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Abstract — We are interested in understanding the relationshifbpa) has an interpretation as a set of possible probability
between Bayesian inference and evidence theory, in particular igfistributions, and combining or aggregating two such struc-
precise and paradoxical reasoning. The concept of a set of prolres can be done in robust Bayesian analysis. The result-
bility distributions is central both in robust Bayesian analysis anthg combination operator is trivial, but compared to other

in some versions of Dempster-Shafer theory. Most of the IiteratLgﬁ,n”ar operators it has interesting behavior and normative

regards these two theories as incomparable. We interpret imprgdvantages. It appears to be missing in recent overviews
cise probabilities as imprecise posteriors obtainable from impre%e-/]c evidence and imprecise probability theory. Our ideas

cise likelihoods and priors, both of which can be considered as € | | lated bl di din I3 di
idence and represented with, e.g., DS-structures. The natural ag® ¢'0S€ly re ated to problems discussed in [3] and in

simple robust combination operator makes all pairwise combini€ recent and voluminous report[4], which also contains
tions of elements from the two sets. The DS-structures can réduite comprehensive bibliography. In section 2 we re-
resent one particular family of imprecise distributions, Choquatiew Bayesian and robust Bayesian analysis and some of
capacities. These are not closed under our combination rule, lts relations to DS theory; in section 3 we discuss Zadeh'’s
can be made so by rounding. The proposed combination operagxample. In section 4 we derive the robust combination op-
is unique, and has interesting normative and factual propertiegrator and we apply it in section 5 to Zadeh’s problem and

We compare its behavior on Zadeh’s example with other proposgfisection 6 to the paradoxical fusion principle.
fusion rules. We also show how the paradoxical reasoning method

appears in the robust framework. 2 Bayesian analysis
Keywords: DS-structures, Modified Dempster-Shafer rule, Ca-

pacities, Evidence theory, Likelihood, imprecise probability ~ Bayesian analysis is usually explained[5, 6, 7] using the for-
mula

1 Introduction

Several apparently incomparable approaches exist for un- FAlz) o f(2|A) F(A), @
certainty management. It has been a goal in research tavhere\ € A is the world of interest among = |A]
encompass all aspects of uncertainty management in a sinossible worlds (sometimes called parameter space), and
gle framework. Attaining this goal should make the topi¢ € X is an observation among possible observations. The
teachable in undergraduate and graduate engineering clistinction between observation and world space is not nec-
ricula and facilitate engineering applications developmemssary but is convenient - it indicates what our inputs are
We approach the problem by asking if robust Bayesian ané&bservations) and what our outputs are (belief about pos-
ysis could be such a framework. The DS theory originateible worlds). The functions in the formula are probabil-
within Bayesian statistical analysis[1], but when developéty distributions, discrete or continuous. The signindi-

by Shafer[2] took the concept of belief assignment as priroates that the left side is proportional to the right side (as
itive. The assumption being that bodies of evidence - prodfunction of ), with the normalization constant left out.
abilistic statements about the possible worlds of interestn equation (1).f(z|)) is a sampling function which con-
can be taken as primitives rather than sampling functionscts observation space and possible world space by giving
and priors. When the connection to Bayes method aadorobability distribution of observed value for each possi-
Dempster’s application is broken, it is no longer necessauie world, andf () is a prior describing our expectation on
to use the Dempster combination rule, and evidence theaeviiat the world might be. The rule (1) gives the distribution
abounds with proposals on how bodies of evidence shoyld\|x) over possible worlds conditional on observations
be interpreted and combined. But there seems not to ex- A paradox arises if the supports ¢f\) and f(z|\)

ist other bases for obtaining bodies of evidence than likeire disjoint(since each possible world is ruled out either
hoods and priors, and therefore an analysis of a hypothey-the prior or by the likelihood), a possibility we will ig-
ical Bayesian obtainment of bodies of evidence can brimgpre throughout this paper. Equation (1) is free of technical
light to problems in evidence and aggregation theory. Pammmplication and easily explainable. It generalizes how-
ticularly, a body of evidence represented by a DS-structugeer to surprisingly complex settings, as required of any



