
Proceedings, IEEE International Conference on Robotics and Automation (ICRA-2002)
volume 1, pages 863-868, Washington DC, May 11-15, 2002

Parametric Primitives for Motor Representation and Control

R. Amit Maja J. Matarić
Computer Science Department

University of Southern California
Los Angeles, CA 90089-0781, USA

{amitr|mataric}@cs.usc.edu

Abstract

The use of motor primitives for the generation of
complex movements is a relatively new and interesting
idea for dimensionality reduction in robot control. We
propose a framework in which adaptive primitives learn
and represent synergetic arm movements. A simple and
fixed set of postural and oscillatory primitives form the
substrate through which all control is elicited. Higher
level adaptive primitives interact and control the primitive
substrate in order to handle complex movement sequences.
We implemented this model on a simulated 20 DOF
humanoid character with dynamics. We present results of
the experiments involving the presentation and learning of
synergetic arm movements.

Keywords: Primitives, motor control, learning, hu-
manoids, self organizing maps

1 Introduction

One of the main challenges in robotics is to devise algo-
rithms and methodologies for control of complex robots.
The complexity of the robot’s body is typically charac-
terized by the number of its degrees of freedom. With
the recent surge in both research and commercial interest
in humanoids, robotics has had to face one of its great-
est challenges in terms of control complexity [18]. The
prohibitively large number of humanoid control parameters
has led researchers to explore means of curtailing the motor
control space to make this problem more tractable. Simi-
lar problems also arise in research involving the control of
hyper-redundant systems [5].

One means of reducing the dimensionality of the mo-
tor control problem, motivated by neuroscience evidence,
is through the use ofmotor primitives[14, 15, 17, 19] – a
set of movement programs that form a vocabulary for the
generation of a variety of complex movements. Gizster et
al [9] demonstrated the presence of spinal force fields in
the frog and rat that, when appropriately combined through

supra-spinal inputs, result in the entire repertoire of ob-
served movement. The presence of central pattern gener-
ators (CPGs) [6] in mammals also provides evidence for a
basic set of motor programs that produce a variety of move-
ments. These studies have been at the spinal level, while
higher mammals tend to use cortical areas for movement
generation. Preliminary studies [19] of human data provide
some evidence toward an encoding of primitives.

Our past work has outlined the general primitives-based
model for humanoid control and learning [14]. In this pa-
per, we propose an implemented framework that fits within
that model and enables learning, recognition, and execu-
tion of movements by a humanoid character. We use the
notion of postural and oscillatory primitives as the lowest
level of the control system. We then show how higher-level
primitives can be learned by making use of this substrate.
We experimentally validate these concepts on a complex
humanoid simulation with dynamics. The experiments are
devised in the context of imitation [2, 3, 16], wherein move-
ments of a demonstrator are made available to a humanoid
character which then learns to represent and execute them.
It is important to note that our goal is not to reproduce
the precise demonstrated trajectory (something that can be
done through other, less general means), but rather to use
imitation as a means of learning new motor skills.

The rest of the paper is organized as follows. Section 2
presents the overall framework giving the organization of
our architecture and its components. Section 3 discusses
how the components interact with one another to bring
about the desired behavior. Section 4 details the mecha-
nism of learning. Section 5 presents the experiments per-
formed to validate the presented approach, and Section 6
provides the results of the experiments. Section 7 discusses
related work, and places this research in its context. Sec-
tion 8 concludes the paper.

2 Framework

The basic idea of primitives is that they serve as a
compactly-represented vocabulary of motor programs that

can be combined to produce a wide variety of motor behav-
iors. Our framework is hierarchically structured so that a
set of basic primitives forms the substrate, and higher-level
primitives are constructed from that substrate. The basic
primitives are assumed to be “innate”, i.e., built-in motor
programs which are relatively simple, while higher-level
primitives are learned and adaptive, so they can, incremen-
tally through the hierarchical structure, grow in complex-
ity. A block diagram illustrating the components of the
framework is shown in Figure 1. As can be seen, actu-
ators form the lowest level in the motor control hierarchy
and are controlled by the basic primitives, which in turn are
controlled by adaptive primitives. We describe each layer
of the framework in turn.

