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1. Introduction 
Belbachir and Bousbaa [1] defined the following 

translated Whitney numbers via combinatorial approach: 

• �𝑛𝑛𝑘𝑘�
(𝛼𝛼)

≔ the number of permutations of n 
elements with k cycles such that the element of 
each cycle can mutate in 𝛼𝛼  ways, except the 
dominant one; 

• �𝑛𝑛𝑘𝑘�
(𝛼𝛼)

≔ the number of partitions of the set 
{1,2,3, … ,𝑛𝑛}  into k subsets such that each 
element of each subset can mutate in 𝛼𝛼  ways, 
except the dominant one; and 

• �
𝑛𝑛
𝑘𝑘�

(𝛼𝛼)
≔the number of ways to distribute the set 

{1,2,3, … ,𝑛𝑛}  into k ordered lists such that the 
elements in each list can mutate with 𝛼𝛼  ways 
except the dominant one. 

These numbers are called translated Whitney numbers 
of the first, second and third kind, respectively. 
Mangontarum et al. [17], and Mangontarum and 
Dibagulun [15] established several combinatorial 
properties related to the translated Whitney numbers of the 
first and second kinds. For simplicity, the notations 
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are used. Among the properties of the numbers 𝑤𝑤�(𝛼𝛼)(𝑛𝑛, 𝑘𝑘) 
and 𝑊𝑊�(𝛼𝛼)(𝑛𝑛,𝑘𝑘) are the horizontal generating functions (see 
[1,17]) 
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Furthermore, Mangontarum and Dibagulun [15] defined 
the “signed” translated Whitney numbers 𝑤𝑤(𝛼𝛼)

∗ (𝑛𝑛, 𝑘𝑘) as 

 ( ) ( ) ( ) ( ) ( )* , 1 ,k nw n k w n kα α
−= −   (4) 

with the horizontal generating function given by 
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On the other hand, the translated Whitney numbers of 
the third kind (originally called as translated Whitney-Lah 
numbers), 
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is known to satisfy the relation (see [1]) 
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The above-mentioned numbers are actually particular 
cases of Hsu and Shiue’s [12] generalized Stirling 
numbers which are defined as coefficients of the inverse 
relations 
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for any non-negative integer n and 𝛼𝛼, 𝛽𝛽 and 𝛾𝛾 may be real 
or complex numbers such that(𝛼𝛼,𝛽𝛽, 𝛾𝛾) ≠ (0,0,0). More 
precisely, the translated Whitney numbers 𝑤𝑤(𝛼𝛼)

∗ (𝑛𝑛, 𝑘𝑘) , 
𝑊𝑊�(𝛼𝛼)(𝑛𝑛, 𝑘𝑘) and 𝐿𝐿(𝛼𝛼)(𝑛𝑛, 𝑘𝑘) are given by 
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Furthermore, the classical Stirling numbers (see [21]) 
are given by 

 ( ) ( ) ( ) ( ), ;1,0,0 , , , ;0,1,0 , ,S n k s n k S n k S n k= =  (10) 

where 𝑠𝑠(𝑛𝑛, 𝑘𝑘) and 𝑆𝑆(𝑛𝑛, 𝑘𝑘) denote the Stirling numbers of 
the first and second kind, respectively. 

Denoting by [𝑥𝑥]𝑞𝑞 , the q-analogue of an integer x 
defined by 
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and introducing the “q-deformed” generalized factorial 
given by 
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we will define the numbers 𝑤𝑤(𝛼𝛼)
1 [𝑛𝑛, 𝑘𝑘]𝑞𝑞 , 𝑤𝑤(𝛼𝛼)

2 [𝑛𝑛, 𝑘𝑘]𝑞𝑞  and 
𝑤𝑤(𝛼𝛼)

3 [𝑛𝑛, 𝑘𝑘]𝑞𝑞  as coefficients in the expansions of the 
resulting relations obtained when the expressions (𝑥𝑥|𝛼𝛼)𝑛𝑛 , 
(𝑥𝑥| − 𝛼𝛼)𝑛𝑛  and x are replaced with [𝑥𝑥|𝛼𝛼]𝑛𝑛 , [𝑥𝑥| − 𝛼𝛼]𝑛𝑛  and 
[𝑥𝑥]𝑞𝑞 , respectively, in (5), (2) and (6). That is, we have the 
following defining relations in the form of horizontal 
generating functions: 
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For clarity, we will refer to the numbers 𝑤𝑤(𝛼𝛼)
1 [𝑛𝑛, 𝑘𝑘]𝑞𝑞 , 

