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Abstract. In recent years, the model theory of metric objects has seen much
activity by widening the class of models the real-valued models whose under-
lying set is a complete metric space. We show that it is possible to carry out
this work by giving presentation theorems of two main frameworks (continuous
first order logic and Metric Abstract Elementary Classes) into discrete model-
theoretic settings (a nice fragment of Lω1,ω and Abstract Elementary Classes,
respectively). We also translate various notions of classification theory.

1. Introduction

In the spirit of Chang and Shelah’s presentation results (from [Cha68] and
[Sh88], respectively), we prove a presentation theorem for classes of continuous
structures, both those axiomatized by first-order and beyond, in terms of a class
of discrete structures. The thrust of this presentation theorem is the basic analytic
fact that the behavior of continuous functions is determined by their values on a
dense subset of their domain. Focusing on dense subsets is key because it allows
us to drop the requirement that structures be complete, which is not a property
expressible by discrete (classical) logic, even in the broader contexts of Lλ,ω or
Abstract Elementary Classes.

The specific statements of the presentation theorems appear below (see Theorem
2.1 for continuous first-order logic and Theorem 6.1 for Metric Abstract Elemen-
tary Classes), but the general idea is the same in both cases: given a continuous
language τ , we define a discrete language τ+ that allows us to approximate the
values of the functions and relations by a countable dense subset of values, namely
Q ∩ [0, 1]. Note that the specification that this dense set (and its completion) is
standard already requires an Lω1,ω(τ+) sentence, even if we are working in contin-
uous first-order logic. Then, given a continuous τ -structure M and a nicely dense
(see Definition 1.1 below) subset of it A, we can form a discrete τ+-structure A
with universe A that encodes all of M .
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This allows us to define a functor between the continuous class and their discrete
approximations that witnesses that these two classes are equivalent as categories.
We investigate this equivalent further by considering various model-theoretic prop-
erties and finding analogues for them in the class of approximations. We consider
types, saturation, (and for Metric Abstract Elementary Classes), amalgamation,
joint embedding, and d-tameness.

We present two applications for this functor. In the realm of Metric Abstract
Elementary Classes, it allows us to reduce many foundational questions to the same
questions about Abstract Elementary Classes, where there are known answers.
For instance, Theorem 6.4 answers an open question about the existence of Hanf
numbers for Metric Abstract Elementary Classes, and shows that it is the same as
for normal Abstract Elementary Classes. On the discrete side, the functor allows
for the applications of results about countable fragments of Lω1,ω to continuous
first-order logic.

Throughout we assume that the reader is familiar with the basics of the contin-
uous contexts–either first-order or Metric Abstract Elementary Classes–but try to
provide references and reminders when discussing the concepts.

Many of the arguments in the two cases are similar. In order to avoid repeating
the same arguments twice in slightly different contexts, we provide the details only
once. We have chosen to provide the details for continuous first-order logic because
this context often allows more specific formulations of the correspondence.

Dense sets are not quite the right context because they need not be substructures
of the larger structure. Instead, we introduce nicely dense sets to require them to
be closed under functions.

Definition 1.1. Given a continuous model M and a set A ⊂ |M |, we say that
A is nicely dense iff A is dense in the metric structure (|M |, dM) and A is closed
under the functions of M .

In the what follows, we will often want to prove similar results for both “greater
than” and “less than.” In order to avoid writing everything twice, we often use �
to stand in for both ≥ and ≤. Thus, asserting a statement for “r�s” means that
that statement is true both for “r ≥ s” and for “r ≤ s.”

Our goal is to translate the real-valued formulas of τ into classic, true/false
formulas of τ+. We do this by encoding relations into τ+ that are intended to
specify the value of φ by deciding if it is above or below each possible value.
To ensure that the size of the language doesn’t grow, we take advantage of the
separability or R and only compare each φ to the rationals in [0, 1]. For notational
ease, we set Q′ := [0, 1] ∩Q.

We would like to thank Pedro Zambrano for helpful comments on this paper.
After posting drafts of this paper, the author discovered a similar project by Acker-
man [Ack] (done independently). Ackerman also encodes metric notions in Lω1,ω,
but does so by encoding the category of complete metric spaces and uniformly
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continuous maps in this logic and having the encoding of metric structures fall out
of this, rather than focusing on continuous logic from the start (as we do here).
Additionally, our focus is primarily on applications dealing with classification the-
ory (saturation, etc.), while Ackerman applies his methods to explore set-theoretic
absoluteness.

A final note is that some of the arguments are straightforward arguments with
δ’s and ε’s. Thus, we omit the proofs and only reference the axioms of Tdense that
are needed. Full proofs can be found on the author’s website [Bonc].

2. Models and Theories

The main thesis of the presentation of continuous first-order logic is that model-
theoretic properties of continuous first order structures can be translated to model-
theoretic (but typically quantifier free) properties of discrete structures that model
a specific theory in an expanded language. We use cFml τ to denote the continuous
formulas of the language τ . The main theorem about this presentation is the
following:

Theorem 2.1. Let τ be a continuous language. Then there is

(a) a discrete language τ+;
(b) an Lω1,ω(τ+) theory Tdense;
(c) a map that takes continuous τ -structures M and nicely dense subsets A to

discrete τ+-structures MA that model Tdense;
(d) a map that takes discrete τ+ structures A that model Tdense to continuous

τ -structures A

with the properties that

(1) MA � Tdense has universe A and, for any a ∈ A, φ(x) ∈ cFml τ , r ∈ Q′,
and � standing for ≥ and ≤, we have

MA � Rφ�r[a] ⇐⇒ φM(a)�r

(2) A is a dense subset of A and, for any a ∈ A, φ(x) ∈ cFml τ , r ∈ Q′, and
� standing for ≥ and ≤, we have

A � Rφ�r[a] ⇐⇒ φA(a)�r

(3) these maps are (essentially) each other’s inverse. That is, given any nicely
dense A ⊂M , we have M ∼=A MA and, given any τ+-structure A � Tdense,
we have (A)A = A.

The “essentially” in the last clause comes from the fact that completions are
not technically unique as the objects selected as limits can vary, but this fairly
pedantic point is the only obstacle.

Restricting to dense subsets and their completions have already been consid-
ered in continuous first-order logic, where it goes by the name prestructure (see
[BBHU08, Section 3]). The key difference here is that, while prestructures are
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still continuous objects with uniformly continuous functions and relations, MA is
a discrete object with the relations on it being either true or false.

Proof: Our proof is long, but straightforward. First, we will define τ+ and
Tdense. Then, we will introduce the map (M,A) 7→ MA and prove it satisfies (1).
After this, we will introduce the other map A 7→ A and prove (2). Finally, we will
prove that they satisfy (3).

Defining the new language and theory

We define the language τ+ to be

〈F+
i , Rφ(x)≥r, Rφ(x)≤r〉i<nF ,φ(x)∈cFml τ,r∈Q′

with the arity of F+
i matching the arity of Fi and the arity of Rφ(x)�r matching

`(x). Since we only use a full (dense) set of connectives (see [BBHU08, Definition
6.1]), we have ensured that |τ+| = |τ |+ ℵ0.

We define Tdense ⊂ Lω1,ω(τ+) to be the universal closure of all of the following
formulas ranging over all continuous formulas φ(z) and ψ(z′), all terms t(z, z′′),
and all r, s ∈ Q′ and t ∈ Q′ − {0}. We have divided them into headings so that
their meaning is (hopefully) more clear. When we refer to specific sentences of
Tdense later, we reference the ordering in this list. As always, a � in a formula
means that it should be included with both a ‘≥’ and a ‘≤’ replacing the �.

