An Introduction to Feature Extraction

Isabelle Guyon' and André Elisseeff?

! ClopiNet, 955 Creston Rd., Berkeley, CA 94708, USA. isabelle@clopinet.com
2 IBM Research GmbH, Ziirich Research Laboratory, Sdumerstrasse 4, CH-8803
Riischlikon, Switzerland. ael@zurich.ibm.com

This chapter introduces the reader to the various aspects of feature extraction
covered in this book. Section 1 reviews definitions and notations and proposes
a unified view of the feature extraction problem. Section 2 is an overview of
the methods and results presented in the book, emphasizing novel contribu-
tions. Section 3 provides the reader with an entry point in the field of feature
extraction by showing small revealing examples and describing simple but ef-
fective algorithms. Finally, Section 4 introduces a more theoretical formalism
and points to directions of research and open problems.

1 Feature Extraction Basics

In this section, we present key notions that will be necessary to understand
the first part of the book and we synthesize different notions that will be seen
separately later on.

1.1 Predictive modeling

This book is concerned with problems of predictive modeling or supervised
machine learning. The latter refers to a branch of computer Science interested
in reproducing human learning capabilities with computer programs. The term
machine learning was first coined by Samuel in the 50’s and was meant to
encompass many intelligent activities that could be transferred from human
to machine. The term “machine” should be understood in an abstract way: not
as a physically instantiated machine but as an automated system that may, for
instance, be implemented in software. Since the 50’s machine learning research
has mostly focused on finding relationships in data and analyzing the processes
for extracting such relations, rather than building truly “intelligent systems”.

Machine learning problems occur when a task is defined by a series of
cases or examples rather than by predefined rules. Such problems are found in

2 Isabelle Guyon and André Elisseeff

a wide variety of application domains, ranging from engineering applications
in robotics and pattern recognition (speech, handwriting, face recognition), to
Internet applications (text categorization) and medical applications (diagno-
sis, prognosis, drug discovery). Given a number of “training” examples (also
called data points, samples, patterns or observations) associated with desired
outcomes, the machine learning process consists of finding the relationship
between the patterns and the outcomes using solely the training examples.
This shares a lot with human learning where students are given examples of
what is correct and what is not and have to infer which rule underlies the
decision. To make it concrete, consider the following example: the data points
or examples are clinical observations of patient and the outcome is the health
status: healthy or suffering from cancer.® The goal is to predict the unknown
outcome for new “test” examples, e.g. the health status of new patients. The
performance on test data is called “generalization”. To perform this task, one
must build a predictive model or predictor, which is typically a function with
adjustable parameters called a “learning machine”. The training examples are
used to select an optimum set of parameters.

We will see along the chapters of this book that enhancing learning ma-
chine generalization often motivates feature selection. For that reason, classi-
cal learning machines (e.g. Fisher’s linear discriminant and nearest neighbors)
and state-of-the-art learning machines (e.g. neural networks, tree classifiers,
Support Vector Machines (SVM)) are reviewed in Chapter 1. More advanced
techniques like ensemble methods are reviewed in Chapter 5. Less conventional
neuro-fuzzy approaches are introduced in Chapter 8. Chapter 2 provides guid-
ance on how to assess the performance of learning machines.

But, before any modeling takes place, a data representation must be cho-
sen. This is the object of the following section.

1.2 Feature construction

In this book, data are represented by a fixed number of features which can
be binary, categorical or continuous. Feature is synonymous of input variable
or attribute.* Finding a good data representation is very domain specific and
related to available measurements. In our medical diagnosis example, the fea-
tures may be symptoms, that is, a set of variables categorizing the health
status of a patient (e.g. fever, glucose level, etc.).

Human expertise, which is often required to convert “raw” data into a set
of useful features, can be complemented by automatic feature construction
methods. In some approaches, feature construction is integrated in the mod-
eling process. For examples the “hidden units” of artificial neural networks

3The outcome, also called target value, may be binary for a 2-class classification
problem, categorical for a multi-class problem, ordinal or continuous for regression.

4Tt is sometimes necessary to make the distinction between “raw” input variables
and “features” that are variables constructed for the original input variables. We will
make it clear when this distinction is necessary.

Introduction 3

compute internal representations analogous to constructed features. In other
approaches, feature construction is a preprocessing. To describe preprocessing
steps, let us introduce some notations. Let & be a pattern vector of dimen-
sion n, * = [x1, 23, ...2,]. The components z; of this vector are the original
features. We call x’ a vector of transformed features of dimension n’. Prepro-
cessing transformations may include:

Standardization: Features can have different scales although they refer to
comparable objects. Consider for instance, a pattern x = [x1, x2] where x4
is a width measured in meters and x is a height measured in centimeters.
Both can be compared, added or subtracted but it would be unreasonable
to do it before appropriate normalization. The following classical centering
and scaling of the data is often used: @} = (z; — ;) /04, where u; and o; are
the mean and the standard deviation of feature x; over training examples.
Normalization: Consider for example the case where x is an image and
the x;’s are the number of pixels with color 7, it makes sense to normalize
x by dividing it by the total number of counts in order to encode the
distribution and remove the dependence on the size of the image. This
translates into the formula: ' = x/||z||.

Signal enhancement. The signal-to-noise ratio may be improved by apply-
ing signal or image-processing filters. These operations include baseline or
background removal, de-noising, smoothing, or sharpening. The Fourier
transform and wavelet transforms are popular methods. We refer to intro-
ductory books in digital signal processing (Lyons, 2004), wavelets (Walker,
1999), image processing (R. C. Gonzalez, 1992), and morphological image
analysis (Soille, 2004).

Eztraction of local features: For sequential, spatial or other structured data,
specific techniques like convolutional methods using hand-crafted kernels
or syntactic and structural methods are used. These techniques encode
problem specific knowledge into the features. They are beyond the scope
of this book but it is worth mentioning that they can bring significant
improvement.

Linear and non-linear space embedding methods: When the dimensionality
of the data is very high, some techniques might be used to project or em-
bed the data into a lower dimensional space while retaining as much infor-
mation as possible. Classical examples are Principal Component Analysis
(PCA) and Multidimensional Scaling (MDS) (Kruskal and Wish, 1978).
The coordinates of the data points in the lower dimension space might be
used as features or simply as a means of data visualization.