𝑤𝑤(𝛼𝛼)
2 [𝑛𝑛, 𝑘𝑘]𝑞𝑞  and 𝑤𝑤(𝛼𝛼)

3 [𝑛𝑛, 𝑘𝑘]𝑞𝑞 as the translated q-Whitney 
numbers of the first, second, and third kind, respectively. 
By convention, we set 

 ( ) [ ] ( ) [ ] ( ) [ ]1 2 3, , , 0q q qw n k w n k w n kα α α= = =  (16) 

when 𝑛𝑛 < 𝑘𝑘 or for 𝑛𝑛, 𝑘𝑘 < 0. Also, we easily observe that 
when 𝑛𝑛 = 0, we have 

 ( ) [ ] ( ) [ ] ( ) [ ]1 2 30,0 0,0 0,0 1.q q qw w wα α α= = =  (17) 

The study of q-analogues of some well-known 
identities and certain Stirling-type numbers has been the 
interest of previous authors. Different approaches has been 
earlier considered by Carlitz [5], Katriel [13], Katriel and 
Kibler [14], Gould [11], Corcino et al. [8], Mansour et al. 
[18], Corcino and Mangontarum [10], Mangontarum and 
Katriel [16], as well as some of the references therein. 
Perhaps the reason is due to their various applications in 
other fields of discipline. For q-analogues of the 
generalized Stirling numbers, Corcino at al. [8] defined 
the generalized q-Stirling numbers as  
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where 𝑆𝑆�𝑛𝑛, 𝑘𝑘; 𝑞𝑞𝛼𝛼 , 𝑞𝑞𝛽𝛽 ,𝑞𝑞𝛾𝛾 − 1�  and 𝑆𝑆�𝑛𝑛, 𝑘𝑘; 𝑞𝑞𝛽𝛽 , 𝑞𝑞𝛼𝛼 , 1 − 𝑞𝑞𝛾𝛾� 
are the exponential-type Stirling numbers [8, Equations (3) 
and (4)]. The q-analogues 𝜎𝜎1[𝑛𝑛, 𝑘𝑘]  and 𝜎𝜎2[𝑛𝑛, 𝑘𝑘]  are 
known to satisfy the relations 
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and  
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and the explicit formula given by 

 
[ ] ( )

[ ] [ ]

1
1 |

1 0
, [ ] 1

[ | [ ]] ,

k k
k j k j

q
i j

n
q

n k i q

k
j

j

β

β

σ β

β γ α

−
− < >

= =

 
= −  
 

 
+ 

 

∏ ∑
 (22) 

as reported by Corcino and Mangontarum [9, Lemma 2.2], 
and Corcino and Barrientos [7, Equation (1.3)], 
respectively, < 𝑘𝑘|𝑗𝑗 >= �𝑗𝑗 + 1

2 � − 𝑘𝑘𝑗𝑗 and 
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Here, the expression �𝑘𝑘𝑗𝑗�𝑞𝑞𝛽𝛽
 is the q-binomial 

coefficients defined by 
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where  

 [ ] [ ] [ ][ ] ! [1] [2] 1 , 0 ! 1q q q q q qn n n= − =  (25) 

is the q-falling factorial of n. Other combinatorial 
properties of 𝜎𝜎1[𝑛𝑛, 𝑘𝑘]  and 𝜎𝜎2[𝑛𝑛, 𝑘𝑘]  were mostly 
established by Corcino and Barrientos [7]. 

