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Summary

This Master’s thesis is dedicated to the challenging problem of high quality sepa-
ration of musical audio sources in monophonic mixtures, using information from
musical scores to help improve the quality of separation. This information is in-
tegrated in a Nonnegative Matrix Factorization (NMF) of the audio spectrogram,
providing essential temporal and spectral information to guide the decomposition
process. A general framework is proposed for this decomposition process, where
the activation coefficients and the basis functions of each instruments are initially
learnt on synthesized signals, and then used to initialize the decomposition of the
actual mixture. This method is applied to an existing dataset and assessed with
the BSS_EVAL and PEASS evaluation toolboxes. The performance measures are
then compared with those obtained with another method from the literature, and
a new dataset is created in order to study the influence of the various parameters
on the separation results.

Ce mémoire de Master est dédié au stimulant problème de la séparation de sources
musicales de haute qualité dans des enregistrements monophoniques, en utilisant
les informations fournies par la partition musicale pour aider à améliorer la qualité
de séparation. Ces informations sont intégrées dans une Factorisation en Matri-
ces Non-Négatives (NMF en anglais) du spectrogramme audio, fournissant ainsi
des informations temporelles et fréquentielles essentielles pour guider le processus
de décomposition. Un cadre général est proposé pour ce processus de décompo-
sition, dans lequel les coefficients d’activation et les fonctions de base de chaque
instrument sont initialement appris sur des signaux de synthèse, puis utilisés pour
initialiser la décomposition de l’enregistrement en question. Cette méthode est
appliquée sur un set de données pré-existant, et évaluée à l’aide des toolboxes
BSS_EVAL et PEASS. Les mesures de performances sont alors comparées à celles
obtenues avec une autre méthode issue de la littérature, et un nouveau set de don-
nées est créé afin d’étudier l’influence des différents paramètres sur les résultats de
séparation.
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Introduction
The purpose of source separation applied to musical audio is to separate the signal
of each instrument in a polyphonic mixture. This separation is generally achieved
through the decomposition of a time-frequency representation of the mixture signal
such as the Short Time Fourier Transform (STFT), commonly called spectrogram,
or the Constant-Q Transform (CQT).

This decomposition is allowed by a series of matrix factorization techniques de-
veloped in the last decade, among which Nonnegative Matrix Factorization (NMF)
and Independent Component Analysis (ICA) appeared to have a great success.

Once separated, the different musical sources can be used individually, or pro-
cessed separately and reassembled eventually. Musical audio source separation can
therefore have potential applications such as music remastering, audio denoising,
upmixing (mono to stereo), etc.

In our personal approach, we attempt to improve the quality of separation by
using information provided from a symbolic representation of the musical signal,
i.e. an aligned version of the written score. This approach has already been ad-
dressed in the literature under the name of "score-informed source separation",
and various methods have therefore been elaborated in the past few years.

In this present work, we collect some ideas and techniques from these differ-
ent methods in order to propose our own framework for score-informed source
separation. We initially present the NMF algorithm used in our decomposition
process, and then we describe the different steps of this latter in a second part.
We present afterwards the various experiments run to assess the quality of our
proposed method, and finally we discuss the different results.
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1 Musical Audio Source Separation using NMF

1.1 Nonnegative Matrix Factorization

1.1.1 Principle and standard problem

Nonnegative Matrix Factorization (NMF) is a low-rank approximation technique,
used for part-based decomposition of nonnegative data. Given a matrix V of
dimensions F × N with nonnegative entries, NMF is the problem of finding a
factorization

V ≈WH (1)

where W and H are nonnegative matrices of dimensions F × K and K × N
respectively. K represents the rank (i.e. the number of components) of the de-
composition, and is usually chosen such that FK +KN � FN , hence reducing
the data dimension [1].

NMF has been originally presented in [2] and [3], and has been applied after-
wards to diverse problems (such as pattern recognition, clustering, data mining)
in various areas (such as bioinformatics, signal and image processing, finance).

The matrix W is usually referred to as the "dictionary", with each column
representing the basis functions of the different components, and the rows of H
represent the "activation coefficients" of these components over the other dimen-
sion. Each column vn of the original data is therefore approximated by a linear
combination of the basis functions of W, with the corresponding activation coef-
ficients hn [1].

vn ≈Whn (2)

A distinctive characteristic of NMF, in comparison with other factorization tech-
niques such as Vector Quantization (VQ), Principal Component Analysis (PCA)
or Independent Component Analysis (ICA), is the nonnegativity constraint on the
factorized matrices W and H, which improves the interpretability of the learnt
dictionary and the activation coefficients when the original data is nonnegative.
Indeed, the nonnegativity of W allows the learnt basis functions to belong to the
same space than the data, and the nonnegativity of H ensures a constructive rep-
resentation of the data, as subtractive combinations are forbidden [1].

The factorization (1) is usually sought after through the minimization problem

min
W,H

D(V|WH) subject to W ≥ 0,H ≥ 0 (3)

where the notation A ≥ 0 expresses the nonnegativity restriction on the entries of
matrix A, and where D(V|WH) is generally a separable measure of fit such that

D(V|WH) =
F∑
f=1

N∑
n=1

d([V]f,n|[WH]f,n) (4)

where d(x|y) is a scalar cost function, typically a positive function of y ∈ R+ given
x ∈ R+, with a single minimum for x = y [1].
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1.1.2 Use of the β-divergence as a cost function

A commonly used cost function in NMF is the β-divergence dβ(x|y), originally
introduced in [4] and [5] and defined rigorously in [6] as following

dβ(x|y) def=


1

β(β−1)
(xβ + (β − 1)yβ − βxyβ−1) β ∈ R\{0, 1}

x log x
y
− x+ y β = 1

x
y
− log x

y
− 1 β = 0.

(5)

The β-divergence is thus defined by its single parameter β, and takes the Euclidean
distance, the generalized Kullback-Leibler (KL) divergence and the Itakura-Saito
(IS) divergence as special cases (β = 2, 1 and 0, respectively).

If we introduce the approximation of the data V̂ such that

V̂ = WH =
K∑
k=1

Wf,kHk,n (6)

where the notation Ai,j represents the entry (i, j) of the matrix A (usually denoted
as [A]i,j), then NMF with the β-divergence (henceforth shortened as "β-NMF") is
the minimization problem (3) with the following cost function

Cβ = Dβ(V|V̂) =
F∑
f=1

N∑
n=1

1

β(β − 1)

(
Vβ
f,n + (β − 1)V̂β

f,n − βVf,nV̂
β−1
f,n

)
(7)

for β ∈ R\{0, 1} and

CKL =
F∑
f=1

N∑
n=1

Vf,n log
Vf,n

V̂f,n

−Vf,n + V̂f,n (8)

CIS =
F∑
f=1

N∑
n=1

Vf,n

V̂f,n

− log
Vf,n

V̂f,n

− 1 (9)

for the Kullback-Leibler and Itakura-Saito special cases.

1.1.3 Resolution with a gradient descent algorithm

A very popular optimization strategy in NMF is based on the iteration of mul-
tiplicative updates, where the matrices W and H are optimized alternatively
through a gradient descent. If we call θ the components of these matrices and
η the step size, the gradient descent update rule with the β-divergence is given by

θ ← θ̃ − η∂Cβ
∂θ̃

(10)

where θ̃ denotes the old component θ, before the update.
The multiplicative updates mentioned above are then obtained by setting the

step size η analytically, so that the update rule (10) becomes multiplicative. We
will now show how to obtain these multiplicative update rules for W and H, with
a demonstration based on the technical report [7] used in [8].
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Update rule for W

If we denote Wf̃ ,k̃ a single element of the matrix W, the gradient descent update
rule with the β-divergence for this single element is given by

Wf̃ ,k̃ ← W̃f̃ ,k̃ − η
∂Cβ

∂W̃f̃ ,k̃

. (11)

We first derive an auxiliary term which will appear in the differentiation of the
cost function Cβ, and which is the differentiation of V̂ w.r.t. the coefficient Wf̃ ,k̃.

