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Wireless Sensor Networks

Reading: 

I. Akyildiz, W. Su, Y. Sankarasubramaniam and E. 
Cayirci, “A Survey on Sensor Networks,” IEEE 
Communications Magazine, August 2002.
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Wireless Sensor Nodes

l Sensors monitor environment
l Cameras, microphones, 

physiological, pressure, 
biological sensors, etc.

l Sensor data limited in range 
and accuracy

l Micro-sensors
l Sensor module (e.g., acoustic, 

seismic, image)
l Digital processor for signal 

processing and network 
protocol functions

l Radio for communication
l Battery-operated
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Wireless Sensor Networks 
(WSNs)

l Tens to thousands of nodes scattered 
throughout an environment

l Data routed via other sensors to 
l One or more sinks or base stations
l Other sensors

l Unique characteristics
l Ad hoc network
l No end-to-end communication
l Co-operative operation
l Redundancy in information

Networks of distributed data sources that provide 
information about environmental phenomena to an end 

user or multiple end users
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WSN Advantages

l Networking sensors enables
l Extended range of sensing à improved quality 
l Fault tolerance due to redundancy in data from 

different sensors
l Distributed processing of large amounts of data
l Duty-cycling individual nodes
l Scalability: quality can be traded for system lifetime
l “Team-work”: nodes can help each perform a larger 

sensing task
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WSN Networking

l New wireless networking paradigm
l Requires autonomous operation
l Highly dynamic environments

l Sensor nodes added/fail
l Events in the environment 

l Distributed computation and communication 
protocols required



7

Sample Applications

l Remote surveillance
l Research (e.g., tracking animals)
l Chemical/biological agent detection
l Medical/machine monitoring
l US military Sense and Respond Logistics
l Agriculture monitoring
l Psychological and behavioral studies
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Base station

f(A-G)
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Example Application: 
Environmental Monitoring

l Raw sensor data or high level descriptions 
about environmental phenomena

l Example projects
l ZebraNet
l Ecology of rare plants in Hawaii
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Example Application: Health 
Monitoring
l Sensors monitor vital signs

l Blood pressure, heart rate, EKG, 
blood O2

l Sense, process, understand, 
control

l Requires protocols that are
l Reliable, flexible, scalable, secure
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Sensor Platforms

l Example platforms
l MicaZ (Crossbow)

l http://www.xbow.com/Products/Wireless_Sensor_Networks.htm
l Tmote Sky (MoteIV)

l http://www.moteiv.com/products-tmotesky.php
l Intel Motes (Intel)

l http://www.intel.com/research/exploratory/motes.htm
l iBadge (UCLA)

l http://nesl.ee.ucla.edu/projects/ibadge/default.htm
l BTNode (ETH Zurich)

l http://www.btnode.ethz.ch/
l mAMPS (MIT)

l http://mtlweb.mit.edu/researchgroups/icsystems/uamps/
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Sensor Platforms

Crossbow MicaZ mote MoteIV Tmote Sky Intel mote

UCLA iBadge ETH BTNode MIT µAMPS-I
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WSN Limitations

l Communication
l Bandwidth is limited and must be shared 

among all the nodes in the sensor network
l Spatial reuse essential
l Efficient local use of bandwidth needed 
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WSN Limitations (cont.)

l Sensor energy
l Each sensor node has limited energy supply

l Nodes may not be rechargeable
l Eventually nodes may be self-powered

l Energy consumption in sensing, data 
processing, and communication
l Communication often the most energy-intensive
l For some sensors (e.g., imagers), sensing may 

also be energy-intensive
l Must use energy-conserving protocols
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Current draw of node subsystems for Tmote Sky
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Communication Module Energy 
Dissipation Model
l Transmitter dissipates energy for

l Transceiver electronics (e.g., baseband processing)
l Transmit amplifier

l Fixed or variable transmit power
l Receiver dissipates energy for 

l Transceiver electronics

Transceiver Tx Amplifier Transceiver

Eelec* kk bit packet  
εamp* k * dn Eelec* k

d

Transmitter Receiver

k bit packet  
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WSNs vs. MANETs