(1) The ordered structure of R
(a) ¬Rφ(z)≥r(x)→ Rφ(z)≤r(x)
(b) ¬Rφ(z)≤r(x)→ Rφ(z)≥r(x)
(c) If r > s, then include ¬Rφ(z)≥r(x) ∨ ¬Rφ(z)≤s(x)
(d) If r ≥ s, then include

• Rφ(z)≤s(x)→ Rφ(z)≤r(x); and
• Rφ(z)≥r(x)→ Rφ(z)≥s(x)

(e) Rφ(z)≥r(x) ∨Rφ(z)≤r(x)
(f) ∧n<ω ∨r,s∈Q′,|r−s|< 1

n
Rφ≤r(x) ∧Rφ≥s(x)

(g) (∧n<ωRφ(z)≥r− 1
n
(x))→ Rφ(z)≥r(x)

(h) (∧n<ωRφ(z)≤r+ 1
n
(x))→ Rφ(z)≤r(x)

(2) Construction of formulas
(a) Rφ(z)≥0(x) ∧Rφ(z)≤1(x)
(b) ¬R0≥t(x) ∧ ¬R1≤1−t(x);
(c) Rφ(z)

2
≥r(x)↔ Rφ(z)≥2r(x)

(d) Rφ(z)
2
≤r(x)↔ Rφ(z)≤2r(x);

(e) Rφ(z)−̇ψ(z′)≥r(x,x
′)↔ ∨s∈Q′(Rψ(z′)≤s(x

′) ∧Rφ(z)≥r+s(x))
(f) Rφ(z)−̇ψ(z′)≤r(x,x

′)↔ ∨s∈Q′(¬Rψ(z′)≤s(x
′) ∧Rφ(z)≤r+s(x));

(g) Rsupy t(y,y)≤r(x)↔ ∀xRt(y,y)≤r(x,x)

(h) Rsupy t(y,y)≥r(x)↔ ∧n<ω∃xRt(y,y)≥r− 1
n
(x,x) ;
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(i) Rinfy t(y,y)≤r(x)↔ ∧n<ω∃xRt(y,y)≤r+ 1
n
(x,x) ;

(j) Rinfy t(y,y)≥r(x)↔ ∀xRφ(y,y)≥r(x,x) ;
(k) Rφ(y,y)�r(t(x

′),x)↔ Rφ(t(y′),x)�r(x
′,x)

(3) Metric structure
(a) Rd(y,y′)≤0(x, x

′)↔ x = x′;
(b) Rd(y,y′)�r(x, x

′)↔ Rd(y,y′)�r(x
′, x);

(c) ∧r∈Q′(Rd(y,y′)≥r(x, x
′)→ ∀x′′∨s∈Q′∩[0,r]Rd(y,y′)≥s(x, x

′′)∧Rd(y,y′)≥r−s(x
′′, x′))

(4) Uniform Continuity
(a) For each r, s ∈ Q′ and i < τF such that s < ∆Fi(r), we include the

sentence

∧i<nRd(z,z′)≤s(xi, yi)→ Rd(z,z′)≤r(Fi(x), Fi(y))

(b) For each r, s ∈ Q′ and j < τR such that s < ∆Rj(r), we include the
sentence

∧i<nRd(z,z′)≤s(xi, yi)→ (RRj(z)−̇Rj(z′)≤r(x,y) ∧RRj(z)−̇Rj(z′)≤r(y,x))

We have been careful about the specific enumeration of these axioms for a rea-
son. If the original continuous language is countable, then Tdense is countable.
In particular, we could take the conjunction of it and make it a single Lω1,ω(τ+)
sentence. This means that it is expressible in a countable fragment of Lω1,ω(τ+).
In general, Tdense is expressible in a |τ |+ ℵ0 sized fragment of Lω1,ω(τ+).

Countable fragments are the most well-studied infinitary languages and many of
the results in, say, Keisler [Kei71] use these fragments. These results are then ap-
plicable to countable theories in continuous first-order logic. Such an application
is an improvement on finding generalized indiscernibles: in [Ben05, Lemma 3.35],
Ben-Yaacov appeals to (essentially) Morley’s omitting types theorem to find ap-
propriate indiscernibles that look like a long enough sequence. Even for countable
theories T , “long enough” is bounded by i(2ω)+ . However, using our correspon-
dence (including the analysis of types from Section 5) and the Hanf number for
Lω1,ω [Kei71, Theorem 21], this bound can be brought down to iω1 .

From continuous to discrete...

This is the easier of the directions. We define the structure MA so that all of
the “intended” correspondences hold and everything works out well.

Suppose we have a continuous τ -structure M and a nicely dense subset A. Now
we define an τ+ structure MA by

(1) the universe of MA is A;
(2) (F+

i )MA = FM
i � A for i < nF ; and
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(3) for r ∈ Q′ and φ(x) ∈ cFml τ , set

RMA
φ�r = {a ∈ A : φM(a)�r}

This is an τ+-structure since it is closed under functions. The real meat of this
part is the following claim, which is (1) from the theorem.

Claim: MA � Tdense and, for any a ∈ A, φ(x) ∈ cFml τ , r ∈ Q′, and � =≥,≤,
we have

MA � Rφ�r[a] ⇐⇒ φM(a)�r

Proof of Claim: This is all straightforward. From the definition, we know that,
for any a ∈ A and formula φ(x) ∈ cFml τ and � ∈ {≥,≤}, we have

MA � Rφ�r[a] ⇐⇒ φM(a)�r

This gives an easy proof of the fact that MA � Tdense because they are all just true
facts if ‘Rφ�r(a)’ is replaced by ‘φ(a)�r.’ †Claim

...and back again

This is the harder direction. We want to ‘read out’ the τ -structure that A is a
dense subset of from the τ+ structure. First, we use the axioms of Tdense to show
that we can read out the metric and relations of τ from the relations of τ+ and
that these are well-defined. Then we complete A and use the uniform continuity of
the derived relations to expand them to the whole structure. In the first direction,
Tdense could have been any collection of true sentences about continuous structures
and the real line, but this direction makes it clear that the axioms chosen are suf-
ficient.

Suppose that we have an τ+-structure A that models Tdense. The following claim
is an important step in reading out the relations of the completion of A from A.

Claim 2.2. For any φ(x) ∈ cFml τ and a ∈ A, we have

sup{t ∈ Q′ : A |= Rφ(x)≤t(a)} = inf{t ∈ Q′ : A |= Rφ(x)≥t(a)}

As mentioned, the proofs are typically straightforward. We give this proof to
give the reader the flavor of the arguments.

Proof: We show this equality by showing two inequalities.

• Let r ∈ {t ∈ Q′ : A |= Rφ(x)≤t(a)} and s ∈ {t ∈ Q′ : A |= Rφ(x)≥t(a)}.
Then

A |= Rφ(x)≥r(a) ∧Rφ(x)≤s(a)

Then, since M+ satisfies (1c), we must have r ≤ s. Thus sup{t ∈ Q′ : A |=
Rφ(x)≤t(a)} ≤ inf{t ∈ Q′ : A |= Rφ(x)≥t(a)}.
• By (1f), we have

A |= ∧n<ω ∨r,s∈Q′;|r−s|< 1
n
Rφ(x)≤r(a) ∧Rφ(x)≥s(a)
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Let ε > 0. Then there is n0 < ω such that ε > 1
n0

. By the above, there are

r, s ∈ Q′ such that |r − s| < 1
n0

and

M+ |= Rφ(x)≤r(a) ∧Rφ(x)≥s(a)

As above, (1c) implies r ≥ s, so we have r − s < 1
n0
< ε. Thus r < s + ε

and s ∈ {t ∈ Q′ : A |= Rφ(x)≤t(a)} and r ∈ {t ∈ Q′ : A |= Rφ(x)≥t(a)}.
Then, inf{t ∈ Q′ : A |= Rφ(x)≥t(a)} ≤ sup{t ∈ Q′ : A |= Rφ(x)≤t(a)}. †Claim

The first relation that we need is the metric. Given a, b ∈ A, we set

D(a, b) := sup{r ∈ Q′ : A � Rd(x,y)≥r[a, b]}
= inf{r ∈ Q′ : A � Rd(x,y)≤r[a, b]}

These definitions are equivalent by Claim 2.2. We show that this is indeed a
metric on A.

Claim 2.3. (|A|, D) is a metric space.