���� ��

���� ��

���� ��

Pose Control Osc. 1 Osc. N

Actuator 1 Actuator N

Primitive Primitive Primitive

1 2 M
Adaptive primitives

Basic primitives

Figure 1: The framework of the control architecture

2.1 Basic primitives

In our framework, the basic primitives form the under-
lying substrate for both representation and control. They
are the interface to the joint actuators. A certain level of
competence is assumed in this layer, as these primitives are
not adaptive but are well tuned to perform a specific type of
control. In the implementation we present here, the basic
primitives consist of two types: postural and oscillatory.

Postural primitives are built-in motor programs that ori-
ent joints so as to achieve a desired pose. These are sim-
ilar to the discrete primitives of Schaal et al. [17]. The
main purpose of these primitives is to provide an appropri-
ate constant offset to the joint while the oscillatory prim-
itive, which we discuss next, takes care of the oscillation.
Postural primitives thus have a single parameter, the joint
angle, for every joint in the robot. They can thus be suc-
cinctly represented as a function,F , to generate the torque
vector,τ , corresponding to a set of joint angles,θ:

τ = F (θ) (1)

We implement oscillatory primitives as harmonic oscil-
lators associated with each joint. The amplitude,a, and
frequency,f , of the oscillators are parameters of the primi-
tives. Each such oscillatory primitive, when active, applies

a time-varying torque,τ , to the joint actuator it controls.
An oscillatory primitive is thus a function,g, such that:

τ = g(a sin(2πft)) (2)

In addition to being able to control the joints, both types
of primitives are also capable of estimating the parameters
from an observed movement demonstration. In our case,
the incoming information to the system consists of the in-
stantaneous joint angles of the demonstrator. This is possi-
ble through a variety of motion-capture mechanisms, rang-
ing from external vision-based systems, to marker-based
systems, to exoskeletons. We are particularly interested
in learning from a single or a small set of tele-operated
demonstrations, where joint information would be readily
available.

2.2 Adaptive primitives

Adaptive primitives, at the next level of the hierarchy,
do not have direct control over the joint actuators, but in-
stead exert control through the basic primitives. The adap-
tive layer interacts with the basic primitives directly, and is
partitioned so as to modularize control. Specifically, primi-
tives are partitioned such that different groups are involved
in the control of different joint combinations, thereby also
reducing control complexity for each primitive. Ideally,
these joint pairings are based on natural, frequent pairings
of DOFs. In this particular implementation, they were cho-
sen by the designer.

Adaptive primitives encode the parameters of the ba-
sic primitives. Each partition, which is a set of primi-
tives for the same joint pairings, is a Self Organizing Map
(SOM) [7, 11, 12]. SOMs are ordered two-dimensional ar-
rays, called maps, of vector elements that encode features
of the input space. Features are topographically organized
over the surface of the map, i.e., adjacent elements encode
similar features. The encoding in SOMs has two notable
properties: 1) vector quantization and 2) dimensionality re-
duction using non-linear manifolds. The first property im-
plies that the error in reconstruction of the input data is
minimized. A corollary is that the number of elements rep-
resenting regions of the input space is directly proportional
to their probability density in the input data. The second
property results in lower dimensional features of the input
space that retain the topological properties. These prop-
erties make SOMs a useful tool for adaptive primitives.
The primitives become robust to noisy inputs and represent
movements based on their frequency of occurrence.

Each adaptive primitive gets its input in the form of the
parameters of oscillation of the joints it has control over.
For example, a primitive may have control over two DOFs
of the right shoulder. In such a case, the primitive would
encode frequency and amplitude of those joints for a certain
movement, such as drawing a “figure 8.”

3 Layer Interaction

Basic primitives begin estimating the parameters of a
movement while a demonstration is in progress. Each of
the oscillatory primitives begins to ascertain the amplitude
and frequency of the movement pertaining to the joint it
is associated with. Similarly, postural primitives begin to
estimate the offset of the joints they are linked with. Basic
primitives become active once they have an estimate of the
parameters.

Postural primitives, in our implementation, use their off-
set estimate to appropriately orient the joints. They are not
controlled by the adaptive primitives.

The estimated parameters from the oscillatory primi-
tives are made available to the adaptive primitives that con-
trol them. The controlling adaptive primitives then provide
the appropriate parameters of the oscillation, based on what
they represent, and in turn the joints are actuated accord-
ingly.

