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  Effect of Shear on Stress Distribution in 

Redundant Frames 
 

Chidolue C.A., Aginam C.H. 
   

Abstract -   In this paper, shear-modified expressions for 

fixed end moments and reactions were obtained for various 

beam loading conditions using the shear modified stiffness 

coefficients of elastic beams derived by the authors. By taking 

the effect of shear on the behavior of beam elements into 

consideration, a set of modified homogeneous solution of the 

beam elastic curve equation was obtained and used to derive 

expressions for fixed end moments and shears for beams with 

various end conditions and loading. The shear-modified fixed 

end moment expressions were used to analyze redundant 

frames. The results of the analysis were then compared with 

those obtained using the traditional expressions for fixed end 

moments and shears. 

Keywords:  Elastic curve, shear- modified stiffness 

coefficients, fixed end moments, redundant frames, stress 

distribution. 

 

I. INTRODUCTION 

     Beam stiffness coefficients which make up  the 

elements of the stiffness matrix of elastic beams were 

derived on the assumption that the beam element is 

subjected to pure bending. Even  in the absence of 

externally applied  load every structural beam possesses 

some self weight which gives rise to distributed load on 

the structural member. It is well known that once there is 

distributed load on a beam element, shear inevitably 

accompanies the induced bending moment. Thus, in real 

life, the condition of pure bending is hardly attained but 

can only   be a sub-state in the analysis of elastic beams if 

superposition principle is in use. 

     Early work by Karamanski et al, [1], included the effect 

of shear in deriving  stiffness coefficients of elastic beams 

by considering a beam element as  member in pure 

bending, i.e., shear was initially ignored and there after its 

contribution on deflection of elastic curve was added as a 

secondary  effect. 

     Other studies which included shear effects on response 

of structural beams are those of Osadebe and Mama, [2], 

Chugh, [3], Brush and Mitchel, [4]. 

Osadebe and Chidolue [5], derived a shear-

modified differential equation of the elastic curve of a 

uniform beam element by considering simultaneous action 

of bending and shear. 
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     After integrating the fourth order differential equations 

obtained, they used  initial value approach to express the four 

unknown constants of integration in terms of initial values of 

deflection, slope, bending moment and shear. Thus the results 

obtained took into consideration the simultaneous action of 

bending and shear in beams.  

      In this  work, shear-modified expressions  for fixed end 

moments and reactions were derived for various beam loading 

conditions using the shear modified stiffness coefficients of 

elastic beams derived by the authors[5].  The expressions 

obtained were used  to analyze  redundant frames. The results of 

the analysis were then compared with those obtained using the 

traditional expressions for  fixed end moments and reactions. 

     Three portal frames of different beam-column assemblages 

and loading conditions were analyzed using (a) expressions for 

fixed end moments obtained in books [6], [7], and (b) shear-

modified expressions  derived in this work. 

   

II. THE SHEAR MODIFIED STIFFNESS 

COEFFICIENTS 
      A set of initial value homogeneous solution of the elastic 

curve equation is given as follows [2]: 
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where, 0y , 0 ,  0M and 0Q  are the initial values of 

deflection, slope, bending moment and shear force, respectively 

on the elastic beam. x  = distance along the beam measured 

from a known co-ordinate. 

      By taking into consideration, the effect of shear on the 

behavior of beam elements the authors obtained the following 

modified homogeneous solution of the elastic curve equation: 

 
2

3 20 0( ) 3
0 0 2 6

M x Q
y x y x x x

EI EI
            (a)               

 2 20 0( )
0 2

M x Q
x x

EI EI
            (b)                  

( )
0 0

M x M Q x                        (c)                                         

( )
0

Q x Q                                                         (d)         (2)                                                 

where,   is a parameter governing shear modification factor 

and is given by,  
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       2 1r K                                                (3) 

          r = radius of gyration = /I A  

          I = Moment of inertia, 

          A = Cross sectional area, 

          K = Shape factor 

           = Poisson ratio  

          E  = Elastic modulus 

            

   Equations (2a) to (2d) constitute a set of shear modified 

homogeneous solution of the elastic curve equation which 

can be used to derive the expressions for fixed end 

moments and reactions of beam-column assemblages. 

