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Summary 
 
A cell’s behavior is a consequence of the complex interactions between its numerous 
constituents, such as DNA, RNA, proteins and small molecules. Cells use signaling 
pathways and regulatory mechanisms to coordinate multiple processes, allowing them to 
respond to and adapt to an ever-changing environment. The large number of components, 
the degree of interconnectivity and the complex control of cellular networks are 
becoming evident in the integrated genomic and proteomic analyses that are emerging. It 
is increasingly recognized that the understanding of properties that arise from whole-cell 
function require integrated, theoretical descriptions of the relationships between different 
cellular components. Recent theoretical advances allow us to describe cellular network 
structure with graph concepts, and have revealed organizational features shared with 
numerous non-biological networks. How do we quantitatively describe a network of 
hundreds or thousands of interacting components? Does the observed topology of cellular 
networks give us clues about their evolution? How does cellular networks’ organization 
influence their function and dynamical responses? This article will review the recent 
advances in addressing these questions.    
  
Introduction 

Genes and gene products interact on several level. At the genomic level, transcription 
factors can activate or inhibit the transcription of genes to give mRNAs. Since these 
transcription factors are themselves products of genes, the ultimate effect is that genes 
regulate each other's expression as part of gene regulatory networks. Similarly, proteins 
can participate in diverse post-translational interactions that lead to modified protein 
functions or to formation of protein complexes that have new roles; the totality of these 
processes is called a protein-protein interaction network. The biochemical reactions in the 
cellular metabolism can likewise be integrated into a metabolic network whose fluxes are 
regulated by enzymes catalyzing the metabolic reactions. In many cases these different 
levels of interactions are integrated - for example, when the presence of an external signal 
triggers a cascade of interactions that involves both biochemical reactions and 
transcriptional regulation. 

A system of elements that interact or regulate each other can be represented by a 
mathematical object called graph (Bollobás, 1979). Here the word “graph” is not used in 
its usual meaning of “diagram of a functional relationship”, but as meaning “a collection 
of nodes and edges”, in other words, a network. At the simplest level, the system’s 
elements are reduced to graph nodes (also called vertices) and their interactions are 
reduced to edges connecting pairs of nodes (see Fig. 1). Edges can be either directed, 
specifying a source (starting point) and a target (endpoint), or non-directed. Directed 
edges are suitable for representing the flow of material from a substrate to a product in a 
reaction or the flow of information from a transcription factor to the gene whose 



transcription it regulates. Non-directed edges are used to represent mutual interactions, 
such as protein-protein binding. Graphs can be augmented by assigning various attributes 
to the nodes and edges; multi-partite graphs allow representation of different classes of 
node, and edges can be characterized by signs (positive for activation, negative for 
inhibition), confidence levels, strengths, or reaction speeds. Here I aim to show how 
graph representation and analysis can be used to gain biological insights through an 
understanding of the structure of cellular interaction networks.  
 
Graph concepts: from local to long-range 

The nodes of a graph can be characterized by the number of edges that they have ( the 
number of other nodes to which they are adjacent). This property is called the node 
degree. In directed networks we distinguish the in-degree, the number of directed edges 
that point toward the node, and the out-degree, the number of directed edges that start at 
the node. Whereas node degrees characterize individual nodes, one can define a degree 
distribution to quantify the diversity of the whole network (see Fig. 1). The degree 
distribution P(k) gives  the fraction of nodes that have degree k and is obtained by 
counting the number of  nodes N(k) that have k=1, 2, 3… edges and dividing it by the 
total number of nodes N. The degree distribution of numerous networks, such as the 
World-wide web, Internet, human collaboration networks and metabolic networks, 
follows a well-defined functional form γ−= Ak)k(P called a power law . Here A is a 
constant that ensures that the P(k) values add up to one , and the degree exponent γ is 
usually in the range 2<γ<3 (Albert and Barabási, 2002). This function indicates a high 
diversity of node degrees and that there is no typical node in the network that could be 
used to characterize the rest of the nodes (see Fig. 2). The absence of a typical degree (or 
typical scale) is why these networks are described as “scale-free”.   

The cohesiveness of the neighborhood of a node i is usually quantified by the 
clustering coefficient Ci , defined as the ratio between the number of edges linking nodes 
adjacent to i and the total possible number of edges among them (Watts and Strogatz, 
1998).  In other words, the clustering coefficient quantifies how close the local 
neighborhood of a node is to being part of a clique, a region of the graph (subgraph) 
where every node is connected to every other node. Various networks, including protein 
interaction and metabolic networks (Wagner and Fell, 2001; Yook et al., 2004) display a 
high average clustering coefficient, which indicates a high level of redundancy and 
cohesiveness. Averaging the clustering coefficients of nodes that have the same degree k 
gives the function C(k), which characterizes the diversity of cohesiveness of local 
neighborhoods (see Fig. 1). Several measurements indicate a decreasing C(k) in 
metabolic networks (Ravasz et al., 2002) and protein interaction networks (Yook et al., 
2004), following the relationship βkB)k(C =  where B is a constant and β is between 1 
and 2 . This suggests that low-degree nodes tend to belong to highly cohesive 
neighborhoods, whereas higher-degree nodes tend to have neighbors that are less 
connected to each other. 