Proof: We go through the metric space axioms. Let a, b ∈ |A|.
(1)

D(a, b) = 0 =⇒ inf{r ∈ Q′ : A � Rd(x,y)≤r(a, b)} = 0

=⇒ ∀n < ω∃rn ∈ Q′ so A |= Rd(x,y)≤rn(a, b) and rn ≤
1

n
=⇒ (1d) ∀n < ω,A |= Rd(x,y)≤ 1

n
(a, b)

=⇒ (1h) A |= Rd(x,y)≤0(a, b)

=⇒ a = b

a = b =⇒ A |= Rd(x,y)≤0(a, b)

=⇒ inf{r ∈ Q′ : A |= Rd(x,y)≤r(a, b)} = 0

=⇒ D(a, b) = 0

(2)

D(a, b) = sup{r ∈ Q′ : A |= Rd(x,y)≥r(a, b)} =(3b) sup{r ∈ Q′ : A |= Rd(x,y)≥r(b, a)} = D(b, a)

(3) Let c ∈ |A|. We want to show D(a, c) ≤ D(a, b) + D(b, c). It is enough to
show

∀r ∈ Q′(D(a, c) ≥ r =⇒ D(a, b) +D(b, c) ≥ r)

Thus, let r ∈ Q′ and suppose D(a, c) ≥ r. Then sup{s ∈ Q′ : A |=
Rd(x,y)≥s(a, c)} ≥ r. By (3c), this means

sup{s ∈ Q′ : A |= ∨t∈Q′∩[0,s]Rd(x,y)≥t(a, b) ∧Rd(x,y)≥s−t(b, c)} ≥ r

Fix n < ω. There is some sn ∈ Q′ such that sn ≥ r − 1
n

and

A |= ∨t∈Q′∩[0,sn]Rd(x,y)≥t(a, b) ∧Rd(x,y)≥sn−t(b, c)
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Thus, there is some tn ∈ Q′ such that 0 ≤ tn ≤ sn and

A |= Rd(x,y)≥tn(a, b) ∧Rd(x,y)≥sn−tn(b, c)

By the definition of D, this means that D(a, b) ≥ tn and D(b, c) ≥ sn− tn;
thus, D(a, b) + D(b, c) ≥ sn. Since this is true for all n < ω, we get that
D(a, b) +D(b, c) ≥ r as desired.

Thus, D is a metric on |A|. †Claim

Now we define partial functions and relations on (|A|, D) such that they are
uniformly continuous. In particular,

(1) for i < nF , set fi := FA
i with modulus ∆fi(r) = sup{s ∈ Q′ : A �

∀x0, . . . , xn(Fi)−1;∀y0, . . . , yn(Fi)−1 (∧i<n(Fi)Rd(z,z′)≤s(xi, yi)→ Rd(z,z′)≤r(Fi(x), Fi(y)))}.
(2) for j < nR, set rj(a) := sup{r ∈ Q′ : A � RRj(z)≤r[a]} with modulus

∆rj(r) = sup{s ∈ Q′ : A |= ∀x∀y(∧i<n(Rj)Rd(z,z′)≤s(xi, yi)→ (RRj(z)−̇Rj(z′)≤r(x,y)∧
RRj(z)−̇Rj(z′)≤r(y,x)))}.

These functions are not defined on the desired structure (ie the completion of
A), but they already fulfill our goal in terms of agreeing with the discrete relations
in the following sense.

Claim 2.4. For all a ∈ A and all formulas φ(x) built up from these functions and
D, we have that

φ(a)�r ⇐⇒ A � Rφ(z)�r[a]

Proof: We proceed by induction on the construction of φ(x). We assume that
� is ≥ in our proofs, but the proofs for ≤ are the same.

• If φ is atomic, then it falls into one of the following cases.
– Suppose φ(x) ≡ Rj(τ(x)) for some term t. Then

RM
j (τ(a)) ≥ r ⇐⇒ inf{s ∈ Q′ : A |= RRj(x)≥s[τ(a)]} ≥ r

⇐⇒ ∀n < ω, ∃sn ∈ Q′ so sn ≥ r − 1

n
and A |= RRj(x)≥sn [τ(a)]

⇐⇒ (1d) ∀n < ω,A |= RRj(x)≥r− 1
n
[τ(a)]

⇐⇒ (1g) A |= RRj(x)≥r[τ(a)]

⇐⇒ (2k) A |= RRj(τ(y))≥r[a]

– Suppose that φ(x,y) ≡ d(t1(x), t2(y)) for terms t1 and t2. The detail
are essentially as above: DM(t1(a), t2(b)) iff (by (1d), the definition
of sup, (1h) and (1g)) M+ |= Rd(x,y)≥r[t1(a), t2(b)] iff (by (2k)) M+ |=
Rd(t1(x),t2(y))≥r(a,b).

• For the inductive step, we deal with each connective (from our full set) in
turn. The induction steps for x 7→ 0, x 7→ 1, and x 7→ x

2
are clear.
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– Suppose φ ≡ ψ−̇t, where t is a formula and not a term. Note if r = 0,
then this is obvious. So assume r 6= 0. Recall that

φM(a) = ψM(a)−̇tM(a) =

{
ψM(a)− tM(a) if ψM(a) ≥ 0

0 otherwise

Thus, we can assume we are in the case that ψM(a) > tM(a).
∗ First, suppose ψM(a)− tM(a) ≥ r. Since ψM(a) > tM(a), there

is some s ∈ Q′ such that ψM(a) > s > tM(a). Then tM(a) ≤ s
and ψM(a) ≥ s+ r. By induction, we have that

M+ |= Rt(x)≤s[a] ∧RψM (x)≥s+r[a]

Then, by (2e), we have that M+ |= Rψ−̇t≥r[a] as desired.
∗ Now, suppose M+ |= Rψ−̇t≥r[a]. Again, (2e) implies there is is

some s ∈ Q′ such that

M+ |= Rt≤s[a] ∧Rψ≥r+s[a]

By induction, we get tM(a) ≤ s and ψM(a) ≥ r + s. Then

φM(a) = ψM(a)− tM(a) ≥ (r + s)− s = r

as desired.
– Suppose φ(x) ≡ supx ψ(x,x). We will consider both sides of the in-

equality since they’re not symmetrically axiomatized (see (2g) and
(2h)), but we won’t worry about inf.
∗ Suppose that supx φ

M(x, a) ≥ r. Then for any n < ω, there is
some an ∈ |M | such that φM(an, a) > r − 1

2n
. Since φM is uni-

formly continuous, there is some δ > 0 such that, if d(an, b) < δ,
then |φM(an, a)−φM(b, a)| < 1

2n
. Since M+ is dense in M , there

is some a′n ∈ M+ such that d(an, a
′
n) < δ. Thus, φM(a′n, a) >

r − 1
n
. By induction, we have that

M+ |= ∧n<ω∃xRφ(y,y)≥r− 1
n
(x, a)

Then (2h) says that M+ |= Rsupy φ(y,y)≥r(a).

∗ Suppose that M+ |= Rsupy φ(y,y)≥r[a]. Then, by (2h), M+ |=
∧n<ω∃xRφ(y,y)≥r− 1

n
(x, a). So, for each n < ω, there is some

an ∈ M+ such that M+ |= Rφ(y,y)≥r− 1
n
[an, a]. By induction, we

have that φM(an, a) ≥ r − 1
n
. Since this is true for each n < ω,

we get supy φ
M(y, a) ≥ r.
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∗ The other direction is easier and we can combine the two parts

sup
x
φM(x, a) ≤ r ⇐⇒ ∀a ∈MφM(a, a) ≤ r

⇐⇒ ∀a ∈M+φ(a, a) ≤ r

⇐⇒ Induction M+ |= ∀xRφ≤r(x, a)

⇐⇒ (2g) M+ |= Rsupx φ(x,x)[a]

†

We have given these functions moduli, but do not know they are uniformly
continuous. We show this now. It is also worth noting that these moduli might
not be the same moduli in the original signature τ . Instead, these are the optimal
moduli, while the original language might have moduli that could be improved.

Claim 2.5. The functions fi and rj are continuous.

Proof: We do each of these cases separately.