4 Learning of primitives

As stated, the adaptive layer is a collection of SOMs.
Each SOM gets its input from a set of oscillatory primitives
which is under its control. All units on a map (SOM) obtain
the same input. The input to the units, in our model, is a
vector that is composed of normalized frequencies and am-
plitudes obtained from the basic primitives. For example, if
a particular map is in control of two oscillatory primitives
with their respective frequency and amplitude parameters
being< f1, a1 > and< f2, a2 >, then the input vector,v,
to each unit on the map is:

v =< || < f1, f2 > ||, || < a1, a2 > || > (3)

As is the case with SOMs, the units are all initialized
to small random vectors. Then, on the presentation of the
input vector, a winner unit,w, is found from the units,u,
belonging to the map,U .

w = u : min
u

{|v − u|}∀u ∈ U (4)

After the winner is found, it and its neighboring units,
represented aswn, within a radius,r, on the map are up-
dated as:

wt+1
n = wt

n + γ(v − wt

n)∀wn ∈ N(w, r), 0 < γ < 1 (5)

whereN(w, r) is the neighborhood set that contains the
units within distancer on the map from winner,w; γ is the
learning rate.

When a winner is found, the vector it encodes is used to
instantiate the parameters for execution of the oscillation.
Specifically, assume that the estimated parameters of the

oscillations of two oscillatory primitives controlled by the
adaptive primitive arefe1, ae1, fe2, andae2. Let the vec-
tor represented by the winner be< fw1, fw2, aw1, aw2 >.
Then, the actual instantiation of the joint oscillation param-
eters (f1, a1, f2, a2) for actuation is given by:

< f1, f2 >= (< fe1, fe2 > · < fw1, fw2 >) < fw1, fw2 >

(6)

< a1, a2 >= (< ae1, ae2 > · < aw1, aw2 >) < aw1, aw2 >

(7)
The parameter vector for execution of a movement is

thus the projection of the parameter vector from the obser-
vation in the direction of the vector encoded by the winning
unit.

Our representation makes use of normalized frequencies
and amplitudes (Equation 3) to encode paired oscillations.
This makes the encoding independent of the actual values
of these parameters and instead captures thestructureof
the movement. For example, consider the movement in-
volving drawing of a “figure 8”. This involves two DOFs
of the shoulder, where one has the frequency of oscillation
twice that of the other. In our representation, such structure
is effectively captured. A unit on the map encoding a “fig-
ure 8” in effect represents this type of movement for any
combination of frequencies and amplitudes. In our imple-
mentation we have restricted ourselves to frequencies and
amplitudes of oscillations alone, and have not taken phase
into account.

The representation we used provides robustness against
noise and small variations or perturbations in movements.
The fact that winning units are found (Equation 4) and used
as a template for movement recognition and execution re-
sults in this robustness.

5 Experimental Validation

We have implemented the above framework and tested
it within a physics-based simulation of a humanoid char-
acter. We provide a brief description of the simulator, the
specific implementation of the model, and finally the test
movements used in the experiments.

5.1 The physics-based simulator testbed

We developed a physics-based simulation using the Vor-
tex real-time advanced physics libraries from Critical Mass
Labs [13]. The humanoid has actuated joints from the waist
up, totaling 20 active DOF. The lower body is not actuated,
and the character is firmly attached to the ground at the
feet. For all actuated joints in the humanoid simulation, we
made use of the so-called RPRO joint in the Vortex library,

which behaves like a PD servo loop, and allows specifica-
tion of desired joint orientations. There are collision mod-
els for all objects in the environment, and gravity is also
present. Graphical rendering is done with the SGI OpenIn-
ventor libraries. A snapshot of the simulator environment
is shown in Figure 2.

Figure 2: A snapshot from the simulator

5.2 Experiments

For the experiments a total of six DOFs were consid-
ered, i.e., the three DOFs in each shoulder. There were
thus six postural and six oscillatory primitives. The layerof
adaptive primitives consisted of four SOMs, two for each
hand, each with5 × 5 units. Units in each of the SOMs
had access to two DOF. The learning rate,γ, was set to a
constant value of0.01 and the neighborhood radius,r, was
fixed at2.