∂V̂

∂W̃f̃ ,k̃

=
∂

∂W̃f̃ ,k̃

(
K∑
k=1

Wf,kHk,n

)

=
∂

∂W̃f̃ ,k̃

(
Wf,k̃Hk̃,n

)
=

{
Hk̃,n if f = f̃

0 otherwise
(12)

We can then derive the gradient of the cost function Cβ w.r.t. the single element
Wf̃ ,k̃. The sum over f in the expression of the cost function Cβ can be dropped in
the differentiation, as all the terms under this sum are regarded as constant and
vanish during the derivation, expect the one containing f̃ .

∂Cβ

∂W̃f̃ ,k̃

=
∂Cβ

∂V̂
· ∂V̂

∂W̃f̃ ,k̃

=
N∑
n=1

1

β(β − 1)

(
β(β − 1)V̂β−1

f̃ ,n
− β(β − 1)Vf̃ ,nV̂

β−2

f̃ ,n

)
Hk̃,n

=
N∑
n=1

V̂β−1

f̃ ,n
Hk̃,n −Vf̃ ,nV̂

β−2

f̃ ,n
Hk̃,n (13)

Given this result, the gradient descent update rule (11) thus becomes

Wf̃ ,k̃ ← W̃f̃ ,k̃ − η
(

N∑
n=1

V̂β−1

f̃ ,n
Hk̃,n −Vf̃ ,nV̂

β−2

f̃ ,n
Hk̃,n

)
. (14)

If we set the step size η as following

η =
W̃f̃ ,k̃∑N

n=1 V̂
β−1

f̃ ,n
Hk̃,n

, (15)

the gradient descent update rule (14) is therefore simplified, and we obtain the
desired multiplicative update form.

Wf̃ ,k̃ ← W̃f̃ ,k̃ ·

N∑
n=1

Vf̃ ,nV̂
β−2

f̃ ,n
Hk̃,n

N∑
n=1

V̂β−1

f̃ ,n
Hk̃,n

(16)
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Finally, we can express this multiplicative update in a very convenient matrix form

W←W •

(
V • V̂•[β−2]

)
HT(

V̂•[β−1]
)
HT

, (17)

where the symbol • denotes element-wise operations (multiplication, division and
exponentiation), and where all the elements of W are updated simultaneously.

Update rule for H

The multiplicative update rule for the matrix H is obtained in a similar way to
that for the matrix W. If we denote Hk̃,ñ a single element of the matrix Hk,n, the
gradient descent update rule with the β-divergence is given in this case by

Hk̃,ñ ← H̃k̃,ñ − η
∂Cβ

∂H̃k̃,ñ

. (18)

The differentiation of the cost function Cβ w.r.t. the element Hk̃,ñ is obtained as
in the equations (12) and (13), with an equivalent auxiliary term.

∂Cβ

∂H̃k̃,ñ

=
F∑
f=1

V̂β−1
f,ñ Wf,k̃ −Vf,ñV̂

β−2
f,ñ Wf,k̃ (19)

If we set the step size η such that

η =
H̃k̃,ñ

F∑
f=1

V̂β−1
f,ñ Wf,k̃

, (20)

we can simplify again the gradient descent update rule (18) in order to obtain the
desired multiplicative update form

Hk̃,ñ ← H̃k̃,ñ ·

F∑
f=1

Vf,ñV̂
β−2
f,ñ Wf,k̃

F∑
f=1

V̂β−1
f,ñ Wf,k̃

, (21)

which can also be expressed in the following matrix form

H← H •
WT

(
V • V̂•[β−2]

)
WT

(
V̂•[β−1]

) . (22)

The great advantage of the multiplicative update rules (17) and (22) is to en-
sure the nonnegativity restriction on the matrices W and H, as we only multiply
nonnegative terms during the updates. They are also very easy to implement and
usually give simple and fast algorithms. The disadvantages are the impossibility to
set the step size manually, and also the potential divisions by 0 during the updates,
that can be avoided in practice by adding a small constant to the denominators.
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Presentation of the algorithm

We can summarize the gradient descent algorithm with multiplicative updates for
β-NMF with the following pseudocode (see Algorithm 1), as presented in [1].

Algorithm 1 β-NMF with multiplicative updates
Input: nonnegative matrix V
Output: nonnegative matrices W and H such that V ≈WH
Initialize W and H with nonnegatives values
for i = 1 : niter do

Compute V̂ = WH

W←W • (V • V̂
•[β−2])HT

(V̂•[β−1])HT

Compute V̂ = WH

H← H •W
T (V • V̂•[β−2])

WT (V̂•[β−1])
Normalize W and H

end for

In this algorithm, the initialization of W and H is not specified. We will see in
Section 2.2 that it has a great impact on the decomposition process, as it allows
to provide prior information and to incorporate constraints on both matrices.

This algorithm also includes a normalization step at every iteration, which
eliminates trivial scale indeterminacies leaving the cost function unchanged. This
normalization step can be important when we intend to compare the amplitudes
of the basis functions or the activation coefficients after the factorization process.
In practice, we impose ||Wk||1 = 1 and scale Hk accordingly [1].

1.2 Application to Musical Audio Source Separation

1.2.1 Factorization of the audio spectrogram

When NMF is applied to audio, the nonnegative data V is usually taken as the
magnitude (or power) spectrogram of the signal, while the basis functions of the
dictionary W are magnitude (or power) spectra, being activated over time accord-
ing to the amplitudes contained in H. This decomposition is indeed well suited for
the composite structure of audio signals, as it represents constructive combinations
of spectral features (or "sound objects") over time.

The first audio application of NMF has been automatic music transcription [9],
followed by musical audio source separation [10]. In these musical cases, the NMF
model takes anew advantage of the redundant characteristic of music, as this latter
can be defined in a restrictive way as a limited number of notes or instruments
being played over time.

An example of this musical decomposition is given in Figure 1, where the
magnitude spectrogram of two piano notes V is approximated by a dictionary W
of two magnitude spectra, multiplied by their corresponding amplitudes in H. The
two notes are first being played separately, and then played together.
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Figure 1: NMF applied to the audio spectrogram [11]

1.2.2 Component reconstruction and source extraction

Once the decomposition of the audio spectrogram is over, we obtain the estimated
complex spectrogram X̂(c̃) of a single component c̃ by using a Wiener filtering
technique. This consists of applying a time-frequency mask (created by multiply-
ing the basis function Wf,c̃ and the amplitude Hc̃,n of the component c̃, and by
normalizing the resulting matrix by V̂) on the original complex spectrogram X.

X̂(c̃) =
Wf,c̃Hc̃,n

K∑
k=1

Wf,kHk,n

•X (23)

This extraction method allows phase reconstruction, and also ensures a conserva-
tive decomposition of the original signal, as demonstrated in [1].

X =
K∑
c=1

X̂(c) (24)

Eventually, we extract the complex spectrogram X̂(s) of a musical source compound
of C components by simply adding the time-frequency masks of each component,
as the Short-Time Fourier Transform (STFT) is a linear operation. The time
signal x̂(s) of the extracted source is thus obtained through the inverse STFT of
X̂(s).