Another special case obtained by suitable assignment of 
values to the defining relations in (7) and (8) are the  
r-Whitney numbers of the first and second kind defined by 
Mező [20] in his attempt to derive a new formula for the 
Bernoulli polynomials. The r-Whitney numbers of the 
first and second kind are actually generalizations of the 
classical Whitney numbers of the first and second kind 
earlier defined and fully developed by Benoumhani [2,3]. 
The q-analogues of the r-Whitney numbers of both kinds 
were recently introduced by Mangontarum and Katriel 
[16], and are called (𝑞𝑞, 𝑟𝑟) −Whitney numbers of the first 
and second kind, denoted by 𝑤𝑤𝑚𝑚 ,𝑟𝑟 ,𝑞𝑞(𝑛𝑛, 𝑘𝑘) and 𝑊𝑊𝑚𝑚 ,𝑟𝑟 ,𝑞𝑞(𝑛𝑛, 𝑘𝑘), 
respectively. The said q-analogues defined via horizontal 
generating functions given by 
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were developed using the q-Boson operators 𝑎𝑎†  and a 
which satisfy the commutation relation 

 † † †[ , ] 1.qa a aa qa a≡ − =  (28) 

By thoroughly investigating the two pairs of q-
analogues presented in (18), (19), (26) and (27), it can be 
observed that they represent motivations which are 
different from ours in (13), (14) and (15). This leads us to 
the conclusion that these distinctly motivated q-analogues 
are difficult to express in terms of one another. 

This study will then focus on establishing some basic 
combinatorial properties of the translated q-Whitney 
numbers, as well as to give a combinatorial interpretation 
in the context of A-tableaux. Most of the full proofs of the 
results in this paper follow the usual methods employed 
by previous authors which are quite elementary. Hence, 
they are left for the readers to explore. 

2. Some Combinatorial Properties 

2.1. Recurrence Relations 
The next theorem contains useful tools in solving for 

the first few values of the translated q-Whitney 
numbers𝑤𝑤(𝛼𝛼)

1 [𝑛𝑛, 𝑘𝑘]𝑞𝑞 , 𝑤𝑤(𝛼𝛼)
2 [𝑛𝑛, 𝑘𝑘]𝑞𝑞  and 𝑤𝑤(𝛼𝛼)

3 [𝑛𝑛, 𝑘𝑘]𝑞𝑞 . 
Theorem 2.1. The triangular recurrence relations for the 
translated q-Whitney numbers of the first, second and 
third kind are given by the following identities: 
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Proof. The proofs of these identities follow directly from 
the definitions in (13), (14) and(15). 
Remark 2.2. It is trivial that when 𝑘𝑘 = 𝑛𝑛, we get 
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The following corollary can be obtained by successive 
applications of the recurrence relations in the previous 
theorem: 
Corollary 2.3. The translated q-Whitney numbers of the 
first, second and third kind satisfy the vertical recurrence 
relations given by 
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respectively. 
It can be shown that as 𝑞𝑞 → 1, we get 
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Remark 2.4. The identities in (36) and (37) are exactly the 
vertical recurrence relations obtained by Mangontarum 
and Dibagulun [15], whereas (38) which can be written in 
the form 
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is a new identity for the translated Whitney-Lah numbers. 
Another type of recursion formula is the horizontal 

recurrence relation. The results in the next corollary can 
be verified by evaluating the right-hand sides using the 
triangular recurrence relations. 
Corollary 2.5. The translated q-Whitney numbers of the 
first kind, second kind and third kind satisfy the horizontal 
recurrence relations given by 
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Taking the limits of these results as q approaches 1 
yields 
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Remark 2.6. The vertical recurrence relations in (43) and 
(44) were due to Mangontarum and Dibagulun [15]. On 
the other hand, (45) is a new identity for the translated 
Whitney-Lah numbers. 

Before ending this subsection, we note that the vertical 
and horizontal recurrence relations follow the same 
pattern illustrated by the well-known Chu Shih-Chieh's 
binomial identities [6]. 

2.2. Orthogonality and Inverse Relations 
The orthogonality and the inverse relations for the 

classical translated Whitney numbers of the first and 
second kinds were earlier established by Mangontarum 
and Dibagulun [15]. In this subsection, we establish 
analogous properties for the q-analogues 𝑤𝑤(𝛼𝛼)

1 [𝑛𝑛, 𝑘𝑘]𝑞𝑞  and 
𝑤𝑤(𝛼𝛼)

2 [𝑛𝑛, 𝑘𝑘]𝑞𝑞 . 
Theorem 2.7. The orthogonality relations of the 
translated q-Whitney numbers of the first and second kind 
are given by 
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where 𝛿𝛿𝑗𝑗𝑛𝑛  is the Kronecker delta defined by 

 
0,  

.
1,  jn

if j n
if j n

δ
≠

=  =
 

Proof. The proof of this theorem is done by combining the 
defining relations in (13) and (14). 