device helpful in design of complex technical systems. Baent into the idea of finding a canonical and unique prior,
Jaynes made (1) the basis for teaching science and inter-idea that seems to have failed except for finite problems
pretation of measurements[5], an idea that caught on wefith some kind of symmetry, where a natural generalization
by students devouring his unfinished lecture notes on tbEBernoulli’'s indifference principle has become accepted.
web. In general, for infinite (compact metric) observatiofhe problem is that no proposed priors are invariant under
spaces or possible world sets, some measure-theoretic @bitrary rescaling of numerical quantities or non-uniform
tion is called for, but it is also possible to base the analysisarsening or refinement of the current frame of discern-
on well-defined limit processes in each case as pointed ougnt.

by, among others, Jaynes[5]. We will here assume Jaynesggnvex sets of probability distributions can be arbitrarily
approach and discuss thus only the finite case. Equatigj}nmex_ Such a set can be generated by mixing of a set
(1) is valid under the assumption that observations are $§-corners’ (called simplices in linear programming the-
lected and missing "atrandom’, i.e., not dependent on Worlghy and the set of corners can be arbitrarily large already
state except through recorded observations. We will &gy sets of probability distributions over three elements (the
sume this throughout. When selection is made based on Hily is representable by the set of convex regions in the
recorded circumstances, we haadection biasvhich can |ower left half of the unit square). In evidence theory, the
and should be entered into the statistical model. Ways @fncept of DS-structure is a representation of a belief over a
handling data selection biases are d|sc_ussed thoroughlydine of discernment (possible worlds) by a probability dis-
[7]. In sensor management, selection bias occurs when {fgytion over its powerset, a basic probability assignment
‘reason’ for directing sensors or excluding observations lbi)a, bba or DS-structure (terminology is not stable). Even
not recorded in the probabilistic model — it is however no¥t it is considered important in many versions of DS theory
mally assumed that this problem does not exist, and mayQ& to equate a DS-structure with a set of possible distri-
it doesn't for the more rational methods of sensor managtions, such a perspective is prevalent in tutorials and al-
ment. most unavoidable in a teaching situation. The DS-structure
It has been an important philosophical question to chahus represents all distributions over the set obtainable by
acterize the scope of applicability of (1), which lead toeallocation the probability of each non-singleton deto
the distinction between objective and subjective probabike singleton members of. Such a set of distributions
ity, among other things. Several books and papers, amads@ type ofChoquet capacityand these capacities form a
others [8, 9, 10, 11], claim that, under reasonable assunparticularly concise and flexible family of sets of distribu-
tions, (1) is the only consistent basis for uncertainty mafipns. These sets will be spanned by at mpit_, k(%)
agement. However, the minimal assumptions truly requirggstributions. They can be representedriby 1 real num-
to obtain this result turn out on closer inspection to be rathgrs - the corresponding DS-structure (whereas an arbitrary
complex, for a condensed overview see[12]. One simple agmvex set can need any number of distributions to span it
sumption usually made in those studies is that uncertaintyj§d needs an arbitrary number of reals to represent it - thus
measured by a real number or on an ordered scale. Many€foquet capacities form a proper and really small subset
tablished uncertainty management methods however mggga|| convex sets of distributions). It is definitely possible
sure uncertainty on a partially ordered scale and do appgj-introduce more complex but still consistent uncertainty
ently not use (1) and the accompanying philosophy. AmoRganagement by going beyond robust Bayesianism, grading
probability based alternatives to Bayesian analysis with pghe families of distributions and introducing rules on how
tially ordered uncertainty concepts are imprecise probabje grade of combined distributions are obtained from the
ities or lower/upper prevision theory[13], the Dempstegrades of their constituents. The grade would in some sense
Shafer(DS)[2], the Fixsen/Mahler(MDS)[14] and Dezerfndicate how plausible a distribution in the set is. But if the
Smarandache(DSmT)[15] theories. In these schoals, itggade is interpreted as a probability distribution over proba-
considered important to develop the theory without refefjjity distributions, no expressive power is gained. This re-
ence to classical Bayesian thinking. In particular, the asgts in hierarchical Bayesian analysis[7]. Nevertheless, in-
sumption of precise prior and sampling distributions is CoRtead of using possibly unnecessarily complex uncertainty
Sidered indefensible. Those aSSUmptionS are refel’l’ed tq@hodcﬂogy, |t appears more promising to put eﬁ:orts into
the dogma of precision in Bayesian analysis[16]. understanding complexly structured observation and possi-
In robust Bayesian analysis[17], one acknowledges tHae world spaces, as brought home convincingly in, e.g.,
there can be ambiguity about the prior and sampling dig9], where — among other things —the notoriously diffi-
tributions, and it is accepted that a convex set of suchlt multiple tracking problem was captured as an inference
distributions is used in inference. It is possible that afiroblem using a dynamic version of (1) with rather com-
consistent interval-based uncertainty management schemlex observation and possible world spaces. A similar de-
(where uncertainty is described by an interval of real numelopment has taken place in genetics, where an unknown
bers) can be explained as robust Bayesian analysis, buhamber of significant genetic loci are assumed involved as
of now there appears to be no truly convincing argument foauses of a phenotype like a hereditary disease — and infer-
this. The idea of robust Bayesian analysis goes back to #rce aims at finding the number of loci. Finally, in multi-
pioneers of Bayesian analysis[8, 18], but the computatiorsgent systems we must consider the possibility of a gaming
and conceptual complexities involved meant that it coutbmponent, where an agent must be aware of the possible
not be fully developed in those days. Instead, a lot of effakasoning processes of other agents, and use information