Non-linear expansions: Although dimensionality reduction is often sum-
moned when speaking about complex data, it is sometimes better to in-
crease the dimensionality. This happens when the problem is very complex
and first order interactions are not enough to derive good results. This con-
sists for instance in computing products of the original features x; to create
monomials Ty, Tp,...Tk,.

4 Isabelle Guyon and André Elisseeff

e Feature discretization. Some algorithms do no handle well continuous data.
It makes sense then to discretize continuous values into a finite discrete
set. This step not only facilitates the use of certain algorithms, it may
simplify the data description and improve data understanding (Liu and
Motoda, 1998).

Some methods do not alter the space dimensionality (e.g. signal enhance-
ment, normalization, standardization), while others enlarge it (non-linear ex-
pansions, feature discretization), reduce it (space embedding methods) or can
act in either direction (extraction of local features).

Feature construction is one of the key steps in the data analysis process,
largely conditioning the success of any subsequent statistics or machine learn-
ing endeavor. In particular, one should beware of not losing information at
the feature construction stage. It may be a good idea to add the raw features
to the preprocessed data or at least to compare the performances obtained
with either representation. We argue that it is always better to err on the
side of being too inclusive rather than risking to discard useful information.
The medical diagnosis example that we have used before illustrates this point.
Many factors might influence the health status of a patient. To the usual clini-
cal variables (temperature, blood pressure, glucose level, weight, height, etc.),
one might want to add diet information (low fat, low carbonate, etc.), family
history, or even weather conditions. Adding all those features seems reason-
able but it comes at a price: it increases the dimensionality of the patterns
and thereby immerses the relevant information into a sea of possibly irrele-
vant, noisy or redundant features. How do we know when a feature is relevant
or informative? This is what “feature selection” is about and is the focus of
much of this book.

1.3 Feature selection

We are decomposing the problem of feature extraction in two steps: feature
construction, briefly reviewed in the previous section, and feature selection,
to which we are now directing our attention. Although feature selection is
primarily performed to select relevant and informative features, it can have
other motivations, including:

1. general data reduction, to limit storage requirements and increase algo-
rithm speed;
2. feature set reduction, to save resources in the next round of data collection
or during utilization;
. performance improvement, to gain in predictive accuracy;
4. data understanding, to gain knowledge about the process that generated
the data or simply visualize the data

w

Several chapters in Part I are devoted to feature selection techniques.
Chapter 3 reviews filter methods. Filters are often identified to feature rank-
ing methods. Such methods provide a complete order of the features using

Introduction 5

a relevance index. Methods for computing ranking indices include correlation
coefficients, which assess the degree of dependence of individual variables with
the outcome (or target). A variety of other statistics are used, including clas-
sical test statistics (T-test, F-test, Chi-squared, etc.) More generally, methods
that select features without optimizing the performance of a predictor are
referred to as “filters”. Chapter 6 presents information theoretic filters.

Chapter 4 and Chapter 5 are devoted to wrappers and embedded methods.
Such methods involve the predictor as part of the selection process. Wrappers
utilize a learning machine as a “black box” to score subsets of features accord-
ing to their predictive power. Embedded methods perform feature selection
in the process of training and are usually specific to given learning machines.
Wrappers and embedded methods may yield very different feature subsets
under small perturbations of the dataset. To minimize this effect, Chapter 7
explains how to improve feature set stability by using ensemble methods.

A critical aspect of feature selection is to properly assess the quality of the
features selected. Methods from classical statistics and machine learning are
reviewed in Chapter 2. In particular, this chapter reviews hypothesis testing,
cross-validation, and some aspects of experimental design (how many training
examples are needed to solve the feature selection problem.)

A last, it should be noted that it is possible to perform feature construction
and feature selection simultaneously, as part of a global optimization problem.
Chapter 6 introduces the reader to methods along this line.

1.4 Methodology

The chapters of Part I group topics in a thematic way rather than in a method-
ological way. In this section, we present a unified view of feature selection that
transcends the old cleavage filter /wrapper and is inspired by the views of (Liu
and Motoda, 1998).

6 Isabelle Guyon and André Elisseeff

s o) s)
5§ S i§ S
G single \ <. éz" single \ ¢,
§ feature % N feature %
& / Cross relevance \ & & / Cross relevance \ &
(4 : 2> < P >
validation o validation (s
S Relevance \ ©. S Relevance \ <.
& in context X & in context 3.
5\\' Performance | Feature subset /% § Performance | Feature subset /%

IS bounds relevance (o I bounds relevance o
@ 2 @ 2
S Performance \ Z:. Nj Performance %
S" Statistical learning /OO A% Statistical learning %

&G) tests Nested subset,\"2chine &G) tests Nested subset,\T1achine
Heuristic or forward selection/ Heuristic or forward selection/
stochastic search backward elimination stochastic search backward elimination
Exhaustive search Single feature ranking Exhaustive search Single feature ranking
Feature subset generation, search Feature subset generation, search
(a) Filters (b) Wrappers
S <
S
@QT single \ €.
S feature %
& /cross | relevance \ G
validation (S
§ Relevance s
‘2’7\ in context)
& 7z
& Performance | Feature subset %
& bounds relevance o
S S
\Q(U Performance %r
A"U Statistical learning /Oé
< tests Nested subset, (Gehne

Heuristic or forward selection/
stochastic search backward elimination

Exhaustive search Single feature ranking

Feature subset generation, search

(¢) Embedded methods

Fig. 1. The three principal approaches of feature selection. The shades show the
components used by the three approaches: filters, wrappers and embedded methods.

There are four aspects of feature extraction:

feature construction;

feature subset generation (or search strategy);

evaluation criterion definition (e.g. relevance index or predictive power);
evaluation criterion estimation (or assessment method).

The last three aspects are relevant to feature selection and are schemati-
cally summarized in Figure 1.

Filters and wrappers differ mostly by the evaluation criterion. It is usually
understood that filters use criteria not involving any learning machine, e.g.
a relevance index based on correlation coefficients or test statistics, whereas
wrappers use the performance of a learning machine trained using a given
feature subset.

Both filter and wrapper methods can make use of search strategies to ex-
plore the space of all possible feature combinations that is usually too large to

Introduction 7

be explored exhaustively (see Chapter 4.) Yet filters are sometimes assimilated
to feature ranking methods for which feature subset generation is trivial since
only single features are evaluated (see Chapter 3). Hybrid methods exist, in
which a filter is used to generate a ranked list of features. On the basis of the
order thus defined, nested subsets of features are generated and computed by
a learning machine, i.e. following a wrapper approach. Another class of embed-
ded methods (Chapter 5) incorporate feature subset generation and evaluation
in the training algorithm.