Since 𝑤𝑤(𝛼𝛼)
1 [𝑛𝑛, 𝑘𝑘]𝑞𝑞 = 𝑤𝑤(𝛼𝛼)

2 [𝑛𝑛, 𝑘𝑘]𝑞𝑞 = 0 when 𝑛𝑛 < 𝑘𝑘, then 

 
( ) [ ] ( ) [ ]

( ) [ ] ( ) [ ]

2 1

0

1 2

0

, ,

, , .

q q
k

jnq q
k

w n k w k j

w n k w k j

α α

α α δ

∞

=
∞

=
= =

∑

∑
 

Hence, if we define ℳ𝑞𝑞
1(𝛼𝛼) = �𝑤𝑤(𝛼𝛼)

1 [𝑛𝑛, 𝑘𝑘]𝑞𝑞�  , and 
ℳ𝑞𝑞

2(𝛼𝛼) = �𝑤𝑤(𝛼𝛼)
2 [𝑛𝑛, 𝑘𝑘]𝑞𝑞� to be infinite matrices whose 

(𝑛𝑛, 𝑘𝑘) -th entries are the translated q-Whitney numbers 
𝑤𝑤(𝛼𝛼)

1 [𝑛𝑛, 𝑘𝑘]𝑞𝑞 and 𝑤𝑤(𝛼𝛼)
2 [𝑛𝑛, 𝑘𝑘]𝑞𝑞 , respectively, then the 

following corollary is immediately obtained: 
Corollary 2.8. If I is the infinite-dimensional identity 
matrix, then 

 ( ) ( ) ( )2 1 1 2 .q q q q Iα α α⋅ = ⋅ =     (49) 

Remark 2.9. It is obvious thatℳ𝑞𝑞
1(𝛼𝛼)  and ℳ𝑞𝑞

2(𝛼𝛼)  are 
inverse matrices of each other. 
Corollary 2.10. The inverse relations of the translated q-
Whitney numbers of the first and Second kind are given by 
the following: 
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 ( ) ( ) [ ]1 2

0 0
[ , , ,]

n n

n q k n kq
k k

f w n k g g w n k fα α
= =

= ⇔ =∑ ∑  (50) 

 ( ) ( ) [ ]1 2[ , ] , .k q n k nq
n k n k

f w n k g g w n k fα α

∞ ∞

= =
= ⇔ =∑ ∑  (51) 

2.3. Explicit Formulas 
If we replace x with 𝛼𝛼𝑘𝑘 , then we can rewrite the 

defining relation in (14) as 

 

2
( )

0

2
( )

0

[ ] [ , ] [ | ]

[ , ] [ | ]
.

n
n
q q j

j

k q j

qj

q

k w n j k

w n j kk
kj
j

α

α

α

α

α α α

α α

=

=

=

 
 

   =            

∑

∑
 

Using the q-binomial inversion formula given by 

 
0

2

0
,( 1)

n

n k n
qk

k j
n

n k
k

qk

n
f g g

k

k
q f

j

α

=

− 
 −  

=

 
= ⇔ 

 

 
= −  

 

∑

∑

 (52) 

we obtain  

 
[ ]2

( ) 2

0

[ , ] |
1) [ ] .(

k j
nq n k nk

q
qk

q

w n j k k
q j

k j
k

αα

α

α α
α

− 
 −  

=

 
= −     

 
 

∑  

Simplifying this expression yields the explicit formula 

( ) [ ]22
( )

0

1[ , ] 1 .
[ | ]

k j
n

nn k
q q

k qk

k
w n k q j

jk

α

α α
α α

− 
 −  

=

 
= −  

 
∑  

Multiplying both sides by 
[ ] !

n

q

z
n

 and summing over n 

yields 

 

( ) [ ] [ ]

( ) ( )

2

2

0

,
!