Many-to-one traffic patternOne-to-one traffic pattern

Data-centricAddress-centric

Very constrained energy and 
bandwidthConstrained energy and bandwidth

CooperativeCompetitive

Application-specific QoSQoS: delay, packet drop threshold, etc

Typically immobileTypically mobile

Large-scaleSmall-scale

Require self-configurationRequire self-configuration

Unreliable communicationUnreliable communication

Sensor NetworksGeneral Ad Hoc Networks
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Design Factors

l What are the important features of WSNs?
l Fault tolerance/reliability

l Network should be robust to individual node failures
l Failures due to running out of energy, hardware 

failures, malicious intercept of sensor, etc.

l Cost
l Must have cheap sensors
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Design Factors (cont.)

l Scalability
l Protocols must scale to thousands or millions of 

sensor nodes
l Requires intelligent management of high densities 

of nodes

l Energy consumption
l Sensor functions: sensing, communication, data 

processing
l All require energy
l Lifetime a function of sensors’ remaining energy
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Design Factors (cont.)

l Topology
l Deployment

l Random or deliberate placement of nodes
l Fixed locations or can place optimally

l Changes in topology during network 
operation
l New nodes added to the system
l Nodes failing
l Environmental changes
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Evaluating WSNs

l What are the performance metrics for WSNs?
l System lifetime

l E.g., time until network partition
l E.g., time until probability of missed detection 

exceeds a threshold
l Quality of result of sensor network

l Application-specific measure
l Latency of data transfer
l SNR of aggregate data signal
l Probability of missed detection or false alarm
l Coverage probability
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Evaluating WSNs (cont.)

l Tradeoffs can be made among network 
parameters
l E.g., can reduce quality of result of sensor 

network to increase system lifetime
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Taxonomy of WSN Architectures

l In what ways do sensor networks for 
various applications differ?

l Data sink(s)
l Embedded within network
l Located on network edge or outside 

network
l Mobile access point
l One or several sinks



23

Taxonomy (cont.)

l Sensor mobility
l Often assume stationary sensors
l Some projects use mobile sensors

l ZebraNet
l Military operations
l Self-propelled sensors
l Robots
l Medical monitoring
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Taxonomy (cont.)

l Sensor resources
l Memory
l Processing
l Transmit power (fixed vs. variable)
l Location/density

l Traffic patterns
l Event-driven applications
l Continuous data generation
l Query-driven applications
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WSN Architectures

l Several different architectures proposed for WSNs
l Traditional layered architecture

l Benefits from modularity and existing protocols

l Cross-layer architectures
l Provides greater QoS and longer lifetime

l Sensor network architecture (SNA)
l Provides link layer and hardware platform abstractions

l Information-sharing architecture
l Provides layered protocols with ability to share information for

cross-layer optimizations
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Traditional Layered Architecture
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Cross-layer Definitions

l Two or more layers cooperate to improve 
network’s response

l Layer fusion: operations from two or 
more layers performed jointly

l Information sharing: several layers share 
information

l Former shows surprisingly little 
improvement in face of other design 
optimizations
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Cross-layer Architectures
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X-lisa: X-layer Information Sharing 
Architecture

l Maintain layered stack but enable information sharing
l Cross-layer optimization interface (CLOI)

l Repository for information that can be used for optimizations
l Provides services

Routing
CLOI

Application
Node Activation

Transport

Data Link/MAC
Physical

C
L

O
I

Information 
structures:

• Neighbor table

•Message pool

• Sink table

Service1

Service2
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Design Issues

l New protocols needed
lMAC
l Cooperative nature of sensor networks

l Fairness not an issue
l Sensors should not compete for limited 

bandwidth

l Exploit traffic patterns
l Energy efficiency extremely important

l Reduce idle listening
l Reduce unnecessary reception
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Design Issues (cont.)

l Routing
l Different traffic models
l Data dissemination rather than point-to-point 

routing
l Data-centric rather than address-centric
l Location-aware sensors
l Resource-aware routing needed
l Exploit local aggregation
l Time-varying channels leads to necessity for 

dynamic routing approaches
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Design Issues (cont.)

l Topology control
l Reduce idle power consumption à nodes 

sleep
l Create fully-connected dominating set from 

active routers

l Transmission power control
l How to avoid “hot spot” problem?
l Provide connected network
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Design Issues (cont.)

