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ABSTRACT 

Cardiac parameters such as end-systolic volume, ejection 
fraction and myocardial mass are essential to the 
diagnosis and treatment of cardiovascular disease (CVD). 
Traditionally, these parameters are calculated based on 
manual myocardial segmentation by a trained technician. 
Fast, accurate, and automatic segmentation would provide 
researchers with an increased subject pool, an enhanced 
understanding of CVD, and may lead to the development 
of new therapies. In this paper we propose an automated 
algorithm for myocardial segmentation. This method 
utilizes speckle reducing anisotropic diffusion to assist the 
automated contour initialization. Speckle tracking 
segmentation (STS) is then applied throughout the cardiac 
cycle to track the myocardial borders. This approach, 
compared to standard active contour techniques, reduces 
the RMSE to ground truth by an order of magnitude. 
 
Index Terms: Biomedical acoustics, Biomedical imaging, 
Biomedical image processing, Cardiovascular system, 
Correlation, Image segmentation 

1. INTRODUCTION 

Cardiovascular disease (CVD) accounts for 38% of all 
deaths in the United States, making it the number one 
killer in the nation [1]. An increase in the basic 
understanding of the progression from myocardial 
infarction (MI) to heart failure will lead to more accurate 
diagnosis and improved patient therapy. Clinicians and 
researchers are especially interested in cardiac 
physiological measurements such as ejection fraction 
(EF), myocardial mass, wall thickness, and wall 
thickening ratios. Ultrasound provides an inexpensive and 
ubiquitous option for the measurement of these 
parameters [2]. 
 Currently, clinicians and researchers manually 
delineate the endocardial and epicardial borders of the left 

ventricle (LV) from ultrasound images at multiple phases 
throughout the cardiac cycle. This process is tedious, time 
consuming, and susceptible to intra- and inter-observer 
variability. An automated cardiac analysis tool would 
enable researchers to study larger patient populations and 
thereby improve the statistical significance of the data.  
 To date, several methods have been investigated to 
solve the segmentation problem. Active contours [3] have 
been explored, but are limited in ultrasonic applications 
due to poor edge contrast. Active shape models [4] have 
also been investigated, but require a comprehensive and 
cumbersome library of templates including all the various 
stages of post-MI cardiac remodeling. Tracking 
algorithms have been used to update contours through the 
cardiac cycle in MRI [5]. 
 In this paper, we present an automated myocardial 
segmentation technique. We endeavor to segment both the 
endocardial and epicardial borders of the murine LV in 
ultrasound images obtained in short axis view. We first 
apply speckle reducing anisotropic diffusion (SRAD) [6] 
to smooth the image while preserving image edges. An 
edge-map of the smoothed image in combination with an 
elliptical Hough transform is used to coarsely localize the 
boundaries. We then use speckle tracking segmentation 
(STS), employing a normalized cross correlation 
technique, to track the myocardium by exploiting the 
stochastic properties of ultrasound imagery. Success is 
measured by the RMSE of our contours compared to 
ground truth. 
 

2. METHOD AND THEORY 

In this section we describe our myocardial segmentation 
method. We first present our initialization methods, 
including the theory behind SRAD and its use in our 
application. We then present the STS algorithm utilizing 
normalized cross correlation. Finally, we present 
additional filtering constraints to ensure the tracking of 
significant points.  
 



2.1. SRAD assisted initialization 

Fi  
ep  

In order to initialize the myocardial borders in a short axis 
ultrasound image of a mouse heart, we first utilize SRAD 
[6]. SRAD smoothes homogeneous regions of ultrasound 
speckle while preserving true image edges. Thus, 
myocardial borders become more distinct and easier to 
locate. 
 In SRAD, for a given intensity image, I(x,y), the 
partial differential equation describing the output is 
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where [x,y] are the image coordinates, t is time, div is the 
divergence operator,  is the gradient operator and c(q) 
is the diffusion coefficient defined as 
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This equation utilizes a discrete form of the instantaneous 
coefficient of variation (ICOV) [7], define as 
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where the speckle scale function, q0(t), is the coefficient 
of variation in a homogeneous region with well developed 
speckle.  
 After applying SRAD, an edge image is obtained by 
locating the zero crossings of the Laplacian of the 
intensity image. An example of an image processed with 
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Fig. 1. Cardiac ultrasound (a,b)  with edge map images (c,d)  
before (a,c) and after (b,d) SRAD 
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Fig. 4. Several tracked frames from a cardiac cycle using SRAD-assisted initialization and speckle tracking 