about their actions and goals to decide its own actions. InThe following are reactions | have met from profession-
this case there appears to be no simple way to separate alas- physicians, psychiatrists, teachers and military com-
there is in a single agent setting — the uncertainty domaimanders — confronted with similar problems. They are also
(what is happening?) from the decision domain (what shaltototypical for current discussions on evidence theory.
| do?) because these get entangled by the uncertainties of
what other agents will believe, desire and do. This probleme One of the experts probably made a serious mistake.
can be approached by game-theoretic analyses[20]. -

A Bayesian data fusion system or subsystem can thus us& These young men seem not to know what probability
any levelin a ladder with increasing complexity, where each zero means, and should be sent back to school.

level could be augmented by a gaming component: e It is completely plausible that one eliminatdd and
the otherC in a sound way. S@° is the main alter-
native, or rathefl’ or something else, since there are
e Precise Bayesian fusion most likely more possibilities left.

e Logic - no quantified uncertainty

e Robust Bayesianism with Choquet capacities e The assessment faF is probably based mostly on
prior information (rareness), so the combined judg-
ment should not make’ less likely, rather the oppo-
site.

e General robust Bayesianism (or lower/upper previ-
sions)

e Robust Bayesianism with graded sets of distributions « An investigation is always guided by the patients sub-

The ultimate use of data fusion is usually decision mak- Jective beliefs, and an investigation affects those be-
ing. Precise Bayesianism results in quantities that can be liefs. This is a possible explanation for the Ulysses
used immediately for expected utility decision making[21].  Syndrome, where persons are seen to embark on end-
For the more complex uncertainty representations one uses l€ss journeys through the health care system. This
either minimax criteria or estimates a precise probabil- View would call for a game-theoretic approach (with
ity distribution to decide from. The latter is a core idea  Parameters difficult to assess).
in the transferable belief model, with so-called pignistic ) ] )
transforms[22]. In robust Bayesian analysis, the maximumY/hat the example reactions learn us is that subjects con-
entropy distribution in a set is often used as an estimate[§Pnted with paradoxical information typically start build-
This choice can be given a decision-theoretic motivatidid their own mental models about the case and insist on

since it minimizes a game-theoretic loss function, and c&fNging in more information, in the form of information
also be generalized to a range of loss functions[23]. about the problem area, the observation protocols underly-
Whether or not this simplistic view (ladder ofing the assessments, or a new investigation. The profession-

Bayesianisms) on uncertainty management s tenable in ffé handling of the information problem is usually rational
long run in an educational or philosophical sense is cughough, but very different conclusions arise from small dif-
rently not settled. ferences in mental models.