1 1 [ ] .
[ ] ![ ]

n

q
n k q

k j
n

n k
q qk

qkqq

zw n k
n

k
q e j z

jk

α

α

α
α

α

∞

=

− 
 −  

=

 
= −  

 

∑

∑
 

where 𝑒𝑒𝑞𝑞�[𝛼𝛼𝑗𝑗]𝑞𝑞𝑧𝑧�  denotes the type 1 q-exponential 
function defined by 

 ( )
0

.
[ ] !

i

q
qi

xe x
i

∞

=
= ∑  (53) 

Therefore, we have the following theorem: 
Theorem 2.11. The translated q-Whitney numbers of the 
second kind satisfy the explicit formula 

 
( ) [ ]

2
( )

2

0

[ , ]

1 1 .
[ ] ![ ]

q

k j
n

nn k
qk

qkqq

w n k

k
q j

jk

α

α

α
α

α

− 
 −  

=

 
= −  

 
∑

 (54) 

and the exponential generating function 

 

( ) [ ] [ ]

( ) ( )

2

2

0

,
!

1 1 [ ] .
[ ] ![ ]

n

q
n k q

k j
n

n k
q qk

qkqq

zw n k
n

k
q e j z

jk

α

α

α
α

α

∞

=

− 
 −  

=

 
= −  

 

∑

∑
(55) 

Remark 2.12. Taking the limits of (56) and (57) as q 
approaches 1 gives us 

 
( ) [ ]

( ) ( ) ( )

2
1 0

0

1lim 1
[ ] ![ ]

1 1 ( ) ,
!

k j
n

nn k
qkq qkqq

n
n k n

k
k

k
q j

jk

k
j W n k

jk

α

α

α

α
α

α
α

− 
 −  

→ =

−

=

 
−  

 

 
= − = 

 

∑

∑ 

 

and  

 

( ) ( )

( ) ( )

2
1 0

1lim 1 [ ]
[ ] ![ ]

1 1 , .
! !

k j
n

n k
q qkq qkqq

kk n

n k

k
q e j z

jk

e zW n k
k n

α

α

α

α

α
α

α

− 
 −  

→ =

∞

=

 
−  

 

 −
= =  

 

∑

∑ 

 

These identities are the ones obtained by Mangontarum 
et al. [[17], Propositions 2 and 3]. 

Note that it is difficult to obtain an explicit formula 
similar to (56) for the translated q-Whitney numbers of the 
first kind. In the next theorem, we present explicit 
formulas in symmetric polynomial forms for the translated 
q-Whitney numbers of both kinds. 
Theorem 2.13. The translated q-Whitney numbers of the 
first kind satisfy the explicit formula in elementary 
symmetric polynomial form given by 

 
( ) [ ]

( )

1

2

0 1 11 2

,

1

q

n
n k

n k
j q

i i i n jn k

w n k

q i

α

α
α

 
− − −  

≤ < < < ≤ − =−

 = −  ∑ ∏


 (56) 

and the translated q-Whitney numbers of the second kind 
satisfy the explicit formula in complete symmetric 
polynomial form given by 

 
( ) [ ]2

2

0 11 2

,

.

q

n
n k

j q
i i i k jn k

w n k

q i

α

α
α

 
− 

 

≤ ≤ ≤ ≤ ≤ =−

 =  ∑ ∏


 (57) 

Proof. Since the triangular recurrence relation in (29) can 
be written in the equivalent form given by 
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 ( ) [ ]

( ) [ ] [ ] ( ) [ ]

1

1 1

1, 1

( , 1 , ),

q

n
q q q

w n k

q w n k n w n k

α

α
α αα−

+ +

= − −
 (58) 

and taking into consideration the initial values 
𝑤𝑤(𝛼𝛼)

1 [0,0]𝑞𝑞 = 1  and 𝑤𝑤(𝛼𝛼)
1 [𝑛𝑛 + 1,𝑛𝑛 + 1]𝑞𝑞 = 1 , we may 

proceed with the proof of (56) by induction on n. (57) can 
be deduced similarly. 