X̂(s) =

C∑
c=1

Wf,cHc,n

K∑
k=1

Wf,kHk,n

•X
STFT−1

−−−−−−→ x̂(s) (25)
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2 Score-Informed Source Separation

2.1 Introduction

A musical score provides a wide range of information, such as the pitch, the onset
time and the duration of each note played by each instrument. This information
can therefore be used to provide temporal and spectral indications on the musical
signal we seek to decompose, such as the frequencies of the harmonics or the
temporal envelopes of the different sources present in the mixture.

In the past few years, many attempts have been made to supervise the source
separation process in such a way, henceforth known as score-informed source sep-
aration. In [12], the knowledge of the written score is used with spatial cues to
accurately separate time-frequency bins in a stereophonic mixture. In [13], the
score of the solo part helps to separate it from the accompaniment with a classi-
fier approach. In [14], the score is substituted by a "humming" query, thus used
as prior in a Probabilistic Latent Component Analysis (PLCA) decomposition of
the mixture. This approach is extended in [15], where the "humming" query is re-
placed by artificial signals synthesized from the score. In [16], the information from
the score is used to initialize an algorithm based on a parametric decomposition of
the spectrogram, using an original NMF framework. In [17] finally, the separation
is performed in real-time, with a score-follower using a hidden Markov approach
and a source separator extracting the different harmonics of each instrument.

In our personal approach, we use the NMF algorithm presented in Section 1.1.3
with temporal and harmonic constraints inspired from [16], and we add afterwards
a preliminary learning phase on synthesized signals, as performed in [15]. We
decide to work on monophonic signals only, thus ignoring the information provided
from spatial cues. We do not consider the problem of score-to-audio alignment,
and so we only use scores already aligned in a MIDI format.

2.2 Description of the original method

As mentioned in Section 1.1.3, the information provided from the score can be inte-
grated in the NMF decomposition process through the initialization of the matrices
H and W. These matrices are therefore not initialized randomly, as it is done in
what we call Blind Source Separation (BSS), but with specific initializations.

In our original method we only consider harmonic instruments, and so we
assign one component per note per instrument in the factorized representation of
the mixture. In order to collect the residuals sounds, we also add some extra-
component with random initializations, as we will see in Section 2.2.2.

2.2.1 Temporal constraint on H

After extracting the onset and offset times from the aligned MIDI file of the score,
we initialize the activation coefficients of each note by a simple binary function,
equal to 1 if the note is being played and equal to 0 if not (we ignore the information
provided by the MIDI velocity). This creates a "pianoroll" representation of the
score, which is then used for the initialization of the matrix H (see Figure 2).

8



Figure 2: Pianoroll used for the initialization of H

The advantage of this binary initialization is to incorporate a temporal con-
straint on the elements of H, as the coefficients initialized to 0 will remain to
0 over the iterations, owing to the multiplicative updates used in the NMF algo-
rithm. The moments of silence will therefore remain silent, and only the coefficients
initialized to 1 will fit the actual temporal envelopes of the corresponding notes.

This constraint helps the algorithm to learn only the appropriate notes in a sin-
gle time frame, and also present the great advantage to associate each component
with a specific source. The separation process is consequently much improved, as
we do not need to identify the extracted components as in BSS.

In practice, we usually enlarge slightly the initializations to 1 at the beginning
and the end of each note, to avoid possible alignment errors and to take the possibly
slow release of a note into account.

2.2.2 Harmonic constraint on W

The temporal constraint onH allows the algorithm to dissociate the learning of the
different notes along time, but if many notes are being played during the same time
frames, there is no guarantee that the decomposition will lead to the factorization
of one note per component.

To solve this problem, we introduce a harmonic constraint on the basis func-
tions of the dictionary, by initializing the spectra of each components with a har-
monic comb adapted to the fundamental frequency of the corresponding notes.
This creates a collection of harmonic combs, then used to initialize the matrix W
(see Figure 3). In this model, the number of harmonics is set manually for each
component, and we usually chose a fixed number for each instrument.

This harmonic constraint helps the algorithm to segregate the notes being
played simultaneously by differentiating them according to their pitch (i.e. their
harmonic structure), and thus improves the factorization results.

9



Figure 3: Harmonic combs used for the initialization of W

We build the so-called harmonic combs by convolving the magnitude (or power)
spectrum of the analysis window by a Dirac comb adapted to the fundamental
frequency of the corresponding notes [16]. This is done in order to adapt the
peaks of the harmonic combs to the frequency resolution of the spectrogram, as
we can quickly demonstrate.

If we call x(t) an impulse train of infinite duration (whose spectrum X(f)
is thus a perfect Dirac comb), and w(t) the analysis window of the STFT, the
spectrum Y (f) of the observed signal y(t) is then given by

x(t) · w(t) = y(t)

(X ∗W ) (f) = Y (f). (26)

With an infinite frequency resolution, the harmonic model for the basis functions
of W would be the perfect Dirac comb X(f), but as the harmonic signals are
windowed for each time frame of the STFT, we convolve that Dirac comb by the
spectrum W (f) of the analysis window. The type and the length of the analysis
window are therefore significant and determine the width of the peaks and the
dynamic of the harmonic comb used as a model.

As mentioned above, we add some extra-components with random activations
to collect the residuals sounds during the decomposition process. Indeed, the har-
monic model that we have just presented is not suited for the noise part of the
musical signals that we intend to factorize, such as the impacts, blowing, clapping,
plucking, or any other instrumental sounds.

In practice, we simply initialize the basis functions of these extra-components
by a uniform distribution scaled between 0 and the maximum of the harmonic
comb Y (f), and the corresponding activation coefficients by a uniform distribution
scaled between 0 and 1, in order to have the same scales for all the components.
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This method creates a harmonic/noise separation of the original signal by
grouping all the residual sounds in an additional "extra-source", which is not de-
sirable but is an acceptable compromise when we want to improve the factorization
results with the use of a harmonic constraint1.

2.3 Description of the improved method

The temporal and harmonic constraints on H and W help the NMF algorithm to
obtain the factorization of one note per component, but another problem arrises
when two or more instruments are playing in unison (or in a harmonic interval such
as an octave or a fifth). In such cases, the initialization of the affected components
is indeed identical (or very similar), and once again there is no guarantee that the
algorithm will factorize the contribution of each instrument in the corresponding
components separately.

To solve this problem, we need to initialize the amplitudes and the spectra of
each instruments in a distinctive way, corresponding to the physics of the instru-
ments. This is done in our improved method by learning these amplitudes and
spectra on a synthesized version of the score, with a method also known as "score
synthesis".

2.3.1 Score synthesis and preliminary learning phase

The idea of score synthesis is to use a synthesized version of the instrumental
signals generated from the score as a model for the factorization algorithm. The
components of the different instruments are for this estimated from these separated
signals in a preliminary learning phase, and then used to initialize the decomposi-
tion of the actual musical mixture.

This idea has been introduced in [15] with the use of a PLCA factorization
technique, very similar to the NMF approach. In their method, the authors used a
certain number of components with random initializations to learn the activation
coefficients and the basis functions of each instrument separately, and then joined
them together to initialize the "unmixing" phase.

In our personal score synthesis method, we decide to keep the temporal and
harmonic constraints presented in Section 2.2 during the learning phase, in order
to preserve the factorization form of one component per note per instrument. The
contribution of the preliminary learning phase is therefore to provide distinctive
models for the temporal and spectral envelopes of each instrument, with the ad-
vantage mentioned above for the separation of instruments playing in unison or in
harmonic intervals.