The experiments performed for validating the model in-
volved demonstration of repeated arm movements. These
included horizontal and vertical “figure 8”s , waving,
and wading. We provide here the mathematical descrip-
tions of the instantaneous joint angles for these movements.

Notation:
SAA Shoulder adduction-abduction angle
SFE Shoulder flexion-extension angle
SHR Shoulder humeral rotation angle
f Frequency of oscillation
a, a1, a2 Amplitude of oscillation

• Vertical figure 8’s

SAA =
π

2
+ a sin(2πft)

SFE = a sin(2π
f

2
t)

• Horizontal figure 8’s

SAA =
π

2
+ a sin(2π

f

2
t)

SFE = a sin(2πft)

• Wading

SAA =
π

2

SFE = a1 sin(2πft)

SHR = a2 sin(2πft)

• Waving

SAA = a1 sin(2πft)

SHR =
π

2

The data set contained 80 movements. These were uni-
formly taken from each of the four movements mentioned
above. The choice of whether the movement was per-
formed using the right hand, left hand, or both hands was
also chosen at random while picking the data set. The fre-
quency and amplitude parameters of the oscillations were
varied to cover the entire range of values for each.

6 Results

The presentation of the movements resulted in learning
of the adaptive primitives. The units are initially random,
so the executed imitations movements are not the same as
what was demonstrated. In the course of the learning pro-
cess, the primitives begin to specialize and eventually begin
to represent the observed movements, though in a more ab-
stract manner. Figure 3 shows the trajectory of the hand
of the demonstrator for successive tracing of “figure 8”.
Figure 4 shows the trajectory of the hand of the imitator
through the entire development. As can be seen, initially
the imitation is rather random, corresponding to the early
stages of the learning process, and then it converges to “fig-
ure 8” traces, after a primitive is formed.

Figure 5 gives the plot of the representation of frequen-
cies in the two maps handling the left shoulder joints. In
both maps, the data points only lie on a band that is part
of a circle of unit radius. This is a result of the normal-
ization process. Looking at the distribution of the points
in the first plot of Figure 5, we see that the concentrations
are high in the regions where one frequency is twice the
other. This shows that the units in those regions learned
to represent both the vertical and horizontal “figure 8”s.
Among the rest of the points, we see those that are close
to the area where one of the frequencies is very low and

Figure 3: Trajectory of the demonstrator’s hand for succes-
sive tracings of figure 8, starting from a rest position

Figure 4: Trajectory of the imitator’s hand throughout the
learning process

the other very high. These correspond to the movements
which involve one degree of freedom while not involving
the other. In the second plot of Figure 5, the distributions
are higher in regions where the two frequencies are close to
each other. There are also points in the region where one of
the frequencies is very high and the other very low. These
represent the nature of the data set presented. The plots of
the representations for the right shoulder are similar, and
we do not show them here due to space constraints.

Amplitude representation plots are also not shown here
due to space limitations. They have a more spread-out dis-
tribution due to the nature of the data used for learning. The
previous interpretations are for the 2-D plots, separatelyfor
the frequencies and the amplitudes. However, the actual
units represent 4-D information encoding both quantities
in a single vector. Taken together, the primitives encode
the movements that were presented in the demonstrations.

Figure 5: Frequency encodings of the primitives in the two
maps of the left shoulder

7 Related work

Schaal et al [17] have demonstrated the use of oscilla-
tory and discrete pattern generators, in combination, for
various tasks like ball bouncing, drumming, “3-D” draw-
ing patterns, etc. They used separate oscillators for each
joint and a reference oscillator for coordination. Dis-
crete movements were superimposed for positioning. We
used a conceptually similar underlying substrate, but then
built higher-level primitives that are capable of represent-
ing more complex movements.

Ijspeert et al [10] proposed using mixtures of nonlinear
differential equations to represent movements for trajectory
generation.

Bentivegna et al [1] have used the idea of primitives for
motor learning. They applied the idea to learning to play
air hockey and a marble maze in simulation and on a real
robot.

Billard et al [2, 3, 4] used connectionist-based ap-
proaches to represent movements. They make use of a re-
current connectionist network that is able to learn oscilla-
tory movements, and also discrete movements.

Fod et al [8] automatically derived primitives through an
off-line process of segmentation and application of prin-
cipal component analysis to motion-capture human arm
movement data.