• Sub-Claim 1: FM+

i is uniformly continuous on (|M+|, D) with modulus
∆Fi .
Let r ∈ Q′ and let a,b ∈ |M+| such that maxi<nD(ai, bi) < ∆Fi(r). Thus,
for each i < n, D(ai, bi) = inf{s ∈ Q′ : M+ |= Rd(x,y)≤s(ai, bi)} < ∆Fi(r).
Since this is strict, there is some si ∈ Q′ such that M+ |= Rd(x,y)≤si(ai, bi).
Note that (1d) implies that the set ∆Fi(r) is supremuming over is downward
closed. Thus, s′ = maxi<n si is in it. Thus, we can conclude

M+ |= Rd(x,y)≤r[Fi(a), Fi(b)]

This means that D(Fi(a), Fi(b)) ≤ r, as desired.
• Sub-Claim 2: RM+

j is uniformly continuous on ([0, 1], | · |) with modulus
∆Rj .
Let r ∈ Q′ and a,b ∈ |M+| such that ∧i<nD(ai, bi) < ∆Rj(r). From
the infimum definition of D, for each i < n, there is si ∈ Q′ such that
si < ∆Rj(r) and M+ |= Rd(z,z′)≤si [ai, bi]. Thus,

M+ |= RRj(z)−̇Rj(z′)≤r(a,b) ∧RRj(z)−̇Rj(z′)≤r(b, a)

For this next part, we need some of the future proofs, but essentially we
have enough to show that this implies

RM+

j (a)−̇RM+

j (b) ≤ r and RM+

j (b)−̇RM+

j (a) ≤ r

This implies |RM+

j (a)−RM+

j (b)| ≤ r, so RM+

j is uniformly continuous. †

Now we have a prestructure. Now we complete |A| to |A| in the standard way;
see Munkries [Mun00] for a reference for the topological facts. In particular, we
define the continuous τ -structure A by
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• the universe |A| is the completion of (|A|, D);

• the metric dA is the extension of D to |A|;
• for i < nF , FA

i is the unique extension of fi to |A|; and

• for j < nR, RA
j is the unique extension of rj to |A|.

Essential inverses

Proposition 2.6. Given any continuous τ -structure M and dense subset A, we
have that M ∼=A MA and, given any τ+ structure A that models Tdense, we have
that (A)A = A.

Proof: First, let M be a continuous τ -structure and A ⊂ |M | be nicely dense.

We define a map f : M → (MA) as follows: if a ∈ A, then f(a) = a. For
a ∈ M − A, fix some (any) sequence 〈an ∈ A : n < ω〉 such that limn→∞ an = a
(this limit computed in M). We know that 〈an : n < ω〉 is Cauchy in M , so it’s

Cauchy in (MA). Then set f(a) = limn→∞ an, where that limit is computed in

(MA). This is well-defined and a bijection because A is dense in both sets. That
this is an τ -isomorphism follows from applying the correspondence twice: for all
a ∈ A and φ(x) ∈ cFml τ

φM(a)�r ⇐⇒ MA � Rφ(x)�r[a] ⇐⇒ φ(MA)(a)�r

and the fact that the values of φ on A determines its values on M and (MA).
Second, let A be a τ+ structure that models Tdense. Clearly, the universes are

the same, ie, |(A)A| = |A|. For any relation Rφ�r and a ∈ |A|, we have

A � Rφ�r[a] ⇐⇒ φA(a)�r ⇐⇒ (A)A � Rφ�r[a]

Given a function F+
i and a, a ∈ A, we have that

(F+
i )A(a) = a ⇐⇒ A � Rd(F+

i (x),x)≤0[a, a]

⇐⇒ (A)A � Rd(F+
i (x),x)≤0[a, a] ⇐⇒ (F+

i )(A)A(a) = a

†

We can extend this correspondence to theories. Suppose that T is a continuous
theory in τ . Following [BBHU08, Definition 4.1], theories are sets of closed τ -
conditions; that is, a set of “φ = 0,” where φ is a formula with no free variables.
The following is immediate from Theorem 2.1.

Corollary 2.7. If “φ = 0” is a closed τ -condition, then

φM = 0 ⇐⇒ MA � Rφ≤0
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With our fixed theory T , set T ∗ to be Tdense ∪ {Rφ≤0 : “φ = 0′′ ∈ T}. Then
our representation of continuous τ -structures as discrete τ+-structures modeling
Tdense can be extended to a representation of continuous models of T and discrete
models of T ∗.

3. Elementary Substructure

We now discuss translating the notion of elementary substructure between our
two contexts. Depending on the generality needed, this is either easy or difficult.

For the easy case, we have the following.

Theorem 3.1. Let M,N be continuous τ structures. Then M ≺τ N iff, for every
nicely dense A ⊂M and B ⊂ N such that A ⊂ B, we have that MA ⊂τ+ NB.

Note that the relation between MA and NB is just substructure. So even though
they are models of infinitary theories, their relation just concerns atomic formulas.
This is because we have built the quantifiers of τ into the relations of τ+.

Proof: ←: Let A = M and B = N . Then M ⊂ N , so MM ⊂τ+ NN by
assumption. Thus they agree on all relations concerning elements of M . Now we
want to show that M ≺cτ N . Let φ(x) ∈ cFml τ and a ∈ M . From the theorems
proved last section, we have, for each r ∈ Q′,

φM(a)�r ⇐⇒ MM � Rφ(x)�r[a] Theorem 2.1

⇐⇒ NN � Rφ(x)�r[a] MM ⊂τ+ NN

⇐⇒ φN(a)�r Theorem 2.1

Thus φM(a) = φN(a) and M ≺τ N as desired.
→: Let A ⊂ M and B ⊂ N be nicely dense so A ⊂ B. We want to show that
MA ⊂τ+ NB.

• Let F+ ∈ τ+ and a ∈ A. Then, by definition of the structures,

(F+)MA(a) = FM(a) = FN(a) = (F+)NB(a)

• Let Rφ�r(x) ∈ τ+ and a ∈ A.

MM � Rφ(x)�r[a] ⇐⇒ φM(a)�r Theorem 2.1

⇐⇒ φN(a)�r M ≺ N

⇐⇒ NN � Rφ(x)�r[a] Theorem 2.1

†

Similarly, we have the following.

Theorem 3.2. Given A,B � Tdense, if A ⊂τ+ B, then A ≺τ B.
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However, relying on just these theorems would not allowthese relations alone do
not capture the entirety of the relation between A and B via the analysis of A and
B alone. For instance, the completion of Q ∩ [0, 1] is a subset of the completion
of Q +

√
2, but this relation isn’t picked up by the previous theorems. Thus, we

develop a criterion for L+ structures A,B � Tdense that is equivalent to A ≺τ B.
To this end, we define inessential extensions of models of Tdense.

Definition 3.3. Given A ⊂τ+A B, we say that B is an inessential extension of A

iff for every b ∈ |B| and n < ω, there is some a ∈ |A| such that B � Rd(x,y)< 1
n
[b, a].

Briefly, we have that B is an inessential extension of A if A ⊂ B and A = B.
This gives us our desired criterion.

Theorem 3.4. Let A,B � Tdense. Then TFAE

(1) A ≺τ B.
(2) There is an τ+ structure C such that A,B ≺τ+ C and C is an inessential

extension of B.
(3) There is an τ+ structure C ′ � Tdense such that A,B ⊂τ+ C and C is an

inessential extension of B.
(4) There is an extension of the functions and relations of τ+ to A ∪ B such

that A ∪ B � Tdense that are still uniformly continuous and such that for
every a ∈ |A ∪ B| and n < ω, there is some b ∈ |B| such that A ∪ B �
Rd(x,y)< 1

n
[b, a].

Proof:

(1) =⇒ (2) Take C = (B)A∪B.

(2) =⇒ (3) Immediate.

(3) =⇒ (4) Take the extension inherited from C.

(4) =⇒ (1) We have A,B ≺ A ∪B from the first condition and B = A ∪B form the
second.

4. Tdense as an Abstract Elementary Class

In this section, we view the discrete side of things as an Abstract Elementary
Class; see Baldwin [Bal09] or Grossberg [Gro1X].

Theorem 4.1. Let T be a complete, continuous first order τ -theory. Then let τ+

and Tdense be from Theorem 2.1. Set K = (Mod (T ∗),⊂τ+). Then

(1) K is an AEC;
(2) K has amalgamation over sets, joint embedding, and no maximal models;

and
(3) Galois types in K correspond to continuous, syntactic types in T .