The last item on the list, criterion estimation, is covered in Chapter 2.
The difficulty to overcome is that a defined criterion (a relevance index or the
performance of a learning machine) must be estimated from a limited amount
of training data. Two strategies are possible: “in-sample” or “out-of-sample”.
The first one (in-sample) is the “classical statistics” approach. It refers to using
all the training data to compute an empirical estimate. That estimate is then
tested with a statistical test to assess its significance, or a performance bound
is used to give a guaranteed estimate. The second one (out-of-sample) is the
“machine learning” approach. It refers to splitting the training data into a
training set used to estimate the parameters of a predictive model (learning
machine) and a validation set used to estimate the learning machine predictive
performance. Averaging the results of multiple splitting (or “cross-validation”)
is commonly used to decrease the variance of the estimator.

2 What is New in Feature Extraction?

As of 1997, when a special issue on relevance including several papers on vari-
able and feature selection was published (Blum and Langley, 1997, Kohavi
and John, 1997), few domains explored used more than 40 features. The sit-
uation has changed considerably in the past few years. We organized in 2001
a first NIPS workshop, the proceedings of which include papers exploring do-
mains with hundreds to tens of thousands of variables or features (Guyon
and Elisseeff, 2003). Following this workshop, we organized a feature selection
competition, the results of which were presented at a NIPS workshop in 2003.
The present book is the outcome of the latter.

Part II of the book describes the methods used by the best ranking par-
ticipants. Chapter II summarizes the results of the competition. Five datasets
were used that were chosen to span a variety of domains (biomarker discovery,
drug discovery, handwriting recognition, and text classification) and difficul-
ties (the input variables are continuous or binary, sparse or dense; one dataset
has unbalanced classes.) One dataset was artificially constructed to illustrate
a particular difficulty: selecting a feature set when no feature is informative
individually. We chose datasets that had sufficiently many examples to cre-
ate a large enough test set and obtain statistically significant results (Guyon,
2003). We introduced a number of random features called probes to make the
task more difficult and identify the algorithms capable of filtering them out.

8 Isabelle Guyon and André Elisseeff

The challenge winning methods are described in Chapter 10. The authors
use a combination of Bayesian neural networks (Neal, 1996) and Dirichlet dif-
fusion trees (Neal, 2001). Two aspects of their approach were the same for
all data sets: (1) reducing the number of features used for classification to no
more than a few hundred, either by selecting a subset of features using simple
univariate significance tests, or by Principal Component Analysis; (2) applying
a classification method based on Bayesian learning, using an Automatic Rel-
evance Determination (ARD) prior that allows the model to determine which
of the features are most relevant (MacKay, 1994, Neal, 1996). Bayesian neural
network learning with computation by Markov chain Monte Carlo (MCMC)
is a well developed technology (Neal, 1996). Dirichlet diffusion trees are a new
Bayesian approach to density modeling and hierarchical clustering.

A wide variety of other methods presented in Part II performed nearly as
well. For feature selection, filter methods proved quite effective. Four of the
top entrants explore successfully the use of Random Forests (RF)® as a filter
(Chapter 11, Chapter 15, and Chapter 12). Simple correlation coefficients also
performed quite well (Chapter 13, Chapter 14, Chapter 20, and Chapter 23),
as well as information theoretic ranking criteria (Chapter 22 and Chapter 24).
Some of the recently introduced embedded methods using a Support Vector
Machine (SVM) or a related kernel method were applied with success (Chap-
ter 12, Chapter 13, Chapter 16, Chapter 18, Chapter 19, and Chapter 21).
Among the most innovative methods, Chapter 17 and Chapter 29 present a
margin-based feature selection method inspired by the Relief algorithm (Kira
and Rendell, 1992).

As far as classifier choices are concerned, the second best entrants (Chap-
ter 11) use the simple regularized least square kernel method as classifier.
Many of the other top entrants use regularized kernel methods with various
loss functions, including kernel partial least squares (KPLS) (Chapter 21),
vanilla Support Vector machines (SVM) (Chapter 12, Chapter 20, Chap-
ter 22, Chapter 23 and Chapter 24), transductive SVM (Chapter 13), Bayesian
SVM (Chapter 18), Potential SVM (Chapter 19), and 1-norm SVM (Chap-
ter 16). Two other entrants used neural networks like the winners (Chap-
ter 14 and Chapter 26). Other methods includes Random Forests (RF) (Chap-
ter 15), Naive Bayes (Chapter 24 and Chapter 25) and simple nearest neigh-
bors (Chapter 17).

Part IIT of the book devotes several chapters to novel approaches to feature
construction. Chapter 27 provides a unifying framework to many methods
of linear and non-linear space embedding methods. Chapter 28 proposes a
method for constructing orthogonal features for an arbitrary loss. Chapter 31
gives an example of syntactic feature construction: protein sequence motifs.

5Random Forests are ensembles of tree classifiers.

Introduction 9

3 Getting started

Amidst the forest of methods, the reader who is getting started in the field may
be lost. In this section, we introduce basic concepts and briefly describe simple
but effective methods. We illustrate with small two-dimensional classification
problems (Figure 2) some special cases.

One approach to feature selection is to rank features according to their
individual relevance (Section 3.1.) Such feature ranking methods are consid-
ered fast and effective, particularly when the number of features is large and
the number of available training examples comparatively small (e.g. 10,000
features and 100 examples.) In those cases, methods that attempt to search
extensively the space of feature subsets for an optimally predictive can be
much slower and prone to “overfitting” (perfect predictions may be achieved
on training data, but the predictive power on test data will probably be low.)

However, as we shall see in some other examples (Section 3.2 and 3.3),
there are limitations to individual feature ranking, because of the underlying
feature independence assumptions made by “univariate” methods:

e features that are not individually relevant may become relevant in the
context of others;

e features that are individually relevant may not all be useful because of
possible redundancies.

So-called “multivariate” methods take into account feature dependencies.
Multivariate methods potentially achieve better results because they do not
make simplifying assumptions of variable/feature independence.

3.1 Individual relevance ranking

Figure 2-a shows a situation in which one feature (x1) is relevant individually
and the other (z2) does not help providing a better class separation. For such
situations individual feature ranking works well: the feature that provides a
good class separation by itself will rank high and will therefore be chosen.

