risk. The quality
literature in operations management focuses mainly on centralized inventory management problems
with random yields. Yano and Lee (1995) provide a review of more than 70 academic papers, such
as the works of Porteus (1990b) and Pentico (1994). The focus of these papers is on establishing
production and stocking policies when production or procurement yields are random. They address,
for example, optimal time and size for inspection. Only a handful of researchers study the effect
of product quality in decentralized supply chains. In Reyniers and Tapiero (1995), the supplier
determines the effort invested in quality, where high effort causes a lower probability of defect. The
manufacturer decides whether to conduct costly inspection. Lim (2001) uses a similar setting, with
asymmetric information on the supplier’s quality type. Baiman, Fischer and Rajan (2000) analyze
the effects of different assumptions regarding the contractibility of quality and inspection efforts.
All of these papers define quality as the percentage of the products that are not defective.

Today, manufacturers are outsourcing advance functions such as strategic sourcing, design, and
even research and development. The manufacturer can use inspection techniques to measure yield
and, hence, can enforce a certain yield in the contract. However, when the supplier undertakes
more advanced tasks, measuring either the supplier’s quality effort or his cost to achieve the desired
quality level is difficult. This difficulty precludes the manufacturer from enforcing the desired quality
level with a legal contract.

Not being able to foresee all possible contingencies and time to market pressures are two other
reasons that make quality difficult to measure. Quality requirements may be better understood
after the supplier builds a prototype, but this step typically occurs after an outsourcing agreement
is signed. According to a Toshiba manager, if Toshiba waited until they were absolutely sure of
every final detail and then wrote a complete contract, they would be 6 to 12 months late to the
marketplace. Therefore, in addition to structured and legally binding agreements, establishing
strategic relationship management systems between the manufacturer and the supplier is probably
a good idea. This strategic relationship may encourage, for example, implementation of quality
programs such as TQM or Six Sigma.

Kaya and Özer (2004) refer to the adverse effect of inefficiencies caused by the immeasurability
of both quality effort level and the quality cost as the quality risk. Consider an original equipment
manufacturer that outsources the design and production of a custom component to a supplier and
sells the final product at a price p. The market demand is a function of the manufacturer’s sales
price p, the supplier’s quality effort e and the market uncertainty ε, i.e.,

q = a− bp + e + ε,

where a > 0 and b > 0 are the intercept and slope of the downward sloping demand curve. The
manufacturer offers a procurement contract to the supplier. If the supplier accepts the contract,
the parties establish a supply chain. Next, the supplier determines the product’s quality level
e by exerting costly quality effort. The quality cost is the supplier’s private information. The
manufacturer determines the sales price p to maximize her expected profit. The market shock ε

realizes and the firms observe the quantity demanded. Finally, the supplier produces to satisfy
the manufacturer’s order, which is equal to the consumer demand. Note that the manufacturer
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cannot verify the quality level set by the supplier due to the market uncertainty ε. Hence, the
manufacturer cannot directly link the CM’s compensation to the quality level the CM sets. Instead,
the manufacturer needs to offer a contract and indirectly influence the CM’s quality decision. The
authors model this interaction as screening and moral hazard problems embedded into a three stage
game.

Kaya and Özer (2004) design procurement contracts that improve the supplier’s and the man-
ufacturer’s profits by inducing the supplier to exert effort to produce better quality products when
parties cannot explicitly contract on quality. The authors answer and quantify broad questions of
managerial interest. They quantify the value of being able to contract on quality. They study the
effects of the manufacturer not knowing the supplier’s cost of quality. They investigate the value of
an enterprise-wide quality management system, a recent information technology tool that enables
accounting of quality related activities across the supply chain. The authors also study the effect
of the manufacturer’s product-pricing policy on the resulting quality of the product. They report
the outcome of two opposing product-pricing strategies: setting market price for the final product
in the contract terms with suppliers versus pricing the product after receiving components from the
supplier.

4 Large Scale Systems and Rationality

Global supply chains (or perhaps networks) have multiple locations to carry inventory; multiple
products to manage; several decisions to coordinate; various sources and flows of information; and
uncertain demand and processes. The management of inventory and information in such systems is
difficult, and reviewing the related literature is even more so! We refer the reader to the books by
Zipkin (2000) and Muckstadt (2005) for a systematic treatment of fundamental inventory control
methods. First note that essentially multi-location systems or multi-product systems are identical.
The same model and analysis can be applied to both. Second, by allocating decoupling inventories,12

complex supply chain structures can be decomposed into fundamental structures, such as serial
systems, of which we have a very good understanding. What is the best (if not the efficient) way
to decompose a complex structure into smaller problems is an open research question. There is
also an extant literature on the supply chain configuration problem (see, for example, Graves and
Willems 2003). Here we will provide some discussion on how to allocate inventory effectively across
two fundamental structures, serial and distributions systems, to minimize inventory related costs
while keeping an eye on rationality.