14 WILL BONEY

Note that if T were not complete, then amalgamation over sets would not hold.
However, the other properties will continue to hold, including the correspondence
between Galois types and sequence types.

Proof: Tdense∪T+ is a Lω1,ω(τ+) theory, so all of the axioms of AECs hold except
perhaps the chain axioms (which might fail because strong substructure is not
elementary according to the fragment). For those, consider a ⊂τ+-increasing chain
〈MAi : i < α〉. Then, by Theorem 2.1 and Theorem 3.2, the sequence 〈MAi : i < α〉
is ≺τ -increasing chain that each model T . Then by the chain axiom for continuous

logic, there is M = ∪i<α(MAi) that models T . Additionally, A := ∪i<αAi is nicely
dense in M . Thus, MA = ∪i<αMAi is as desired. Additionally, if MAi ⊂τ+ MB for
some B, then M ≺τ MB, so MA ⊂τ+ MB.

These properties all follow from the corresponding properties of continuous first-
order logic. For instance, considering amalgamation, suppose MA ⊂τ+ MB,MC .
Then we have MA ≺τ MB,MC . By amalgamation for continuous first-order logic,
there is some N �τ MB and elementary f : MC → MAN . Let D ⊂ N be nicely
dense that contains B∪C. Then we have MB ⊂τ+ ND and f �MC : MC →MA

ND;
this is an amalgamation of the original system.

Finally, we wish to show that Galois types are syntactic types and vice versa.
Note that there are monster models in each class. Further more, we may assume
that, if C is the monster model of T , that there is some nicely dense U ⊂ C such
that the monster model of K is MU ; in fact, we could take U = |C|. Let continuous
M � T and A ⊂M be nicely dense. If we have tuples a and b, then

gtpK(a/MA) = gtpK(b/MA) ⇐⇒ ∃f ∈ AutMA
MU .f(a) = b

⇐⇒ ∃f ∈ AutMA
C.f(a) = b

⇐⇒ tpT (a/M) = tpT (b/M)

†

We pause here only briefly to point out a strange occurence: first-order contin-
uous logic is compact (see [BBHU08, Theorem 5.8]), but Lω1,ω is incompact. Yet,
we have seen that continuous logic can be embedded into Lω1,ω. The solution to
this incongruity is that the compactness of continuous logic comes from a different
ultraproduct than the model-theoretic one, namely the Banach space ultraproduct.
In model theoretic terms, the Banach space ultraproduct avoids having elements
of nonstandard norm by explicitly excluding all sequences with unbounded norm
from the product. This is put into a general framework for type omission in the
author’s thesis [Bona] (see [Bonb, Section 4.1] for details).

We conclude with a basic example relevant to the next section. I thank Ilijas
Farah for discussions around this example.

Example 4.2. The model theory of probability spaces (X,B, µ) is developed in
[BBHU08, Section 16] by defining a metric structure where the universe consists of
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the elements of B modulo µ-equivalence; adding 0, 1, complement, meet, and join
to the language; and setting the distance d(A,B) = µ(A4B). An axiomatization
PrA is given in [BBHU08, Theorem 16.1].

Then PrA∗ consists of the normal axioms of Tdense along with the appropriately
relativized axioms of PrA: each “universal axiom” supx φ(x) becomes ∀xRφ≤0(x).
This means that a model M of PrA∗ will have a naturally induced structure of a
boolean algebra on it, along with a distance function d that gives rise to a probability
measure via µ(x) = d(x, 0).

Probability spaces can be seen as a metric version of boolean algebras, and
any model of PrA∗ is a boolean algebra with some extra structure. However,
this correspondence does not go backwards: there are many boolean algebras that
cannot be expanded to a model of PrA∗. In particular, any boolean algebra B
with an increasing sequence 〈bα : α < ω1〉 cannot be a reduct of a model of PrA∗

because 〈µ(bα) : α < ω1〉 would be ℵ1-increasing sequence of reals.
PrA is stable (see [BBHU08, Proposition 16.9] or [FHS13, Proposition 4.6])

and, thus, doesn’t have the (properly defined) order property. However, there is
an order extractable from the syntax. Set x ≺ y iff µ(x ∩ y)−̇µ(x) = 0. Looking
in the the probability space of Lebesgue measurable subsets of [0, 1], we can find
sequences 〈Xi | α〉 that are increasing according to this measure for any α < ω1.
However, this does not contradict the above because the proper definition of the
order property [FHS13, Definition 2.3] requires a uniform separation of the values
of the formula (rather than only detecting when a formula takes the value 0).

This represents a common theme of studying the order property in general AECs.
When defining the order property in an AEC (see, for instance, [Sh394, Section
4]), an extra parameter of how long the order is must be included as there is
no compactness to make it arbitrarily long. Then the order property with no
parameters means that there are arbitrarily long order or, equivalently, that there
is an order of length i(2LS(K))+ . Thus, PrA∗ has the α-order property for every
α < ω1, does not have the ℵ1-order property, and is stable (see Corollary 5.2
below). The compactness of continuous logic from the metric ultrapower offers a
better criteria in terms uniform order property from [FHS13]: T ∗ has the order
property (as an AEC) iff T has arbitrary long finite orders (as a metric theory).

5. Types

Fix a continuous τ -theory T , and let T ∗ be it’s discrete equivalent (described at
the end of Section 2).

In Theorem 4.1, we showed that Galois types on the discrete side correspond
to the normal definition of syntactic on the continuous side. We can characterize
Galois types more precisely by looking at the quantifier-free syntactic type in τ+.

Proposition 5.1. In (Mod (T ∗),⊂τ+), two elements have the same Galois type iff
they have the same quantifier-free τ+-type.
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Proof: In all AECs, two tuples having the same Galois type implies having the
same quantifier-free type. Suppose that a,b ∈ D � T ∗ have the same quantifier-
free type over C ⊂ |D|. Then, by Theorem 2.1.(2), a,b ∈ D̄ have the same
continuous τ -type over C. By Theorem 4.1.(3), this means that a and b have the
same Galois type in (Mod (T ∗),⊂τ+). †

Of course, not every finitely consistent quantifier-free τ+-type is realized in a
model. For instance, the partial type {¬Rd(x′,y′)≥0(x, y), Rd(x′,y′)≤ 1

n
(x, y) | n < ω} is

finitely satisfiable, but describes the type of two elements that are an infinitesimal,
positive distance from each other. Clearly, no element in a model of Tdense can
satisfy this.

The correspondence allows us to connect the stability of the discretization with
the stability of the continuous class because we’ve established a bijection between
the types. An important distinction in the study of stability in continuous first-
order logic is discrete stability (counting the cardinality of the type space [BBHU08,
Definition 14.1]) and stability (counting the density character of the type space
under a natural metric [BBHU08, Definition 14.4]).

Corollary 5.2. T is λ-discrete stable iff (Mod (T ∗),⊂τ+) is λ-Galois stable.

Proof: Theorem 4.1.(3) has established a bijection between the relevant sets.†

The density character notion of stability turns out to be the better measure of
a class’ behavior (although they are equivalent gloablly by [BBHU08, Theorem
14.6]). Additionally, in the discrete context, we could develop a notion of distance
between types paralleling the notion on the continuous side. However, it doesn’t
seem as though there’s a natural way to recover the density character of the type
space in this context.

We now turn to saturation. While stability is a property of theories, saturation
is a property of models. Thus, it requires a finer analysis to determine the transfer
between continuous notions and Tdense. In particular, it is clear that we cannot
expect a characterization along the lines of “the continuous structure M is satu-
rated iff the discrete structure MA is saturated for every nicely dense subset A.”
The failure comes from the fact that nicely dense subsets can miss many elements.
Thus, we introduce the notion of a sequence type below. This notion allows us
to give a characterization of the desired form in terms of saturation for sequence
types (see Theorem 5.6). Note this notion appears elsewhere, e.g., in Farah and
Magidor [FaMa] as the type pω, although they formalize it as a type in infinitely
many free variables, rather than infinitely many types in 2 free variables.