l QoS Management
l QoS determined by content of data rather than 

amount
l Transport layer

l Intelligent congestion management
l Throttle back irrelevant data rather than each node’s 

sending rate

l Coverage
l Ensure the correct sensors provide data
l K-coverage: each location monitored by at least K sensors
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Design Issues (cont.)

l Time synchronization 
l Very important in sensor networks
l Needed to determine if event sensed by two 

sensors is in fact the same event
l Needed to determine object speed
l Approaches

l GPS – expensive, not energy-efficient
l NTP (used in computer networks) – not enough precision
l Post-facto synchronization– using stimulus arrival time to 

synchronize nodes
l Multi-hop time synchronization
l Several other approaches being researched
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Design Issues (cont.)

l Localization
l Important for same reasons as time 

synchronization
l Often times, only relative position is 

necessary
l GPS is unattractive for energy reasons
l RSSI often used to infer distances
l Time of Arrival (ToA)
l Time Difference of Arrival (TDoA)
l Angle of Arrival (AoA)
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Design Issues (cont.)

l Localization (cont.)
l Sensor can find its own location using 

received beacons
l Sensor can have other nodes measure its 

location
l Sensor sends beacon message and neighbors 

use trilateration based on signal strength 
measurements

l Problem – small scale fading
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Routing Protocols



38

Sensor Network Routing

l Energy-efficiency even more important than in 
MANETs

l “Resource”-aware, data-centric routing needed 
l Reduce power consumption
l Distribute energy load (maximize network lifetime)
l Take into account sensors’ importance to 

application
l May be tightly coupled with protocols from 

different layers
l Take advantage of data fusion opportunities
l Cross-layer architectures
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Taxonomy of Routing Protocols

l Traffic patterns
l One-to-one: data to sink
l Many-to-one: all sensors’ data to sink
l One-to-many: sink commands to sensors
l Many-to-many: data dissemination, flooding, gossiping

l Resource-aware routing
l Energy-aware routing
l Fidelity-aware routing

l Data-centric routing
l SPIN
l Directed diffusion
l Rumor routing
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Taxonomy (cont.)

l Geographic routing
l GFG
l GPSR
l TBF
l RBF

l Clustering
l LEACH
l HEED

l Querying a distributed database
l TAG
l TinyDB
l GHT



41

Resource-aware Routing

l Consider each sensor’s resources for routing 
decisions
l Energy resources
l Sensing resources
l Others?

l Energy-aware routing
l Balance power consumption so nodes fail uniformly
l Node costs and link costs considered 

l Fidelity-aware routing
l Consider importance of node to sensing application
l Route around “important” sensors
l Requires local communication to learn importance
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Energy-aware Routing

l Consider energy resources of each sensor
l Balance energy consumption 
l Energy-aware routing metric

l For packet j sent from n1 to nk, minimize

l g(zi) = normalized remaining lifetime corresponding 
to node ni’s battery zi
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Energy-aware Routing (cont.)

l Can also use routing cost that is sum of 
individual link costs

l eij = energy to transmit from node i to 
node j

l Ei = residual energy of node i
l Ei = initial energy of node i

2 3

i

x x
ij ij ic e E E−=
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Fidelity-aware Routing

l Rather than ensuring uniform energy usage, consider 
importance of sensor to application
l Sensors must determine “application cost”
l E.g., “Redundant” sensors less important

Possible routes:

Shortest path

Path of most 
sensing redundancy

Zzz…

Zzz…
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Application Cost: Coverage

l Each subregion characterized by unique sensor set 
l Important factor: energy of sensors in set

l Intuitively, sensors equivalent if they cover equivalent 
regions
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Comparison of Fidelity-aware and 
Energy-aware

Balanced Energy
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Data-Centric Routing

l Aggregate data or information from data important
l Individual data items not important

l Sensor nodes themselves less important than data
l Queries posed for specific data rather than data from a 

particular sensor
l Routing exploits the requirement for aggregate data 

rather than individual data
l Example protocols

l SPIN
l Directed Diffusion
l Rumor Routing
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Network-wide Data 
Dissemination

l Problem: information dissemination
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Flooding

B
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F
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C
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l Flooding
lSend to all neighbors
lE.g., routing table updates
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Resource Inefficiencies

l Implosion
A

B C

D

(a)