 
 



Figure 1. Graph representation and 
graph analysis reveals regulatory 
patterns of cellular networks. The 
number of interactions a component 
participates in is quantified by its 
(in/out) degree, for example node O 
has both in-degree and out-degree 2. 
The clustering coefficient 
characterizes the cohesiveness of the 
neighborhood of a node, for example 
the clustering coefficient of I is 1, 
indicating that it is part of a three-
node clique. The graph distance 
between two nodes is defined as the 
number of edges in the shortest path 
between them. For example, the 
distance between nodes P and O is 1, 
and the distance between nodes O and 

P is 2 (along the OQP path). The degree distribution, P(k) ( P(kin) and P(kout) in directed 
networks) quantifies the fraction of nodes with degree k, while the clustering-degree function 
C(k) gives the average clustering coefficient of nodes with degree k. 

(a) A linear pathway can be represented as a succession of directed edges connecting 
adjacent nodes. As there are no shortcuts or feedbacks in a linear pathway, and the 
distance between the starting and end node increases linearly with the number of nodes. 
The in and out-degree distribution indicates the existence of a source (kin=0) and a sink 
(kout=0) node.  

(b) This undirected and disconnected graph is composed of two connected components 
(EFGH and IJK), has a range of degrees from 1 to 3 and a range of clustering coefficients 
from 0 (for F) to 1 (for I, J and). The connected component IJK is also a clique 
(completely connected subgraph) of three nodes. 

(c) This directed graph contains a feed-forward loop (MON) and a feedback loop (POQ), 
       which is also the largest strongly connected component of the graph. The in-component 
      of this graph contains L and M, while its out-component consists of the sink nodes N and   
      R. The source node L can reach every other node in the network. 
 

Two nodes of a graph are connected if a sequence of adjacent nodes, a path, links 
them (Bollobás, 1979). A path can thus signify a transformation route from a nutrient to 
an end-product in a metabolic network, or a chain of post-translational reactions from the 
sensing of a signal to its intended target in a signal transduction network. The graph 
distance (also called path length) between two nodes is defined as the number of edges 
along the shortest path connecting them. If edges are characterized by the speed or 
efficiency of information propagation along them, the concept can be extended to signify, 
for example, the path with shortest delay (Dijkstra, 1959). In most networks observed, 
there is a relatively short path between any two nodes, and its length is on the order of the 
logarithm of the network size (Albert and Barabási, 2002; Newman, 2003b). This “small 
world” property appears to characterize most complex networks, including metabolic and 
protein interaction networks. If a path connects each pair of nodes, the graph is said to be 
connected; if this is not the case one can find connected components, graph regions 
(subgraphs) that are connected (see Fig. 1). 



 The connectivity structure of directed graphs presents special features, because the 
path between two nodes i and j can be different when going from i to j or vice versa (see 
Fig. 1). Directed graphs can have one or several strongly connected components, 
subgraph whose nodes are connected in both directions; in-components, which are 
connected to the nodes in the strongly connected component but not vice versa; and out-
components, that can be reached from the strongly connected component but not vice 
versa. It is important to note that this topological classification reflects functional 
separation in signal transduction and metabolic networks. For example the regulatory 
architecture of a mammalian cell (Ma'ayan et al., 2004) has ligand-receptor binding as the 
in-component, a central signaling network as the strongly connected component and the 
transcription of target genes and phenotypic changes as part of the out-component. 

The source nodes of directed cellular networks (the nodes that only have outgoing 
edges) can be regarded as corresponding to their inputs. For example, the substrates 
consumed from the environment (and not synthesized by the cell) constitute the inputs of 
a metabolic network, extracellular ligands or their receptors are the sources of signal 
transduction networks (Ma'ayan et al., 2005), and environmentally (but not 
transcriptionally ) regulated transcription factors constitute the sources of transcriptional 
networks. Following the paths starting from each source node will reveal a subgraph 
(termed origon in the context of transcriptional networks, (Balázsi et al., 2005) whose 
nodes can be potentially influenced by functional changes in the source node.  

 
Graph models 
To understand how the above-defined graph measures reflect the organization of the 
underlying networks, we consider three representative graph families that have had  a 
significant impact on network research (Albert and Barabási, 2002; Barabási and Oltvai, 
2004; Newman, 2003b). A linear pathway has a well-defined source, a chain of 
intermediary nodes, and a sink (end) node. The clustering coefficient of each node is zero, 
because there are no edges among first neighbors.   Both the maximum and average path 
length increase linearly with the number of nodes and are long for pathways that have 
many nodes (see Fig.1a). This type of graph has been widely used as a model of an 
isolated signal transduction pathway. 