Definition 5.3. • We say that 〈rn : n < ω〉 is a sequence `-type over B′ iff
r0(x) is an `-type over B′ and rn+1(x,y) is a 2`-type over B′ such that there
is some index set I, (possibly repeating) formulas 〈φi : i ∈ I〉; and (possibly
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repeating) Cauchy sequences 〈〈bin ∈ B′〉n<ω : i ∈ I〉 so d(bin,b
i
n+1) ≤ 1

2n

such that
– r0(x) = {Rφi(z,z′)≤wφi (2)(x,b

i
0) : i ∈ I}; and

– rn+1(x,y) = {Rφi(z,z′)≤wφi ( 1
2n

)(x,b
i
n+1) : i ∈ I} ∪ {Rd(z,z′)≤ 1

2n
(xk, yk) :

k < `}
• A realization of a sequence type 〈rn : n < ω〉 is 〈an : n < ω〉 such that

– a0 realizes r0; and
– an+1an realizes rn+1.

Note that the use of 1
2n

is not necessary; this could be replaced by any summable

sequence for an equivalent definition (also replacing 1
2n−1 by the trailing sums).

However, we fix 1
2n

for computational ease. The fundamental connection between
continuous types and sequence types is the following.

Theorem 5.4. Let A ⊂ |M | be nicely dense.

(1) If B ⊂ |M | and r(x) is a partial `-type over B, then for any B′ ⊂ A such
that B′ ⊃ B, there is a sequence ` type 〈rn : n < ω〉 over B′ such that

M realizes r iff MA realizes 〈rn : n < ω〉
(2) If B′ ⊂ A and 〈rn : n < ω〉 is a partial sequence `-type over B′, then there

is a unique `-type r over B′ such that

M realizes r iff MA realizes 〈rn : n < ω〉

We can denote the type in (2) by limn→∞ rn. In each case, we have that 〈an ∈
MA : n < ω〉 realizes 〈rn : n < ω〉 implies limn→∞ an realizes limn→∞ rn.

Proof:

(1) Recall that r(x) contains conditions of the form “φ(x,b) = 0” for φ ∈
cFml τ and b ∈ B. For n < ω and b ∈ B, set B′n(b) = {b′ ∈ B′ : dM(b′, b) <
1
2n
}; this is nonempty for every n because B′ ⊃ B. To make the cardinality

work out nicer, fix a choice function G, i. e., G(B′n(b)) ∈ B′n(b). Then
B′n(b) and G(B′n(b)) have the obvious meanings. Define

r+n (x) := {Rφ(z;y)<wφ( 1
2n−1 )

(x;G(B′n(b))) : “φ(x; b) = 0” ∈ r}

r0(x) := r+0 (x)

rn+1(x,y) := r+n+1(x) ∪ {Rd(z,z′)< 1
2n

(xi, yi) : i < `(x)}

Then 〈rn : n < ω〉 is a sequence type over B′; we can see this by taking r
as the index set, φi = φ, and bi = G(B′n(b)) for i = “φ(x; b) = 0” ∈ r. To
show it has the desired property, first suppose that 〈an : n < ω〉 from MA

realizes 〈rn : n < ω〉. We know that 〈an : n < ω〉 is a Cauchy sequence; in
particular, for m > n,

dM(an, am) ≤
m∑
i=n

1

2i
=

2m+1−n − 1

2m+1
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Since MA
∼= M is complete, there is a ∈MA such that limn→∞ an = a. We

claim that a � r. Let “φ(x; b) = 0” ∈ r. Then

dMA(ab; anG(B′n(b))) = max{dM(a, an), dM(b, G(B′n(b))} ≤ max{
∞∑
i=n

1

2i
,

1

2n
} =

1

2n−1

Thus,

|φM(a; b)− φM(an;G(B′n(b)))| < wφ(
1

2n−1
)

Letting n→∞, we have that

φMA(a; b) = lim
n→∞

φM(an;G(B′n(b))) ≤ lim
n→∞

wφ(
1

2n−1
) = 0

as desired.
Now suppose that a ∈ M realizes r. Since A is dense, we can find
〈an ∈ A : n < ω〉 such that dM(an, an+1) <

1
2n

and an → a. We want to
show that r+n (an) holds. Let “φ(x,b)” ∈ r. We know that

dM(anG(B′n(b)), ab) =
1

2n−1

, so we get

φMA(an, G(B′n(b))) = |φM(a,b)− φM(an, G(B′n(b)))| < wφ(
1

2n−1
)

as desired. †

(2) Let 〈rn : n < ω〉 be a partial sequence `-type given by I, 〈φi : i ∈ I〉, and
〈〈bin〉n<ω : i ∈ I〉. Then set

r(x) := {φi(x, lim
n→∞

bin) = 0 : i ∈ I}

First, suppose that 〈an ∈ MA : n < ω〉 realizes 〈rn : n < ω〉. Then, since
an+1an � rn+1, we have dMA(an+1, an) < 1

2n
and, thus, the sequence is

Cauchy. Since M is complete, let a = limn→∞ an ∈ M . Then, by uniform
continuity, we have

φMi (a,bi) = φMi ( lim
n→∞

an, lim
n→∞

bin)

= lim
n→∞

φMi (an,b
i
n)

≤ lim
n→∞

wφi(
1

2n−1
)

= 0

So a � r.
Now suppose that a ∈ M realizes t. Then, by denseness, we can find

a Cauchy sequence 〈an ∈ A : n < ω〉 such that d(an+1, an) ≤ 1
2n

. Then

d(abi, anb
i
n) ≤ 1

2n−1 . Then we can conclude
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|φMi (a,bi)− φMi (an,b
i
n)| ≤ wφi(

1

2n−1
)

φMA(an, a
i
n) ≤ wφi(

1

2n−1
)

So 〈an : n < ω〉 realizes 〈rn : n < ω〉.
†

We now connect type-theoretic concepts in continuous logic (e.g. saturation and
stability) with concepts in our discrete analogue.

Recall (see [BBHU08, Definition 7.5]) that a continuous structure M is κ-
saturated iff, for any A ⊂ M of size < κ and any continuous type r(x) over
A, if every finite subset of r(x) is satisfiable in M , then so is r(x).

Definition 5.5.

• If 〈rn : n < ω〉 is a sequence type defined by an index set I and I0 ⊂ I,
then 〈rn : n < ω〉I0 is the sequence type defined by I0.
• We say that MA � Tdense is κ-saturated for sequence types iff, for all B′ ⊂ A

and sequence type 〈rn : n < ω〉 over B′ that is defined by I, if 〈rn : n < ω〉I0
is realized in MA for all finite I0 ⊂ I, then 〈rn : n < ω〉 is realized in MA.

Theorem 5.6. Let M � T and A ⊂M be nicely dense.

(1) If M is κ-saturated and λℵ0 < κ, then MA is λ+ saturated for sequence
types.

(2) If MA is κ saturated, then M is κ saturated.

Proof:

(1) Let M be κ-saturated and A ⊂M be nicely dense. Let B′ ⊂MA of size λ
and let 〈rn : n < ω〉 be a sequence type over B′ that is finitely satisfiable
in MA. Set r = limn→∞ rn from Theorem 5.4; this is a type over B′ where
|B′| ≤ λℵ0 < κ. We claim that r is finitely satisfiable in M . Any finite
subset of r− of

r = {φi(x, lim
n→∞

bin) : i ∈ I}
corresponds to a finite I0 ⊂ I. Then, by Theorem 5.4, r0 is realized in M iff
〈rn : n < ω〉I0 is realized in MA. Then, since each 〈rn : n < ω〉I0 is realized
in MA by assumption, we have that r is finitely satisfiable in M . By the
κ-saturation of M , r is realized in M . By Theorem 5.4, 〈rn : n < ω〉 is
realized in MA. So MA is λ+-saturated.

(2) Let MA be κ-saturated for sequence types. Let B ⊂M of size < κ and r be
a type over B that is finitely satisfied in B. Find B′ ⊂ A such that B′ ⊃ B;
this can be done with |B′| ≤ |B| + ℵ0 < κ. Then form the sequence type
〈rn : n < ω〉 over B′ that converges to rn as in Theorem 5.4. As before,
since r is finitely satisfiable in M , so is 〈rn : n < ω〉 in MA. So 〈rn : n < ω〉
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is realized in MA by saturation. Thus, r is realized in M . †

We immediately get the following corollary.