These models could be supplied to the NMF algorithm otherwise, with the
use of analytical models for the physics of each instruments for example, but the
advantage of score synthesis is to be fast and easy to implement and to be adaptable
for every type of instrument. On the other side, the reliability of the learnt data
depends on the quality of the synthesizer. In our case we use thus a sample-based
synthesizer, supposed to provide signals very close to the physical reality.

1A further discussion about this problem can be found in the conclusion of this thesis.
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2.3.2 Presentation of the general framework

The general framework of our improved method is presented in Figure 4.
In the preliminary learning phase, the components of each instruments are

learnt separately on the spectrogram of the synthesized signals Vsyn. The NMF
routines are initialized with the collections of harmonic combs W0 and the pi-
anorolls H0 generated from the score parts, and the residual sounds are collected
with the addition of some extra-components. These extra-components are there-
after set apart and ignored, as the residuals from the synthesized signals are not
likely to have the same spectral structure than the residuals from the actual signals.

In the unmixing phase, the basis functions and the activation coefficients learnt
from previous phase are grouped into the matrices W1 and H1, then used to ini-
tialize another NMF routine on the spectrogram of the actual mixture Vmix. The
residuals sounds are again collected with some extra-components, and constitute
an additional "extra-source" after the decomposition, as explained above.

At last, the different instruments are extracted from the matrices W and H
resulting from the unmixing phase, with the Wiener filtering technique presented
in Section 1.2.2.

Figure 4: General framework of the improved method

We provide an example of the evolution of the basis function and the ampli-
tude of a single component representing a clarinet note in Figure 5. We plot the
harmonic comb and the binary function used for the initialization of the learning
phase (top), and their evolution after the so-called learning phase (centre) and the
unmixing phase (bottom).

As we can see, the amplitude learnt from the synthetic signal is not very relevant
compared to the one obtained from the actual signal after the unmixing phase. The
spectral envelope learnt, on the other hand, is much more relevant as it represents
a clarinet spectrum similar to the one extracted after the unmixing phase, with a
predominance of the harmonics 1 and 3.

This example highlights the asset of the score synthesis method, which provides
data close to the physical reality of the instruments and helps to supervise the
decomposition of the musical mixture, especially for the basis functions of the
dictionary W.
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Figure 5: Evolution of the basis function (left) and the amplitude (right) of a
component representing a clarinet note during the overall decomposition process
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3 Separation results with the proposed method

3.1 The evaluation metrics

The natural way to assess the quality of a source separation algorithm or tech-
nique is of course to listen to the extracted sounds and to evaluate them with our
own subjective criteria. But in order to obtain exportable results and to allow a
fair comparison between different methods, we need to compute some objective
evaluation metrics.

Different approaches have been proposed to calculate these evaluation metrics,
all based on the comparison of the extracted sources with the original ones. The
advantage of these evaluation techniques is to be completely impartial and to pro-
vide interpretable metrics, but their inconvenient side is to require the original
separated sources of the signals we intend to decompose, hence reducing dramati-
cally the data usable for experiments.

We will now present the two widespread evaluation toolboxes used to assess
our proposed method, and explain briefly the calculation of their different metrics.

The BSS_EVAL toolbox

The BSS_EVAL (standing for Blind Source Separation Evaluation) toolbox al-
lows to compute the performance measures elaborated in [18]. In their approach,
the authors compare each estimated sources ŝj to the given true sources sj, by
decomposing the estimated sources as following

ŝj = starget + einterf + enoise + eartif. (27)

In this decomposition, starget = f(sj) is a version of sj modified by an allowed
distortion f , representing the part of ŝj perceived as coming from the wanted
source sj. The terms einterf, enoise and eartif are on their side the interferences, noise
and artifacts error terms, and represent the parts of ŝj coming from the unwanted
sources, from sensor noises and from other artifacts, respectively. The decom-
position of the estimated sources into these four measures is achieved through
orthogonal projections, which calculations are detailed in [18].

The performance measures are then defined as energy ratios with relevant in-
terpretability, expressed in (dB). The authors define the Source to Distortion Ratio

SDR := 10 log10
||starget||2

||ŝj − starget||2
(28)

the Source to Interference Ratio

SIR := 10 log10
||starget||2
||einterf||2

(29)

and the Source to Artifacts Ratio

SAR := 10 log10
||ŝj − eartif||2
||eartif||2

. (30)

These three performance measures are inspired from the usual definition of the
Signal to Noise Ration (SNR), with few modifications. Their interpretability is
quite intuitive, and more information can be found about them in [18].
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The PEASS toolbox

The PEASS (standing for Perceptual Evaluation methods for Audio Source Sep-
aration) toolbox provides a set of performance measures similar to those from
the BSS_EVAL toolbox, with also additional metrics in the form of perceptually-
motivated scores rather than energy ratios [19]. In this new approach, the esti-
mated sources ŝj are decomposed in a similar manner to the decomposition (27)

ŝj − sj = etarget + einterf + eartif (31)

where the terms etarget, einterf and eartif denote the target distortion component,
the interference component and the artifacts component, respectively. These three
components are calculated through a complex algorithm, approximating inter alia
the auditory time-frequency resolution [19].

As mentioned above, the specificity of the PEASS toolbox is then to provide
perceptually-motivated scores from these components, in addition to the classic
energy ratios. These new performance measures are:
• the Overall Perceptual Score (OPS),
• the Target-related Perceptual Score (TPS),
• the Interference-related Perceptual Score (APS),
• the Artifacts-related Perceptual Score (APS).

These scores are obtained by assessing the salience of each distortion component
separately, using the perceptual similarity measure (PSM) provided by the PEMO-
Q auditory model [20]. For this, the estimated sources are compared with them-
selves minus the considered distortions, leading to the following salience features

qoverall
j = PSM(ŝj, sj) (32)

qtarget
j = PSM(ŝj, ŝj − etarget) (33)

qinterf
j = PSM(ŝj, ŝj − einterf) (34)

qinterf
j = PSM(ŝj, ŝj − eartif). (35)

At last, these salience features are combined by a nonlinear mapping, itself adapted
to match the subjective grading scale estimated from preliminary perceptual ex-
periments [19]. This method allows to provide the perceptual scores presented
above (in %), complementary to the classic energy ratios (in dB).

3.2 Experiments and evaluation

3.2.1 Description of the dataset

We assess our proposed method on the MIREX multi-F0 development set, used
in [21] and available through the C4DM Research Data Repository1. This dataset
consists of a multi-track recording of an extract from a string quartet by Ludwig
van Beethoven (op.18 n.5, III. Andante Cantabile, var.V.), arranged for a wood-
wind quintet (flute, oboe, clarinet, French horn and bassoon).

1http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/12
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This recording originates from the MIREX 2007 F0-tracking competition, and
MIDI annotations of each separated tracks have been created and aligned after-
wards with the software Sonic Visualizer [22]. The resulting dataset thus contains
the .wav file (16 bits, 44.1kHz) and the .mid file of each instrument, and for the
needs of our proposed method we add the .wav files of the synthesized signals
obtained from the EIC2 sample-based synthesizer integrated in Ableton Live.