Random graphs, constructed by randomly connecting a given number N of nodes by  
E edges, reflect the (statistically) expected properties of a network of this size (Bollobás, 
1985). They have a bell-shaped degree distribution (see Fig. 2), indicating that the 
majority of nodes have a degree close to the average degree <k>. The average clustering 
coefficient of a random graph C equals Nk , thus is very small for large N  (Albert 
and Barabási, 2002). Also, the C(k) function is a constant, indicating that the size of a 
local neighborhood does not influence its chance of being a clique. Thus random graphs 
are statistically homogeneous, because very small and very large node degrees and 
clustering coefficients are very rare. The average distance between nodes of a random 
graph depends logarithmically on the number of nodes, which results in very short 
characteristic paths (Bollobás, 1985).  
 



 
 
 
Figure 2: Comparison between 
the degree distribution of scale-
free networks (circles)  and 
random graphs (squares) having 
the same number of nodes and 
edges. For clarity the same two 
distributions are plotted both on 
a linear (left) and logarithmic 
(right) scale. The bell shaped 
degree distribution of random 
graphs peaks at the average 
degree and decreases fast for 
both smaller and larger degrees, 

indicating that these graphs are statistically homogeneous. In contrast, the degree distribution of 
the scale-free network follows the power law 3Ak)k(P −= , which appears as a straight line on 
a logarithmic plot. The continuously decreasing degree distribution indicates that low-degree 
nodes have the highest frequencies; however there is a broad degree range with non-zero 
abundance of very highly connected nodes (hubs) as well. Note that the nodes in a scale-free 
network do not fall into two separable classes corresponding to low-degree nodes and hubs, but 
every degree between these two limits appears with a frequency given by P(k). 
 

Scale-free random graphs are constructed such that they conform to a prescribed 
scale-free degree distribution but are random in all other aspects. Similar to scrambled 
but degree-preserving versions of real networks, these graphs serve as a much better 
suited null model of biological networks than random graphs, and indeed they have been 
used as comparison in identifying the significant interaction motifs of cellular networks 
(Milo et al., 2002; Shen-Orr et al., 2002)  . Scale-free random graphs have even smaller 
path-lengths than random graphs (Cohen, 2003),  and they are similar to random graphs 
in terms of their local cohesiveness (Newman, 2003a). 

Growing network models strive to arrive at realistic topologies by describing 
network assembly and evolution. The simplest such model, (Barabási and Albert, 1999), 
incorporates two mechanisms: growth, (i.e. an increase in the number of nodes and edges 
over time) and preferential attachment, (i.e. an increased chance of high-degree nodes in 
acquiring new edges). Networks generated in this way have a power-law degree 
distribution 3Ak)k(P −=  (see Fig. 2), thus they can describe the higher end of the 
observed degree exponent range. Similarly to random graphs and scale-free random 
graphs, the average clustering coefficient in this model is small, and the clustering-degree 
function C(k) is constant (Ravasz et al., 2002). The average path length is slightly smaller 
than that in comparable random graphs (Bollobás, 2003). The numerous improvements to 
this generic model include the incorporation of network evolution constraints and the 
identification of system-specific mechanisms responsible for preferential attachment 
(Albert and Barabási, 2002). Another growing network model, proposed by Ravasz et al. 
(2002), grows by iterative network duplication and integration to its original core. This 
growth algorithm leads to well-defined values for the node degree (for example, k=4, 5, 



20, 84 when starting from a five-node seed) and clustering coefficient. The degree 
distribution can be approximated by a power law in which the exponent equals 

)1nlog(/)nlog(1 −+=γ , where n is the size of the seed graph. Thus this model 
generates degree exponents in the neighborhood of 2, which is closer to the observed 
values than the degree exponent of the Barabási and Albert model. In contrast to all 
previous models, and in agreement with protein interaction and metabolic networks, the 
average clustering coefficient of the Ravasz et al. network does not depend on the 

number of nodes, and the 
clustering-degree function is 
heterogeneous, k1)k(C ≅ , thus 
agrees with the lower range of 
observed clustering-degree 
exponent β. 
 
Figure 3: C. elegans protein 
interaction network. The nodes are 
colored according to their phylogenic 
class: ancient (red), multicellular 
(yellow) and worm (blue). The inset 
highlights a small part of the network. 
Figure reproduced from (Li et al., 
2004b).  

 

From general to specific: properties of select cellular networks 
During the last decade, genomics, transcriptomics and proteomics have produced an 
incredible quantity of molecular interaction data, contributing to maps of specific cellular 
networks (Burge, 2001; Caron et al., 2001; Pandey and Mann, 2000).  In protein 
interaction graphs, the nodes are proteins, and two nodes are connected by a 
nondirected edge if the two proteins bind (see Fig. 3). Protein-protein interaction maps 
have been constructed for a variety of organisms, including viruses (McCraith et al., 
2000), prokaryotes such as H. pylori (Rain et al., 2001) and eukaryotes such as S. 
cerevisiae (Gavin et al., 2002; Ho et al., 2002; Ito et al., 2001; Uetz et al., 2000), C. 
elegans (Li et al., 2004b) and D. melanogaster (Giot et al., 2003). 