Similar reactions were observed already by C.S. Pierce

3 Zadeh's example in his studps of the h.uman inference process and its re!a—

tion to logic and emotions[24]. Entertaining essays on this

We will discuss our problem in the context of Zadeh's e)ﬁ]eme can be found |n[25, 26] The person who gets the
ample, described and discussed, for example, in[15], of tgsion problem regards the two beliefs expressed as two ab-
physicians who investigated a patient independently. Thgacted observation sets, and tries to understand their com-
two physicians agree that the problem (the diagnosis of thed bearing on patient state. If she feels that the obser-
patient) is within the se{A/, C, T}, whereM is Menin- yation sets ought to be similar because of the professional
gitis, C' is Concussion and’ is brain Tumor. However, training and standardized operating procedures of the ex-

they express their beliefs differently, as a probability digserts she gets worried, otherwise not.
tribution which is(0.99, 0, 0.01) for the first physician and

(0,0.99,0.01) for the second. The question is what a thirgr
party can say about the patients condition with no more in-
formation than that given. This example has been discussgdm a Bayesian point of view, one would analyze Zadeh'’s
alot in the literature, see e.g. [15]. Itis a classical exampdad similar problems using an observation sp@cand a

on how two independent sets of observations can togetipessible world spac&. The observations are actually sets
eliminate cases to end up with a case not really indicatetlobservations, test results and interview respons&3,iso

by any of the two sets in separation. Several such exathe powerset of another sat of possible observations. In
ples have been brought up as good and prototypical in tthe case of the example, the world stateould include all
Bayesian literature, e.g., in [5]. However, in the evidendactors that determine the distribution of observation results
theory literature the Bayesian solution (also obtained frofor the patient. So if physician 1 obtained observation set
using Dempster’s rule) has been considered inadequate ahdC X and physician 2 obtained observationsgtC X,

this particular example has been the starting point for seftey would obtain a posterior belief of the patients con-
eral proposals of alternative fusion rules. dition expressible ag;(\;|X;) o< fi(Xi|Ai)fi(\;), for

Fusion in the Bayesian framework



i = 1, 2. Here we have not assumed that the two physiciaas an imprecise probability distribution and it seems not
used the same sampling and prior distributions. Evenadif all clear why the natural robust fusion operator was not
training aims at giving the two physicians the same ’knowthosen. The recently introduced Fixsen/Mahler MDS com-
edge’ in the form of sampling function and prior, this idedbination rule[14] involves a re-weighting of the terms in-
cannot be achieved completely in practice. We do assurmdved in the set intersection operation: Whereas Demp-
that the two physicians share the possible world set, sirgter's combination rule can be expressedrass(A) o
otherwise we would have to make at least some assump _ ;. m1(B)m2(C) (WhereA # ©), the MDS rule is
tions on their correspondence in order to obtain any typewfy;ps(A) < Y- 4_ pnc m1(B)m2(C)|A|/(|B||C]). The
interesting fusion. In any case, the inference stipulated MDS and DS rules are identical to Bayesian fusion for pre-
the Bayesian method is that physiciastates the probabil- cise distributions, but when both operands are imprecise,
ity distribution f;(\;| X;) as his belief about the patient. Ifthe MDS rule seems to have a fundamental advantage over
they use the same sampling function and prior, the Bayest@we DS rule, as we shall see in section 5.
method also allows them to combine their findings to ob- A set of distributions which is not a Choquet capacity can
tain: be approximated byoundingit to a minimal Choquet ca-
pacity that contains it (see Fig. 1), and this rounded set can
be represented by a DS-structure. (Figures represent sets

FOHX1, Xo}) oc f({ X, Xo}HA) f(A) = of three-item pdf:s, by projection on two items). It is also
FXN (XA f(A), (2) possible, using linear programming, to round downwards
to a maximal Choquet capacity contained in a set. Neither

under the assumption: type of rounding is unique. For large frames it will also be

necessary to constrain the focal elements to a subset of the
SUXL X2 A F(A) = F(Xa [N f(X2[A). (3)  powerset.