(a)

(a)

(a)

A B

C (r,s)(q,r)

q sr

l Data overlap

l Resource 
blindness
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SPIN Family

l Data negotiation
l Meta-data (data naming)
l Application-level control
l Model “ideal” data paths

l SPIN messages
l ADV- advertise data
l REQ- request specific data
l DATA- requested data

l Resource management

A B

A B

A B

ADV

REQ

DATA

Sensor Protocol for Information via Negotiation
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SPIN Performance

l SPIN
l Converges quicker than flooding
l Reduces energy by 50% compared with flooding
l Meta-data negotiation successful in broadcast

-- SPIN
-- Ideal
-- Flooding
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Directed Diffusion

l Abstraction that tries to describe communication 
patterns underlying many localized algorithms

l Data named with attribute-value pairs
l Nodes that want data express interests based on the 

predefined attributes
l Interests disseminated throughout network
l Interests diffuse to correct area

l Intermediate nodes propagate interests based on the contents 
of the interest

l E.g., interest for data from location (x,y)
l Interests may be propagated to multiple neighbors for 

robustness
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Directed Diffusion (cont.)

l Gradients set up that draw events of interest back to 
originating node
l Strength of gradient depends on quality of routing path
l Application-specific meaning to a gradient

l Interests/data propagated along routes with strong 
gradients
l Good routes inherently reinforced
l Creates low-energy routing of data

l Data aggregation and caching performed in network
l Further reduces node energy dissipation
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Example: Animal Monitoring

l Interested in receiving data about all 4-legged creatures in area
l Specify desired data rate
l Query/interest

l Type=four-legged animal
l Interval=20ms (event data rate)
l Duration=10 seconds (t to cache)
l Rect=[-100, 100, 200, 400]

l Reply
l Type=four-legged animal
l Instance = elephant
l Location = [125, 220]
l Intensity = 0.6
l Confidence = 0.85
l Timestamp = 01:20:40

l Attribute-Value pairs à no advanced naming scheme
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Design Considerations

[http://www.isi.edu/scadds/projects/diffusion.html]
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DD Performance

[http://www.isi.edu/scadds/projects/diffusion.html]
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Rumor Routing

l In query-based networks, different techniques 
for routing data and queries
l Query flooding

l Expensive for large query/event ratio
l Allows for optimal reverse path setup
l Gossiping scheme can be use to reduce overhead

l Event Flooding
l Expensive for low query/event ratio

l Note
l Both of them provide shortest delay paths
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Rumor Routing (cont.)

l Alternative: Rumor Routing
l Designed for query/event ratios between query and 

event flooding
l Motivation: sometimes non-optimal route is fine
l Advantages

l Tunable best effort delivery
l Tunable for a range of query/event ratios

l Disadvantages
l Optimal parameters depend heavily on topology (but can 

be adaptively tuned)
l Does not guarantee delivery
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Basis for Algorithm

l Observation
l Two lines in a bounded 

rectangle have a 69% 
chance of intersecting

l Idea
l Create set of straight line 

gradients from event
l Send query along a 

random straight line from 
sink

l What if this line is not 
really straight?

Event

Sink
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Creating Paths

l Nodes with data send 
agents 
l Agents leave routing info to 

event as state in 
intermediate nodes

l Agents attempt to travel 
in a straight line

l If an agent crosses a path 
to another event, it begins 
to build the path to both

l Agents also optimize 
paths if they find shorter 
ones
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Rumor Routing Performance
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Observations

l Wide range of parameters allow for energy 
savings over simple alternatives

l Optimal parameters depend on
l Network topology
l Query/event distribution and frequency

l Algorithm very sensitive to event distribution
l Fault tolerance

l After agents propagated paths to events, some 
nodes were disabled

l Delivery probability degraded linearly up to 20% 
node failure, then dropped sharply
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Geographic Routing

l Sensors often know location
l Use location information to get data/queries to 

particular part of network
l Geographic forwarding reduces

l Routing overhead
l Memory utilization

l Example protocols
l GFG
l GPSR
l TBF
l RBF
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Greedy-FACE-Greedy (GFG) and Greedy 
Perimeter Stateless Routing (GPSR)

