
The Verification Grand Challenge

and Abstract Interpretation

Patrick Cousot
École normale supérieure, 45 rue d’Ulm

75230 Paris cedex 05, France
Patrick.Cousot@ ens.fr

Visiting the Aeronautics and Astronautics Department
MIT, 77 Massachusetts Avenue Cambridge, MA 02139

cousot@ mit.edu

1 Introduction

Abstract Interpretation, is a theory of approximation of mathematical struc-
tures, in particular those involved in the semantic models of computer sys-
tems [6, 3, 7]. Abstract interpretation can be applied to the systematic con-
struction of methods and effective algorithms to approximate undecidable or
very complex problems in computer science.

In particular, abstract interpretation-based static analysis, which auto-
matically infers dynamic properties of computer systems, has been very suc-
cessful these last years to automatically verify complex properties of real-
time, safety critical, embedded systems.

For example, ASTRÉE [1, 2, 8] can analyze mechanically and verify
formally the absence of runtime errors in industrial safety-critical embedded
control/command codes of several hundred thousand lines of C.

We summarize the main reasons for the technical success of ASTRÉE,
which provides directions for application of abstract interpretation to the
Verification Grand Challenge [10, 11].

2 The Static Analyzer ASTRÉE

ASTRÉE [1, 2, 8] is a static program analyzer aiming at proving the absence
of Run Time Errors (RTE) in programs written in the C programming lan-
guage. ASTRÉE analyzes structured C programs, without dynamic mem-

1



ory allocation and recursion. This encompasses many synchronous, time-
triggered, real-time, safety critical, embedded software programs as found
in aerospace, automotive, customer electronics, defense, energy, industrial
automation, medical device, rail transportation and telecommunications ap-
plications.

ASTRÉE aims at proving that the C programming language is correctly
used and that there can be no Run-Time Errors (RTE) during any execution
in any environment. This covers:

– Any use of C defined by the international norm governing the C pro-
gramming language (ISO/IEC 9899:1999) as having an undefined behavior
(such as division by zero or out of bounds array indexing);

– Any use of C violating the implementation-specific behavior of the aspects
defined by ISO/IEC 9899:1999 as being specific to an implementation of
the program on a given machine (such as the size of integers and arithmetic
overflow);

– Any potentially harmful or incorrect use of C violating optional user-
defined programming guidelines (such as no modular arithmetic for in-
tegers, even though this might be the hardware choice);

– Any violation of optional, user-provided assertions (similar to assert diag-
nostics for example), to prove user-defined run-time properties.

ASTRÉE is sound, automatic, efficient, domain-aware, parametric, modular
and precise. More precisely:

– ASTRÉE is sound in that it always exhaustively considers all possible run-
time errors in all possible program executions and never omit to signal a
potential run-time error, a minimal requirement for safety critical software;

– ASTRÉE is fully automatic, that is never needs to rely on the user’s help
such as the decoration of programs with inductive invariants;

– ASTRÉE always terminates and has shown to be efficient and to scale up
to real size programs as found in the industrial practice;

– Like general-purpose static analyzers, ASTRÉE relies on programming lan-
guage-related properties to point at potential run-time errors. Like special-

ized static analyzers, ASTRÉE puts additional restriction on considered
program (e.g. no recursion, no side-effect) and so can take specific pro-
gram structures into account. Moreover, ASTRÉE is domain-aware and
so knows facts about application domains that are indispensable to make

2



sophisticated proofs. For example, ASTRÉE takes the logic and func-
tional properties of control/command theory into account as implemented
in embedded programs [2, 9];

– ASTRÉE is parametric in that the degree of precision of the analysis
can be adjusted either manually or mechanically. This means that the
performance rate (cost of the analysis/precision of the analysis) can be
fully adapted to the needs of its end-users;

– ASTRÉE is modular. It is made of pieces (so called abstract domains)
that can be assembled and parameterized to build application specific
analyzers, fully adapted to a domain of application or to end-user needs.
Written in OCaml, the modularization of ASTRÉE is made easy thanks
to OCaml’s modules and functors;

– A consequence of undecidability in fully automatic static analysis is false
alarms. Even a high selectivity rate of 1 false alarm over 100 operations
with potential run-time errors leaves a number of doubtful cases which may
be unacceptable for very large safety-critical or mission-critical software
(for example, a selectivity rate of 1% yields 1000 false alarms on a program
with 100 000 operations);

In contrast ASTRÉE, being modular, parametric and domain-aware
can be made very precise and has shown to be able to produce no false

alarm, that is fully automated correctness proofs.