The assumption appears reasonable in many cases undm
the assumption of no selection bias or other interferenc "
and an adequately fine-grained possible world\set o8- 1

It is important to observe that it is the two phyS|C|an
likelihood functions, not their posterior beliefs, that can b’
combined, otherwise we would replace the prior by its noo7r ]
malized square which means that its mode would getat |
large influence and the real uncertainty would be undere:
mated. This is at least the case if they obtained their traes| ]
ing from a common body of medical experience coded _,|
textbooks. To the extent they both obtained their priors
independent practice, they should however be combined®3| )
the posterior is reported and we happen to know the pri,|
the likelihood can be obtained Bi( X |\) < f(A|X)/f()N).
The posterior, likelihood, and prior can be viewed (afte€!
normalization in the case of the likelihood functions) a , ‘ , ‘ ‘ ‘ ‘ ‘ ‘ ‘
probability distributions or as random sets having a single- > ** % % 08 ee er e es

tonvalue. Itis interesting to note (as is well known[19]) thatig. 1: Rounding a set of distributions over three items.
the combination rule is that the posterior of the combinesl set spanned by four corner distributions (black), one of
evidence can be expressed as the (nonempty) set interggdminimal enclosing (blue *), and one of its maximal en-
tion of the (singleton) random sets describing the prior argbosed (red +), Choquet capacities.
the two likelihoods.

The Dempster-Shafer combination rule[2] is computa-
tionally equivalent to allowing the operands as well as Our approach to impreciseness is that impreciseness in
the result in this combination to be nonempty, not neconclusions is caused by impreciseness in sampling func-
essarily singleton, random sets. By this statement wiens and priors. In terms of sampling functions used, one
do not claim that this is the way DS theory is usuallgan assume that these are imprecise, non-stationary, esti-
motivated. But the model in which Dempster’s rule isnated with bias, or that they vary within atoms of the cur-
motivated[27] is different from ours: there it is assumetkent frame of discernment which is too coarse for reliably
that each source has its own possible world set, but pesmbining precise probability assessments (inhomogene-
cise beliefs about it. The impreciseness results only fraty). Impreciseness in priors is caused by lack of infor-
a multivalued mapping, ambiguity in how the sources irmation about the processes involved. An assessment that
formation should be translated to a common frame of diie sampling function (actually the product of all sampling
cernment. In Dempster’s model the random set intersectifumctions used in the assessment) is imprecise gives the
is the required result of fusion. But on closer inspection game effect on the body of evidence, regardless of what the
his application example, the impreciseness of sources ieason is. The difficulty lies in assessing the magnitude of
curred by the multivalued mapping is easily interpretablepreciseness, and this difficulty is somewhat unavoidable.




It seems not to be different from the problems of assessibiging this we can immediately combine operands each of
subjective probability or belief. which is generated by mixing of a finite set of corners:

The imprecise distributions we use can, if constrained
rounding to Choquet capacities, be viewed as random Sg%é_eorem LIEF = {3 e cigi 2 0 < €indier & = 13
The corresponding random sets can be combined as bef W = {2 e cihy 0 < ¢ ) e, ¢ = 1}, then
take the intersection of the participating random sets an? XFy ={Yieq jes cislgit x {hj} 0 < iy, 32, ¢ =
condition on the result being non-empty. The resulting rallu '
dom set can be regarded as a Choquet capacity, the set #froof hint: Let theconeof a pdf set be the set of non-
possible distributions foA. It has been argued in severahegative scalings of its members. Consider obtaining the
papers, among others [28], that a random set union is meehe of the combination by unnormalized combination of
appropriate than Dempster’s rule as a combination rule, athe cones of the operands.
indeed a large number of alternative combination rules haveThis theorem gives the method for implementation of the
been proposed over the years. Another alternative to Demgbust operator. After the potential corners of the result
ster's rule is Yager's rule[29]. For recent surveys see [4, 3Blave been obtained, a convex hull computation as found,