Corollary 5.7. If κ = (λℵ0)+ or, more generally, κ = supλ<κ(λ
ℵ0)+ and M is of

size κ, then M is saturated iff MA is saturated for some nicely dense A ⊂ M of
size κ.

6. Metric Abstract Elementary Classes

In this section, we extend the above representation to Metric Abstract Elemen-
tary Classes. Recall from Hirvonen and Hyttinen [HH09] or that a Metric Abstract
Elementary Class (MAEC) is a class of continuous τ(K)-structures K and a strong
substructure relation ≺K satisfying the following axioms:

(1) ≺K is a partial order on K;
(2) for every M,N ∈ K, if M ≺K N , then M ⊆τ N ;
(3) (K,≺K) respects τ(K) isomorphisms, if f : N → N ′ is an τ(K) isomor-

phism and N ∈ K, then N ′ ∈ K and if we also have M ∈ K with M ≺K N ,
then f(M) ∈ K and f(M) ≺K N ′;

(4) (Coherence) if M0,M1,M2 ∈ K with M0 ≺K M2; M1 ≺K M2; and M0 ⊆
M1, then M0 ≺M1;

(5) (Tarski-Vaught chain axioms) suppose 〈Mi ∈ K : i < α〉 is a ≺K-increasing
continuous chain, then
(a) ∪i<αMi ∈ K and, for all i < α, we have Mi ≺K ∪i<αMi; and
(b) if there is some N ∈ K such that, for all i < α, we have Mi ≺K N ,

then we also have ∪i<αMi ≺K N ; and
(6) (Löwenheim-Skolem number) There is an infinite cardinal λ ≥ |τ(K)| such

that for any M ∈ K and A ⊂M , there is some N ≺K M such that A ⊂ |N |
and dc(N) ≤ |A|+ λ. We denote the minimum such cardinal by LS(K).

These axioms were first given in Hirvonen and Hyttinen [HH09].
A key difference is that the functions and relations τ are no longer required to be

uniformly continuous, but just continuous. This is due to the lack of compactness
in the MAEC context. This initially seems problematic because functions must
be uniformly continuous on a set to be guaranteed an extension to its closure.
However, we get around this by simply defining Kdense to be all the structures
that happen to complete to a member of K, then use the MAEC axioms to show
that Kdense satisfies the AEC axioms.

For this reason, when we refer to continuous languages, structures, etc. in this
section, we will not mean that they are uniformly continuous.

Theorem 6.1. Let τ be a continuous language. Then there is a discrete language
τ+ such that, for every MAEC K with τ(K) = τ , there is
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(1) an AEC Kdense with τ(Kdense) = τ+ and LS(Kdense) = LS(K);
(2) a map from M ∈ K and nicely dense subsets A of M to MA ∈ Kdense; and
(3) a map from A ∈ Kdense to A ∈ K

with the properties that

(1) MA has universe A and for each a ∈ A, r ∈ Q′, and � ∈ {≤,≥}, we have
that

MA � RRj(z)�r[a] ⇐⇒ RM
j (a)�r

(2) A has universe that is the completion of A with respect to the derived metric
and for each a ∈ A, r ∈ Q′, and � ∈ {≤,≥}, we have that

RAj (a)�r ⇐⇒ A � RRj(z)�r[a]

(3) The maps above are essentially inverses, in the since of Theorem 2.1.3
(4) • Given M` ∈ K and A` nicely dense in M` for ` = 0, 1, if f : M0 →M1

is a K-embedding such that f(A0) ⊂ A1, then f � A0 is a Kdense-
embedding from (M0)A0 to (M1)A1.
• Given A,B ∈ Kdense and a Kdense-embedding f : A → B, this lifts

canonically to a K-embedding f : A → B.

Proof: The proof proceeds similar to the first-order version, Theorem 2.1. In
particulalr, many of the definitions of continuous structures from discrete approx-
imations (such as getting the metric and relations from their approximations) did
not use compactness and only used uniform continuity to ensure that a completion
existed, which will be guaranteed by the definition of Kdense in this case.

Given continuous τ = 〈Fi, Rj〉i<nf ,j<nr , define

τ+ := 〈F+
i , RRj(z)≥r, RRj(z)≤r〉i<nf ,j<nr,r∈Q′

Given an MAEC K, we define the AEC Kdense as follows:

• τ(Kdense) = τ+;
• Given an τ+ structure A, we use the following procedure to determine

membership in Kdense: define D on A× A by

D(a, b) := sup{r ∈ Q′ : A � Rd(x,y)≥r[a, b]}
= inf{r ∈ Q′ : A � Rd(x,y)≤r[a, b]}

The proof that this is a well-defined and is a metric proceeds exactly as
in the previous case. We can similarly define the relations Rj on A and
complete the universe (A,D) to A. We call the structure A completable iff
(1) for every a ∈ A and every Cauchy sequence 〈an ∈ A : n < ω〉 converg-

ing to to a, the value of limn→∞Rj(a
n) is independent of the choice

of the sequence; and similarly
(2) for every a ∈ A and every Cauchy sequence 〈an ∈ A : n < ω〉 converg-

ing to to a, the value of limn→∞ F
+
i (an) is independent of the choice

of the sequence.
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If A is completable, then we define A to be the τ+-structure where Fi
and Rj are defined on A according to the independent value given above.
Finally, we say that A ∈ Kdense iff
(1) A is completable; and
(2) A ∈ K.

• Given A,B ∈ Kdense, we say that A ≺dense B iff
(1) A ⊂τ+ B; and
(2) A ≺K B.

Now that we have the definition of Kdense, we must show that it is in fact
an AEC. The verification of the axioms are routine; we give the arguments for
coherence and the chain axioms as templates.

For coherence, suppose that A,B, C ∈ Kdense such that A ≺dense C; B ≺dense C;
and A ⊂τ+ B. Then, taking completions, we get that

A ≺K C;B ≺K C; and A ⊂τ B
By coherence in K, we then have that A ≺K B. Then, by definition, A ≺dense B,
as desired.

For the chain axioms, suppose that 〈Ai ∈ Kdense : i < α〉 is a continuous,
≺dense-increasing chain such that, for all i < α, Ai ≺dense B ∈ Kdense. Again,
taking completions, we get that 〈Ai ∈ K : i < α〉 is a continuous, ≺K-increasing
chain such that, for all i < α, Ai ≺K B ∈ K. Then, by the union axioms for

K, we have that ∪i<αAi ∈ K and ∪i<αAi ≺K B. Note that the existence of

∪i<αAi shows that ∪i<αAi is completable and that an easy computation shows

that ∪i<αAi = ∪i<αAi. Thus, ∪i<αAi ∈ Kdense and, for all j < α,

Aj ≺dense ∪i<αAi ≺dense B
Once we have defined the maps and shown that Kdense is an AEC, the rest of

the proof proceeds exactly as in the continuous first-order case, in some ways sim-
pler since τ+ only has relations for each relation of τ , rather than each formula of τ .

We now turn to an application. Both Hirvonen and Zambrano have proved
versions of Shelah’s Presentation Theorem for MAECs in their theses. The more
general is Zambrano’s [Zam, Theorem 1.2.7]:

Theorem 6.2. Let K be a MAEC. There is τ1 ⊃ τ and a continuous1 τ1-theory
T1 and a set of T1-types Γ such that K = PC(T1,Γ, τ).

An immediate corollary to our presentation theorem is a discrete presentation
theorem.

Corollary 6.3 (Discrete Presentation Theorem for Metric AECs). Let K be a
MAEC. Then there is a (discrete) language τ1 of size LS(K), an τ1-theory T1, and

1But not uniformly continuous.
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a set of T1-types Γ such that K = {M1 � τ(K) : M1 � T1 and omits Γ}, where the
completion is taken with respect to a canonically definable metric.

Proof: Apply Theorem 6.1 to represent K as a discrete AEC Kdense and then
apply Shelah’s Presentation Theorem from Shelah [Sh88].

Additionally, Zambrano asks [Zam, Question 1.2.9] if there exists is a Hanf num-
ber for model existence in MAECs. Using our presentation theorem, we can answer
this questions in the affirmative. Furthermore, the Hanf number for MAECs is the
same as for AECs.