8 Conclusion

We presented a framework for representating move-
ments using parametric primitives. The parametric nature
allowed for an abstract representation of movements inde-
pendent of speed and size. The hierarchical nature of the
framework made it possible to learn novel complex move-
ments.

So far, we have concentrated on repetitive movements,
and their parametric representation. Future work will ad-
dress the issues of representing discrete movements within
the same framework. We will also address more complex
movements involving higher DOF.

Acknowledgments

This work was supported by DARPA Grant DABT63-
99-1-0015 under the Mobile Autonomous Robot Software
(MARS) program.

References

[1] D. Bentivegna and C. G. Atkeson. Using primitives in
learning from observation. InFirst IEEE-RAS International
Conference on Humanoid Robots (Humanoids 2000), MIT,
Cambridge, MA, 2000.

[2] A. Billard. Learning motor skills by imitation: a biologically
inspired robotic model. InCybernetics and Systems, volume
32:1-2, pages 155–193, 2000.

[3] A. Billard and M. J Matarić. A biologically inspired robotic
model for learning by imitation. InProceedings, The Fourth
International Conference on Autonomous Agents (Agents
2000), pages 372–380, Barcelona, Spain, June 2000.

[4] A. Billard and M. J. Matarić. Learning human arm move-
ments by imitation: Evaluation of biologically-inspired con-
nectionist architecture. InRobotics and Autonomous Sys-
tems, volume 37:2-3, pages 145–160, November 2001.

[5] G. S. Chirikjian and J. W. Burdick. The kinematics of hyper-
redundant robotic locomotion. InIEEE Transactions on
Robotics and Automation, volume 11(6), pages 781–793,
December 1995.

[6] J. Duysens and W. A. A. van de Crommert. Neural control of
locomotion; part 1: The central pattern generator from cats
to humans. gait and posture.Gait and Posture, 7(2):131–
141, 1998.

[7] E. Erwin, K. Obermayer, and K. Shulten. Self-organizing
maps : ordering, convergence properties and energy func-
tions. InBiological Cybernetics, volume 65, pages 47–55,
1992.

[8] A. Fod, M. J. Matarić, and O. C. Jenkins. Automated
derivation of primitives for movement classification. InAu-
tonomous Robots, volume 12(1), pages 39–54, Jan 2002.

[9] S. F. Giszter, F. A. Mussa-Ivaldi, and E. Bizzi. Convergent
force fields organized in the frog’s spinal cord.Journal of
Neuroscience, 13(2):467–491, 1993.

[10] A. J. Ijspeert, J. Nakanishi, and S. Schaal. Trajectoryforma-
tion for imitation with nonlinear dynamical systems. InPro-
ceedings of the IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS 2001), pages 752–757,
Maui, Hawaii, 2001.

[11] T. Kohonen. Self-organized formation of topologically cor-
rect feature maps.Biological Cybernetics, 43:59–69, 1982.

[12] T. Kohonen. The Self-Organizing Map. InNew Concepts in
Computer Science: Proc. Symp. in Honour of Jean-Claude
Simon, pages 181–190, Paris, France, 1990.

[13] Critical Mass Labs. http://www.cm-labs.com.

[14] M. J. Matarić. Visuo-motor primitives as a basis for learn-
ing by imitation. In Kerstin Dautenhahn and Chrystopher
Nehaniv, editors,Imitation in Animals and Artifacts. MIT
Press, 2001.

[15] F. A. Mussa-Ivaldi, S. F Giszter, and E. Bizzi. Linear combi-
nation of primitives in vertebrate motor control.Proc. Nat.
Acad. Sci. USA, 91:7534–7538, 1994.

[16] S. Schaal. Is imitation learning the route to humanoid
robots?Trends in Cognitive Sciences, 3(6):233–242, 1999.

[17] S. Schaal and D. Sternad. Programmable pattern genera-
tors. In3rd International Conference on Computational In-
telligence in Neuroscience, pages 48–51, Research Triangle
Park, NC, 1998.

[18] M. L. Swinson and D. J. Bruemmer, editors.IEEE Intelli-
gent Systems, volume 15(4), Jul 2000.

[19] K. A. Thoroughman and R. Shadmehr. Learning of action
through combination of motor primitives.Nature, 407:742–
747, 2000.