The Pearson correlation coefficient is a classical relevance index used
for individual feature ranking. We denote by x; the m dimensional vector
containing all the values of the j** feature for all the training examples, and
by y the m dimensional vector containing all the target values. The Pearson
correlation coefficient is defined as:

. | > iy (i — Z5)(yi —)
C — (3
) Vi @iy —)2 300 (yi — §)?

where the bar notation stands for an average over the index i. This coeffi-
cient is also the absolute value of the cosine between vectors x; and y, after
they have been centered (their mean subtracted). The Pearson correlation
coefficient may be used for regression and binary classification problems. For

, (1)

10 Isabelle Guyon and André Elisseeff

° o * « o o
o i *g h'd o /;**
0 o

o 0% * o P¥ *
8 o o) 8 %o .7

o o, o o,

o ! * § o, ﬁv*

® o odbod W F X ° 00X Hdo THOK %
(a) Vertical separation: pro- (b) Oblique separation with (c¢) Chessboard pb.: neither
jection zo uninformative. projection zs uninformative. projection informative.

00 O ao O 0 O @0 X

(d) Oblique separation with (e) Perfect oblique separa- (f) Mediocre separation,

both projections informa- tion, same projections as (d). same proj. as (d) and (e).
tive.
o™
X

(g) Three-d example: Best single feature = x3; (h) Projections of Figure (g).
best pair = {z1,z2}.

Fig. 2. Small classification examples. One class is represented by circles and the
other by stars. The horizontal axis represents one feature and the vertical axis the
other. In the last example we have a third feature. We represent each class by circles
or stars. We show the projections of the classes on the axes as superimposed circles
and stars.

Introduction 11

multi-class problems, one can use instead the closely related Fisher coefficient.
The Pearson correlation coefficient is also closely related to the T-test statis-
tic, and the Naive Bayes ranking index. See Chapter 3 for details and for other
examples of ranking criteria.

Rotations in feature space often simplify feature selection. Figure 2-a is
obtained from Figure 2-d by a 45 degree rotation. One notices that to achieve
the same separation, two features are needed in Figure 2-d, while only one
is needed in Figure 2-a. Rotation is a simple linear transformation. Several
preprocessing methods such as principal component analysis (PCA) perform
such linear transformations, which permit reducing the space dimensionality
and exhibit better features.

The notion of relevance is related to the objective being pursued. A
feature that is irrelevant for classification may be relevant for predicting the
class conditional probabilities. Such is the case of feature z5 in Figure 2-a. The
examples of the two classes are drawn from overlapping Gaussian distributions
whose class centers are aligned with axis 7. Thus, P(y|x) is not independent
of x5, but the error rate of the optimum Bayes classifier is the same whether
feature x5 is kept or discarded. This points to the fact that density estimation
is a harder problem than classification and usually requires more features.

3.2 Relevant features that are individually irrelevant

In what follows, we justify the use of multivariate methods, which make use of
the predictive power of features considered jointly rather than independently.

A helpful feature may be irrelevant by itself. One justification of
multivariate methods is that features that are individually irrelevant may
become relevant when used in combination. Figure 2-b gives an example of
a linear separation in which an individually irrelevant feature helps getting a
better separation when used with another feature.® This case occurs in real
world examples: feature 1 might represent a measurement in an image that is
randomly offset by a local background change; feature x5 might be measuring
such local offset, which by itself is not informative. Hence, feature o might
be completely uncorrelated to the target and yet improve the separability of
feature zq, if subtracted from it.

Two individually irrelevant features may become relevant when used
in combination. The case of Figure 2-c, known as the “chessboard problem”,
illustrates this situation.” In the feature selection challenge (see Part II), we
proposed a problem that generalizes this case in a higher dimension space: The
MADELON dataset is built from clusters placed on the vertices of a hypercube
in five dimensions and labeled at random.

The Relief method is a classical example of multivariate filter. Most
multivariate methods rank subsets of features rather than individual features.

51t is worth noting that the z2 projection is the same in Figures 2-a and 2-b.
"This is a small 2x2 chessboard. This problem is analogous to the famous XOR
problem, itself a particular case of the parity problem.

12 Isabelle Guyon and André Elisseeff

Still, there exist multivariate relevance criteria to rank individual features
according to their relevance in the context of others. To illustrate this concept,
we give as example a ranking index for classification problems derived from
the Relief algorithm (Kira and Rendell, 1992):

K
_ it ke [Ty — Tan ()
- K
Doty 2ok [T — THy).

Notations will be explained shortly. The Relief algorithm uses an approach
based on the K-nearest-neighbor algorithm. To evaluate the index, we first
identify in the original feature space, for each example x;, the K closest ex-
amples of the same class {zy, (;y},k = 1...K (nearest hits) and the K closest
examples of a different class {@ s, (;)} (nearest misses.)® Then, in projection
on feature j, the sum of the distances between the examples and their nearest
misses is compared to the sum of distances to their nearest hits. In Equa-
tion 2, we use the ratio of these two quantities to create an index independent
of feature scale variations. The Relief method works for multi-class problems.

C() (2)

3.3 Redundant features

Another justification of multivariate methods is that they take into account
feature redundancy and yield more compact subsets of features. Detecting
redundancy cannot be done by analyzing only the feature projections, as uni-
variate methods do. This point is illustrated in the following examples.

Noise reduction can be achieved with features having identical pro-
jected distributions. In Figure 2-d, the two features look similar if we com-
pare their projected distributions. Yet they are not completely redundant:
the two-dimensional distribution shows a better class separation than the one
achievable with either feature. In this example the data points of the two
classes are generated from Gaussian distributions with equal variance ¢2. In
projection on either feature, the distance d between the two classes is iden-
tical. The signal to noise ratio of each individual feature is therefore d/o. In
projection on the first diagonal, the distance between the two classes is dv/2,
hence the signal-to-noise ratio is improved by v/2. Adding n features having
such class conditional independence would result in an improvement of the
signal-to-noise ratio by /n.

Correlation does NOT imply redundancy. Figures 2-e and Figure 2-
f show even more striking examples in which the feature projections are the
same as in Figure 2-d. It is usually thought that feature correlation (or anti-
correlation) means feature redundancy. In Figure 2-f, the features are corre-
lated and indeed redundant: the class separation is not significantly improved
by using two features rather than one. But in Figure 2-e, despite that two

8All features are used to compute the closest examples.