 

III. DETERMINATION OF SHEAR-MODIFIED FIXED 

END MOMENTS AND REACTIONS 

 

A: Fixed- ended beam with point load 
                               

 

                                  

 

                                   

     

 

 

 

 

      A uniform beam of length L, subjected to a lateral 

point load P as shown in Fig. 1 was considered. Equations 

(2a) to (2d) constitute the set of homogeneous solution of 

the elastic beam curve, i.e., when the imposed lateral load 

is absent. In order to obtain a general solution we consider 

the additional effect of the imposed load on the beam. 

     Noting that the imposed load P has the similitude of 

shear, the particular integral for  displacement y(x), slope 

θ(x), moment M(x), and shear Q(x), can be obtained by 

considering the imposed load P as the parameter Q0 in Fig. 

1. However, the origin is seemingly displaced to the point 

of application of load P, so that initial distance which 

measured x in the homogeneous solution will now measure 

(x-a) distance in the particular integral. Also, since the 

parameter 0Q  has opposite direction with P, we introduce 

P with negative sign and obtain the particular integrals as 

follows.   
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      Addition of these particular integrals, (4a) to (4d), to 

the set of homogeneous solutions,  (2a) to (2d), gives a set 

of general solution,  (5a) to (5d). Thus: 
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    In order to obtain fixed end moments and shears under the 

action of the point load P, we note that the displacement and 

slope at both ends of the beam are zero, i.e., y(0) = 0, θ(0) = 0, 

y(L)= 0, ( ) 0L  . 

Applying these conditions to  (5a) and (5b) we obtain that , 
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Solving  and simplifying gives: 
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Where,  

 1 1 3 3        

 2 1 3 3         

 1 2 3L b L L        , 

  2
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2 2/ b    and  

2 2/ L   

     Equations (6a) to (6d) are the shear modified fixed end 

moments and reactions for fixed ended beam with point load 

shown in Fig. 1. The expressions within the square brackets are 

the shear modification factors which tend to unity when shear 

effects are neglected. 

 

B: Fixed ended beam with moment at arbitrary point 

along the beam 
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      In this case the parameter M has similitude with M0 in 

the homogeneous solution and is of the same sign 

(direction). Therefore by replacing 0M  with M and 

changing x to (x-a) in the homogeneous solution  (2a) to 

(2d), the particular integrals , (7a) to (7d) are obtained. 
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The general solution is obtained by adding (2) and (7). 

Thus: 
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    The deflection and slope at both ends of the beam are 

zero. Thus, y(0) = 0; (0) 0  ;     y(L) = 0; ( ) 0L  . 

Applying these conditions to  (8a) and (8b) we obtain that: 
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Solving and simplifying yields, 
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C: Fixed ended beam with uniformly distributed load 

(u.d.l) 
 

 

 

 

 

     

 

 

  In the case of fixed ended beam with uniformly distributed 

load, Q = qdx and the particular integrals, py , p , PM , and 

pQ  are obtained by integrating the appropriate expressions for 

deflection, slope, moment and shear, in (2), containing 
0

Q , and 

replacing  
0

Q  with qdx. Thus: 
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    Hence, the general solution is obtained by adding (2) and (9). 

Thus: 
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     The displacement and slope at both ends of the beam are 

zero, i.e, y(0) = 0, (0) 0  , y(L) = 0, ( ) 0L   

From  (10a) and (10b) we obtain that; 
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D.  Propped cantilever with point load 

This case is similar to case A except for the boundary 

conditions: 

y(0) = 0; y(L) = 0 

0(0) 0   ,  ( ) 0LM L M   

Applying these to the set of general solutions, eqns (4a) to 

(4d) we obtain that:  
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E: Propped cantilever with moment at arbitrary 

point along the beam 
This case is similar to case B except for the boundary 

conditions, and has (8a) to (8d ) as general solutions. 