Theorem 6.4. If K is a MAEC with LS(K) = κ and has models of size or density
character cofinal in i(2κ)+, then K has models with density character arbitrarily
large.

Proof: For every, λ < i(2κ)+ , let Mλ ∈ K have size ≥ λ. |Mλ| is nicely dense
in itself, so (Mλ)|Mλ| ∈ Kdense has size ≥ λ. By the definition of Hanf number
for discrete AECs, this means that Kdense has arbitrarily large models. Taking
completions, this means K has arbitrarily large models. The proof for density
character is the same. †

Given this representation, we can determine basic structural properties of K
by looking at Kdense and vice versa. The above theorem already shows how to
transfer arbitrary large models and the other properties transfer similarly.

Proposition 6.5. Suppose K is an MAEC. For P being amalgamation, joint
embedding, or no maximal models, K has P iff Kdense has P .

The fourth clause of the conclusion of Theorem 6.1 is stated as it is to make the
proof of this proposition easy to see.

We now look at the notion of type in Kdense that corresponds to Galois types in
K. Similar to the examination in Section 5, we see that the

To study saturation, we pass to a sequence of types representing a Cauchy
sequence for a realization of the Galois type we wish to represent.

Definition 6.6. • Given A ∈ Kdense, 〈rn : n < ω〉 is a sequence Galois type
over A iff
(1) r0 ∈ gS`(A); and
(2) rn+1 ∈ gS`2(A) such that

(a) if ab � rn+1, then d(a,b) ≤ 1
2n

; and

(b) r
{`,...,`2−1}
n+1 = r`n, i. e. the first ` coordinates of rn are the same

as the final ` coordinates of rn+1.
• Given a sequence Galois type 〈rn : n < ω〉 over A and A ≺dense B, we say

that 〈an ∈ B : n < ω〉 realizes 〈rn : n < ω〉 iff
(1) a0 � r0; and
(2) an+1an � rn+1
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• Given a sequence Galois type 〈rn : n < ω〉 over A and A ≺dense B, we say
that 〈an ∈ B : n < ω〉 weakly realizes 〈rn : n < ω〉 iff there is some C and
〈bn ∈ C : n < ω〉 such that
(1) B ≺dense C;
(2) 〈bn : n < ω〉 realizes 〈rn : n < ω〉; and
(3) limn<ω an = limn<ω bn.

Note that realizing a sequence Galois type is different than realizing each in-
dividual Galois type in the sequence separately. However, we can always realize
sequence Galois types given amalgamation.

Lemma 6.7. Suppose that K has amalgamation. Given any sequence Galois type
〈rn : n < ω〉 over A ∈ Kdense, there is A ≺dense B ∈ Kdense that contains a
realization of 〈rn : n < ω〉.

Proof: By the definition of Galois type, we can write each rn as gtpKdense(a
0
0/A;B0)

and gtpKdense(a
n+1
n+1a

n+1
n /A;Bn+1). Using amalgamation in Kdense, which follows

from amalgamation in K, we can construct increasing 〈Cn : n < ω〉 and increasing
fn : Bn →A Cn such that f0 is the identity and fn(ann) = fn+1(a

n+1
n ); this sec-

ond part is due to the second clause in the definition of sequence types. Setting
C = ∪n<ωCn, we have that 〈fn(ann) : n < ω〉 realizes 〈rn : n < ω〉. †

Unfortunately, we don’t have the same tight connection between Galois types
in K and sequence Galois types in Kdense as exists in Theorem 5.4. This is due
to the fact that the Galois version of sequence types specifies a distance between
consecutive members of the Cauchy sequence, rather than just specifying a bound
on the distance. It is possible that perturbations (as in Hirvonen and Hyttinnen
[HH12]) might be used to restore this connection. Instead, we have introduced the
notion of weakly realizing a sequence Galois type because this is enough to prove
a variant of Theorem 5.6 in this context.

Theorem 6.8. Let M ∈ K and A ∈ Kdense such that A = M .

(1) If M is κ-Galois saturated and λℵ0 < κ, then A is λ+-weakly saturated
for sequence Galois types (i.e. given any A0 ≺dense A of size < λ+, every
sequence Galois type over A0 is weakly realized in A).

(2) If A is κ-weakly saturated for sequence Galois types, then M is κ-Galois
saturated.

Proof: First, suppose that M is κ saturated and λℵ0 < κ. Let A0 ≺dense A be
of size ≤ λ and let 〈rn : n < ω〉 be a sequence Galois type over A0. By Lemma
6.7, there is some Bdense � A0 and 〈an : n < ω〉 that realizes 〈rn : n < ω〉.
After completing the members of Kdense, we have A0 ≺ M and A0 ≺ B ∈ K.
Since 〈an ∈ B : n < ω〉 is a Cauchy sequence, there is some a ∈ B such that
limn→∞ an = a. Since M is κ-saturated and ‖A0‖ ≤ λℵ0 < κ, there is b ∈M that
realizes gtpK(a/A0;B). Since A is dense in M , there is some Cauchy sequence
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〈bn ∈ A : n < ω〉 that converges to b. Then 〈bn : n < ω〉 weakly realizes
〈rn : n < ω〉.

Second, suppose that A is κ-weakly saturated for sequence Galois types and let
M0 ≺ M of size < κ and r ∈ gS(M0). Let A0 ⊂ A be nicely dense in M0; then
A0 := (M0)A0 ≺dense A. In K, we can write r as gtpK(a/M0;N). Then, in Kdense,
r := 〈gtpKdense(a/A0;N|N |) : n < ω〉 is a sequence Galois type over A0. Since
‖A0‖ < κ, by A’s weak saturation, there is some 〈bn : n < ω〉 that weakly realizes
r. This means that we can find an extension Bdense � A and f : N|N | →A0 B such
that

lim
n→∞

f(a) = lim
n→∞

bn

Since bn ∈ A, this means that f(a) ∈ M . Since N|N | is complete, the Kdense-

embedding f is in fact a K-embedding from N into B and fixes A0 = M0. Thus,
we have that f(a) ∈M realizes gtpK(a/M0;N). †

A crucial property in the study of MAECs is whether the natural notion of
distance between Galois types defines a metric or not. This property is called the
Pertubation Property by Hirvonen and Hyttinen [HH09] and the Continuity Type
Property by Zambrano [Zam12]. For ease, we assume that K (equivalently, Kdense)
has a monster model C.

Definition 6.9. • Given M ∈ K and p, q ∈ S(M), we define

d(p, q) = inf{d(a, b) : a � p and b � q}
• K has the Pertubation Property (PP) iff, given any Cauchy sequence 〈bn ∈
C : n < ω〉 and M ∈ K, if, for all n < m < ω,

gtp(bn/M) = gtp(bm/M)

then, gtp(limn→∞ bn/M) = gtp(b0/M).

Although these properties might not initially seem related, a little work shows
that d is always a pseudometric and that it is a metric iff PP holds; this is due Hir-
vonen and Hyttinen. Then, similar to tameness from AECs, Zambrano [Zam12].2.9
defines a notion of tameness in MAECs that satisfy PP.

Definition 6.10. K is µ-d-tame iff for every ε > 0, there is a δ > 0 such that
for every M ∈ K of density character ≥ µ and p, q ∈ gS(M), if d(p, q) ≥ ε, then
there is some N ≺M of density character µ such that d(p � N, q � N) ≥ δε.

Again these properties transfer to sequence types in Kdense. We can define a
pseudometric on sequence Galois types in Kdense by

ddense(〈rn : n < ω〉, 〈sn : n < ω〉) := inf{ lim
n→∞

d(an, bn) : 〈an : n < ω〉 realizes

〈rn : n < ω〉, 〈bn : n < ω〉 realizes 〈sn : n < ω〉}
Then ddense is a metric iff d is, and µ-d-tameness transfers from K to Kdense

in the obvious way. This functor has recently been used in Boney and Zambrano



26 WILL BONEY

[BoZa] to transfer various large cardinal results from Boney [Bon14] to the MAEC
setting. Additionally, it can be used to transfer stability theoretic results both via
characterization (as in Section 5) and via independence relations.
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