The following corollary immediately follows from the 
previous theorem as 𝑞𝑞 → 1: 
Corollary 2.14. The classical translated Whitney numbers 
have the following explicit formulas: 

 ( ) ( ) ( )*

0 1 11 2

, 1 ,
n k

n k
j

i i i n jn k

w n k iα α
−

−

≤ < < < ≤ − =−

= − ∑ ∏


 (59) 

 ( )( )
0 1 11 2

, ,
n k

j
i i i n jn k

w n k iα α
−

≤ < < < ≤ − =−

= ∑ ∏


  (60) 

 ( )( )
0 11 2

, .
n k

j
i i i k jn k

W n k iα α
−

≤ ≤ ≤ ≤ ≤ =−

= ∑ ∏


  (61) 

2.4. Translated q-Dowling Polynomials and 
Numbers 

The n-th translated Dowling polynomial, denoted by 
𝐷𝐷�(𝛼𝛼)(𝑛𝑛; 𝑥𝑥), is defined as 

 ( ) ( ) ( ) ( )
0

; , ,
n

k

k
D n x W n k xα α

=
= ∑   (62) 

While the translated Dowling numbers, denoted by 
𝐷𝐷�(𝛼𝛼)(𝑛𝑛), is defined as 

 ( ) ( ) ( ) ( );1 .D n D nα α=   (63) 

These polynomials and numbers were defined and 
developed by Mangontarum et al. [17] as common 
generalizations of the classical Bell polynomials/numbers 
and the Dowling polynomials/numbers. Naturally, we may 
define the translated q-Dowling polynomials, denoted by 
𝐷𝐷𝛼𝛼 [𝑛𝑛; 𝑥𝑥]𝑞𝑞 , as the n-th degree polynomial 

 [ ] ( ) [ ]2

0
; ,

n
k

q q
k

D n x w n k xα α
=

= ∑  (64) 

and the translated q-Dowling numbers, denoted by𝐷𝐷𝛼𝛼 [𝑛𝑛]𝑞𝑞 , 
as the case when 𝑥𝑥 = 1. That is,  

 [ ] [ ];1 .q qD n D nα α=  (65) 

Theorem 2.15. The polynomials 𝐷𝐷𝛼𝛼 [𝑛𝑛; 𝑥𝑥]𝑞𝑞  satisfy the 
exponential generating function given by 

 

[ ] [ ]

[ ]
[ ]( )
[ ] [ ]0

;
!

ˆ
!

n

q
n k q

i
q q

q
iq q q

zD n x
n

e i zx xe
i

α

α
α

α

α α

∞

=

∞

=

   
   = −
   
   

∑

∑
 (66) 

and the explicit formula (Dobinski-type formula) given by 

 [ ] [ ]
[ ]
[ ] [ ]0

ˆ; ,
!

in
q

q q
iq q q

ix xD n x e
iα α

α

α

α α

∞

=

   
   = −
   
   

∑  (67) 

where 

 ( ) [ ]
2

0
ˆ

!

i
i

q
i q

te x q
i

 
∞  

 

=
= ∑  (68) 

is the type 2 q-exponential function. 
Proof. These identities can be easily verified using the 
explicit formula in (54). 

The following corollary is obtained by setting 𝑥𝑥 = 1: 
Corollary 2.16. The translated q-Dowling numbers satisfy 
the exponential generating function given by 

 

[ ] [ ]

[ ]
[ ]( )
[ ] [ ]0

!

1 1ˆ
!

n

q
n k q

i
q q

q
iq q q

zD n
n

e i z
e

i

α

α
α

α

α α

∞

=

∞

=

   
   = −
   
   

∑

∑
 (69) 

and the explicit formula given by 

 [ ] [ ]
[ ]
[ ] [ ]0

1 1ˆ .
!

in
q

q q
iq q q

i
D n e

iα α
α

α

α α

∞

=

   
   = −
   
   

∑  (70) 

Taking the limits as q approaches to 1 yields 

 [ ] [ ] ( )
1

lim ; exp 1
!

n
z

qq n k q

z xD n x e
n

α
α α

∞

→ =

 = − 
 

∑  (71) 

 [ ] ( )
1 0

lim ; .
!

x n i

qq i

ix xD n x
e i

α
α

α
α

∞

→ =

   =    
   

∑  (72) 

These identities were the ones obtained by 
Mangontarum et al. [[17], Theorems 5 and 7]. 