3.2.2 Experimental setup and results

We apply our improved method presented in Section 2.3 to the first 15 seconds of
the recording, and we compare the separation results with those obtained from our
original method presented in Section 2.2. In order to underscore the contribution
of the harmonic constraint in the original method, we also use a limited version of
this latter, with solely the temporal constraint presented in Section 2.2.1. These
three methods are henceforth referred to as "improved", "original" and "t.c. only"
(for "temporal constraint only").

For the experiment we use the Itakura-Saito NMF on the power spectrogram,
with the Maximization-Minimization (MM) algorithm presented in [6] (which only
differs from the algorithm presented in Section 1.1.3 by the use of an exponent γ(β)
in the update equations). The spectrogram is calculated with a 4096-point (93 ms)
Hanning window and with 87.5% overlap. In the pianoroll representation of the
score we add 100 ms before and 200 ms after each notes, for the reasons mentioned
in Section 2.2.1. The number of harmonics in the harmonic model is for its part
set to 50 for each instrument.

For each methods we add 30 extra-components with random initializations to
collect the residual sounds, for every NMF routines. Finally, the "t.c. only" and
"original" methods are run with 30 iterations for the decomposition process, and
the "improved" method is run with 15 iterations for the learning phase and 10
iterations for the unmixing phase, as this gives better results in a significant way1.

The performance measures obtained with the BSS_EVAL and the PEASS tool-
boxes are presented in Table 1, and the corresponding extracted sounds are avail-
able on the C4DM Research Data Repository2.

From these experimental results, we notice a substantial enhancement of the
quality of separation between the "t.c. only" and the "original" methods, with
for instance an increase of 10.03 dB in average for the SDR value. The OPS is
likewise better for each instrument, except for the flute (which is quite surprising
in regards to the extracted sounds).

In the same way, we notice a general improvement between the "original" and
the "improved" methods, especially for the clarinet and the oboe. In the selected
musical extract, these two instruments are playing the same melody in an octave
interval. This specific result, in parallel with the extracted sounds (where the two
instruments are mingled with the "original" method and well segregated with the
"improved" method) demonstrates the benefit of using a score synthesis method.

1This statement will be proved in Section 3.2.3.
2http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/26
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BSS_EVAL 3.0 PEASS 2.0
method SDR (dB) SIR (dB) SAR (dB) OPS (%) TPS (%) IPS (%) APS (%)

bassoon t.c. only 0.83 4.66 4.43 21.79 36.40 14.14 55.16
original 10.35 18.30 11.17 26.69 45.67 37.71 46.98
improved 11.96 20.05 12.74 27.98 33.52 63.84 28.23

clarinet t.c. only 1.09 4.81 4.74 16.39 11.24 7.57 31.42
original 8.74 11.21 12.69 17.57 24.57 10.97 42.44
improved 14.22 22.99 14.86 26.31 44.50 34.22 30.01

flute t.c. only 3.97 11.41 5.13 24.34 29.32 43.89 37.80
original 14.03 22.08 14.80 8.54 94.54 20.08 7.89
improved 16.51 21.93 18.01 36.68 32.81 61.12 29.69

horn t.c. only −1.23 1.63 4.21 18.16 12.78 18.16 36.05
original 10.29 18.30 11.10 27.62 41.83 32.48 48.51
improved 11.17 20.64 11.73 37.72 48.64 47.14 48.41

oboe t.c. only −9.72 −6.74 0.90 14.62 9.12 8.58 30.35
original 1.66 11.53 2.43 18.60 5.85 51.91 9.86
improved 7.78 16.78 8.45 25.45 40.34 32.34 17.47

Table 1: Separation results of the three different methods applied to the same
extract from the woodwind quintet recording. Best results are shown boldfaced.

Finally, we remark that the perceptual scores provided from the PEASS toolbox
are not always correlated to their corresponding energy ratios, with for example the
SAR and the APS of the bassoon which seems to evolve in the opposite direction
depending on the method used.

3.2.3 Influence of the various parameters

An observation brought out by the many experiments run with the "improved"
method is that the separation results highly depend on the various parameters of
the general decomposition process, such as the parameters of the NMF algorithm,
of the spectrogram or of the temporal and harmonic constraints.

As mentioned above, the number of iterations of the unmixing phase appeared
to be one of most influential parameters. We could have thought that the separa-
tion results would increase with the number of iterations, as for many other source
separation algorithms, but in our case the reality seemed to be different.

In order to investigate the influence of this specific parameter, we set a new
experiment comparing the separation results with a number of iterations for the
unmixing phase going from 0 to 100. In this experiment, we also vary the exponent
of the spectrogram (magnitude or power) and the β-divergence used (Itakura-Saito,
Kullback-Leibler or Euclidean distance) to study their own weight on the separa-
tion results. All the other parameters are maintained constant, with the same
values as in the first experiment.

As it would be difficult to exhibit here the seven different performance mea-
sures resulting from this experiment, only the evolution of the global SDR (the
average of the different SDR values) is presented in Figure 6.
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Figure 6: Evolution of the global SDR depending on the number of iterations
during the unmixing phase, the exponent of the spectrogram (magnitude or power)
and the divergence used in the β-NMF algorithm

As we can see, the Itakura-Saito NMF on the power spectrogram and the
Kullback-Leibler NMF on the magnitude spectrogram seem to give the best sep-
aration results for this example, with an optimal number of iterations for the
unmixing phase between 10 and 15 approximately. The interesting fact is that
all the curves have a similar behavior, with a fast increase during the first few
iterations and a slow lessening after about 15 iterations.

A sensible explanation for this phenomena is that a good compromise to repre-
sent the data from the mixture is found between the synthetic model (0 iteration)
and what could be called an “overlearnt” version of the decomposition (20 itera-
tions and more). In that later case, the distance between the spectrogram Vmix

and its approximation WH keeps decreasing, but the quality of separation gets
worse as the harmonic constraint becomes weaker and the sources are more likely
to "leak" on one another.

This experiment allows to validate the importance given to choice of the various
parameters during the decomposition process, as it demonstrates their great influ-
ence on the separation results. The best combination seems to be the one used in
the first experiment, i.e. the Itakura-Saito NMF on the power spectrogram, with
10 iterations for the unmixing phase. It is difficult though to discern the parts
of these observations coming from the proposed method and those coming from
the musical example used. For this, we would need to apply our method to other
recordings in order to determine the general characteristics of the method and the
features specific to each examples, as we will see in Section 3.3.1.
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3.2.4 Comparison with another method

We compared our proposed method with another score-informed source separation
method from the literature, namely an adapted version of [15]. This resulted in a
paper entitled "A Comparison of Two Different Methods for Score-Informed Source
Separation", accepted to the 5th International Workshop on Machine Learning and
Music (MML12) held in conjunction with the International Conference on Machine
Learning (ICML 2012) in Edinburgh at the end of June. A copy of this paper can
be found in the Appendix A of this thesis, and the data attached to it (including
the code used for comparison and the extracted sounds) is available through the
C4DM Research Data Repository1.

The experimental setup used to compare the two methods was identical to the
one presented in Section 3.2.2, and the musical extract employed was evenly the
15 first seconds of the woodwind quintet from the MIREX dataset. In our case we
used the Itakura-Saito divergence on the power spectrogram.

The PLCA-based method of [15] was only adapted to have the same extraction
method as the one presented in Section 1.2.2, based on Wiener filtering. Both
methods were run with 30 iterations for the learning phase, and our proposed
method (referred to as "Method A" in the paper) used 10 iterations for the un-
mixing phase while the method from [15] (referred to as "Method B" in the paper)
used 20 of them.