l Greedy geographic 
forwarding algorithm
l Forward data to 

node’s neighbor that 
makes most progress 
towards destination

l Must keep track of 
neighbors’ locations

l Obstacles can cause 
problems
l Use “right hand rule” 

routing around holes
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Trajectory Based Forwarding (TBF)

l Similar to GFG/GPSR but allow source-
specified trajectories for routes

l Enables
l Multipath routing for added resilience
l Spoke broadcasting
l Broadcast to remote subregion
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Receiver-based Forwarding 
(RBF)
l Receivers determine whether 

or not to forward
l Ensures good links selected for 

forwarding data
l RBF protocol

l Sender broadcasts
l Receiver determines if elligible 

(progress)
l Receiver sets a timer for 

retransmission
l If another retransmission is 

heard, cancel timer
l Keep messages heard in a 

cache

[http://oasis.cs.berkeley.edu/retreats/jan2005/talks/fonseca.ppt]
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RBF Protocol

A’s range Progress line

A

Suppressed

Destination

No progress

[http://oasis.cs.berkeley.edu/retreats/jan2005/talks/fonseca.ppt]
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Sample Routes

Receiver BasedSender Based

Source

Dest

12 senders

34 senders

[http://oasis.cs.berkeley.edu/retreats/jan2005/talks/fonseca.ppt]
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RBF Performance
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Clustering

l To scale, hierarchical approach beneficial
l Form local clusters managed by cluster head

l Fixed or adaptive cluster maintenance

l Clustering provides
l Framework for resource management
l Support for intra-cluster channel access and power control
l Support for inter-cluster routing and channel separation
l Distributes management responsibility from sink to cluster 

heads
l Provides framework for data fusion, local decision making, 

local control and energy savings
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LEACH Framework

l Assumptions:
l Base station away from nodes
l All nodes energy-constrained
l Locally, data correlated

A

B D

E

C

FG Base station

f(A-G)
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LEACH Protocol Architecture 

l Low-Energy Adaptive Clustering Hierarchy
l Adaptive, self-configuring cluster formation
l Localized control for data transfers
l Low-energy medium access
l Application-specific data aggregation

Base station

Cluster-head
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Dynamic Clusters

l Cluster-head rotation to evenly distribute energy load
l Adaptive clusters

l Clusters formed during set-up
l Scheduled data transfers during steady-state

Time
•••

START START START

Set-up Frame RoundSteady-state

Cluster-heads = •
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Distributed Cluster Formation

Using Pi(t)

Choose CH with “loudest” 
announcement

Cluster-head
Nodes

Non-CH
Nodes

Node i
cluster-head ?Yes No

Wait for
cluster-head

announcements

Send Join-Request
message to chosen

cluster-head

Announce
cluster-head status

Wait for
Join-Request

messages

Steady-state
operation for

t=Tround seconds

Autonomous decisions lead to global behavior

• No global control
• Flexible, fault-tolerant
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Distributed Cluster Formation

l a Each node CH once in N/k rounds

Ci(t) = 1 if node i a 
CH in last r rounds





−=
0

)/mod(*  )(Pi kNrkN
k

t 0  )(Ci =t

1  )(Ci =t

l Assume nodes begin with equal energy
l Design for k clusters per round
l Want to evenly distribute energy load

l Can determine Pi(t) with unequal node energy

kt
N

i

=∗= ∑
=

1)(P  CH] E[#
1

i

k = system param.
(analytical optimum)
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Set-up Steady-state

LEACH Steady-State

l Cluster-head coordinates transmissions
l Time Division Multiple Access (TDMA) schedule
l Node i transmits once per frame

l Cluster-head broadcasts TDMA schedule 
l Low-energy approach

l No collisions
l Maximum sleep time
l Power control

Clusters formed
Time

Slot for 
node i

Slot for 
node i •••
Frame
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Data Aggregation

l Clusters exhibit spatial locality
l Local data aggregation

l Computation vs. communication tradeoff
l Depends on cost of computation and communication
l Signal processing within the network