3. Combinatorial Interpretations 
Before proceeding, we first recall the following 

definitions (see [19]): 
Definition 3.1. A 0-1tableau is a pair 𝜑𝜑 = (𝜆𝜆, 𝑓𝑓), where 
𝜆𝜆 = (𝜆𝜆1 ≥ 𝜆𝜆2 ≥ ⋯ ≥ 𝜆𝜆𝑘𝑘)  is a partition of an integer m 
and 𝑓𝑓 = �𝑓𝑓𝑖𝑖𝑗𝑗 �1≤𝑗𝑗≤𝜆𝜆𝑖𝑖

 is a “filling” of the cells of the 
corresponding Ferrer’s diagram of shape 𝜆𝜆 with 0’s and 
1’s such that exactly one 1 in each column. 

Figure 1 below represents the 0-1 tableau𝜑𝜑 = (𝜆𝜆, 𝑓𝑓), 
where 𝜆𝜆 = (9,6,5,3) with 

 13 15 17 18 19 22 26 34 41 1f f f f f f f f f= = = = = = = = =  

and 𝑓𝑓𝑖𝑖𝑗𝑗 = 0 elsewhere for 1 ≤ 𝑗𝑗 ≤ 𝜆𝜆𝑖𝑖 . 

 
Figure 1. A 0-1 Tableau 𝜑𝜑 
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Definition 3.2. An 𝐴𝐴-tableau is a list 𝜙𝜙 of columns c of a 
Ferrer's diagram of a partition 𝜆𝜆 (by decreasing order of 
length) such that the lengths |𝑐𝑐|are part of the strictly 
increasing sequences 𝐴𝐴 =  (𝑎𝑎𝑖𝑖)𝑖𝑖≥0  of non-negative 
integers. 

Let 𝜔𝜔:𝑁𝑁 → 𝐾𝐾 denote a function from the set of non-
negative integers 𝑁𝑁 to a ring 𝐾𝐾(column weights according 
to length). For an 𝐴𝐴 -tableau Φ  with columns of length 
|𝑐𝑐| ≤ ℎ, we set 

 ( )
Φ

Φ ( ).A
c

cω ω
∈

= ∏  (73) 

Also, we denoted by 𝑇𝑇𝐴𝐴(𝑥𝑥,𝑦𝑦) the set of all 𝐴𝐴-tableaux 
withy columns whose lengths are in the set 
{𝑎𝑎0, 𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑥𝑥}, and by 𝑇𝑇𝑑𝑑𝐴𝐴(𝑥𝑥,𝑦𝑦) the subset of 𝑇𝑇𝐴𝐴(𝑥𝑥,𝑦𝑦) 
which contains all 𝐴𝐴 -tableau with columns of distinct 
lengths.  

We are now ready to state the next theorem. 
Theorem 3.3. Let 𝜔𝜔:𝑁𝑁 → 𝐾𝐾 be a function (N is the set of 
non-negative integers and K is a ring) defined by 
𝜔𝜔(|𝑐𝑐|) = 𝛼𝛼|𝑐𝑐|, where 𝛼𝛼 is a complex number. 

1. The translated Whitney numbers of the first kind 
𝑤𝑤�(𝛼𝛼)(𝑛𝑛, 𝑘𝑘)  counts the number of 𝐴𝐴 -tableaux in 
𝑇𝑇𝑑𝑑𝐴𝐴(𝑛𝑛 − 1,𝑛𝑛 − 𝑘𝑘) if |𝑐𝑐| is the length of column c 
of an 𝐴𝐴-tableau in 𝑇𝑇𝑑𝑑𝐴𝐴(𝑛𝑛 − 1,𝑛𝑛 − 𝑘𝑘); 

2. The translated Whitney numbers of the second 
kind 𝑊𝑊�(𝛼𝛼)(𝑛𝑛, 𝑘𝑘) counts the number of 𝐴𝐴-tableaux 
in 𝑇𝑇𝐴𝐴(𝑘𝑘,𝑛𝑛 − 𝑘𝑘) if |𝑐𝑐| is the length of column c of 
an 𝐴𝐴-tableau in 𝑇𝑇𝐴𝐴(𝑘𝑘,𝑛𝑛 − 𝑘𝑘). 