Introduction 13

features have similar projections and are anti-correlated, they are not redun-
dant at all: a perfect separation is achieved using the two features while each
individual feature provides a poor separation.

3.4 Forward and backward procedures

Having recognized the necessity of selecting features in the context of other
features and eliminating redundancy, we are left with a wide variety of algo-
rithms to choose from. Among wrapper and embedded methods (Chapter 4
and Chapter 5), greedy methods (forward selection or backward elimination)
are the most popular. In a forward selection method one starts with an empty
set and progressively add features yielding to the improvement of a perfor-
mance index. In a backward elimination procedure one starts with all the
features and progressively eliminate the least useful ones. Both procedures
are reasonably fast and robust against overfitting. Both procedures provide
nested feature subsets. However, as we shall see, they may lead to different
subsets and, depending on the application and the objectives, one approach
may be preferred over the other one. We illustrate each type of procedure with
examples of algorithms.

Forward or backward? In Figures 2-g and h, we show an example in
three dimensions illustrating differences of the forward and backward selec-
tion processes. In this example, a forward selection method would choose
first x3 and then one of the two other features, yielding to one of the order-
ings x3, 1, X Or X3, T2, 1. A backward selection method would eliminate z3
first and then one of the two other features, yielding to one of the orderings
1, %2, X3 OT To, X1, x3. Indeed, on Figure 2-h, we see that the front projection
in features x; and zo gives a figure similar to Figure 2-e. The last feature
x3 separates well by itself, better than x; or x5 taken individually. But, com-
bined with either x; or zo, it does not provide as good a separation as the pair
{1, z2}. Hence, the forward selection ordering yields a better choice if we end
up selecting a single feature (the top ranking x3), but the backward selection
method will give better results if we end up selecting two features (the top
ranking z; and z3). Backward elimination procedures may yield better per-
formances but at the expense of possibly larger feature sets. However if the
feature set is reduced too much, the performance may degrade abruptly. In
our previous example, choosing the top ranking feature by backward selection
would be much worse than choosing x3 as given by the forward approach.

Forward selection algorithm examples are now provided. The Gram-
Schmidt orthogonalization procedure is a simple example of forward selection
method (see Chapter 2 for details and references.) The first selected feature
has largest cosine with the target. For centered features, this is equivalent
to selecting first the feature most correlated to the target (Equation 1.) The
subsequent features are selected iteratively as follows:

e the remaining features and the target are projected on the null space of
the features already selected;

14 Isabelle Guyon and André Elisseeff

e the feature having largest cosine with the target in that projection is added
to the selected features.

The procedure selects the features that incrementally decrease most the least-
square error of a linear predictor. One can stop the procedure using a statistical
test or by cross-validation (Chapter 2.) This procedure has the advantage
to be described in few lines of codes and it performs well in practice. We
give a Matlab implementation of the algorithm in Appendix A. It is worth
noting the similarity with the Partial Least Square (PLS) method (see e.g.
(Hastie et al., 2000)): both methods involve iteratively the computation of
the correlation of the (projected) input features with the target, followed by
a new projection on the null space of the features selected; the difference is
that, in Gram-Schmidt, original input features are selected while in PLS the
features selected are constructed as a weighted sum of the original features,
the weights being given by the correlation to the target.

Another more advanced example of forward selection method is “Random
Forests” or RF. Ensembles of decision trees (like Random Forests (Breiman,
2001)) select features in the process of building a classification or regres-
sion tree. A free RF software package is available from http://www.stat.
berkeley.edu/users/breiman/RandomForests/ and a Matlab interface from
http://sunsite.univie.ac.at/statlib/matlab/RandomForest.zip.

Backward elimination algorithm examples are now provided. The re-
cursive feature elimination Support Vector Machine (RFE-SVM) is a simple
example of backward elimination method (see Chapter 5 for details and ref-
erences.) For the linear SVM having decision function f(x) = w - + b, the
method boils down to simply iteratively removing the feature x; with the
smallest weight in absolute value |w;| and retraining the model.” At the ex-
pense of some sub-optimality, the method can be sped up by removing several
features at a time at each iteration. The method can also be extended to the
non-linear SVM (Chapter 5.) SVMs are described in Chapter 1 and numer-
ous free software packages are available (see http://www.kernel-machines.
org/) which makes this approach rather simple in terms of implementation.

RFE is a weight pruning method according to the smallest change in objec-
tive function. It follows the same paradigm than the Optimal Brain Damage
procedure (OBD), which is used to prune weights in neural networks and can
be used for feature selection. OBD also bears resemblance with the Automatic
Relevance Determination (ARD) Bayesian method used by the winners of the
competition (see Chapter 7 and Chapter 10 for details.)

3.5 Recapitulation

Table 1 summarizes the methods mentioned in this section. We recommend
to try the methods in order of increasing statistical complexity:

9RFE usually works best on standardized features, see Section 1.2.

http://www.stat.berkeley.edu/users/breiman/RandomForests/
http://www.stat.berkeley.edu/users/breiman/RandomForests/
http://sunsite.univie.ac.at/statlib/matlab/RandomForest.zip
http://www.kernel-machines.org/
http://www.kernel-machines.org/

Introduction 15

Feature Matching Computational |Comments

selection classifier complexity

Pearson Naive bayes |nm Feature ranking filter. Linear univari-

(Eq. 1) ate. Makes independence assumptions
between features. Low computational
and statistical complexity.

Relief Nearest nm? Feature ranking filter. Non-linear

(Eq. 2) neighbors multivariate. Statistical complexity
monitored by the number of neigh-
bors.

Gram- linear RLSQ |fnm Forward selection, stopped at f fea-

Schmidt tures. Linear multivariate. The statis-

(Sec. 3.4) tical complexity of RLSQ monitored
by the regularization parameter or
“ridge”.

RFE-SVM |SVM max(n,m)m? |Backward elimination. Multivariate,

(Sec. 3.4) linear or non-linear. Statistical com-
plexity monitored by kernel choice
and “soft-margin” constraints.

OBD/ARD |Neural Nets |min(n, m)nmh |Backward elimination. Non-linear
multivariate. Statistical complex-
ity monitored by the number h of
hidden units and the regularization
parameter or‘“weight decay”.

RF RF tv/n mlogm |Ensemble of t tree classifiers, each
preforming forward selection. Non-
linear multivariate.