Energy for aggregation (J/bit/signal)
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Base Station Cluster Formation 

lGet optimal clusters for comparison
l LEACH-C 
l Requires communication with base station
l Nodes send base station current position
l Base station runs optimization algorithm to 

determine best clusters

l Need GPS or other location-tracking 
method
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LEACH Performance

l LEACH achieves order of magnitude 
more data per unit energy 

l Data aggregation and rotating cluster 
head successful

A
m

ou
nt

 o
f d

at
a 

re
ce

iv
ed

 a
t B

S

Energy Dissipation (J)

Static-
Clustering

LEACH-C

LEACH

MTE

N
um

be
r 

of
 n

od
es

 a
liv

e
Amount of data received at BS

Static-
Clustering

LEACH-C

LEACH
MTE



83

HEED

l Node costs
l Cluster head probability

l Function of residual energy
l Communication cost

l Function of neighbor proximity

l Iterative approach where nodes with lowest cost 
advertise themselves as cluster head
l Nodes associate with cluster heads
l At each iteration, cluster head probability increased

l Advantages
l Creates well distributed clusters
l Terminates in constant time
l Requires only local communication
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HEED Performance

l HEED produces well distributed clusters
l Reduces energy load
l Extends network lifetime

[http://www.cs.purdue.edu/homes/fahmy/talks/infocom04.ppt]
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Querying a Distributed Database

l WSNs can be thought of as distributed 
databases

l Can query sensors using SQL-like language
l TAG
l TinyDB
l GHT
l Cougar

l Careful thought needed for execution of 
queries
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Database Query Languages

l TAG
l Unlike standard database queries where data 

gathered by central processor, allows queries to be 
executed in distributed manner

l TinyDB
l Provides optimizations of aggregation trees, 

sensing task scheduling and query processing

l GHT
l Data-centric means for storing sensor data
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Research Issues
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Research Issues (1)

l Appropriate QoS model
l Traditional networks: delay, packet delivery ratio, 

jitter 
l Sensor networks: probability of missed detection of 

an event, signal-to-noise ratio, network sensing 
coverage, others

l Difficult to translate these data-specific QoS 
parameters into meaningful protocol parameters

l What are good QoS parameters and how can these 
be described efficiently for use in protocol 
optimizations?
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Research Issues (2)

l Appropriate architecture
l Cross-layer

l Entire protocol stack tailored to specific needs of WSN 
application

l Trade-off: generality and ease of network design to 
achieve lifetime increases

l Layered
l Generality leads to worse system performance

l Hybrid approaches
l What is best architecture to meet WSN needs?
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Research Issues (3)

l Reliability
l Links and sensors may fail, temporarily or 

permanently
l Must design protocols to provide reliable service 

with these failures 
l How can reliability be achieved at all levels of the 

protocol stack?

l Self-powered sensors
l Using vibration, solar, heat
l How should protocols be modified for time-varying 

energy capacities?
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Research Issues (4)

l Heterogeneous applications
l Sensor nodes may be shared by multiple 

applications with differing goals
l How to ensure protocols efficiently serve 

multiple applications simultaneously?

l Heterogeneous sensors
l How to make best use of resources in 

heterogeneous sensor networks?
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Research Issues (5)

l Security
l How much and what type of security is 

really needed?  
l How can data be authenticated?  
l How can misbehaving nodes be prevented 

from providing false data?  
l Can energy and security be traded-off such 

that the level of network security can be 
easily adapted?  
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Research Issues (6)

l Actuation
l Eventually sensor networks will “close the loop”
l Data do not need to reach base station 
l Current models for sensor networks may not be 

valid– what new models are needed?

l Distributed and collaborative data processing
l How to best process heterogeneous data?
l How much data and what type of data should be 

processed to meet application QoS goals while 
minimizing energy drain?
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Research Issues (7)

l New medium
l Underground sensor networks

l Agriculture monitoring
l Structural monitoring

l Underwater sensor networks
l Tsunami warnings
l Ocean monitoring

l What changes do these channels pose for 
existing protocols and algorithms?

l What architectures should be used?
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Research Issues (8)

l Integration with other networks
l Sensor networks may interface with other networks, 

such as a WiFi network, a cellular network, or the 
Internet

l What is the best way to interface these networks?   
l Should the sensor network protocols support (or at 

least not compete with) the protocols of the other 
networks?  

l Or should the sensors have dual network interface 
capabilities?  
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