The combination of evidence — likelihood functions nore.g., in MATLAB and OCTAVE, is used to tesselate the
malized so they can be seen as probability distributiob®undary and remove those points falling in the interior of
— and a prior over a finite space is thus done simply hiie polytope. We can now make a few statements, most
component-wise multiplication followed by normalizationof which are mentioned in [1, Discussion by Atkinson],[3],
The resulting combination operation agrees with the Ddbout fusion in the robust Bayesian framework:
and the MDS rules for precise beliefs. The robust Bayesian
version of this would replace the probability distributions
by sets of probability distributions, for example represented
as DS beliefs. The most obvious combination rule would
yield the set of probability functions that can be obtained ¢ precise beliefs combined gives the same result as
by taking one member from each set and combine them. In-  Dempster’s rule and yield new precise beliefs.
tuitively, membership means that the distribution can pos- ] ] ) ] ) ] )
sibly be right, and we would get the final result, a set of ® A Precise belief combined with an imprecise belief
distributions that can be obtained by combining a number Wil yield an imprecise belief in general - thus Demp-
of distributions each of which could possibly be right. The ~ Stér's rule underestimates imprecision compared to the

e The combination operator is associate and commuta-
tive, since it inherits these properties from the multi-
plication operator it uses.

combination rule (2) would thus take the form (whefre robust operator.
denotes convex families of functions): e Ignorance is represented by a uniform precise belief,
not by the vacuous assignment of DS-theory.
FA{ X1, X2}) x F({X1, X2} A) x F(\) = e The vacuous belief is a belief that represents total
F(X1|\) x F(X3|\) x F(X). (4) skepticism, and will when combined with anything
yield a new vacuous belief (it is thus an absorbing
Definition 1 Therobust Bayesian combination operator element). This belief has limited use in the robust

combines two sets of probability distributions over a com-  Bayesian context.

mon space\. The value offy x Fy is {cfifs : f1 € b or e is clearly inad e f bini
Fifo€ Fyc=1 ) Fo (A e Dempster’s rule is clearly inadequate for combining
L f2 ¢ [ Loen NS} the vacuous belief with anything, but here the union

The operator can easily be applied to give too much im-  rule gives the right’ answer.
preciseness: The impreciseness of likelihood functions hasSO it seems that none of the established combination

typically a number of sources, and the proposed techniq}J s captures the idea of robust Bayesian analysis. Why

. e u
n giv lar ncertainties when th r i L . :
can give too large uncertainties when these sources do '%ot e robust combination operator not considered an inter-

. L e . |
have their full range of variation within the evidences th%stin option? One possible answer is that our proposed
will be combined. A most extreme example is the sequeng g )

of lots returned by a sensor: variability can have its sour Smbination is not closed under restriction to Choquet ca-
orp €d by ; y . r?gtcities. The more imprecise evidence we have combined,
in the target, in the sensor itself, and in the environme

But when a particular sensor follows a particular target tﬁﬁe more corners will we need to span the result, and Cho-
P P get, et capacities only allow for a bounded number of these.

var!ab!l!ty of th_ese sources are not fully matengllze_d. .Th%ome type of approximation is required if we want to stay
variability has its source only in state (distance, inclination,.

. Within the belief function framework. The most natural ap-
etc) of target, so it would seem wasteful to assume that e (i}a P

new plot comes from an arbitrarily selected sensor and tar- ximation is rounding. In a sense we fit the right answer
) - . . to our constraints by creating more — possibly too much —
get. This and similar problems are inherent in system di “preciseness
sign, and can be addressed by detailed analyses of sourc@s '
of variation, if such are feasible. Definition 2 A rounded robust Bayesian combination op-
The definition of the robust Bayesian combination opeeratorcombines two sets of probability distributions over a
ator involves infinite sets in general and is not computabldemmon spacd@. The robust operation is applied to the

directly. For singleton sets is is easily computed, thougtounded operands, and the result is then rounded.