Despite considerable progress over the years, existing optimization and policy evaluation algo-
rithms for multi-echelon systems remains fragmented and opaque to non-experts. The computational
methods involved are intricate and require voluminous data. Data fed to these tools are not always
accurate, as discussed in § 2.3. Systems and people have limitations. Users are more likely to
embrace decision tools when they understand what is in the black box. Therefore, it is necessary
to develop easy-to-describe, close-to-optimal and robust heuristics that can be implemented on a
spreadsheet by solving, for example, newsvendor type problems13. Unlike multi-echelon results, the

12Decoupling stock is used to permit separation of inventory decisions at different locations in the supply chain.

Having a large inventory between two locations would make it possible for the downstream location to make an

inventory decision independent of any supply problem at the upstream location.
13This problem is a simple single period, single location inventory control problem faced by a newsvendor. The
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newsvendor problem is widely known, commonly used in practice and a standard component of any
production and operations curriculum.

The above discussion suggest that heuristics and approximations can collectively enable better
inventory management if they pass all or some of the following tests: (1) Is it close to optimal? (2)
Is it simple to describe and use? (3) Can it be used to test system design issues accurately? (4) Is it
robust? (5) Is it computationally easy? Note, however, that focusing narrowly on the one criterion
overlooks other important aspect and leads to a gap between theory and practice (see Özer and
Xiong 2005 for more discussions). For example, the computational methods used for exact solutions
can be intricate and may require voluminous data. They may require advance knowledge. They
may not provide explicit information regarding the key factors that drive performance. Recently,
researchers have realized this gap and started to focus on developing easy-to-use, robust heuristics
and approximations that are insightful (see, for example, Lee, Billington and Carter 1993, Hopp,
Spearman and Zhang 1997, Gallego, Özer and Zipkin 2007, Shang and Song (2003), Gallego and
Özer 2004, Caglar, Li and Simchi-Levi 2004, Watson and Zheng 2005, Özer and Xiong 2005 and
references therein). In the following two subsections, we provide some examples from Gallego and
Özer (2004) and Gallego, Özer and Zipkin (2007).

4.1 Serial Systems

Consider a serial system consisting of J stages. Stage j < J procures from Stage j + 1 and Stage
J replenishes from an outside supplier with ample stock. Customer demand occurs only at Stage
1 and follows a (compound) Poisson process, {D(t), t ≥ 0} with arrival rate λ. It takes Lj units
of time for a unit to arrive at Stage j once it is released by its predecessor. Unsatisfied demand is
backordered at each stage, but only Stage 1 incurs a linear backorder penalty cost p, per unit, per
unit of time. We assume, without loss of generality, that each stage adds value as the item moves
through the supply chain, so echelon holding costs he

j are positive. The local holding cost for stage
j is hj ≡

∑J
i=j he

i . The system is operated under continuous review. The following random variables
describe the state of Stage j in equilibrium: Dj is the leadtime demand, Ij the on-hand inventory,
and Bj the backorders. The total long-run average cost for any policy can be expressed as

E

[
J∑

k=1

hkIk + pB1 +
J∑

k=2

hkDk−1

]
.

Optimality of an echelon base-stock policy (sJ , . . . , s1) for this serial system is well known (see the
original work by Clark and Scarf 1960). Gallego and Özer (2004) provide the following new recursive
algorithm to obtain optimal base stock levels. Let c1(s) = E[h1(s − D1)+ + p(D1 − s)+] and for
j = 2, . . . , J define

cj(s) = min
x∈{0,...,s}

cj(x; s)

cj(x; s) = E[hj(x−Dj)+ + cj−1(min(s− x, s−Dj)) + hjDj−1]. (22)

Let N = {0, 1, . . . , } be the set of non-negative integers and let

s∗j ≡ min{s ∈ N : cj(s + 1)− cj(s) > hj+1} for j = 1, . . . , J.