Applying the end conditions: y(0) = 0, 0 0  ,  y(L) = 0, 

M(L) = 0, to eqns (8a) and (8c) we obtain that; 
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Solving and simplifying gives;  
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F: Propped cantilever with u.d.l. 
     This case is similar to case C. The general solution is given 

by  (10a) to (10d). The end conditions are; y(0) = 0, y(L) = 0, 

(0) 0  , ( ) 0M L   

      Applying the end conditions to  (10a) and (10c) we obtain 

that ; 
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     The summary of these shear-modified fixed end moments 

and support reactions is on Table 2. 

 

IV. APPLICATION OF SHEAR-MODIFIED FIXED 

END MOMENTS AND SUPPORT REACTIONS IN 

THE ANALYSIS OF REDUNDANT FRAMES 
     Figures 4, 5, and 6 show three redundant portal frames of 

different beam-column assemblages and loading. These portal 

frames are analyzed using (a) traditional expressions for fixed 

end moments and shears, (b) expressions for shear-modified 

fixed end moments and support reactions obtained in this work. 

Classical displacement method of analysis was used with 

transformed member rigidity. 
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Fig. 7b: Fixed end moment 

diagram (shear included) 
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diagram (shear ignored) 
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Considering a 330mm x 230mm concrete column and 

300mm x 230mm beam for the frames in Figs.7, 8, and 9, 

we obtain the following parameters. 
2

52900colA mm , 
8 4

2.332 10colI x mm  

2 2
4408colr mm ,

2 2
35705col mm   0.004col   

2
66700beamA mm , 

2 2
6998beamr mm  

8 4
4.675 10beamI x mm ,

2 2
56684beam mm  , 

0.0063beam   

 

Therefore, shear-modification factors  for  fixed end 

moments are    254 15 1 / 3 1     = -0.975 for columns 

and -0.960 for beams. The joint  moments obtained using 

traditional expressions for fixed end moment  and shear 

modified expressions for fixed end moments,  for the two 

storey portal frame, are shown in Figs. 7(a) and 7(b) 

respectively.     Tables 3, 4, and 5 show the results of the 

analysis of the portal frames. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Values of shear-modification 

parameter  2 1r K    

Type of 

material 

Shape of 

cross-section 
  

 

Concrete 

beams and 

columns 

( 0.35   

Rectangular 

 (K = 1.5) 

Circular  

(K= 1.7) 

2.846 r  

 

3.03 r  

Rolled steel 

sections 

( 0.5  ) 

I-beams and 

other built up 

sections (K 

varies from 

1.14 to 1.18) 

Varies from 

2.615 r  to 

2.66 r   

 

 9.6KN/m 

2.5m 

30KN/m 

EI EI 

2EI 

Fig. 4: Simple portal  

frame 
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 9.6KN/m 

 A 

 B  C 

 D 
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Fig. 5: Two storey      

portal frame 
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Fig. 6: Two storey multi- bay     

portal frame 
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Fixing and loading 
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Shear modified fixed end moments and 
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C: Fixed ended 
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Table 2: Summary of shear-modified fixed end moments and support reactions 
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D.  Propped cantilever 

with point load 
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E: Propped cantilever 

with moment at arbitrary 

point along the beam 
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F: Propped cantilever 

with u.d.l. 
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Table 3: Results for simple portal frame 

Joint 

designation 

Joint 

moment 

(shear 

neglected) 

Joint 

moment 

(shear 

included) 

Deference 

% 

AB 

BA 

BC 

CB 

CD 

DC  

7.284 

22.545 

-22.545 

-4.401 

4.401 

9.012 

7.409 

21.119 

-22.117 

-4.896 

4.897 

9.328 

+1.7 

-6.4 

-6.4 

+11.2 

+11.2 

+3.5 

Table 4: Results for two storey portal frame 

Joint 

designation 

Joint 

moment 

(shear 

neglected) 