Table 1. Frequently used feature selection methods. We use the abbreviations:

RLSQ=regularized least square; RFE=recursive feature elimination; SVM=support
vector machine; OBD=optimum brain damage; ARD=automatic relevance determi-
nation; RF=random forest. We call m the number of training examples and n the
number of features. The computational complexity main vary a lot depending on
the implementation and should be taken with caution.

16 Isabelle Guyon and André Elisseeff

1. Univariate methods making independence assumptions between vari-
ables. Feature selection: Ranking with the Pearson correlation coefficient.
Classifier: Naive Bayes.

2. Linear multivariate methods. Feature selection: Gram-Schmidt for-
ward selection or RFE with linear SVM. Predictors: Linear SVM or linear
regularized least-square model (RLSQ.)

3. Non-linear multivariate methods. Feature selection: Relief, RFE,
OBD or ARD combined with non-linear models. Predictors: Nearest neigh-
bors, non-linear SVM or RLSQ, neural network, RF.

Computational complexity is also sometimes of consideration. We have
added to Table 1 some orders of magnitude of the computational complexity
of the feature selection process. This does not include the assessment part
determining the optimum number of features to be selected. Justifications of
our estimates are provided in Appendix B.

4 Advanced topics and open problems

This book presents the status of a rapidly evolving field. The applications are
driving this effort: bioinformatics, cheminformatics, text processing, speech
processing, and machine vision provide machine learning problems in very
high dimensional spaces, but often comparably few examples (hundreds). Tt
may be surprising that there is still a profusion of feature selection methods
and that no consensus seems to be emerging. The first reason is that there
are several statements of the feature selection problem. Other reasons include
that some methods are specialized to particular cases (e.g. binary inputs or
outputs), some methods are computationally inefficient so they can be used
only for small numbers of features, some methods are prone to “overfitting”
so they can be used only for large numbers of training examples.

The fact that simple methods often work well is encouraging for practi-
tioners. However, this should not hide the complexity of the problems and the
challenges ahead of us to improve on the present techniques and consolidate
the theory. Inventing a new algorithm is a good way to be acquainted with
the problems. But there exist already so many algorithms that it is difficult to
improve significantly over the state of the art without proceeding in a princi-
pled way. This section proposes some formal mathematical statements of the
problems on which new theories can be built.

Let us first introduce some notations. A pattern is a feature vector © =
[x1, 2, ...25], which is an instance of a random vector X = [X1, Xo,...X,,].
For each assignment of values, we have a probability P(X = x). We assume
that the values are discrete for notational simplicity. The target is a random
variable Y taking values y. The dependency between X and Y is governed by
the distribution P(X = «,Y = y) = P(Y = y|X = 2)P(X = z). When we
write P(X,Y) = P(Y|X)P(X), we mean that the equality hold true for all

Introduction 17

the values taken by the random variables. Let V' be some subset of X. Let
X % be the subset of X excluding z; and V=% be some subset of X ~*.

4.1 Relevant features

We start with the notion of relevant feature. We first define irrelevance as a
consequence of random variable independence and then define relevance by
contrast. First we assume the knowledge of the data distributions, which in
reality are unknown. We then discuss what can be done in the finite sample
case.

Definition 1 (Surely irrelevant feature). A feature X; is surely irrelevant
iff for all subset of features V=" including X ~*,

P(X;, Y|V = P(X,[VTHPYIVT).
Since we care little about cases that occur with zero or small probability

it seems natural to measure irrelevance in probability e.g. with the Kullback-
Leibler divergence between P(X;, Y|V ~%) and P(X;|V~H)P(Y|V~%):

P(X;, Y|V
P(X;|V-H)P(Y[V~)

MI(X;, Y|V = Y P(X;,Y[V)l
{Xi7Y}

The sum runs over all possible values of the random variables X; and Y.
We note that the expression obtained is the conditional mutual information.
It is therefore a function of n — 1 variables.!? In order to derive a score that
summarizes how relevant feature X; is, we average over all the values of V=%

EMI(X;)Y) = Z P(VTYMI(X;, Y|V

We define then:

Definition 2 (Approximately irrelevant feature). A feature X; is ap-
proximately irrelevant, w;’th level of approzimation € > 0 or e-relevant, iff, for
all subset of features V" including X ~*,

EMI(X;,Y)<e
When € = 0, the feature will be called almost surely irrelevant.

With that statement, conditional mutual information comes as a natural
relevance ranking index and we may define relevance by contrast to irrel-
evance. The practical use of our definitions to perform feature selection is

10Recall that n is the total number of features.

18 Isabelle Guyon and André Elisseeff

computationally expensive since it requires considering all subset of features
V=% and summing over all the values of V=%, However if we assume that fea-
tures X; and X for all 4 # j, are independent, the average conditional mutual
information is the same as the mutual information between X; and Y:

EMI(X;,,)Y)=MI(X,,Y)
This motivates the following definition:

Definition 3 (Individually irrelevant feature). A feature X; is individu-
ally irrelevant iff for some relevance threshold epsilon > 0

MI(X;,Y) <e.

The derivation of this definition justifies of the use of mutual information
as a feature ranking index (see Chapter 6.)

The finite sample case is now discussed. In practical cases, we do not
have access to the probability distributions P(X) and P(Y|X), but we have
training examples drawn from these distributions. We define a new notion
of probable approximate irrelevance. At the same time, we replace in our
definition the criteria EMI(X;,Y) or MI(X;,Y) by a generic non-negative
index C(i) whose expected value is zero for irrelevant features. We write our
index as C(i,m) to emphasize that it is an empirical index computed from m
training examples.

Definition 4 (Probably approximately irrelevant feature). A feature ¢
is probably approximately irrelevant with respect to an index C estimated with
m examples, with level of approzimation € > 0 and risk § > 0 iff

P(C(i,m) > e(d,m)) < 6.

Clearly, for relevant features, we do not know the probability distribution
of C(i,m) across different drawings of the training set of size m, so it does
not seem that we have progressed very much. However, we may be able to
make some assumptions about the distribution of C for irrelevant features.
Following the paradigm of hypothesis testing, we call the distribution of C
for irrelevant features the “null” distribution. For a given candidate feature 4,
the null hypothesis is that this feature is irrelevant. We will reject this null
hypothesis if C'(i,m) departs significantly from zero. Using the “null” distri-
bution and a chosen risk 4, we can compute the significance threshold e(d, m).
This method of assessing the statistical significance of feature relevance is fur-
ther developed in Chapter 2.