vendor has to decide how much to order from the publisher so as to satisfy uncertain demand. The model is used to

teach the risk of over-stocking and under-stocking
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Function cj(s) is the long-run average cost of optimally managing the sub-system {j, . . . , 1} given
echelon base-stock level s and s∗j is the optimal base-stock levels. The recursion is somewhat intuitive.
Suppose cj(·) has been computed and consider the sub-system {j+1, . . . , 1}. The goal is to compute
cj+1(·) from the knowledge of cj(·). Note the link between the two sub-systems. We allocate x units
to Stage j + 1 and the remaining s− x units of echelon base-stock to sub-system {j, . . . , 1}. Given
this allocation, the net inventory at Stage j + 1 will be (x − Dj+1)+ which accrues at cost rate
hj+1. Since Stage j + 1 will face a shortage when Dj+1 − x > 0, the effective echelon inventory for
sub-system {j, . . . , 1} is s− x− (Dj+1 − x)+ = min(s− x, s−Dj+1). Thus, a finite local base-stock
level at Stage j + 1 imposes an externality to the sub-system {j, . . . , 1} whose expected cost is now
Ecj(min(s − x, s − Dj+1)). As a result, when we allocate x ≤ s units of local base-stock level to
Stage j + 1, the cost of managing a serial system with j + 1 stages is given by (22).

Note that the classical recursive formulation presented in Chen and Zheng (1994) or Gallego
and Zipkin (1999) has no intuitive interpretation. Although the above new algorithm has an inter-
pretation and is intuitive, it is still difficult to explain to non-experts. It also does not provide any
transparent relationship. Using this formulation, Gallego and Özer provide a fast exact algorithm
based on gradient updates and a close-to-optimal heuristic that requires solving one newsvendor
problem per stage! The heuristic is based on the approximate holding cost rate

hGO
j ≡

j∑
k=1

Lk

L1 + . . . + Lj
hk.

The idea is based on adding the holding cost as the product goes through the stages without delay
and then dividing by the total lead time that it spends before reaching the end customer. This
approximate holding cost minus the cost associated to upstream operations that is hj+1, is charged
to any excess inventory in echelon j that faces demand uncertainty over the leadtime L0 + . . . + Lj .
This cost is charged per excess inventory because it is the approximate value that the echelon j
is responsible for. Similarly the penalty cost p + hj+1 is charged to echelon j because it is the
approximate opportunity cost. The resulting problem then has a newsvendor type cost structure of

c̃j(s) = E[(hGO
j − hj+1)(s−

j∑
k=1

Dk)+ + (p + hj+1)(
j∑

k=1

Dk − s)+], (23)

sGO
j ≡ min{s ∈ N : Pr(

j∑
k=1

Dk ≤ s) >
p + hGO

j

p + hj+1
}. (24)

Gallego and Özer (2004) show that over 1000 experiments, the optimality gap14 is less than
0.25%. Note that the newsvendor problem is known to be somewhat robust in that small changes in
data would not change the optimal solution significantly. This heuristic can easily be implemented
with a simple spreadsheet. So, the heuristic is close-to-optimal, easy-to-describe and robust.

The authors also consider an approximation by approximating the leadtime demand distribution
using Normal with mean µ and σ. This approximation would be good in particular when the mean
of leadtime demand is large. The resulting cost cj(s∗j ) ≈ (p + hGO

j )σφ(z), where z = Φ−1((p +
hj+1)/(p + hGO

j )). The base stock level is s∗j ≈ µ + zσ. They are both in closed form. The
authors also provide a distribution free cost upper bound in the approximate sense, that is cJ(s∗J) ≤

14The gap is defined as percentage difference between the optimal cost and the cost of the heuristic.
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√
p(h1L1 + . . . + hJLJ)λ. The bound does not depend on any distribution. So it is quite robust

with respect to demand parameter estimation. Such bounds, heuristics and approximations can
also be used to quantify the value of system design issues. Using these results, it is easy to show,
for example, that management should focus on reducing the lead time at the upstream stages while
reducing the holding cost at the downstream stages. If process re-sequencing is an option, the lowest
value added processes with the longest processing times should be carried out sooner rather than
later. More importantly, a manager can easily quantify the impact of such changes using these
simple heuristics and bounds.