The strength of ASTRÉE is that, despite fundamental undecidability
limitations, it scales up and can automatically do (or has shown to be easily
adaptable by specialists to do) complex proofs of absence of RTE for the con-
sidered family of synchronous control/command software. Such proofs are
large, complex and subtle, well beyond human capacity, even using provers
or proof assistants. This strength comes from a careful, domain-specific de-
sign of the abstract interpretation. Any abstraction that would not be able
to express and automatically infer, without loss of information, an inductive

invariant which is necessary to prove absence of RTE for any program in
the considered family would inexorably produce false alarms and in practice
many, because of cascaded dependencies. Essentially ASTRÉE has demon-
strated in practice that for a specific program property (absence of RTE)
and a specific family of programs (synchronous control/command C pro-
grams) it is possible to find an abstract interpretation of the program which
encompasses all necessary inductive proofs.

This strength is also the weakness of ASTRÉE. Since ASTRÉE produces
“miracles” on the considered family of properties and programs, end-users

3



would like it to produce very good results on any C program. Obviously
this is impossible since the abstractions considered in ASTRÉE will miss the
inductive invariants which are out of its precisely defined scope. However,
abstractions can be explored outside the current scope and incorporated in
the static analyzer.

3 Directions for application of abstract interpreta-
tion to the Verification Grand Challenge

In light of the ASTRÉE, we propose a few directions for application of ab-
stract interpretation to verification.

3.1 Program verification

“A program verifier uses automated mathematical and logical reasoning to
check the consistency of programs with their internal and external specifica-
tions” [11]. Following E.W.D. Dijkstra, there is a clear distinction between
the verification or proof of the presence of bugs (that is “testing” or “de-
bugging”) from the verification or proof of the absence of bugs (that is “cor-
rectness verification” or “verification” for short). Of course the Verification
Grand Challenge addresses the correctness verification only since the real
challenge should be to find the last bug.

3.2 Error tracing

Nevertheless, bugs have to be considered in the development process. When
an automatic verification system signals an error, it is important to be able
to trace the origin of the error, in particular to determine whether it is a bug
or a false alarm. Abstract slicing may be useful to trace back the part of
the computation which is involved in the bug/false alarm. Finding counter-
examples can be extremely difficult, if not impossible, e.g. when tracking the
consequences of accumulating rounding errors after hours of floating point
computations.

3.3 Program semantics

A program is checked with respect to a semantics that is a formal description
of its computations. Numerous semantics have been proposed which differ
in the level of abstraction at which they describe computations (e.g. sets of

4



reachable states versus computation histories) and in the method for asso-
ciating computations to programs (e.g. by induction on an abstract syntax
using fixpoints versus using rule-based formal systems). These semantics can
be organized in a hierarchy by abstract interpretation [5] so that different
analyzers can rely on different semantics which can be formally guaranteed
to be coherent, at various levels of abstractions.

In practice, although norms do exist for programming languages like C,
they are of little help because too many program behaviors are left unspec-
ified. So one must rely on compilers and machines to know, e.g. the effect
of evaluating an arithmetic expressions. Since the Verification Grand Chal-
lenge addresses “significant software products”, it is clear that methods for
defining the semantics of programs are needed, at a level of precision which
is compatible with the implementation. An approach could be, like in AS-
TRÉE, to reject programs for which this compatibility cannot be formally
guaranteed. The abstraction methods to do so, might then be part of the
programming language semantics.

3.4 Specification

The program semantics restricts the verification to properties that can be
expressed in terms of this semantics. The specifications (such as invariance,
safety, security, liveness) further restricts the verification process to spe-
cific properties. Specifications themselves translate external requirements in
terms of program computations.

Specifications cannot be simply be considered as correct, since in practice
they are not or only one side of interfaces satisfies the given specifications.
Abstract interpretation techniques could be used both to analyze specifica-
tions and to check programs for resistance to specification unsatisfaction.