Discussion. Many definitions of relevance have been provided in the literature.
Kohavi and John (Kohavi and John, 1997) make a distinction between strongly and
weakly relevant features. We recall below those definitions:

Introduction 19

A feature X; is strongly relevant iff there exists some values z;, y and v;

with P(X; = z;, X" = v;) > 0 such that: P(Y = y|X; = z;, X * =

v;) # P(Y = y| X" = v;). A feature X, is weakly relevant iff it is not

strongly relevant and if there exists a subset of features V~* for which

there exists for values x;, y and v; with P(X; = x;, V; = v;) > 0 such that:

PY =y|Xi =z, Vi=v;) # P(Y = y|V; = v;).
Our asymptotic definitions of relevance are similarly based on conditioning. Kohavi
and John’s introduction of strong and weak relevance seems to have been guided by
the need to account for redundancy: the strongly relevant feature that is needed on its
own and cannot be removed, and the weakly relevant feature that is redundant with
other relevant features and can therefore be omitted if similar features are retained.
Our approach separates the notion of redundancy from that of relevance: A feature
is relevant if it contains some information about the target. Since our definition of
relevance is less specific, we introduce in Section 4.2 the notion of sufficient feature
subset, a concept to extract a minimum subset of relevant feature and therefore to
rule out redundancy when required.

4.2 Sufficient feature subset

In the previous section, we have provided formal definitions for the notion
of feature relevance. As outlined in section 3.3, relevant features may be re-
dundant. Hence, a ranking of features in order of relevance does not allow us
to extract a minimum subset of features that are sufficient to make optimal
predictions. In this section, we propose some formal definitions of feature sub-
set sufficiency. We introduce the additional notation V for the subset that
complements a set of feature V in X: X = [V, V].

Definition 5 (Surely sufficient feature subset). A subset V' of features is
surely sufficient iff, for all assignments of values to its complementary subset
v,

P(Y|V)=P(Y|X).

As in the case of the definition of feature relevance, since we care little
about cases that occur with zero or small probability, it seems natural to
measure sufficiency in probability. We define a new quantity:

PY =y|X = [v,7])
PY =y|lV =v)

DMI(V)= Y P(X =[v,8],Y =y)log
{v.%,y}

This quantity, introduced in (Koller and Sahami, 1996), is the expected value
over P(X) of the Kullback-Leibler divergence between P(Y|X) and P(Y|V).
It can be verified that:

DMI(V)=MI(X,Y) - MI(V,Y).

20 Isabelle Guyon and André Elisseeff

Definition 6 (Approximately sufficient feature subset). A subset V of
features is approximately sufficient, with level of approximation € > 0, or e-
sufficient, iff,

DMI(V) <e.

If e = 0 the subset V' will be called almost surely sufficient.

Definition 7 (Minimal approximately sufficient feature subset). A
subset V' of features is minimal approximately sufficient , with level of approx-
imation € > 0 iff it is e-sufficient and there does not exist other e-sufficient
subsets of smaller size.

From our definition, it follows that a minimal approximately sufficient
feature subset is a solution (probably not unique) to the optimization problem:

m‘}n [IVi]lo such that DMI(V') <,

where |V'||o denotes the number of features selected. Such optimization prob-
lem can be transform via the use of a Lagrange multiplier A > 0 into:

m‘}n IVllo+XADMI(V).

Noting that MI(X,Y) is constant, this is equivalent to:

m‘}n IV]o—AMI(V.,Y).

We recover the feature selection problem stated in Chapter 6: find the smallest
possible feature subset that maximizes the mutual information between the
feature subset and the target.

We remark that the quantity ||V ||o is discrete and therefore difficult to op-
timize. It has been suggested (Tishby et al., 1999) to replace it by MI(X, V).
As noted in section 3.1, the prediction of posterior probabilities is a harder
problem than classification or regression. Hence, we might want to replace the
problem of maximizing mutual information by that of minimizing a given risk
functional, e.g. the classification error rate. The formulation of the “zero-norm”
feature selection method follows this line of thoughts (see Chapter 5.)

4.3 Variance of feature subset selection

If the data have redundant features, different subsets of features can be equally
efficient. For some applications, one might want to purposely generate alter-
native subsets that can be presented to a subsequent stage of processing.
Still one might find this variance undesirable because (i) variance is often the
symptom of a “bad” model that does not generalize well; (ii) results are not
reproducible; and (iii) one subset fails to capture the “whole picture”.

One method to “stabilize” variable selection developed in Chapter 7 is to
use ensemble methods. The feature selection process may be repeated e.g.

Introduction 21

with sub-samples of the training data. The union of the subsets of features
selected may be taken as the final “stable” subset. An index of relevance of
individual features can be created considering how frequently they appear in
the selected subsets.

This approach has shown great promises but the following limitation is
worth mentioning: when one feature that is highly relevant by itself is com-
plemented by many alternative features having weak individual relevance, the
highly relevant feature will easily emerge from the procedure while the weak
features will be difficult to differentiate from irrelevant features. This may be
detrimental to performances.

4.4 Suggested problems

Before closing this chapter, we would like to describe some research directions
that we believe deserve attention.

More theoretically grounded algorithms. A lot of popular algorithms
are not principled and it is difficult to understand what problem they seek to
solve and how optimally they solve it. It is important to start with a clean
mathematical statement of the problem addressed (see Sections 7?7 and 4.2
for preliminary guidelines.) It should be made clear how optimally the chosen
approach addresses the problem stated. Finally, the eventual approximations
made by the algorithm to solve the optimization problem stated should be
explained. An interesting topic of research would be to “retrofit” successful
heuristic algorithms in a theoretical framework.

Better estimation of the computational burden. Computational
considerations are fairly well understood. But, even though the ever increasing
speed of computers lessens the importance of algorithmic efficiency, it remains
essential to estimate the computational burden of algorithms for feature se-
lection problems. The computational time is essentially driven by the search
strategy and the evaluation criterion. Several feature selection methods re-
quire examining a very large number of subsets of features, and possibly, all
subsets of features, i.e. 2" subsets. Greedy methods are usually more parsimo-
nious and visit only of the order of n or n? subsets. The evaluation criterion
may also be expensive as it may involve training a classifier or comparing
every pairs of examples or features. Additionally, the evaluation criterion may
involve one or several nested cross-validation loops. Finally, ensemble methods
offer performance increases at the expense of additional computations.