The performance measures from this comparison are presented in Table 2, with
the mean metrics from the BSS_EVAL and PEASS toolboxes calculated over 100
runs. The results obtained with our proposed method (A-10 here) are slightly bet-
ter than those obtained previously ("improved" rows in Table 1), due to the use
of a corrected function to create the harmonic combs and to the greater number
of iterations in the learning phase.

From these measures, we observe that our method gives overall better separa-
tion results for this specific example, especially for the French horn and the oboe.
This is very likely to be due to the temporal and harmonic constraints than our
method incorporates in the decomposition process.

We also notice from the standard deviation (see Table 2) that our method
has a more stable behavior, with a standard deviation inferior to ±0.03% in the
BSS_EVAL metrics and inferior to ±0.73% in the PEASS metrics. This can be
explained by the lower influence of the random initializations in our method, where
only the extra-components used to collect the residual sounds are initialized in such
a way, unlike the other method where it is the case for all the components.

3.3 Creation of a new dataset

3.3.1 Motivation and presentation

As mentioned above, it is not relevant to assess the quality of our source separation
method on a single musical example. But the problem is that the available datasets
with score-aligned multitrack recordings are very few, if not non-existent.

1http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/20
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BSS_EVAL 3.0 PEASS 2.0
method SDR (dB) SIR (dB) SAR (dB) OPS (%) TPS (%) IPS (%) APS (%)

bassoon A-10 11.97±0.01 20.43±0.01 12.67±0.01 27.39±0.09 32.27±0.58 62.16±0.37 27.42±0.31

B-20 10.68±0.32 18.82±0.75 11.47±0.30 33.08±0.95 35.06±2.10 57.98±1.75 37.76±1.47

clarinet A-10 14.45±0.01 23.46±0.02 15.06±0.01 26.33±0.49 41.61±0.35 33.04±0.59 30.58±0.42

B-20 11.92±0.48 17.42±0.74 13.45±0.48 14.81±1.85 25.74±2.95 14.93±2.29 25.67±2.89

flute A-10 16.51±0.00 22.11±0.01 17.94±0.01 37.41±0.22 35.68±0.71 60.41±0.72 30.77±0.66

B-20 12.49±0.57 21.86±0.55 13.05±0.59 32.18±1.11 31.56±2.25 51.91±2.92 33.94±2.19

horn A-10 11.10±0.01 20.96±0.02 11.61±0.02 37.76±0.29 49.30±0.33 47.84±0.52 49.10±0.24

B-20 5.03±0.45 8.27±0.65 8.44±0.23 11.41±0.79 62.71±4.90 2.87±0.81 66.85±4.10

oboe A-10 7.93±0.01 17.60±0.02 8.50±0.01 26.58±0.30 40.50±0.27 33.95±0.41 17.83±0.31

B-20 −0.52±1.07 1.92±1.54 5.46±0.61 25.03±1.18 42.01±2.63 16.37±1.71 57.50±1.01

Table 2: Separation results obtained from the comparison of our proposed method
(A-10) with an adapted version of [15] (B-20). Mean metrics are calculated over
100 runs, with standard deviation in subscript. Best results are shown boldfaced.

In order to study the influence of the various parameters of our method on
other musical examples, we thus decided to create our own dataset of annotated
multi-track recordings.

This dataset is compound of five short extracts from chamber music trio pieces,
and has therefore been called "TRIOS". Each separated instrumental track is
provided with a manually-aligned version of the corresponding score in a MIDI
format. The five pieces of music in question are:
• a trio for clarinet, viola and piano by Wolfgang A. Mozart (K.498)
• a trio for violin, cello and piano by Franz Schubert (D.929, op.100)
• a trio for violin, French horn and piano by Johannes Brahms (op.40)
• a trio for trumpet, bassoon and piano by Mathieu Lussier (op.8)
• a trio version of "Take Five" by Paul Desmond, for alto sax, piano and drums

The complete "information sheet" of the TRIOS dataset can be found in the
Appendix B of this thesis, and the actual dataset is available through the C4DM
Research Data Repository1.

3.3.2 Data generation

The separated tracks and the aligned MIDI scores from the TRIOS dataset are
created and edited as following. First, the original MIDI scores are downloaded
from the Kunst der Fuge database2 or generated from the music edition software
Sibelius, and then imported in the sequencer Ableton Live.

The different tracks are then recorded separately, while the musicians listen to
the other synthesized parts synchronized with a metronome through headphones.
The recordings are afterwards edited and mixed in Digital Performer, and the
MIDI scores are eventually manually aligned one by one with Sonic Visualizer.

1http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/27
2http://www.kunstderfuge.com/

20



3.4 Last improvements and results

Before applying our proposed method to our new dataset, we attempt to make
some improvements to it. First of all, the harmonic constraint incorporated in the
method is not suited for non-harmonic instruments, such as drums or percussions.
We fix this issue by adding a "harmonic/percussive" parameter in the function
generating the spectral model of each instruments during the initialization of the
learning phase. In the "percussive" case, the components of the instrument are ini-
tialized with uniform distributions, similar to those used for the extra-components
collecting the residual sounds.

We try next to separate the residual sounds contained in the additional "extra-
source", in order to associate the non-harmonic contributions of each sources to
their respective harmonic parts and to obtain therefore a complete separation
of the mixture. For this we run another NMF routine on the extracted spectro-
gram corresponding to the "extra-source", with random initializations for the basis
functions and with the pianoroll of the score for the initialization of the activation
coefficients. This method does not provide satisfying results though and is thus
not retained.

Finally, we incorporate a smoothness criteria on the activation coefficients of
the sustained notes, in order to obtain better perceptual results.

3.4.1 Incorporation of a smoothness criteria

We use the smoothness criteria on the activation coefficients of H presented in [23]
and integrated by the author in the β-NMF algorithm of Section 1.1.3 with the
Itakura-Saito divergence.

This smoothness criteria consists of incorporating the following penalty term

P (H) =
K∑
k=1

N∑
n=2

dIS(Hk,(n−1)|Hk,n) (36)

in the cost function (9), such that this latter becomes

CIS = DIS(V|WH) + λP (H). (37)

This additional term P (H) penalizes large deviations between two consecutive
activation coefficients Hk,n and Hk,(n−1), as measured by the IS divergence. It
enforces thus the amplitude of each component to observe more or less smooth
variations, depending on the positive scalar λ representing the penalty weight.

The gradient descent algorithm presented in Section 1.1.3 applied to the cost
function (37) leads to the following multiplicative rule for a single coefficient Hk̃,ñ

Hk̃,ñ ← H̃k̃,ñ ·

F∑
f=1

Vf,ñV̂
−2
f,ñWf,k̃ + λHk̃(ñ−1)

F∑
f=1

V̂−1
f,ñWf,k̃ + λH−1

k̃(ñ+1)

(38)

which cannot be expressed in a convenient matrix form similar to (22), but can
still be vectorized in order to provide the simple implementation given in [23].
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This smoothness criteria can enhance the perceptual quality of separation for
sustained notes, by preventing their amplitudes to flicker (as it can be the case in
the unpenalized case).

In order to penalize these sustained notes only, we just have to replace the
penalty weight λ by λkn in the multiplicative update rule (38). This requests
however to create a matrix λ of the same dimensions as H, whose entries are
equal to 0 except for the concerned components and time frames. This matrix
can be generated automatically by retrieving the sustained notes in the pianoroll
representation of the score.

In our case, we simply specify the notes that we intend to penalize by replac-
ing the parameter λ by λk in the multiplicative update rule (38), as we have a
decomposition form of one component per note.