3.5 Specification and verification of complex systems

More generally, specifications refer, especially in the case of embedded sys-
tems, to an external world which should be taken into account to prove the
correctness of a whole system, not only the program component. Progress
has to be made on the abstraction of this external, often physical world, to
be compatible with the program interfaces. We envision that abstraction can
be applied to the full system (program + reactive environment) although the
descriptions of the program and physical part of the system are a quite dif-
ferent nature (e.g. continuous versus discrete). A unification of abstraction
in computer science and engineering sciences must be considered to achieve

5



the goal of full system verification.

3.6 Verification of program families

The considered programs to be verified may range from one program (with
a finite specific abstraction), to a family of programs with specific charac-
teristics, to a programming language or even a family of programming lan-
guages. A broad spectrum verifier is likely to have many customers but also
to produce too many false alarms, a recurrent complain of end-users of static
analyzers. A finite abstraction can always be found for a given program and
specification but discovering this abstraction amounts to making the proof
[4], i.e. iteratively computing the weakest inductive argument. To get no
false alarm, the consideration of families of programs for which generic, pre-
cise and efficient abstractions can be found might be a useful alternative, as
was the case in ASTRÉE.

3.7 Required precision of verifiers

Automatic program verification requires the discovery of inductive argu-
ments (for loops, recursion, etc). Proceeding by direct reference to the
program semantics (as in refinement-based methods) amounts to the com-
putation of the program semantics restricted to the program specification,
which is not a finitary process. Abstraction is therefore necessary but leads
to false alarms. The condition for absence of false alarm is that the weakest
inductive argument suitable for the proof be expressible without loss of pre-
cision in the abstract (including for its transformers in the induction step)
[4]. There is obviously no hope to find an abstract domain containing all of
such inductive arguments, since this will ultimately amount to include all
first-order predicates with arithmetic and one is back to undecidability.

3.8 Abstract assertions

The choice of the form of the abstract assertions depends on the considered
family of programs, the nature of the considered specifications and the corre-
sponding necessary inductive arguments. Universal representations (as terms
or specific encodings of sets of states), to be used in all circumstances, are
likely to be very inefficient. The specific abstract assertions are implemented
as abstract domains in ASTRÉE using specific encoding and computer rep-
resentations that lead to efficient manipulation algorithms. The study of
efficient implementation of abstract assertions and efficient algorithms in

6



abstract domains can certainly make significant progress, in particular by
considering the domains of applications of programs.

3.9 Application-aware verifiers

ASTRÉE is a program verifier with a very precise scope of application that
is of synchronous, real-time control command systems. It can therefore in-
corporate knowledge about such programs, looking e.g. for ellipsoidal asser-
tions when encountering digital filters [9]. In absence of such domain specific
knowledge, a verifier might have to look for polynomial invariants, at a much
higher cost.

Among the application domains that have been largely neglected by the
verification community are the numerical applications involving intensive
floating point computations. To be sound ASTRÉE must perform a rigorous
analysis of floating point computations [13]. Further abstractions of this
complex semantics are needed.

3.10 Abstract solvers

ASTRÉE uses sophisticated iteration techniques to propagate assertions and
perform inductive steps by widening in solvers (see e.g. trace partitioning
[12]). A lot of progress can be done on abstract solvers, in particular for
generic, parametric and modular ones.

3.11 Combination of abstractions

A verification in ASTRÉE is done by parts, each part corresponding to an
abstract domain handling specific abstract assertions, with an interaction
between the parts, formalized by the reduced product [7]. So a specific
version of ASTRÉE is built by incorporating a choice of abstract domains,
which can be program specific, and of the corresponding interactions.

3.12 Modular analyzers

The modular design of ASTRÉE might be a useful approach to the necessity
to have specific analyzers adapted to domains of applications and the need
for general tools for program verification. One can imagine a large collections
of abstract domains and solvers that can be combined on demand to adjust
the cost/precision ratio, depending upon the proposed application of the
verifier.

7



3.13 The verified verifier

A recurrent question about ASTRÉE is whether it has been verified and
this question is likely to appear for any verifier. A verification has three
phases, the computation of an inductive assertion implied by the semantics
and the specification which involves resolution of fixpoint inequations, the
verification that the assertion is indeed inductive and finally the proof that
the inductive assertion implies the specification. All phases are formally
specified by abstract interpretation theory. The first phase is indeed the
more complex but, from a strict soundness point of view, it does not need to
be formally verified. Only the second and third phases of the verifier must be
verified, which is simpler. Preliminary work on ASTRÉE shows that this is
indeed possible. The verified verifier is indeed part of the Verification Grand
Challenge.