Better performance assessment of feature selection. The other im-
portant question to be addressed is of statistical nature: some methods require
more training examples than others to select relevant features and/or obtain
good predictive performances. The danger of “overfitting” is to find features
that “explain well” the training data, but have no real relevance or no predic-
tive power. Making theoretical predictions on the number of examples needed
to “solve” the feature selection problem is essential both to select an appro-
priate feature selection method and to plan for future data acquisition. Initial

22 Isabelle Guyon and André Elisseeff

results to tackle this problem are found e.g. in (Almuallim and Dietterich,
1991) and (Ng, 1998).

The sagacious reader will have noticed that we did not treat the finite
sample case in Section 4.2 for “sufficient feature subsets”. There is still a lack
of adequate formalism. We argue that in the finite sample case, feature subsets
that are NOT sufficient may yield better performance than sufficient subsets
(even if they are minimal and contain no irrelevant feature) because further
reducing the space dimensionality may help reducing the risk of overfitting.
In line with the “wrapper” methodology (Kohavi and John, 1997), it might be
necessary to introduce a notion of “efficient feature subset”: a subset providing
best expected value of the risk when the learning machine is trained with
a finite number m of examples. One central issue is to devise performance
bounds characterizing efficient feature subsets.

Other challenges. Although we have made an effort in this introduction
and in the book to cover a large number of topics related to feature extraction,
we have not exhausted all of them. We briefly list some other topics of interest.

e Unsupervised variable selection. Several authors have attempted to per-
form feature selection for clustering applications (see, e.g., Xing and Karp,
2001, Ben-Hur and Guyon, 2003, and references therein). For supervised
learning tasks, one may want to pre-filter a set of most significant vari-
ables with respect to a criterion which does not make use of y to lessen
the problem of overfitting.

o Selection of examples. The dual problems of feature selection/construction
are those of example selection/construction. Mislabeled examples may in-
duce the choice of wrong variables, so it may be preferable to perform
jointly the selection of variables and examples.

e Reverse engineering the system. Our introduction focuses on the problem
of constructing and selecting features useful to build a good predictor. Un-
raveling the causal dependencies between variables and reverse engineering
the system that produced the data is a far more challenging task (see, e.g.,
Pearl, 2000) that goes beyond the scope of this book.

5 Conclusion

We have presented in this introductions many aspects of the problem of feature
extraction. This book covers a wide variety of topics and provides access to
stimulating problems, particularly via the feature selection challenge, which
is the object of Part I of the book. Simple but effective solutions have been
presented as a starting point. The reader is now invited to study the other
chapters to discover more advanced solutions. We have indicated a number of
open problems to challenge the reader to contribute to this rapidly evolving
field.

Introduction 23

Acknowlegments

We are grateful to Eugene Tuv for providing us information on the computa-
tional complexity of RF.

References

H. Almuallim and T. G. Dietterich. Learning with many irrelevant features. In
Proceedings of the Ninth National Conference on Artificial Intelligence (AAAI-
91), volume 2, pages 547552, Anaheim, California, 1991. AAAI Press.

A. Ben-Hur and I. Guyon. Detecting stable clusters using principal component
analysis. In M.J. Brownstein and A. Kohodursky, editors, Methods In Molecular
Biology, pages 159-182. Humana Press, 2003.

A. Blum and P. Langley. Selection of relevant features and examples in machine
learning. Artificial Intelligence, 97(1-2):245-271, December 1997.

Leo Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.

I. Guyon. Design of experiments of the NIPS 2003 variable selection benchmark.
http: //www. nipsfsc. ecs. soton. ac. uk/papers/NIPS2003-Datasets. pdf,
2003.

I. Guyon and A. Elisseeff. An introduction to variable and feature selection. JMLR,
3:1157-1182, March 2003.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning,
Data Mining, Inference and Prediction. Springer Verlag, 2000.

K. Kira and L. Rendell. A practical approach to feature selection. In D. Sleeman
and P. Edwards, editors, International Conference on Machine Learning, pages
249-256, Aberdeen, July 1992. Morgan Kaufmann.

R. Kohavi and G. John. Wrappers for feature selection. Artificial Intelligence, 97
(1-2):273-324, December 1997.

D. Koller and M. Sahami. Toward optimal feature selection. In 13th International
Conference on Machine Learning, pages 284-292, July 1996.

J. Kruskal and M. Wish. Multidimensional Scaling. Sage Publications, 1978.

H. Liu and H. Motoda. Feature Extraction, Construction and Selection: A Data
Mining Perspective. Kluwer Academic, 1998.

R. G. Lyons. Understanding Digital Signal Processing. Prentice Hall, 2004.

D. J. C. MacKay. Bayesian non-linear modeling for the energy prediction competi-
tion. ASHRAE Transactions, 100:1053-1062, 1994.

R. M. Neal. Defining priors for distributions using dirichlet diffusion trees. Technical
Report 0104, Dept. of Statistics,University of Toronto, 2001.

R. M. Neal. Bayesian Learning for Neural Networks. Number 118 in Lecture Notes
in Statistics. Springer-Verlag, New York, 1996.

A.Y. Ng. On feature selection: learning with exponentially many irrelevant features
as training examples. In 15th International Conference on Machine Learning,
pages 404-412. Morgan Kaufmann, San Francisco, CA, 1998.

J. Pearl. Causality. Cambridge University Press, 2000.

R. E. Woods R. C. Gonzalez. Digital Image Processing. Prentice Hall, 1992.

P. Soille. Morphological Image Analysis. Springer-Verlag, 2004.

http://www.nipsfsc.ecs.soton.ac.uk/papers/NIPS2003-Datasets.pdf

24 Isabelle Guyon and André Elisseeff

N. Tishby, F. C. Pereira, and W. Bialek. The information bottleneck method. In
Proc. of the 37th Annual Allerton Conference on Communication, Control and
Computing, pages 368-377, 1999.

J. S. Walker. A primer on wavelets and their scientific applications. Chapman and
Hall/CRC, 1999.

E.P. Xing and R.M. Karp. Cliff: Clustering of high-dimensional microarray data via
iterative feature filtering using normalized cuts. In 9th International Conference
on Intelligence Systems for Molecular Biology, 2001.