3.4.2 Evaluation with the new dataset

We can finally apply our proposed method to the new dataset, in order to assess its
quality of separation on the five musical examples. At first, we run the experiment
presented in Section 3.2.3. on the the five recordings, with the same experimental
setup. The only difference here is that we keep the entire duration of the signals,
going from 18 to 53 seconds depending on the extracts.

The results of this new experiment are presented in Figure 7 for each example1.
We notice that for all these musical examples, the "over-learning" phenomena
observed with the woodwind quintet is evenly present. The global SDR values are
on the whole better with a number of iterations for the unmixing phase between
10 and 15, and they all decrease progressively passed this stage (except for the IS
divergence on the power spectrogram case in the Take Five example, where the
SDR value remains constant).

By cons, the configuration that seems to give the best results on average is not
the IS divergence on the power spectrogram, as it was suggested by the woodwind
quintet example, but the KL divergence on the magnitude spectrogram. The
confrontation between these two configurations is widely discussed in the literature,
as in [6] for example, and would need a further investigation in the present case.

Given these observations, we decide to provide the performance measures ob-
tained from the BSS_EVAL toolbox and calculated on the five musical examples,
with the KL divergence on the magnitude spectrogram and with 10 iterations for
the unmixing phase. These results are presented in Table 3, and can be used for
further comparisons as the performance level of our proposed method. The result-
ing extracted sounds are also available on the C4DM Research Data Repository2.

Finally, we attempt to highlight the gain obtained with the smoothness crite-
ria presented above with one last experiment. We compare the measures obtained
from the BSS_EVAL and the PEASS toolboxes when a penalty weight of λ = 1, 10
and 100 respectively is used for the French horn in the woodwind quintet example.

1The measures with the Euclidean distance for the Take Five example have not been calculated
by the evaluation toolbox, for unknown reasons.

2http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/26
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Figure 7: Evolution of the global SDR for the Mozart (top left), Schubert (top
right), Brahms (middle left), Lussier (middle right) and Take 5 (bottom) examples
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BSS_EVAL 3.0
recording instrument SDR (dB) SIR (dB) SAR (dB)

Mozart clarinet 14.67 22.46 15.49
viola 4.54 11.33 5.86
piano 8.91 13.09 11.20

Schubert violin 11.67 21.39 12.19
cello 10.92 19.50 11.62
piano 13.20 18.29 14.88

Brahms violin 11.91 21.22 12.49
horn 12.30 21.13 12.94
piano 10.17 14.61 12.25

Lussier trumpet 9.72 18.84 10.52
bassoon 8.09 13.41 9.80
piano 6.22 9.88 9.09

Take Five alto sax 13.94 22.87 14.56
piano 8.69 12.33 11.39

drums (av.) 5.33 15.99 6.70
kick 12.03 29.15 12.12
ride 0.64 4.64 4.13
snare 3.31 14.17 3.84

Table 3: Separation results given by our proposed method applied to the five
recordings from the TRIOS dataset, with the Kullback-Leibler divergence on the
magnitude spectrogram and with 10 iterations for the unmixing phase.

This instrument is indeed playing two very long notes in the considered extract
and their amplitude is flickering in the unpenalized case, which can be unpleasant
whilst listening to the corresponding extracted sound. In order to penalize these
few notes only during the decomposition process, we apply a penalty weight λk on
the corresponding components, as explained in Section 3.4.1.

The results from this experiment are presented in Table 4, and the corre-
sponding extracted sounds are once again available on the C4DM Research Data
Repository1. From these results, we observe that the SDR, the OPS and the IPS
values increase with the use of a higher penalty weight, but it is not the case for
the other metrics. The difference is however difficult to perceive whilst listening to
the extracted sounds, and again this experiment would need further investigation.

BSS_EVAL 3.0 PEASS 2.0
method SDR (dB) SIR (dB) SAR (dB) OPS (%) TPS (%) IPS (%) APS (%)

horn unpenalized 11.10 20.30 11.69 36.93 49.48 45.59 49.95
λ = 1 11.15 20.32 11.75 37.23 49.45 46.09 49.74
λ = 10 11.34 20.35 11.97 36.89 49.37 45.80 49.41
λ = 100 11.83 20.22 11.69 38.27 47.33 46.86 47.77

Table 4: Separation results obtained by applying a smoothness criteria on the
French horn in the woodwind quintet example. Best results are shown boldfaced.

1http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/26
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Conclusion
In this thesis, we have presented an efficient method for score-informed source
separation. Its specificity is to use a decomposition form of one component per
note per instrument in a NMF framework, and to inform the features of these
components with a constrained learning phase on signals previously synthesized
from the score.

This method produces very acceptable audio results, and appeared to give bet-
ter performance measures than another method from the literature. Its strength
is to supervise the evolution of the activation coefficients and the basis functions
of each instruments during the overall decomposition process, thanks to the tem-
poral and harmonic constraints used. Its weak point however is to collect all the
residual sounds in an single extra-source, due to the use of the so-called harmonic
constraint.

This feature is more or less inconvenient, depending on the application of the
source separation method. For "desoloing" applications for example, it is not
acceptable to withdraw only the harmonic part of an instrument and to leave
its non-harmonic part in the mixture. But for remixing application, it is not a
big issue to amplify or to lessen only the harmonic contribution of one or more
instruments.

A concrete application of our method could therefore be to create an "instru-
ment equalizer", where the volume of each instrument would be slightly adjustable
in the manner of the frequency bands in a classic equalizer. But the aligned score
required by the method is usually long and complicated to obtain, and so this
"instrument equalizer" would rather be applicable on valuable recordings only, as
for the restoration of historical records for instance.
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Abstract

We present a new method for score-informed
source separation, combining ideas from two
previous approaches: one based on paramet-
ric modeling of the score which constrains the
NMF updating process, the other based on
PLCA that uses synthesized scores as prior
probability distributions. We experimentally
show improved separation results using the
BSS EVAL and PEASS toolkits, and discuss
strengths and weaknesses compared with the
previous PLCA-based approach.

1. Introduction

Musical audio source separation seeks to isolate the
different instruments in a musical mixture. Many ap-
proaches have been proposed in order to conduct this
separation, of which those using Nonnegative Matrix
Factorization (NMF) and Probabilistic Latent Compo-
nent Analysis (PLCA) have been shown to be effective.

More recently, the use of information from musical
scores has been addressed to guide these algorithms
and to improve the quality of separation. (Ganseman
et al., 2010) aligned the synthesized score to the orig-
inal audio, providing priors to the PLCA decomposi-
tion of the mixture. (Hennequin et al., 2011) used the
score to initialize an algorithm based on a parametric
decomposition of the spectrogram with NMF.

Work partly supported by an IWT Flanders Specialization
Grant, EPSRC Leadership Fellowship EP/G007144/1, and
EU FET-Open Project FP7-ICT-225913 “SMALL”.
In 5th International Workshop on Machine Learning and
Music, Edinburgh, Scotland, UK, 2012. Copyright 2012 by
the author(s)/owner(s).

In this paper we adapt and combine both methods, by
synthesizing the score and learning the components of
the different instruments separately, and then using
the information learnt to initialize the decomposition
process with NMF. Our proposed method is presented
as ‘Method A’ and compared with an updated version
of (Ganseman et al., 2010), presented as ‘Method B’.

2. Score-Informed Source Separation

A musical score provides a wide range of information,
such as the pitch, the onset time and the duration of
each note played by each instrument. This information
can therefore be used to supply spectral and temporal
information to the separation algorithm. In this paper
we use a perfectly aligned MIDI file and we do not
consider the problem of score-to-audio alignment.