The current versions of protein interaction maps are, by necessity, incomplete, and 
also suffer from a high rate of false positives. Despite these drawbacks, there is an 
emerging consensus in the topological features of the maps of different organisms (see 
Fig. 4).  For example, all protein interaction networks have a giant connected component  
and the distances on this component are close to the small-world limit given by random 
graphs (Giot et al., 2003; Yook et al., 2004). This finding suggests an illustration of 
pleiotropy, since perturbations of a single gene or protein can propagate through the 
network, and have seemingly unrelated effects. The degree distribution of the yeast 
protein interaction network is approximately scale-free (see Fig. 4). The Drosophila 
protein network exhibits a lower-than-expected fraction of proteins with more than 50 
interacting partners; this deviation is suspected to be caused by incomplete coverage and 
could change as more interactions are discovered, as was the case for the yeast protein 
interaction network (Giot et al., 2003; Jeong et al., 2001; Yook et al., 2004). The 



heterogeneous clustering-degree function βkB)k(C = , where the exponent β is around 
2 (Yook et al., 2004), and the inverse correlation between the degree of two interacting 
proteins (Maslov and Sneppen, 2002) indicate that the neighborhood of highly connected 
proteins tends to be sparser than the neighborhood of less connected proteins.  
 

 
Figure 4. Topological properties of the yeast protein interaction network constructed from four 
different databases. a) Degree distribution. The solid line corresponds to a power law with 
exponent γ=2.5. b) Clustering coefficient – degree function. The solid line corresponds to the 
function 2kB)k(C = . C) The size distribution of connected components. All networks have a 
giant connected component of more than 1000 nodes (on the right) and a number of small isolated 
clusters. Figure reproduced from Yook et al. 2004. 
 

Arguably the most detailed representation of a network of reactions such as the 
metabolic network is a directed and weighted tri-partite graph, whose three types of 
node are metabolites, reactions and enzymes, and two types of edge represent mass flow 
and catalytic regulation, respectively (see Fig. 5). Mass flow edges connect reactants to 
reactions and reactions to products, and are marked by the stoichiometric coefficients of 
the metabolites (Feinberg, 1980; Lemke et al., 2004); enzymes catalyzing the reactions 
are represented as connected by regulatory edges to the nodes signifying the reaction 
(Jeong et al., 2000). Several simplified representations have also been studied - for 
example, the substrate graph, whose nodes are reactants, joined by an edge if they occur 
in the same chemical reaction (Wagner and Fell, 2001) or the reaction graph, whose 
nodes are reactions, connected if they share at least one metabolite.  

All metabolic network representations indicate an approximately scale-free (Jeong et 
al., 2000; Tanaka, 2005; Wagner and Fell, 2001) or at least broad-tailed (Arita, 2004) 
metabolite degree distribution (see Fig. 6). The degree distribution of enzymes is strongly 
peaked, indicating that enzymes catalyzing several reactions are rare (Jeong et al., 2000). 
The variability of metabolite degrees can be accounted for if they are functionally 
separated into high-degree carriers and low-degree metabolites unique to separate 
reaction modules (such as catabolism or amino acid biosynthesis) (Tanaka, 2005) ; 
however, such a picture does not seem to explain the frequency of intermediate degrees. 
The clustering-degree function follows the relationship k1)k(C ≅ . 

 



Figure 5. Three possible representations of a 
reaction network with three enzyme-catalized 
reactions and four reactants. The most detailed 
picture, a), includes three types of node: reactants 
(circles), reactions (rectangles) and enzymes 
(squares) and two types of edge corresponding to 
mass flow (solid lines) or catalysis (dashed lines). 
The edges are marked by the stochiometric 
coefficients of the reactants. b) In the metabolite 
network all reactants that participate in the same 
reaction are connected, thus the network is 
composed of a set of completely connected 

subgraphs (triangles in this case). c) In the reaction network two reactions are connected if they 
share a reactant. A similar graph can be constructed for the enzymes as well.   

  
The substrate and reaction graphs indicate a remarkably small and organism-

independent  average distance among metabolites and reactions (Jeong et al., 2000; 
Wagner and Fell, 2001). If the preferred directionality of the reactions is known and is 
taken into account, only the largest strongly connected component (whose nodes can 
reach each other in both directions) has well-defined average path length. While this 
average path length is still small in all the organisms studied, the strongly connected 
component itself contains less than 50% of the nodes (Ma and Zeng, 2003).  An 
alternative representation of the E. coli metabolic network defines edges among 
metabolites as structural changes that take convert the source metabolite into the target 
metabolite (Arita, 2004). As separate reactions can involve the same structural change in 
a metabolite, this alternative representation has less than half as many edges than the 
metabolite graph defined by (Jeong et al., 2000),  and consequently it yields twice as high 
average metabolite distances.  