2.3. STS filtering 

 After STS, we introduce two additional constraints to 
eliminate invalid tracking results. First, we assume that 
points on the myocardial borders should be in 
approximately the same location in the first and last frame 
of the sequence. We eliminate points when their net 
displacement between the first and last frame is greater 
than ε pixels, where ε is a small number. Additionally, 
points lying on well defined edges produce better tracking 
results over the cardiac cycle. We therefore eliminate 
points that have an ICOV value less than the mean image 
ICOV, indicating a strong well defined edge.  
 These two constraints provide a filtered set of points 
that more accurately describe myocardial movement. We 
fit a cubic spline to the remaining filtered point set to 
determine the final segmentation. Fig. 4 shows the 
segmentation result on several images in an example 
cardiac cycle. 
 

3. RESULTS AND DISCUSSION 

In this section we describe the techniques used to collect 
the data and validate the performance of STS with respect 
to those obtained manually and by way of active contour 
tracking. We also provide a discussion of the error 
between the manual and automatic tracking.  
 
3.1. Imaging technique & data set 

Mouse cardiac images were acquired using a 
VisualSonics Vevo770 scanner (VisualSonics Inc., 
Toronto, Ontario, Canada) at 35Mhz. Image sequences 
were retrospectively assembled into a representative 
heartbeat composed of over 100 frames per cardiac cycle 
using the Vevo’s “ECG-based Kilohertz Visualization 
(EKV)” capability. C57BL/6 mice were used for our 
studies. Mice were held at 37º C +/- 1ºC (monitored using 
a rectal temperature probe) using an electric heating pad 
and maintained supine under Isoflurane gas anesthesia. 
Images were processed in MATLAB [10] on a Pentium 4 
processor (2.04 GHz) PC and 1 GB RAM. 
 Three data sets consisted of a 197 and two 104 image 
sequences of a cardiac cycle. The 104 image sequences 

were obtained from the same mouse at different 
elevations along the LV. Ground truth was obtained by a 
trained technician segmenting both the endocardial and 
epicardial borders on 6 images spaced evenly throughout 
the cardiac cycle. Results are reported as the RMSE of 
automated segmentation results with respect to this 
manual segmentation. RMSE is reported in millimeters, 
where one millimeter is approximately 43 pixels for the 
197 image sequence and 73 for the 104 image sequences. 
 
3.2. Initialization results 

We first analyzed the improvement in initialization 
accuracy with SRAD assistance. Initialization without 
SRAD on average leads to an RMSE relative to ground 
truth of 1.45 mm for the epicardial border and 1.58 mm 
for the endocardial border. SRAD assisted initialization 
on average reduces the RMSE relative to ground truth to 
0.17 mm for the epicardial border and 0.12 mm for the 
endocardial border. 
 Fig. 5 illustrates initialization results without SRAD 
(a) and with SRAD (b). Without SRAD there are many 
false edges hindering Hough transform performance, 
which leads to poor initialization of the epicardial and 
endocardial borders.  
 
3.3. Tracking results 

We then analyzed the accuracy of the STS algorithm, 
comparing our results to an active contour segmentation 
[3] with a generalized gradient vector flow (GGVF) [11] 
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Fig. 5 - Initialization (a) without and (b) with SRAD 
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Fig. 7. STS and active contour tracking results for  
the epicardial (top) and endocardial (bottom) borders. 
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4. CONCLUSION 

 have developed an automated myocardial 
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