2.1. Description of Method A

As in (Ganseman et al., 2010), we initially learn the
dictionaries and the activation coefficients of each in-
strument separately with the synthesized scores.

We use the Itakura-Saito (IS) NMF of the power spec-
trogram with multiplicative updates (Févotte, 2010),
and we initialize the activation coefficients with a ‘pi-
anoroll’ representation of the score, with one compo-
nent per note. We also use a harmonic model to ini-
tialize the dictionaries, with a harmonic comb adapted
to the fundamental frequency of each note (Hennequin
et al., 2011). We add about 10 extra components with
random initializations, to collect the residual sounds.

We use the information learnt to initialize a second
IS-NMF routine on the actual musical mix, adding
again about 30 extra components to collect the resid-
ual sounds. Finally, we separate the different instru-
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BSS EVAL 3.0 PEASS 2.0
method SDR (dB) SIR (dB) SAR (dB) OPS (%) TPS (%) IPS (%) APS (%)

bassoon
A-10 11.97±0.01 20.43±0.01 12.67±0.01 27.39±0.09 32.27±0.58 62.16±0.37 27.42±0.31

B-20 10.68±0.32 18.82±0.75 11.47±0.30 33.08±0.95 35.06±2.10 57.98±1.75 37.76±1.47

clarinet
A-10 14.45±0.01 23.46±0.02 15.06±0.01 26.33±0.49 41.61±0.35 33.04±0.59 30.58±0.42

B-20 11.92±0.48 17.42±0.74 13.45±0.48 14.81±1.85 25.74±2.95 14.93±2.29 25.67±2.89

flute
A-10 16.51±0.00 22.11±0.01 17.94±0.01 37.41±0.22 35.68±0.71 60.41±0.72 30.77±0.66

B-20 12.49±0.57 21.86±0.55 13.05±0.59 32.18±1.11 31.56±2.25 51.91±2.92 33.94±2.19

horn
A-10 11.10±0.01 20.96±0.02 11.61±0.02 37.76±0.29 49.30±0.33 47.84±0.52 49.10±0.24

B-20 5.03±0.45 8.27±0.65 8.44±0.23 11.41±0.79 62.71±4.90 2.87±0.81 66.85±4.10

oboe
A-10 7.93±0.01 17.60±0.02 8.50±0.01 26.58±0.30 40.50±0.27 33.95±0.41 17.83±0.31

B-20 −0.52±1.07 1.92±1.54 5.46±0.61 25.03±1.18 42.01±2.63 16.37±1.71 57.50±1.01

Table 1. Quality of source separation results of a woodwind quintet. We display mean BSS EVAL and PEASS metrics
calculated over 100 runs, with standard deviation shown in subscript. Method A was run with 10 iterations and method
B with 20 iterations in the mixture factorization phase. Higher is better for all scores, best scores are shown boldfaced.

ments with a Wiener masking method (Févotte, 2010).

2.2. Description of Method B

This method (Ganseman et al., 2010) only uses synthe-
sized score parts to learn the dictionary and activation
matrices that serve as prior distributions to PLCA.
PLCA has been shown to be numerically equivalent to
NMF with a Kullback-Leibler divergence. The method
does not rely on any MIDI representation, so in the fol-
lowing experiment we apply it with a fixed number of
20 components per source on the magnitude spectro-
gram. Not anticipating a 6th source, we also do not
provide additional components. To allow a fairer com-
parison, we altered the reconstruction phase to also
use the normalized source estimates as a mask on the
mixture spectrogram, i.e. Wiener filtering.

3. Results and Conclusion

We apply both methods to the first 15 seconds of the
woodwind quintet recording from the MIREX 2007
F0-tracking competition. A 4096-point STFT with
87.5% overlap was used. Scores were synthesized us-
ing the EIC2 synthesizer integrated in Ableton Live,
and the matrices for initialization (Method A) or prior
distributions (Method B) were learnt from those in 30
iterations. Afterwards Method A was run for 10 it-
erations and Method B for 20 iterations, as this gave
good results for each.

We use the BSS EVAL (Vincent et al., 2006) and
PEASS (Emiya et al., 2011) toolboxes for evaluation.
The results of our experiment are summarized in ta-
ble 1. We find that in this example, Method A gives
overall better results, due to the harmonic and tem-
poral constraints that Method A incorporates in the

update process. The lack of those is likely the cause of
Method B to have worse interference-related metrics
(SIR, IPS), having more leakage from other sources
into the extracted sounds. From the standard devia-
tion measurement, we also notice that Method A has a
more stable behavior than Method B. The dataset used
for the experiment, the code and the resulting sound
files are available through the C4DM Research Data
Repository at http://c4dm.eecs.qmul.ac.uk/rdr/.

In the future, Method B could be improved by incor-
porating harmonic and temporal constraints similar to
those from Method A. The parametric model of this
latter would also need adjustments in the case of in-
harmonic or percussive sounds.
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1 Introduction
The TRIOS dataset is a score-aligned multitrack recordings dataset which can
be used for various research problems, such as Score-Informed Source Separation,
Automatic Music Transcription, etc. This dataset consists of the separated tracks
from five recordings of chamber music trio pieces, with their aligned MIDI scores.

2 Download
This dataset can be downloaded through the C4DM Research Data Repository at
http://c4dm.eecs.qmul.ac.uk/rdr/handle/123456789/27.

All the data is distributed under the following Creative Commons license:
Attribution-NonCommercial-ShareAlike 2.0 UK: England & Wales.

3 How to Cite
If you use the dataset in a work of your own that you wish to publish, please cite
the following thesis:
• Joachim Fritsch. High Quality Musical Audio Source Separation. Master’s

thesis, UPMC / IRCAM / Telecom Paristech, 2012

4 Content
The five recordings are short extract from the following pieces of music:
• a trio for clarinet, viola and piano by Wolfgang A. Mozart (K.498)
• a trio for violin, cello and piano by Franz Schubert (D.929, op.100)
• a trio for violin, French horn and piano by Johannes Brahms (op.40)
• a trio for trumpet, bassoon and piano by Mathieu Lussier (op.8)
• a trio version of "Take Five" by Paul Desmond, for alto sax, piano and drums
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For each musical extract, the .wav file and the manually-aligned .mid file of
each instrument are provided, as well as the .wav file of the global mix (which is
a simple addition of the separated signals).

5 Data Generation
The separated tracks and the aligned MIDI scores of this dataset are created and
edited as following. First, the original MIDI scores are downloaded from the Kunst
der Fuge database1 or generated from the music edition software Sibelius, and then
imported in the sequencer Ableton Live.

The different tracks are then recorded separately, whilst the musicians listen to
the other synthesized parts synchronized with a metronome through headphones.
The recordings are afterwards edited and mixed in Digital Performer, and the
MIDI scores are eventually manually aligned one by one with Sonic Visualizer [1].

We provide a visual example of a non-aligned version of the MIDI score from
a clarinet and an aligned version of the same extract (see Figures 1 and 2).

6 Reference
[1] C. Cannam, C. Landone, and M. Sandler. Sonic visualiser: an open source ap-
plication for viewing, analysing, and annotating music audio files. In Proceedings
of the international conference on Multimedia, pages 1467–1468, Firenze, Italy,
2010

Figure 1: Non-aligned MIDI score of a clarinet extract

1http://www.kunstderfuge.com/

2



Figure 2: Aligned MIDI score of a clarinet extract
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