4.2 Distribution Systems

Consider a two-level distribution system. All items enter the system from an external supplier and
proceed first to location j = 0, called the warehouse. The warehouse in turn supplies J retailers,
where the customer demands occur, indexed by j = 1, . . . , J . Shipments from the external supplier
arrive at the warehouse after time L0. Shipments arrive at retailer j after time Lj . The retailers
satisfy the customer demand from on-hand inventory, if possible. Unsatisfied demand at retailer j

is backordered at a linear penalty cost rate bj . All locations are allowed to carry inventory. The
local holding cost is hj per unit at retailer j. Holding inventory at the retailer is more expensive
than holding it at the warehouse hj ≥ h0 for j > 0. On the other hand, inventory located closer to
the customer enables a quick response, hence reduces the possibility of a backorder at each retailer.
Demand at each retailer j follows a Poisson process {Dj(t), t > 0} with rate λj , and these are
independent across retailers. The problem is, where to locate the inventory and how to control the
system, so as to minimize the long-run average holding and penalty costs. No one knows the optimal
policy for distribution systems, yet.

Under any policy, the total average cost can be expressed as

h0E[I0] + h0

∑
j>0

E[ITj ] +
∑
j>0

(hjE[Ij ] + bjE[Bj ]),

where Ij is the on hand inventory, Bj is backorders and ITj is the inventory in transit at location j

at equilibrium.

Gallego, Özer and Zipkin (2007) distinguish two modes of control: central and local. Under
central control, all information flows to one point, where all decisions are made. Local control
means that each location observes local information and makes decisions accordingly. However,
even under local control, a single decision-maker provides operating rules to all locations, which the
locations then implement in real time. The locations do not have their own distinct objectives, as
they do in contracting models of § 3.

Here we focus on the local control case and on a class of simple replenishment policies, base-stock
or one-for-one policies (see Gallego, Özer and Zipkin 2007 for central control policies). Under local
policy, whenever the inventory position at location j falls below the local base-stock level sj , the
retailer orders from the upstream location to raise the inventory position up to sj . The sum of the
retailers’ orders constitutes the warehouse’s demand process. The warehouse satisfies the retailers’
requests on a first-come-first-served basis. Notice that information and control are decentralized or
localized, in that each location sees its own demand and monitors its own inventory-order position.
The exact analysis of this system is due to Simon (1971) and Graves (1985). Graves (1985) derives
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the steady state distributions of inventory levels and backorders by disaggregating the backorders
at the warehouse. Axsäter (1990) provides a recursive method to calculate the average holding and
penalty cost associated with every supply unit that is matched with the demand that triggers it.
The following random variables describe the system at equilibrium.

B0 = [D0 − s0]+, (25)

I0 = [s0 −D0]+, (26)

Bj = [B0j + Dj − sj ]+ for j > 0, (27)

Ij = [sj −B0j −Dj ]+ for j > 0. (28)

Here, B0j and Dj are independent, and (B0j |B0) is binomial with parameters B0 and θj = λj/λ0.
Given the sj , one can compute the E[Ij ] and E[Bj ] and thus

c(s0, s1, . . . , sJ) = h0E[I0] +
∑
j>0

cj(s0, sj), (29)

cj(s0, sj) = hjE[Ij ] + bjE[Bj ]. (30)

Let s∗ = (s∗j )
J
j=0 denote the policy that achieves the minimum average cost c∗.

For fixed s0, the total average cost in (29) separates into a constant, plus functions cj of one
variable each (sj), each convex in its variable. This separation is quite useful computationally. On
the other hand, the remaining problem is still not trivial. To compute E[Bj ] and E[Ij ] requires
numerical convolution of B0j and Dj . Also, the cost c(s0, s

∗
1(s0), . . . , s∗J(s0)) is not convex in s0.

Finding the optimal s0, therefore, requires an exhaustive search.

Gallego, Özer and Zipkin (2007) provide various heuristics based on restriction and decomposi-
tion ideas. Note, for example, that restricting the warehouse not to carry inventory decomposes the
system to J retailers facing longer replenishment lead times, i.e. L0 + Lj . This heuristic is referred
to as cross-docking. To obtain the base-stock level at each retailer, they solve newsvendor type
problems as in (23). The other extreme is to assume that the warehouse always has ample stock.
Doing so, decomposes the system into individual retailers with lead time Lj . The authors solve for
the warehouse’s base-stock level by assuming that the retailers base stock levels are fixed to zero.
In this case the warehouse’s problem is a newsvendor type. The solution provides the maximum
possible stock needed at the warehouse. Hence, they refer to this heuristic as stock-pooling. Another
heuristic allocates zero safety stock to the warehouse, hence named the zero-safety heuristic. The
authors show that a combination of these heuristics yields asymptotically optimal results, i.e. the
combined heuristics yields optimal results as the number of retailer increases. Through an extensive
numerical study involving all plausible distribution system parameters, the authors show that the
optimality gap for the restriction and decomposition based heuristic is less than 2%. The authors
also provide several other heuristics, bounds and approximations both for central and local control
systems.