Joint 

moment 

(shear 

included) 

Deference 

% 

AB 

BA 
BC 

BE 

CB 
CD 

DC 

DE 
ED 

EB 

EF 
FE 

32.20 

41.11 
-7.19 

-36.92 

31.19 
-31.19 

-1.20 

1.19 
12.59 

-18.82 

21.40 
31.65 

32.38 

43.74 
-7.13-36.61 

30.67 

-30.67-1.81 
1.81 

-2.00 

-19.82 
21.82 

31.95 

+0.6 

+6.4 
-0.8 

-0.8 

-1.7 
-1.7 

+50.8 

+50.8 
-22.8 

+5.3 

+2.0 
+9.5 
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V. DISCUSSIONS AND CONCLUSION 

Table 1 shows the values of shear modification factors 

for different materials and cross sections. 

The summary of the derived expressions for shear 

modified fixed end moments and support reactions for 

various beam fixing and loading conditions are given in 

Table 2. The expressions within the square brackets are the 

shear modification parameters which, if shear is neglected 

[ 0  , 0  , 0  ], revert the expressions to the 

traditional fixed end moments and support reactions. 

The fixed end moment diagrams for the two storey 

portal frame are shown in Figs. 7(a) and 7(b), from where it 

can be seen that shear in redundant frames decreases the 

fixed end moments.  

The joint moments for the simple portal frame of Fig. 4 

shown in Table 3 indicate that shear can increase or lower 

the bending moment distribution in a redundant frame. 

Hence, there was no defined pattern for stress variation in 

the simple portal frame. Similar observations were also 

made for two storey portal frame of Fig. 5, Table 4, and two 

storey multi-bay portal frame of Fig. 6, Table 5, where 

neither increase in load nor variation in frame configuration 

gave definite pattern for stress variation. For example, the 

maximum hogging moment for the simple portal frame 

reduced by 6.4% when shear effects were considered while 

those of two storey portal frame and two storey multi-bay 

frames increased by 6.4%  and reduced by 3.7% 

respectively, when shear is taken into consideration. 

. 

 

 

 

VI. CONCLUSION 

    Shear reduces the fixed end moments of redundant 

frames. The variation of stress distribution in redundant 

frames has no defined pattern . Some joint moments were 

numerically lower when shear was considered than when it 

was neglected while others  were higher when shear was 

considered than when it was ignored. Increase / decrease in 

maximum joint moment was less than 7%. Consequently 

we conclude that the effect of shear on the stress 

distribution in redundant frames is not substantial and can 

be ignored since the error involved can be taken care of by 

the use of appropriate factor of safety for loads. 
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Table 5: Results for two storey multi bay frame 

Joint 

designation 

Joint 

moment 

(shear 

neglected) 

Joint 

moment 

(shear 

included) 

Deference 

% 

AB 

BA 

BC 

BE 

CB 

CD 

DC 

DI 

DE 

EB 

ED 

EH 

EF 

FE 

GH 

HG 

HE 

HI 

IH 

ID 

24.76 

43.50 

-0.71 

-42.79 

23.72 

-23.71 

5.04 

-22.65 

17.61 

-6.84 

16.09 

-45.47 

36.22 

38.00 

33.13 

26.50 

-30.04 

3.54 

7.10 

-7.10 

25.05 

43.07 

-0.70 

-42.37 

23.22 

-23.22 

3.51 

21.25 

17.74 

-8.81 

16.23 

43.80 

36.38 

38.15 

33.40 

26.87 

-30.90 

4.03 

7.60 

-7.60 

+1.2 

-1.0 

-1.4 

-1.0 

2.1 

-2.1 

-30.4 

-6.2 

7.4 

28.8 

8.7 

-3.7 

0.4 

3.9 

0.8 

1.4 

2.9 

13.8 

7.0 

7.0 