3.14 Acceptance and dissemination of static analysis

The dissemination and widespread adoption of formal methods is confronted
with economic payoff criteria. Not doing any correctness proof is, at first
sight, easier and less expensive. Regulation might be necessary to enforce
the adoption of formal methods to produce safer software (e.g. in industrial
norms). Static analysis, which has shown to scale up in an industrial context,
is a very good candidate. End-users might also be willing to enforce their
right for verified software products. The ability to perform automatically
static analyzes showing that products are not state of the art might even be
a decisive argument to change present-day wide-open laws regarding software
reliability.

4 Conclusion

Abstraction, as formalized by Abstract Interpretation is certainly central in
the Verification Grand Challenge, as shown by its recent applications, that do
scale up for real-life safety critical industrial applications. A Grand Challenge
for abstract interpretation is to extend its scope to complex systems, from
specification to implementation, not only to the program part, as is presently
the case.

8



References

[1] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. Design and implementation of a special-
purpose static program analyzer for safety-critical real-time embedded
software, invited chapter. In T. Mogensen, D.A. Schmidt, and I.H. Sud-
borough, editors, The Essence of Computation: Complexity, Analysis,

Transformation. Essays Dedicated to Neil D. Jones, LNCS 2566, pages
85–108. Springer, 2002.

[2] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. A static analyzer for large safety-critical
software. In Proc. ACM SIGPLAN ’2003 Conf. PLDI, pages 196–207,
San Diego, CA, US, 7–14 June 2003. ACM Press.

[3] P. Cousot. Méthodes itératives de construction et d’approximation de

points fixes d’opérateurs monotones sur un treillis, analyse sémantique

de programmes. Thèse d’État ès sciences mathématiques, Université
scientifique et médicale de Grenoble, Grenoble, FR, 21 Mar. 1978.

[4] P. Cousot. Partial completeness of abstract fixpoint checking, invited
paper. In B.Y. Choueiry and T. Walsh, editors, Proc. 4th Int. Symp.

SARA ’2000, Horseshoe Bay, TX, US, LNAI 1864, pages 1–25. Springer,
26–29 Jul. 2000.

[5] P. Cousot. Constructive design of a hierarchy of semantics of a transition
system by abstract interpretation. Theoret. Comput. Sci., 277(1—2):47–
103, 2002.

[6] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation
of fixpoints. In 4th POPL, pages 238–252, Los Angeles, CA, 1977. ACM
Press.

[7] P. Cousot and R. Cousot. Systematic design of program analysis frame-
works. In 6th POPL, pages 269–282, San Antonio, TX, 1979. ACM
Press.

[8] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monni-
aux, and X. Rival. The astrée analyser. In M. Sagiv, editor, Proc.

14th ESOP ’2005, Edinburg, UK, volume 3444 of LNCS, pages 21–30.
Springer, Apr. 2Ñ-10, 2005.

9



[9] J. Feret. Static analysis of digital filters. In D. Schmidt, editor, Proc.

30th ESOP ’2004, Barcelona, ES, volume 2986 of LNCS, pages 33–48.
Springer, Mar. 27 – Apr. 4, 2004.

[10] C.A.R. Hoare. The verifying compiler, a grand challenge for computing
research. J. ACM, 50(1):63–69, 2003.

[11] C.A.R. Hoare. The verifying compiler, a grand challenge for computing
research. In R. Cousot, editor, Proc. 6th Int. Conf. VMCAI 2005, pages
78–78, Paris, FR, 7–19 Jan. 2005. LNCS 3385, Springer.

[12] L. Mauborgne and X. Rival. Trace partitioning in abstract interpreta-
tion based static analyzer. In M. Sagiv, editor, Proc. 14th ESOP ’2005,

Edinburg, UK, volume 3444 of LNCS, pages 5–20. Springer, Apr. 2Ñ-10,
2005.

[13] A. Miné. Relational abstract domains for the detection of floating-
point run-time errors. In D. Schmidt, editor, Proc. 30th ESOP ’2004,

Barcelona, ES, volume 2986 of LNCS, pages 3–17. Springer, Mar. 27 –
Apr. 4, 2004.

10