An important and distinguishing property of the robust
rule is:

Observation 1 The robust and rounded robust operators
are monotone with respect to imprecisiare., if ¥/ C F;,
thenFl’ X FQI C Fi x Fs.

Theorem 2 For any combination operatox’ that is mono-
tonewrt imprecision and is equal to the Bayesian (Demp-
ster’s) rule for precise argument$;; x Iy C Fy x' Fy,
wherex is the robust rule.

Proof outline: By contradiction; assume thus there is an
f € Fi x Fy with f ¢ Fy x' F;. By the definition of
x, f = {fi} x {f2} for somef, € F; and f, € F>.
Butthenf = {f1} x’ {f2}, and sincex’ is monotonewrt

imprecision,f € Fy x’ F», a contradiction. o4 \'\
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5 The robust combination operator on P
Zadeh’s example Fig. 2. Combing two precise probability evidences in

The example of Zadeh can be seen as a classical inferef8d€h’s example. Dempster's rule and the robust combi-
where the cas@ is inferred by elimination of all alterna- Nation rule are the samé&(T) = 1, P(M) = 0 (black *).
tives. This must be possible in any useful uncertainty mah'€ disjunctive rule (blue) gives little possibility of T, and
agement scheme. We will illustrate the robust combinatiof@9er’s rule (red) is non-informative

rule by comparing it with standard combination operators
from the literature, on Zadeh’s example and on two versions
of it where we discounted the physicians assessments. In
order to illustrate the result graphically we change the ex-
ample so that th& alternative has probability 0.1 instead

of 0.01 in the two bodies of evidence.

Assume thus that we have obtained information that
physician 2 used a set of tests to eliminate Meningitis which
is unreliable in the sense that there are types of this disease
— unfortunately with unknown frequency — that will only
be eliminated with probability 0.9, whereas other types can
be eliminated with probability 1. These tests have no bear-
ing on distinguishing” from 7T'. This means that there are
persons with Meningitis of this type that will test negative
with probability 0.1. Since we have no prior information
on the frequencies of these types, and since physician 2 has
reported a precise body of evidence, our conclusion is that
his assessment of Meningitis should be the intef@al.1)
instead of the value 0. The relationship betw&eand C' 0af
should not be altered, since the tests used for Meningitis .|
have no discriminating power here. So the discounted as-
sessment should b, 0.9 x (1 — k),0.1 * (1 — k)), for
somek € [0,0.1]. This set is spanned by the distribu-
tions (0,0.9,0.1) and (0.1,0.81,0.09). It cannot be rep- W or ez @ e os o5 o7 o5 w1
resented as a DS-structure, but can be roundéad{@’) =
0.09,m(C) =0.81,m(MT) = 0.01,m(CM) = 0.09}. Fig. 3: Combining imprecise and precise evidence in

In figure 2 we have combined the original precise agadeh’s modified example (discounting physician 2). ro-
sessments. Dempster’s rule and the robust rule give thgst rule: black line; Dempster’s rule: red; MDS rule: blue;
same result(0,0,1), as we expect. In figure 3 we dis-maxent estimate: green.
counted physician 2. The Dempster combination moved all
the way from(0, 0, 1) to (0.9,0,0.1), and the MDS rule to
(0.8257,0,0.1743). The robust rule gives a result spanned
by (0,0, 1) and(0.9091, 0,0.0909). This reflects real un-
certainty correctly in the Bayesian interpretation and also
shows thafl” and M are both completely plausible white




is not, since it was eliminated by the first physician, whbe used the robust Bayesian rule. This seems to be a quite
is not yet discounted. Moreover, new information affectingompelling argument in favor of the MDS rule, where this
the credibility ofT" will also affectM, and vice versa. cannot happen, or against the habit of explaining DS struc-
In figure 4 we discounted both physicians, but only byures with the capacity interpretation.