Proof. Let Φ ∈ 𝑇𝑇𝑑𝑑𝐴𝐴(𝑛𝑛 − 1,𝑛𝑛 − 𝑘𝑘) and |𝑐𝑐| be the length of 
column c of Φ. By (73), we have 

 ( )
Φ 1

Φ ( ) | | .
n k

A j
c j

c cω ω α
−

∈ =
= =∏ ∏  (74) 

Then, by (60), 

 
( )

( )

( )
( ) ( )

Φ 1,

1Φ 1,

Φ

, .

A
AT n n kd

n k

j
A jT n n kd

c w n kα

ω

α

∈ − −

−

=∈ − −

= =

∑

∑ ∏ 

 (75) 

We can also show by similar method that 

 ( )
( )

( )

( ) ( )
1φ , φ ,

φ

, .

n k

A j
A A jT k n k T k n k

c

W n kα

ω α
−

=∈ − ∈ −

=

=

∑ ∑ ∏



 (76) 

This completes the proof. 
Now, we take the function Ω:𝑁𝑁 → 𝐾𝐾  defined by 

Ω(|𝑐𝑐|) = [𝛼𝛼|𝑐𝑐|]𝑞𝑞  in place of the function 𝜔𝜔. Then it can 
be showed that  

 ( )
( )

( )

( ) [ ]

1Φ 1, Φ 1,

2 1
( )

Ω Φ

1 ,

n k

A j qA A jT n n k T n n kd d
n

n k
q

c

q w n k
α

α

α
−

=∈ − − ∈ − −

 
 −  

 =  

= −

∑ ∑ ∏
 (77) 

and  

 ( )
( )

( )

[ ]

1φ , φ ,

2 2
( ) .

φ

,

n k

A j qA A jT k n k T k n k

n

q

c

q w n k
α

α

ω α
−

=∈ − ∈ −

 
−  

 

 =  

=

∑ ∑ ∏
 (78) 

Hence, we propose the following combinatorial 
interpretations for the q-deformed case: 
Proposition 3.4. Let 𝛺𝛺 ∶ 𝑁𝑁 → 𝐾𝐾 be a function (N is the set 
of non-negative integers and K is a ring) defined by 
𝛺𝛺(|𝑐𝑐|) = [𝛼𝛼|𝑐𝑐|]𝑞𝑞 , where 𝛼𝛼 is a complex number. 

1. If |𝑐𝑐| is the length of column c of an 𝐴𝐴-tableau in 
𝑇𝑇𝑑𝑑𝐴𝐴(𝑛𝑛 − 1,𝑛𝑛 − 𝑘𝑘), then the number of 𝐴𝐴-tableaux 
in 𝑇𝑇𝑑𝑑𝐴𝐴(𝑛𝑛 − 1,𝑛𝑛 − 𝑘𝑘)  is given by 
(−1)𝑛𝑛−𝑘𝑘𝑞𝑞𝛼𝛼�

𝑛𝑛
2�𝑤𝑤(𝛼𝛼)

1 [𝑛𝑛, 𝑘𝑘]𝑞𝑞 ; 
2. If |𝑐𝑐| is the length of column c of an 𝐴𝐴-tableau in 

𝑇𝑇𝐴𝐴(𝑘𝑘,𝑛𝑛 − 𝑘𝑘), then the number of 𝐴𝐴-tableaux in 
𝑇𝑇𝐴𝐴(𝑘𝑘,𝑛𝑛 − 𝑘𝑘) is given by 𝑞𝑞−𝛼𝛼�

𝑛𝑛
2�𝑤𝑤(𝛼𝛼)

2 [𝑛𝑛, 𝑘𝑘]𝑞𝑞 . 

4. Conclusion 
In this paper, we have seen that the translated q-

Whitney numbers, being distinctly motivated compared to 
the works of previous authors, produces combinatorial 
identities which are generalizations of the known 
properties of the classical Stirling and Whitney numbers. 
Furthermore, a type of combinatorial interpretation in 
terms of the A-tableaux was presented for the classical 
Whitney numbers of the first and second kinds, and their 
q-analogues. 
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