 

Figure 6. Rank 
(cumulative 
distribution) of 
metabolite node degree 
(left panel) and reaction 
node  degree (right 
panel) for metabolic 
networks of  H. pylori. 
The straight lines 
correspond to a power-

law degree distribution with exponent γ=slope+1=2.32. The figure illustrates that functionally 
different metabolites tend to cover different ranges of the degree spectrum. Reproduced from 
(Tanaka, 2005). 

 
 It is now possible to identify the set of target genes for each transcription factor 

encoded by a cell, and transcriptional regulatory maps have been constructed for E. 
coli (Shen-Orr et al., 2002) and  S. cerevisiae (Guelzim et al., 2002; Lee et al., 2002; 
Luscombe et al., 2004). The full representation of such a network has two types of node, 
which correspond to transcription factors and the mRNAs of the target genes, and two 



types of directed edge, which correspond to transcriptional regulation and translation 
(Lee et al., 2002). For simplicity, transcription factors are often combined with the genes 
encoding them; thus all nodes correspond to genes (see Fig. 7). The nodes representing 
target genes that do not encode transcription factors become sinks while non-
transcriptionally regulated transcription factors correspond to sources. 

 

 

Figure 7. 
Interactions among 
52 inter-regulatory 
genes in the 
transcriptional 
regulatory network 
of S. cerevisiae. 
The gene names are 
arranged in such a 
way that left to right 
illustrates 
downstream 
causality. The non-
regulatory genes 
regulated by each 
column of 

regulatory genes are shown on the top arrow. Bold type indicates self-activation, bold italics 
indicates self-inhibition, and borders indicate essential genes. Reproduced with the permission of 
the Nature Publishing Group from (Guelzim et al., 2002). 

 
 Both prokaryotic and eukaryotic transcription networks exhibit an approximately 

scale-free out-degree distribution, signifying the potential of transcription factors to 
regulate a multitude of target genes. The in-degree distribution is a more restricted 
exponential function, illustrating that combinatorial regulation by several transcription 
factors is observed less than regulation of several targets by the same transcription factor 
(see Fig. 8). Neither the E. coli nor the yeast transcription network have strongly 
connected components, indicating a unidirectional, feed-forward type regulation mode. 
The subgraphs found by following the paths that start from non-transcriptionally 
regulated genes have relatively little overlap (Balázsi et al., 2005), reflecting that distinct 
environmental signals tend to initiate distinct transcriptional responses. The source – sink 
distances are small in both networks, and the longest regulatory chain has only four (in E. 
coli) respectively five (in S. cerevisiae) edges (see Fig. 8).  

Elucidation of the mechanisms that connect extracellular signal inputs to the control 
of transcription factors was until recently restricted to small-scale biochemical, genetic 
and pharmacological intervention techniques. Signal transduction pathways have 
traditionally been viewed as linear chains of biochemical reactions and protein-protein 
interactions, starting from signal sensor molecules and reaching intracellular targets, 
however the increasingly recognized abundance of components shared by several 



pathways indicates that an interconnected signaling network exists1. The largest 
reconstructed signal transduction network contains 1259 interactions among 545 cellular 
components of the hippocampal CA1 neuron (Ma'ayan et al., 2005), based on more than 
1200 articles in the experimental literature. This network exhibits an impressive 
interconnectivity: its strongly connected component (the central signaling network) 
includes 60% of the nodes, and the subgraphs that start from various ligand-occupied 
receptors reach most of the network within 15 steps. The average input-output path-
length is near 4, suggesting the possibility of very rapid response to signaling inputs. 
Both the in- and out-degree distribution of this network is consistent with a power-law 
with an exponent around 2, the highest degree nodes including the four major protein 
kinases (MAPK, CaMKII, PKA and PKC). 

 

Figure 8. Genome-wide distribution of 
transcriptional regulators in S. 
cerevisiae. A. Full symbols represent 
the number of  transcription factors 
bound per promoter region 
(corresponding to the in-degree of the 
regulated gene). Open symbols stand 
for a the in-degree distribution of a 
comparable randomized network. B. 
Distribution of the number of 
promoter regions bound per regulator 

(i.e. the out-degree distribution of transcription factors). Figure reproduced from (Lee et al., 2002).  
 