5 Ending Thoughts and Future Directions

We started with the discussion of how to effectively use information in centralized inventory sys-
tems. Such inventory systems are managed by a single decision maker who possesses all relevant
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information. As we discussed in § 2, this line of research will always be necessary even though
global inventory systems are decentralized in practice. Advances in technology, cheaper computa-
tional and storage devices will continue to enable managers to obtain more information. Inventory
managers would need to quantify the value of information and the technology even more so than
before. These systems also serve as a benchmark for decentralized systems. As we discussed in § 4,
they are the building blocks for large scale systems. How to use and quantify new information in
inventory management will continue to be an important area for future research.

Note also that there are still open questions. For example, we don’t know the impact of imperfect
inventory information on multi-echelon inventory systems. Intuitively, the adverse affect of inventory
record inaccuracy will amplify as we go up in the echelon. Perhaps RFID technology has more value
in such systems. But we simply don’t know. Another example is the centralized distribution system,
for which we still don’t have an optimal inventory policy. As discussed in § 2, researchers have realized
that an optimal policy would be very complex, if one exists. Hence, they have developed close-to-
optimal heuristics, but none of these heuristics have worst case performance bounds. Developing
such bounds is an interesting research direction. We have started to see recent research in this
direction (Levi et al. 2006a,b).

Decentralized inventory management systems consist of managers with asymmetric information
and separate objectives. We discussed several inefficiencies due to decentralized operations. Design-
ing contracts to align incentives and coordinate inventory decisions will continue to be an important
research area given global supply chains. Inventory managers need to keep an eye on inefficiencies
introduced due to decentralization. Most of the work in this area consists of single period inter-
actions between two inventory managers. Future work is needed to consider the effect of repeated
interactions and reputation. This line of work also assumes that inventory managers are responsible
for single location systems. In reality, however, an inventory manager could be responsible for a
serial system or a distribution system (as discussed in sections 2 and 4). Hence, it is also important
to study the interaction between two such managers. For example, the manufacturer in Lutze and
Özer (2004) might offer a shorter promised lead time when he is managing a multi product inventory
system due to perhaps the risk pooling effect. Studying the impact of supply chain design strategies
such as postponement on contract terms would contribute to our understanding of these systems
and bring us one step closer to real systems. The approximations, bounds and closed form solutions
developed for centralized systems discussed in § 4 may also help us study complex decentralized
inventory systems that are controlled by several managers.

Many years of research also suggest that large-scale, centralized stochastic inventory systems are
even more difficult to deal with and are not amenable to a simple optimal policy. As a research
community we need to develop close-to-optimal, easy-to-describe, robust heuristics for solving large
scale systems. To make a heuristic universally acceptable, we need to test its performance against
a lower bound or an optimal solution. For large scale systems, however, we lack optimal solutions.
Developing sensible lower bounds could be difficult as well. As an alternative, such heuristics can
be tested on real systems. However, real systems differ from each other, making it difficult to
compare plausible heuristics proposed by researchers. Perhaps one potential research area is to
design test-problems that are universally acceptable to qualify as difficult, real, and large-scale.
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[10] Axsäter, S. 1990. Simple solution procedures for a class of two-echelon inventory problems.
Operations Research 38, 64-69.
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[77] Lee, H. and Ö. Özer. 2007. Unlocking the value of RFID. Production and Operations Manage-
ment 16(1).

[78] Lee, H., P. Padmanadbhan and S. Whang. 1997. Information distortion in a supply chain: The
bullwhip effect. Management Science 43, 546-558.

[79] Lee, H. and C. Tang. 1997. Modeling the costs and benefits of delayed product differentiation.
Management Science 43, 40-53.

[80] Levi, R., M. Pal, R. Roundy and D. Shmoys. 2006a. Approximation algorithms for stochastic
inventory control models. To appear Math of Oper. Res.

[81] Levi, R., R. Roundy and V. A. Truong. 2006b. Provably near-optimal balancing policies for
multi- echelon stochastic inventory control models. Working paper.

[82] Luss, H. 1982. Operations research and capacity expansion problems: A survey. Operations
Research 5, 907-947.

37
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