5% instead of the one physician discounted by 10% in the
last example. The Dempster combination moved a long
way again, to the line spanned (§.4386, 0.4593,0.1021) oor
and(0.4593,0.4386, 0.1021). This line touches the bound- ol
ary of the robust combination result, which is now nota |
Choquet capacity (black in figure) but has a good rounded
approximation (cyan in figure). The MDS result lies well
inside the robust rule result. The maximum entropy esti-
mate for the robust rule result is the non-informative dis- | I
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tribution (1/3,1/3,1/3). When interpreting DS-structures o3
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o 1 Fig. 5: A case were the robust rule and Dempster’s rule
05 | give paradoxical results. The operands are shown in green,
the result of the robust combination rule is shown in black
(same as in figure 1), Dempster’s rule gives the result shown
in red *, the Fixsen-Mahler MDS rule shown in blue +.
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Of course, one question remains: the DS and MDS oper-
S ators are clearly not monotomat imprecision. This means
° oL 02 03 04 a8l 06 07 08 09 1 that they either underestimate imprecision or eliminate im-
) o ) ) ) precision in a way that can not easily be defended, since
Fig. 4: Combining imprecise and precise evidence |fis 5 py-product of the somewnhat arbitrary random set in-
Zadeh's modified example, both experts discounted. rgg;nretation. The maximum entropy principle can be given

Dempster's rule; blue: MDS rule; green:maxent estimatg; ational game theoretic interpretation, and gives a quite
black: robust rule; cyan: rounded robust rule. different result in many cases.

as Choquet capacities in the natural way (this interpretatign Paradoxical Bayesian Reasoning
can be found in quite many tutorials of DS theory and ishe DSmT theory of Dezert and Smarandache has given a
present, somewhat implicitly, in [2]), it is highly desirablenew way to resolve conflicting beliefs[15]. The mainideais
that the combination of evidence gives a capacity thattisat the frame of discernment (possible world &y ex-
contained in, or at least not disjunct from, the robust rufganded to the seéb® of symbolic expressions in the orig-
result. The MDS rule is designed so that the pignistic trangal frame usingh andU and with equivalence over the
form (reallocating the mass of every non-singleton focal edlgebraic rules (associativity, commutativity and distribu-
ementA uniformly over the members of) of the result is tivity) of equivalence. In this frame there are no intersec-
the result of Bayesian fusion of the pignistic transforms dions known to be empty, so Dempster’s rule translates to
the operands[14]. Therefore, the results of MDS and robastule where no normalization is required, a natural ran-
Bayesian fusion always intersect. It is also not difficult tdom set intersection. Zadeh'’s original example translates
see that the MDS result, viewed as a capacity, is containedthe combinatio{m(7) = 0.01,m(C) = 0,m(M) =
in the robust Bayesian fusion result. 0,m(CNM)=08l,m(CNT)=0.09mMNT) =
Varying the parameters of discounting a little in our x9.09}. The fused evidence can also be combined with evi-
ample, it is not difficult find cases where Dempster’s ruléence pointing to possible emptiness of atoms in this frame,
gives a capacity disjoint from the robust rule result. A sinfor exampleC' N M, which would raise the plausibility of
ple Monte Carlo search indicates that disjointness does atems containing’.
deed happen in general, but infrequently. Typically, Demp- Apparently, the DSm theory combines two ideas: the
ster’s rule gives an uncertainty polytope that is clearly nagfaboration of the frame of discernment, and the use of
rower than that of the robust rule, and enclosed in it. he DS combination rule. The two ideas seem orthogo-
figure 5 we show an example where this is not the casal, one can thus in principle use any combination rule
and the result is somewhat paradoxical. It is paradoxidalthe extended frame, like the MDS or robust rule. In
in the sense that a person viewing DS-structures as capaimer to see how the robust rule appears in the extended
ities would find some bets on the outcome clearly advaframe of Zadeh’s example, consider a belief on an atom,
tageous if he used Dempster’s rule but disadvantageous.if., M. In an ambiguous context, this is a belief which
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