In addition to the networks whose edges signify biological interactions, several 
functional association networks based on gene co-expression (Stuart et al., 2003; 
Valencia and Pazos, 2002),  gene fusion or co-occurrence (von Mering et al., 2002) or 
genetic interactions (Tong et al., 2004) have been constructed. For example, synthetic 
lethal interactions, introduced between pairs of genes whose combined knock-out causes 
cell death, indicate that these genes buffer for one another (see Fig. 9). A recent study by 
Tong et al. (2004) shows that the yeast genetic interaction network has small world and 
scale free properties, having  a small average path length, dense local neighborhoods, and 
an approximately power-law degree distribution. The overlap between the yeast protein 
interaction and genetic interaction network is extremely small, which is expected since 
genetic interactions reflect a complex functional compensatory relationship and not a 
physical interaction (see Fig. 9). Indeed, the gene relationships that do overlap with 
genetic interactions are: having the same mutant phenotype, encoding proteins with the 
same subcellular localization or encoding proteins within the same protein complex.   
 
 
 
 
 

                                                 
1 We note here that despite the separate nomenclature there is a significant overlap between protein 
interaction networks, metabolic networks and signal transduction networks. 



Biological interpretation of graph properties 
The architectural features of molecular interaction networks are shared to a large degree 
by other complex systems ranging from technological to social networks. While this 
universality is intriguing and allows us to apply graph theory to biological networks, we 
need to focus on the interpretation of graph properties in light of the functional and 
evolutionary constraints of cellular networks.  
 

 Figure 9. Connections between pathway redundancy 
and synthetic lethal interactions. (a) Consider a 
hypothetical cellular network module that receives 
exogeneous signals through node A and whose sink 
node F determines the response to the signal (or the 
phenotype). There are two node-independent 
(redundant) pathways between nodes A and F that can 
compensate for each other in case of node disruptions. 

By defining synthetic lethal interactions as pairs of nodes whose loss causes the disconnection of 
nodes A and F, one would find graph (b). The two graphs present complementary and non-
overlapping information.  
 
Hubs: In a scale-free network small-degree nodes are the most abundant, but the 
frequency of high-degree nodes decreases relatively slowly. Thus, nodes that have 
degrees much higher than average, so-called hubs, exist. Because of the heterogeneity of 
scale-free networks, random node disruptions do not lead to a major loss of connectivity, 
but  the loss of the hubs causes the breakdown of the network into isolated clusters 
(Albert and Barabási, 2002). The validity of these general conclusions for cellular 
networks can be verified by correlating the severity of a gene knockout with the number 
of interactions the gene’s products participate in.  Indeed, as much as 73% of the S. 
cerevisiae genes are non-essential, -i.e. the knockout has no phenotypic effects (Giaever 
et al., 2002). This confirms the cellular networks’ robustness in the face of random 
disruptions. The likelihood that a gene is essential (lethal) or toxicity modulating (toxin 
sensitive) correlates with the number of interactions its protein product has (Jeong et al., 
2001; Said et al., 2004). This indicates the cell is vulnerable to the loss of highly 
interactive hubs2. Among the most well-known examples of hub proteins is the tumor 
suppressor protein p53 that has an abundance of incoming edges, interactions regulating 
its conformational state (and thus its activity) and its rate of proteolytic degradation, and 
that also has a lot of outgoing edges in the genes whose transcription it activates. The 
tumor suppressor p53 is inactivated by a mutation in its gene in 50% of human tumors, in 
agreement with cellular networks’ vulnerability to their most connected hubs (Vogelstein 
et al., 2000).  

Given the importance of highly connected nodes, one can hypothesize that they are 
subject to severe selective and evolutionary constraints. (Hahn et al., 2004) have 
correlated the rate of evolution of yeast proteins with their degree in the protein 
interaction network, and the rate of evolution of E. coli enzymes with their degree in the 
core metabolic reaction graph  constructed by (Wagner and Fell, 2001). Although they 

                                                 
2 We note here that different network representations can lead to distinct sets of hubs and there is no rigid 
boundary between hub and non-hub genes or proteins.   



obtained statistically significant (albeit weak) negative correlation between yeast protein 
degree and evolution rate, no such correlation was evident in the E. coli enzyme network. 
The latter result has the caveat that the edges linking enzymes do not correspond to 
interactions; thus further studies are needed to gain a definitive answer. 
 
Modularity: Cellular networks have long thought to be modular, composed of 
functionally separable subnetworks corresponding to specific biological functions 
(Hartwell et al., 1999). Since genome-wide interaction networks are highly connected, 
modules should not be understood as disconnected components but rather as components 
that have dense intra-component connectivity but sparse inter-component connectivity. 
Several methods have been proposed to identify functional modules on the basis of the 
physical location or function of network components (Rives and Galitski, 2003) or the 
topology of the interaction network (Giot et al., 2003; Girvan and Newman, 2002; Spirin 
and Mirny, 2003). The challenge is that modularity does not always mean clear-cut 
subnetworks linked in well-defined ways, but there is a high degree of overlap and cross-
talk between modules (Han et al., 2004). As Ravasz et al. (2002) recently argued, a 
heterogeneous degree distribution, inverse correlation between degree and clustering 
coefficient (as seen in metabolic and protein interaction networks) and modularity taken 
together suggest hierarchical modularity, in which modules are made up of smaller and 
more cohesive modules, which  themselves are made up of smaller and more cohesive 
modules etc.  
 
Motifs and cliques: There is growing evidence suggesting that cellular networks 
contain conserved interaction motifs, small subgraphs that have well-defined topology. 
Interaction motifs such as autoregulation and feed-forward loops have a higher 
abundance in transcriptional regulatory networks than expected from randomly connected 
graphs with the same degree distribution (Balázsi et al., 2005; Shen-Orr et al., 2002). 
Protein interaction motifs such as short cycles and small completely connected subgraphs  
are both abundant (Giot et al., 2003) and evolutionarily conserved (Wuchty et al., 2003), 
partly because of their enrichment in protein complexes. Feedforward loops and triangles 
of scaffolding (protein) interactions are also abundant in signal transduction networks, 
which also contain  a significant number of feedback loops, both positive and negative 
(Ma'ayan et al., 2005). Yeger-Lotem et al. identified frequent composite 
transcription/protein interaction motifs such as interacting transcription factors 
coregulating a gene or interacting proteins being coregulated by the same transcription 
factor (Yeger-Lotem et al., 2004). As (Zhang et al., 2005) have pointed out, the abundant 
motifs of  integrated mRNA/protein networks are often signatures of higher-order 
network structures that correspond to biological phenomena (see Fig. 10). Conant and 
Wagner found that the abundant transcription factor motifs of E. coli and S. cerevisiae do 
not show common ancestry but are a result of repeated convergent evolution (Conant and 
Wagner, 2003).  These findings, as well as studies of the dynamical repertoire of 
interaction motifs, suggest that these common motifs represent elements of optimal 
circuit design (Csete and Doyle, 2002; Ma'ayan et al., 2005; Mangan and Alon, 2003). 
 
Path redundancy: Any response to a perturbation requires that information about the 
perturbation spreads within the network. Thus the short path lengths of metabolic, protein 



interaction and signal transduction networks (their small world property) (Jeong et al., 
2001; Jeong et al., 2000; Ma'ayan et al., 2005) is a very important feature that ensures 
fast and efficient reaction to perturbations. Another very important global property 
related to paths is path redundancy, or the availability of multiple paths between a pair 
of nodes (Papin and Palsson, 2004). Either in the case of multiple flows from input to 
output, or contingencies in the case of perturbations in the preferred pathway, path 
redundancy enables the robust functioning of cellular networks by relying less on 
individual pathways and mediators. The frequency of nodes’ participation in paths 
connecting other components can be quantified by their betweenness centrality, first 
defined in the context of social sciences (Wasserman and Faust, 1994). Node 
betweenness, adapted to the special conditions of signal transduction networks, can serve 
as an alternative measure for identifying important network hubs.   

 
Figure 10. Network 
motifs and  themes in 
the integrated S. 
cerevisiae network. 
Edges among genes 
denote transcriptional 
regulation (R), protein 
interaction (P), 
sequence homology 
(H), correlated 
expression (X) or 
synthetic lethal 
interactions (S). a) 
Motifs corresponding 
to the “feed-forward” 
theme are based on 
transcriptional feed-
forward loops; b) 
motifs in the “co-
pointing” theme 
consist of interacting 
transcription factors 
regulating the same 

target gene ; c) motifs corresponding to the “regulonic complex” theme include co-regulation of 
members of a protein complex; d) motifs in the “protein complex” theme represent interacting 
and coexpressed protein cliques. For a given motif, Nreal  is the number of corresponding 
subgraphs in the real network, and Nrand is the number of corresponding subgraphs in a 
randomized network. Figure reproduced from (Zhang et al., 2005). 
 
Network models specific to biological networks 
The topology of cellular networks is shaped by dynamical processes on evolutionary time 
scales. These processes include gene or genome duplication and gain or loss of 
interactions due to mutations. Many researchers investigated whether the similar 
topological properties of biological networks and social or technological networks point 
towards shared growth principles, and whether variants of general growing network 



models apply to cellular networks as well. The most intriguing question is the degree to 
which natural selection, specific to biological systems, shapes the evolution of cellular 
network topologies.  

 Several growing network models based on random gene duplication and subsequent 
functional divergence have displayed good agreement with the topology of protein 
interaction networks (Kim et al., 2002; Pastor-Satorras et al., 2003; Vazquez A, 2003).  
However, estimates of gene duplication rate and the rate at which point mutations lead to 
the gain or loss of protein interactions indicate that point mutations are two orders of 
magnitude more frequent than gene duplications (Berg et al., 2004).  Berg et al. (2004) 
propose a protein network evolution model based on edge dynamics and to a lesser extent, 
gene duplication, and find that it generates a topology similar to the yeast protein 
interaction network. It is interesting to note that both gene duplications and point 
mutations, specific biological processes, lead to a preferential increase of the degree of 
highly connected proteins, also confirmed by measurements (Eisenberg and Levanon, 
2003; Wagner, 2003). Thus natural selection could affect the balance between interaction 
gain and loss in such a way that an effective preferential attachment is obtained. The 
modeling of the evolution of transcriptional, metabolic and signal transduction networks 
has added challenges due to their directed nature and to the complexity of the regulatory 
mechanisms involved, but rapid progress is expected in these fields as well (Light and 
Kraulis, 2004; Tanay et al., 2005). 
 
Beyond static properties 
As illustrated in the specific examples presented in this review, graph representations of 
cellular networks and quantitative measures characterizing their topology can be 
extremely useful for gaining systems-level insights into cellular regulation. For example, 
the interconnected nature of cellular networks indicates that perturbations of a gene or 
protein could have seemingly unrelated effects (pleiotropy), a result that would seem 
counterintuitive in a reductionist framework. The graph framework allows us to discuss 
the cell’s molecular makeup as a network of interacting constituents, and to shift the 
definition of “gene function” from an individual-based attribute to an attribute of the 
network (or network module) in which the gene participates (Fraser and Marcotte, 2004). 
Interaction motifs and themes can be exploited to predict individual interactions given 
sometimes-uncertain experimental evidence, or to give a short list of candidates for 
experimental testing (Albert and Albert, 2004; King et al., 2004; Wong et al., 2004).    

It is important to realize that cellular interaction maps represent a network of 
possibilities, and not all edges are present and active at the same time or in a given 
cellular location in vivo. Indeed, superposing mRNA expression patterns and protein 
interaction information in S. cerevisiae, Han et al. (2004) identified  a strong dynamical 
modularity mediated by two types of highly interactive proteins: party hubs, which 
interact with most of their partners simultaneously, and date hubs, which bind their 
different partners at different times or location. Similarly, Luscombe et al. (2004) and 
Balázsi et al. (2005) found that only subsets of the yeast and E. coli transcriptional 
networks are active in a given exogeneous or endogeneous condition, the former inducing 
only a few transcription factors with little crosstalk , while the latter activating connected 
clusters of transcription factors and many feedforward loops.  



 In addition, the diversity of metabolic fluxes (Almaas et al., 2004) and reaction 
rates/timescales (Papin et al., 2005) attest that only an integration of interaction and 
activity information will be able to give the correct dynamical picture of a cellular 
network (Levchenko, 2003; Ma'ayan et al., 2004). To move significantly beyond our 
present level of knowledge, new tools for quantifying concentrations, fluxes and 
interaction strengths, in both space and time, are needed. In the absence of 
comprehensive time-course datasets, dynamical reconstruction and analysis can be 
usually carried out for small networks only (Hoffmann et al., 2002; Lee et al., 2003; 
Tyson et al., 2001). The coupling of experimental data with mathematical modeling 
enables the identification of previously unknown regulatory mechanisms. For example, 
the (Hoffmann et al., 2002)  model’s prediction regarding the importance of particular 
IκB isoforms in feedback loops regulating NF-κB was experimentally verified, as were 
the dynamic profiles of β-catenin concentrations in the model of the WNT signaling 
module by (Lee et al., 2003).  

The currently limited knowledge of kinetic parameters makes the construction of 
detailed kinetic models of complex biological networks next to impossible; however, 
there is hope that more coarse-grained models can also be successful. Indeed, there is 
increasing evidence of the crucial role of network topology in determining dynamical 
behavior and function, and of robustness to fluctuations in kinetic parameters (Albert and 
Othmer, 2003; Barkai and Leibler, 1997; Chaves, 2005; Li et al., 2004a; von Dassow et 
al., 2000). The topological properties of  signal transduction subgraphs (pathways) seem 
to reflect the dynamics of response to those signals: the subgraphs corresponding to 
ligands that cause rapid, transient changes -such as glutamate or glycine-  exhibit 
extensive pathway branching, while the signaling pathways of FasL or ephrin have much 
fewer branches (Ma'ayan et al., 2005). Constraint-based modeling of stochiometrically 
reconstructed metabolic and signaling networks can lead to verifiable predictions related 
to their input/output relationship and its changes in case of gene knockouts (Papin and 
Palsson, 2004; Papin et al., 2002).  Taken together, network discovery and network 
analysis have the potential to form a self-reinforcing loop where theory and modeling 
leads to testable predictions that feed back into experimental discovery.  

 
 This review focused on the insights gained from analyzing the topology of cellular 

networks; for information on other important related topics such as  computational 
methods of network inference and mathematical modeling of the dynamics of cellular 
networks I suggest the excellent review articles (Friedman, 2004; Longabaugh et al., 
2005; Ma'ayan et al., 2004; Papin et al., 2005; Tyson et al., 2003). At a minimum, 
network representations have changed our view of what is functionally “downstream” (or 
“near”) a cellular component, and can potentially lead to predictions of systems-level 
behavior that will be important for future biochemical and medical research (Cohen, 
2002).  
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